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1. Introduction

Let £ be an elliptic curve ove. We denote byE(xi,x;) the formal group
associated to the minimal model ovér for E. Let L(E/Q,s) = > ,~,a.,n"* be
the L-series attached to the -adic representations ofG&j on E. We denote by
L(x1, x5) the formal group of the L-series E(Q,s), that is, the formal group with
transformery_, -, a,n~%x". Then Honda shows:

Theorem 1.1([6], [7]). I:(xl, x») is defined oveiZ, and it is strongly isomorphic
over Z to E(x1, x2).

He also shows thaf (x1, x,) determines the L-series E(Q,s). Namely, the co-
efficients of L E/Q, s) can be obtained explicitly from the coefficients of the &an
former of E(x1, x2).

We call an elliptic curveE oveQ a Q-curve if it has an isogeny oveQ to
E° for eacho in Gal@Q/Q) (cf. e.g. [4]). An elliptic curve overQ is a Q-curve.
We attempt to get a similar result of Theorem 1.1 to formalugso of Q-curves over
guadratic fields. The problem is to find an L-series whose &rgroup is strongly
isomorphic to the formal group of a fixed Weierstrass modelaoD-curve over a
quadratic field.

Let K be a quadratic field with maximal ordé?x. We denote byr a generator
of the Galois group Gak /Q) of K over Q. Let E be aQ-curve defined ovek . We
assume that it has an isogepyover K from E to E° of non-square degree not equal
to one. LetA be the restriction of scalars Bf frokh @ Then A is of typeF
for some quadratic field@ . We fix a Weierstrass model o@gr for E. We denote
by E(x1, x,) its formal group. For the fixed Weierstrass model®f , we define L-
seriesL,(s) by (3.8) in Section 3.L,(s) is a linear combination of L-series attached
to A-adic representations of G&I{Q) on A, and it has coefficients ik . Then, for a
finite setS satisfying the conditions (4.2) in Section 4, weeha
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Theorem 4.1. I:u(xl, x) is defined over the rin@g s of S-integers inK, and
it is strongly isomorphic oveg g to E(x1, x2).

As a corollary, we see thak(x, x,) determines thep -factors of the L-series at-
tached to\-adic representations oA  for almost all primes . Since gadhctor of
the ordinary L-series is obtained from that of the L-seritached to\-adic represen-
tations,fE(xl,xz) also determines the -factors of the ordinary L-series.

When K is reduced t®Q, \-adic representations of G&(Q) on A is reduced
to /-adic representations of GAI(Q) on E. Thus Theorem 4.1 is a generalization of
Theorem 1.1 to the case of @-curve E over a quadratic fiel& in the sense that
fi(xl, x7) determines the L-series attached Xeadic representations of G&I(Q) on
A, though we can not exclude some assumptionsgZon  anfl on

The contents of this paper are as follows. In Section 2, weéewethe classifi-
cation theory, studied by Honda, of formal groups oyeadic integer rings. In Sec-
tion 3, after some investigations on the L-series of theric&gin of scalars of a cer-
tain Q-curve which we deal, we define an L-series associated totairc€-curve and
we discuss its associated formal group. In Section 4, westigate the formal group
structure of a certaii@-curve and we prove Theorem 4.1.

The author would like to express his sincere gratitude tde2smr Yoshihiko Ya-
mamoto for his useful suggestion. The author also wishefdokt Professor Hirotada
Naito for his warmful encouragement.

2. Formal groups over p-adic integer rings

We review some results needed in Sections 3 and 4.

2.1. Let R be a commutative ring. We denote W xi[xo, ..., x,]] the ring
of formal power series om variables, x», ..., x, with coefficients inR . We say
that two power series(xy, ..., x,) and ¥ (xy, ..., x,) In R[[x1, ..., x,]] are congru-
ent modulo degree, if they differ only in terms of total degree greater than qual
to r. Then we writep(x1, ..., x,) = ¥(x1, ..., x,) mod deg- . We put

R[[x1, ..., xJlo = {p € R[[x1,...,x4]] | ¢ =0mod deg}.

A power seriesp(x) in R[[x]] o is said to beinvertible if ¢(¢(x)) = x holds for
some(x) in R[[x]]o. The power series)(x) is then uniquely determined by(x),
and is writtenp~(x). We note that a power seriggx) in R[[x]] o is invertible if and
only if ¢(x) = ax mod deg 2 holds for some unit IR

We define a ¢gne-dimensional commutatjvéormal groupover R as a power se-
ries F (x1, x2) in R[[x1, x2]] satisfying the following:
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® F(x1, x2) = x1 + xo mod deg 2
(i) F(xi, F(x2, x3)) = F(F(x1, x2), x3).
(i) F(x1, x2) = F(x2, x1).

For example, the additive grouéa(xl, x2) = x1 *+ x2 and the multiplicative group
ém(xl, X2) = x1+x2 +x1x2 are formal groups over

Let F(x1,x2) and G (1, x2) be formal groups oveR , and let(x) be a power
series inR [k ]b. We call p(x) a homomorphisnover R from F (1, x2) t0 G (x1, x2),
if it satisfies

©(F(x1, x2)) = G(p(x1), p(x2)).

Moreover, if p(x) is invertible, we callp(x) a (weak isomorphism The power series
¢ (x) is then an isomorphism fron& x{, x2) to F(x1, x5). We call an isomorphism
(x) a strong isomorphismif ¢(x) = x mod deg 2 holds. We see that a strong isomor-
phism from F {1, x2) to G(x1, x2) is uniquely determined by x{, xp) and G (1, x2)

if it exists. We say that two formal groups anedgakly isomorphic(resp.strongly iso-
morphiq if there exists an isomorphism (resp. a strong isomorphisetween them.

The set Hom £, G ) of all homomorphisms ov@®  frof x;,(x2) to G (x1, x2)
forms an additive group by the addition lawpi(+ ¢2)(x) = G(p1(x), p2(x)). We put
End; (F) := Hony ¢, F ). Then the additive group Epd” ( ) forms a ring hg mul-
tiplication law: (p1¢2)(x) := p1(p2(x)). We denote byA } £ ) the image of an integer
n under the canonical ring homomorphism franto End; (¢ ).

We suppose thaR is an integral domain of characteristic. ZEhen, for every
formal group F' &3, x2) over R, there exists an unique strong isomorphigny () over
its quotient field fromF £, x,) to éa(xl, x2) (cf. e.g. [7]; Theorem 1). We calf x( )
the transformerof F(x1, x2). We see thatF i, x2) = £ 2(f(x1) + f(x2)).

Now we suppose thak is a field of characterigtic- 0. Then the endomorphism
[Pl F(x) of F(x1,x,) satisfies eitherg 4 X )= ax?" mod degp” + 1) with non-zero
elementa for some integek  op[r]x( ) = 0 (cf. e.g. [6]; Lemma 1). \B&y that
the heightof F(x1, x2) is & or infinity, according as in the former case or in the fatte
case.

2.2. We review the classification theory of formal groups oweadic integer
rings, which is studied by Honda [7].

Let K be a finite Galois extension of the -adic number fi€lg. We denote by
O and p its maximal order and its maximal ideal, respectively. We dix-robenius
endomorphismr for p in Gal(k /Q,). We also fix a prime element in O.

Let K,[[T]] (resp. O,[[T]]) be the non-commutative power series ringTh  with
the multiplication law:Ta =a°T for a € K (resp.a € O). We define the action of
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K,[[T]] on K[[A] o from left hand side by the following:

(w* f)x) = Zal,f"y (xpu) for u:= Zal,TV € K, [[T]].

v=0 =0

An elementu inO,[[T]] is said to bespecial if ©« = 7 mod deg1l. A power series
f(x) in K[[x]]o is said to be oftype u, if f(x) = x moddeg2 andi * f)(x) =
0 modyp. For example, {~7) * x is of typeu . A formal group ovelk is said to be
of typeu, if its transformer is of type: .

Let F(x1,x2) and G (1, xp) be formal groups ovek with transformei x () and
g(x), respectively.

Proposition 2.1 ([7, Theorem 2 and 3]). Suppose tha# (x4, x,) is of typeu for
some special element . Thef(xy, xo) is defined overO. In addition suppose that
G(x1, xp) is of typev for some special element . Then the mapping

{c € O | ve =tu for somer € O,[[T]] } — Homp(F, G) : ¢ +— g Y(cf(x))

is a group isomorphism. In particularF (x1, x) and G(x1, x2) are strongly isomorphic
over O if and only if v =ru for somer InO,[[T]].

As below in this section, we assume that we tgke as fixed primehen p
is unramified. In the case whegeis unramified, the converse of the former part of
Proposition 2.1 holds.

Proposition 2.2 ([7, Propositions 2.6 and 3.3]).Assume thap is unramified. If
F(x1, x2) is a formal group defined ove® with transformer f(x), then the ideal
{u" € O,[[T]] | '+ f =0 modp} is a left principal ideal generated by some special
elementu . In particular F (x1, xp) is of typeu .

Let v’ and v’ be elements inD,[[T]]. We say thatv’ is left associatewith u’,
if v/ = ru’ holds for some unit inO,[[T]]. A formal group over O is said to be
of height i, if its reduction modulop is of heightk . In the case whene is unram-
ified, it follows from Propositions 2.1 and 2.2 that the sggasomorphism classes of
formal groups ovel© correspond bijectively to the left associate classes ofsfiexial
elements.

Proposition 2.3 ([7, Proposition 3.5]). Assume thap is unramified. The strong
isomorphism classes of formal groups ow@r of heightk (1 < h < o), correspond
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bijectively to the special elements of the following form

p if h=oc0
h

p+Zal,T” with ay, ...,a,_1 € p anda, € O* if 1< h < oo.
v=1

The following propositions are needed in Section 4.

Proposition 2.4 ([7, Lemma 4.2]). Let f(x) be a power series irK[[x]] o of type
u for some special element u. Lét(x) be a power series irK[[x]] o and lety,(x) be
a power series inNO[[x]]o. Then f(¥1(x)) = f(w2(x)) modyp if and only if ¢1(x) =
¥2(x) modp.

Proposition 2.5. Let u = " a,7" and v = Y."_ b,T” be elements of
O,[[T]]. Assume that = tu for somer = Y 2 ¢, TV in OL[[T]]. If n > m,
ag, ...,am_1 € p, and a,, € O*, thenc, =0 holds for eachv > n — m.

Proof. Since

tu = (i cl,T”> (i a,,T”) = i <i cual‘fuu> T",
v=0 v=0 1=0

v=0
where we puta, =0 for v > m, it follows from v =tu that

v—m v—m+l

v
(2.1) Cu_may, =— (Cy_m+j_a;;_1 +---+cyaf )

holds for eachv > n. Sinceay, ..., a,_1 € p anda, € O*, it follows from (2.1) that
Cy_m € p for v > n, that is,c, € p for v > n — m. Thus by using (2.1) again, we
havec, € p? for v > n — m. In the same way, we inductively get € p* for each
positive integeru andv > n — m. Hence we have” =0 for v > n — m. ]

2.3. We give certain formal groups ove? in the case ofs?> = 1. They are re-
lated to the formal groups, over quadratic fields, which wal déth in Sections 3 and
4.

We fix an integerx(p) in the set{—1, 0, 1}. For each commutative rin® , we
define the linear actiofT, , on R[[x]]o from right hand side by

(2.2) Zanx” | Tpy = Zanpx" +x(p)p Zanx”p.

n>1 n>1 n>1

Let Zn21anx" be a power series iD[[x]] o with a3 = 1.
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Proposition 2.6. Assume thap is unramified. If

(2.3) Zan | Ty —apZa” "

n>1 n>1
then" ., a,n *x" is of typep — a,T + x(p)T>.
Proof. It follows from (2.3) that

anp = apag for each positive integet  coprime {o
ap,2 — apay, + x(p)pa, =0 for each positive integer.

Together witho? = 1, we have

an ,
(p —a,T + X(p)TZ) * Z X

n>1
a
Y ()Y S
n>1 n>1 n>1
- al? np 4 an np
711 SRS 3} X pLCENA) o
n>1 n>1 n>1 n>1
(n,p)=1 |/1
a a? a 2
= Z %x”p —a, Z Y”x"P +v(p) Z ;”x"” modp
n>1 n>1 n>1
_ Z Anp — Apdy a; n12+z App2 — dp 3p+X(P)Panxnp modp
n>1 n>1
(n.p)=1
= 0 modp. ]

Proposition 2.7. Assume thap is ramified andy(p) = 0. If anlanx” | Tpy =
0, then)", _, a,n~"x" is of typer.

Proof. It follows from our assumption that, =0 far> 1. Thus we have
W*Za—nx":ﬂz a"”—Omodp U
n n
n>1 n>1
(n.p)=1

3. Formal groups associated to L-series of Q-curves over qdaatic fields

Let K be a quadratic field with maximal ordé?x and discriminantDx . We de-
note byo the generator of Gak(/Q). Let E be an elliptic curve oveK such that it
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has an isogeny over K from E to E¢ of non-square degree. Thah  isCacurve.

By taking bases, conjugate ov€&, of one-dimensionakK -vector spaces of differ-
entials of E overK and oE“ over K and by looking at the actions of the pull-backs
of ¢ and ¢?, we see that

(3.1) [mzd]E =¢? o and m?d=oaa’

for some square-free integér , some natural number , and someK, where | |z
is the multiplication-bys map o . The integer is positive rmegative according as
the dual isogeny ofp is equal top? or —¢?. The degree ofp is the absolute value
of m?d. Since the degree ap is not squared is not equal té1l.

3.1. Let (A,n) be the restriction of scalars df  frolk Q. By definition,
A is an abelian variety ove® of dimension two and; is a homomorphism ovek
from A to E such that the homomorphism, ) is an isomorphism ovek  fromt
to E x E?. We denote byN; an&v, the conductors Bf owér anddof dper
respectively (cf. e.g. [9]).

Proposition 3.1 ([9, Proposition 1]). Ny = INK/QNE)\DKIZ, where N /q is the
norm.

Let L(E/K,s) and L (A/Q, s) be the L-series attached to tlie -adic representa-
tions of GalQ/K) on E and of GalQ/Q) on A, respectively.

Proposition 3.2 ([9, Proposition 3]). L E/K,s)=L(A/Q,s).

Now we discuss endomorphisms defined o@eof A.

We put F ::Q(\/Z). Sinced is a square-free integer not equaldid, F is a
quadratic field not equal t@(\/—1). FurthermoreF is real or imaginary according
as the dual isogeny ap is equal top” or —p°. We denote byr the generator of
Gal(F/Q).

The isogenyy induces the endomorphisny k ¢?]4 satisfying the following com-
mutative diagram:

A [exe7]a A
(n,n”)l (n",n)l
ExE° 2%, E°XE.

We note thaty? o ¢ is the multiplication-bys?d map of E. We can check that
([p x ©714)7 = [ x ©7]a and (fp x ©714)? = [m®d]4.

Thus we have isomorphisms frofi  into ti@algebra Enf(A) of endomorphisms
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defined overQ of A.

We take an isomorphismfrom F to End(A) satisfying:(vm?d) = [£1]4 o [¢ x
©%]a. Then (A, ) is of type F, and SO iS4, to 7).

We recall the definition of the L-series attached to thadic representations of
Gal@Q/Q) on (A, ).

For each prime integdr , Ik A( ) be tlie -adic Tate module atih¢b A ;7; (A)
is a Z;-free module of rank four. We put; A( ) :©; ®z, Ti(A); Vi(A) is a Q,-vector
space of dimension four. We p#iy E®qQ;. ThenV; (A ) is anF; -module sincgF)
operates onV; 4 ); in facty; A ) is a freE -module of rank two (cf0,[Theorem
(2.1.1)]). Since the actions of Efd) and of GalQ/Q) commute with each other, the
action of GalQ/Q) on V;(A) is F;-linear. On the other hanf; is decomposed into
the product[],, Fx of the A\-adic completionsF, of F at the primes\ dividing /.
For each) dividing I, we putVy(A) := Fx ®f Vi(A). Then GalQ/Q) acts Fy-linearly
on Vy(A). We get a continuous homomorphism

pr 1 GallQ/Q) — GLg, (Va(A)).

The homomorphisnp, is called thel-adic representatioron (4, ¢).

For a prime integerp , lefd be a prime inQ and Iy be its inertia group in
Gal@Q/Q). Let o be a Frobenius automorphism g in Gal@Q/Q). We define the
local L-seriesL, 4, ¢, s) attached toA-adic representations by

Ly(A, ¢, u) :=det(l—u - pr(ogp) | Va(A)™),

where V,(A)"* is the fixed subspace for the action Bf. It does not depend on the
choice of B and oyy.

Proposition 3.3 ([11, Proposition 11.9]). For each primep which does not di-
vide N4, L,(A, ¢, u) is a polynomial with coefficients in the maximal ord@f of F,
which is independent df # p and X dividing .

We put

0 if p divides N,
x(p) =< 1 if p does not divideN, and > 0
(Dg/p) if pdoes not divideN, and/ <0,

where D /x) is the Kronecker symbol fok
Proposition 3.4 ([2, Proposition (2.3)]). Assume that/ > 0. For each primep,
(3.2) L,(A,v,u)= 17c1,u+x(p)pu2 with ¢, € Op,

which is independent df # p and X dividing .
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In the following we will see that (3.2) also holds in the caskeved < 0 and p
does not divideN, .

For each primep in K, we denote byL,(E/K, u) the p-factor of L (E/K, s), and
we put

__ [0 if p divides N
P71 1 otherwise.

Then we can write
Lo(E/K,u) =1— apu®9 +c,Npu? 4%

for some integew,, whereNp is the cardinarity of the residue fiel@x /p and deg
is the degree of the extension 6fx /p over its prime field.

We identify V; (A) with V; (E )@ V;(E?) through the isomorphisny(7?). Then we
have.(vd) Vi(E) = Vi(E?). Thus eachQ;-basis ofV; € ) can be seen asFa  -basis of
Vi(A). We note thatV, 4 = Vi(E)™ & V,(E?)™ if pis unramified inK . In the
following we putp =P N K.

In the case wherg splits completely & we have the following:

Lemma 3.5. If p splits completely inK, then L,(A, ¢, u) = 1 — ayu + x(p) pu®.

Proof. Sincep splits completely iK' qgq is a Frobenius automorphism fég
in Gal@Q/K). Sinceoy(Vi(E)*) = V,(E)'*, we haveL, 4, t,u) = L,(E/K,u). The
assertion follows by the definition of(p). We note thatL,(E/K,u) = L,-(E/K, u)
since E andE“’ are isogenous ovek . ]

Next we consider the case whepe remains primekin . The(V,(E)'*) =
Vi(E®)!* = (/d)V,(E)™. Suppose that eithed > O or p does not divideNg . It
follows from Proposition 3.3 or 3.4 that, A(t,u)=1—au+bu? with a € Z+/d and
b € Z. Now o, is a Frobenius automorphism g8 in Gal(Q/K) and o, (V,(E)™) =
Vo(E)*. Thus we have

(3.3) Ly(E/K,u)=1— (a® — 2b)u + bu®.

If p divides Ng, then we have =0 anef = 0, +1. Otherwise we havé? = p?, that
is, b =ep with ¢ = +1.

Lemma 3.6. Assume that/ > 0. If p remains prime inK and divides Ng,
thenL,(A, +,u) =1 NamelyE has additive reduction at

Proof. We recallF =Q(v/d) is a quadratic field not equal tQ(v/—1). Since
a € Z\/d anda® = 0,+1, we havea = 0, namelyL, A( ¢, u) = 1. Furthermore it
follows from (3.3) thatL,(E/K,u)=1. ThusE has additive reduction pit Ul
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Lemma 3.7. If p remains prime in K and it does not divid&vpy , then
L,(A,c,u)=1—cpu +x(p) pu? for somec, inZvd.

Proof. Sincec, =a € ZVd and b =ep, it is enough to showe = y(p).
Weil's Riemann conjecture asserts that the absolute vafuthe inverse roots(a +
va? —4ep) /2 of the equation - au +epu® = 0 are equal to,/p. It occurs only if
eithered > 0 ora = 0.ed > 0 impliese = x(p) by the definition ofy(p). If a =0,
(3.3) impliesa, = —2¢p and thene = x(p) is verified from the following Lemma 3.8.
Thus the assertion is verified. ]

Lemma 3.8. Assume thap remains prime i and it does not divile p If
dividesa,, thena, = —2x(p)p and L,(A, v, u) = 1 +x(p) pu?.

Proof. Sinceja,| < 2¢/Np = 2p and p dividesa,, we can writea, = jep for
an integerj such that2 < j < 2. Then it follows from (3.3) thatz =/(j + 2)ep.
Sincea € Zvd and F # Q(v/—1), we have {, p,e) # (0, 2 +1), (1, 3 +1). Thusp
dividesd unless,/(j +2):p = 0.

Suppose thap divideg . We note that remains prim&in . On tleehamd,
the order ofd atp is one sinced is square-free. On the other hand, it followsfro
(3.1) that the order off ap is even. This is a contradiction. Thys does not divide
d. We havea, = —2:p anda =0.

Next we showe = x(p). Since L,(E/K, u) = 1+ 2=pu®+ p?u*, 0‘213 =[—eplg On
Vi(E). Sincep does not divideN; , the reduction ¢f” ooz moduloP is an endomor-
phism of the reductionE, of E modulo p. Furthermore, theQ-algebra of endomor-
phisms of E, is a definite quarternion algebra sinpe  dividgs Now (¢ o op)? =
@ opo 053 =[—epd]g on V,(E). Thus the injectivity of the reduction mapping from
the Q-algebra of endomorphisms &  to that Bf implies —epd < 0. Hence, by the
definition of x(p), we havee = x(p). ]

Next we consider the case whegeramifies overK . Then it follows from Propo-
sition 3.1 thatp dividesNV, and thug(p) = 0 by definition. Thus Poroposition 3.3

implies thatZ, @, ¢, u) = 1 — c,u + x(p)pu? for somec, inOf.

Lemma 3.9. Assume thatd > 0. If p is ramified in K, then L(A,:,s) = 1
Namely,E has additive reduction at

Proof. By the definition ofL, 4, u), we have L, A, ¢, u)L,(A,t,u)" =
L,(A/Q, s). Together with Proposition 3.2, we see that

(3.4) (1- cpu)(l — c;u) =l-ayu+ sppuz.

Suppose that, = 1. Thenc, must be an imaginary quadratic integer wWith = ,/p
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by (3.4). SinceF is a real quadratic field, this contradictsp®sition 3.3. Thug, =
0, and consequently we ge}, a =0 from (3.4). Ll

We define the L-seried. A(, ¢, s) attached tol-adic representations oM () by
the Euler product:

(3.5) L@, vs)=[]LA e.p)™h
p

where the product is taken for all primes  (resp. prinppes  wiiiols not divideN, )
in the case oWl > 0 (resp.d < 0).

We define{c,}.>1 by L(A,¢,8) = > ,~,c,n*. We notec, is well-defined for
each primep . Sincd, A, ¢, u)=1—cpu + y(p)pu? from Lemmas 3.5-3.9, the Euler
product (3.5) implies the following equations:

;= 7 ! > H / -
(3.6) {C"" CnCn for n,n’ > 1 with (n,n’) =1

Cpriz — CpCpni + X(p)peyr =0 for each primep  ana > 0.

Together with Lemmas 3.5-3.9, we have:

Proposition 3.10. The coefficient, has the following properties

(3.7) en €ZVA i (Dg/n)=—1

ez  if (Dx/n)=1
{c,, =0 if (Dx/n) =0.

We note thatc,, =0 for each by the definition HfA,(,s), if 4 <0 andp divides
Ng.

3.2. We take an invariant differentialy on E. The invariant differentialv; de-
fines the module homomorphism from Hom (E, E°) to K by

¥ ((we)7) = a(@)we,

wherey*((wg)?) is the pull-back of the conjugate differentiab£)® on E° by . We
define the L-seried (s) by

(3.8) Lo(s) = %(L(A, t,8)+L(A,LoT,5s))

ealyp)”

W(L(A, L, S) — L(A, LOT, S)),

wheree is 1 or —1 according as/ > 0 or d < 0. We note that=([p x ¢7]4) =
++v/m2d. The L-seriesL,(s) does not depend on the choice fsince (o 7)~([¢ x
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©71a) = =t (¢ x ¢?14). The L-seriesL,(s) has coefficients ink , and it does not
generally have Euler product. We defié,},>1 by >, -, ¢n~" = La(s). For sim-

plicity, in the rest of this paper, we assume thét/m?d) = [¢ x ¢7]4, and we write
« instead ofa(y).

Proposition 3.11. The coefficien€, has the following properties

Cn if (DK/I’I) =1
(3.9) Cp = { (cn/Vm?d)ea” i (Dg/n)=—1
0 if (Dg/n)=0.

Proof. We get

-
¢ te, +cn7c

(3.10) & =

from the definition ofé,. Together with Proposition 3.10, Proposition 3.11 follows
U

We denote the formal group ovéf  with transfornE;l>15,,n—1x” by I:a(xl, X2).
We call L, (x1, x5) the formal group ofL,(s).

For each primep, we denote byOg , and K, the p-adic completions o0k and
of K. We denote by, the Frobenius automorphism ferin Gal(K,/Q,). We take a
finite setS of primes inK satisfying the following condition:

(3.11) () If a/m ¢ O, thenp € S.

If p ¢S, then¢, € Ok, for eachn . LetOk s be the ring ofS -integers ik . Namely,

Ok.s = ﬂ(OK,p N K).
pgs

Then¢, € Ok s for eachn .

Theorem 3.12. I:a(xl, xo) over K, is of typep —¢,T + x(p)T? for each prime

p ¢ S. In particular, L,(x1, x2) is defined ovelOk s.

Proof. The latter part immediately follows from the formearpby using Propo-
sition 2.1. By using Propositions 2.6 and 2.7, for the probfthee former part it is
enough to show

(3.12) D G [Ty =8y Eox"

n>1 n>1
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for each primep ¢ S.
We define f1(x) and fao(x) in Q[[x]] o by

S1(x) + Vmad fo(x) = chx”.

n>1

Then we have

fx) +eal folx) =Y Eux”.

n>1

It follows from (3.6) that

(3.13) chx" | Ty =) chx”.

n>1 n>1

The equation (3.13) implies the following three lemmas. dreen 3.12 follows from
them. ]

Lemma 3.13. If p splits completely inK ang ¢ S, then Lo(x1, x2) over K, is
of type p — &,T + x(p)T?.

Proof. We recall that, € Z andc, =¢, by Propositions 3.10 and 3.11 in this
case. We also recatt, = 1. Sincec, € Z, it follows from (3.13) that

f@) [ Ty =cp filx) and fo(x) | Ty = cp fa(x).

Thus we have

S 6" | oy = () + 207 f2(x)) | Ty = p(file) + 20" folx)) =8 3 & ",

n>1 n>1

Hence Lemma 3.13 follows from Proposition 2.6. U

Lemma 3.14. If p remains prime inK and ¢ S, then Lo(x1, x2) over K, is
of type p — &,T + x(p)T?.

Proof. We recall that, € Zv/d and¢, = (c,/vm2d)ea by Propositions 3.10
and 3.11 in this case. We also recajlx = 0. Sincec, € Z+/d, it follows from (3.13)
that
‘p

vm2d

fix) | Ty = cpVm?d fo(x) and  fo(x) | Tp = fa(x).
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Thus we have

C
CuX =c,Vm x) +ea’ —2— fi(x
;l px 4 f2( ) mfl( )
= S Lca” (i) +eafola)) =y Y&
n>1
Hence Lemma 3.14 follows from Proposition 2.6. l

Lemma 3.15. If p is ramified in K andp ¢ S, then ia(xl, x2) over K, is of
type 7, wherer is a prime element 00y ,.

Proof. We recall that, =, = 0 by Propositions 3.10 and 3.11 (resp. by the
definition of L (4, ¢, s) and Proposition 3.11) iZ > 0 (resp. ifd < 0). Sincec, =0,
it follows from (3.13) that

fi(x) | Ty =0 and fo(x) | T, = 0.

Thus we have

ch | Tpx =

n>1

Hence Lemma 3.15 follows from Proposition 2.7. ]

3.3. Finally we give a geometric interpretation &f in the case wherg remains
prime in K andp does not divideNg . In this case we have

We consider the reduction df,/vm2d)y modulop.

In this case we see thgi  does not divitg by Proposition 3.1.alse see
that p does not divideNg- since Ng- = (Ng)?. We denote byr,, the Frobeniusp -
th power endomorphism of the reductioty, ~ af modylo . We dengterp, the
Frobeniusp -th power homomorphism from the reductiBn of E modulo p to the
reductionEy of E7 modulop and byrg. the one fromEy to E,.

Proposition 3.16. Assume thatp remains prime ik  and does not divide
Ng. Then(c,/Vm2dp) " ((wE)?) = x(p)éSwr. Moreover the reduction ofc,/vm?d)¢
modulop is 7, + x(p)pwggl.
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Proof. We have the following commutative diagrams:

—1
[’7",‘,],

Ap Ap Ap ’ Ap

(n,n")pl (n”,n)pl ("77710)pl 1 1 ("70:7])pl
TE, X T o I’TVEgXPTVEp

Ep x E] ——5 EJXE, E,xE] —— EJxE,,

7TA1’

where ¢, n?), and (7, n), are the reductions modulp of (n, n”) and of 7, n), re-
spectively. Sinced, 4, =ta, + x(p)pw;pl, we have

[ )]
Ap SEER Ap
-1 )pl (7ep +x(PIPT ) (ﬂfg +x(p)pﬂ;p1) K ,n)pl
E, x EJ : E] x Ey,

which is the reduction of the diagram:

[Cp] A

A A
(n,n")l (n° n)l
(c,,/\/mzd)tpx (c,,/\/m2d) @7
E x E° E° X E
Hence the reduction ofc,/vm?d)¢ moduloyp is mg, +x(p)prge. 0
p

4. Formal groups associated to certain Q-curves over quadte fields

Let notations and assumptions be the same as in the prewectisrss. In this sec-
tion, we fix a Weierstrass model

(4.1) Y2+ A1XY + AgY = X3+ A,X2 + A4X + Ag (A; € Ok)

for E and we take the canonical invariant differentit /(2Y + A1 X + A3) aswg. We
denote byA andr the discriminant of (4.1) and the minimal discriminant Bf eov
K, respectively. Then we can write

(A) =9 - at?

for some integral ideaf in Og.
Let E(x1, x) be the formal group associated to the Weierstrass modg). (fhen
E(x1, xp) is the formal group ove®g with transformer

— b’l n — n—1 — X .
f&=> —x", wherewr = > b,z for 7 := —5 (cf. e.g. [5]; (33.1.14))

n>1 n>1
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If necessary, we replac€ by a larger finite set satisfyingféfiewing conditions:

(i) If a/m ¢ Ok, thenp € S.
4.2) (ii) If either p or p° dividesa, thenp € S.
' (iii) If p is ramified, thenp € S.
(iv) If d <0 andp divides Ng , thenp € S.

We note the condition (i) is the same as in (3.11). Then we :have

Theorem 4.1. ia(xl, x2) is defined overOg s, and it is strongly isomorphic
over Ok s t0 E(x1, x2).

Proof. The former part follows from Theorem 3.12. For thedgbrof the latter
part, it is enough to show thak(x1, x2) over Ok.p belongs to the same special ele-
ment as in Theorem 3.12, that ip,— ¢,T + x(p)T?, for each primep ¢ S. Theorem
4.1 follows from Theorem 4.2 as below, since each prime wigchot in § is unram-
ified by (iii). [

As below, we fix an unramified primg in K and we denote by the prime in-
teger lying inp. We prove:

Theorem 4.2. Assume thatp is unramified. Unlesd < 0 and p divides Ng,
E(x1, x2) over Ok , belongs to the following special element

p—¢,T +x(p)T? if p does not dividen
p if p dividesa.

Proof. We divide our discussion into two cases. In Lemma 4e3deal with the
case wherg divides A . Next, in Lemma 4.4 we consider the case whedoes not
divide A. Theorem 4.2 follows from these two lemmas. [l

Lemma 4.3. Assume thap is unramified and it divide\
(i) If p dividesa, then E(x1, x2) over Ok ,, is of typep .
(i) Assumed > O. If p does not divides, E(x1, x2) over Ok, is of typep —¢,T +
x(p)T2

Proof. We show (i) and the case af = 0 in (ii). In the case where eithgr
divides a or a, = 0, the reduction of the group law df  modujois the additive
group, and so is the reduction @ (x1, x5) modulo p. Thus the transformelf x( ) of
E(x1, x2) satisfies

(4.3) S pf() =0 modpOkp.
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By Propositions 2.2 and 2.4, it follows from (4.3) that
pf(x)=0 modpOk p,

namely, E(x1, x) over Ok,p is of type p . This completes the proof of (i). In addition,
if @, =0, we havep =p —¢,T + x(p)T? by Lemma 3.5 and (3.9). Thus the case of
ap, =0 in (ii) is verified.

Now we show the remaining case in (ii). In the case wherdoes not dividea
anda, = £1, p splits completely ink by Lemma 3.6. The reduction of theugrdaw
of E moduloyp is the multiplicative group over the quadratic extension(qf/p and
is isomorphic to it overOk /p if and only if a, = 1. So is the reduction of (x, x2)
modulo p. Thus E(x1, x5) over Ok.p is of type p —a,T by Proposition 3 in [6]. In
addition, p — a,T = p — ¢,T + x(p)T? by Lemma 3.5 and (3.9). Thus the case of
ay 7 0 in (ii) follows. ]

Lemma 4.4. Assume thatp is unramified and it does not divid&\ . Then
E(x1, xp) over Ok, is of typep —¢,T + x(p)T2.

Proof. Since the Frobeniudp-th power endomorphismg of E, satisfies
& —ap+Np =0,

f(x) satisfies
(4.4) FE(Npf(x) —apf (<) + £ (x"')) =0  modpOx,.
Sincep is unramified, by Propositions 2.2 and 2.4, (4.4) implies
(4.5) Npf(x) —apf (xN?) + £ (xNP) =0  modpOx,.

We first assume thap splits completely k1 . Then (4.5) implies
(4.6) pf@&)—apf (x*) + £ (x”) =0 modpOx ,

namely, E(x1, x2) over Ok, is of type p — a,T + T2 In addition, p — a,T + T? =
p —¢,T+x(p)T? by Lemma 3.5 and (3.9).

Secondly we assume that remains primekin  and  divigesThen we have
ay = —2x(p)p by Lemma 3.8. Since the height & (x1, x2) over Ok,p is two, it
follows from Proposition 2.3 thaf (x;, x5) over Ok is of type p +bT +cT? for
b € pOgp andc € Ok ,. From Propositions 2.2 and 2.5, we have

(4.7) —bb%» + pc + pc=t = 2x(p)p

(p —bT +c71T2) (p +bT +CT2) = p?+2x(p)pT?+T*
bct —bc=0.
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In particular, the second equation in (4.7) implies

(4.8) bb7 = pc e — x(p))*.

The orders apOg,, of p and of ¢ are equal to 1 and O, respectively. Thus that of
the right hand side of (4.8) is odd. On the other hand, thathefleft hand side of
(4.8) is even unles$ = 0. Thus we have =0, and consequently(p¥x Namely,
E(x1, x2) over Ok.p is of type p +x(p)T2. In addition, p +(p)T? = p+&,T +x(p)T?
by Lemma 3.8 and (3.9).

Lastly we assume thgt remains primeAn  amd does not diwjdeSince the
height of E(x1, x2) over Ok, is one, it follows from Proposition 2.3 thak(x1, x2)
over Ok, is of type p — T for ¢ € Ok ,,, that is,

(4.9) pfl)—cf°xP)=0 modpOk, .

We note thatE? (xy, x2) over Ok,p is of type p — ¢?» T. By Propositions 2.2 and 2.4,
(4.9) implies

(4.10) ) Upe tf(x)) = x? modpOk ;.
By acting o, on (4.10), we have
(4.11) ft (p(cgp)flf"(x)) =x?  modpOk p.

It follows from the congruences (4.10) and (4.11) that théuotion modulop of the
homomorphisms in the left hand side of (4.10) and (4.11) hesformal completion
of the Frobenius homomorphisms:;, and TEg, respectively.

Since p — ¢?*T)c? = ¢ (p — cT), it follows from Proposition 2.1 that
(f7)"Yc» f(x)) is @ homomorphism ove©y , from E(x1, x5) to E7(x1, x2). Since
the composite off ~1(p(c7*)~1f7(x)) and (f°)~1(c?» f(x)) is equal to p }(x), the

reduction modulap of (f?)~(c? f(x)) is the formal completion Ofpﬂ'Egl. Hence the
reduction modulap of (f7)~X((c™!p + x(p)c*) f(x)) is that of mg, +X(p)p7rgg1, and
consequently, it follows from Proposition 3.16 that!p + x(p)c» = x(p)cy, equiva-
lently, x(p)(c®)1p+c=¢).

Since (1- x(p)(c®*) T)(p — ¢T) = p —¢,T + x(p)T?, E(x1, x2) over Ok,p is of
type p — &,T + x(p)T?. O

Remark. In Theorem 4.1, we can not exclude the condition (iii) in2§4on S'.
Indeed, there exists the following example.
We take theQ-curve, overk :Q(\/fl), defined by the Weierstrass model

Y2+ (1-V-1)Xy +(-1+V-1)y =x3 - X2+ (3+6V/-1)X +5-3V/-1,
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as E . It is the minimal model for th-curve E§5) defined by Hasegawa [4], and it
has an isogeny over K from E to E° of degree 5 withae =1 — +/—1. In fact, it is
a modular elliptic curve with respect 6y(416) (cf. [4]). We see that

A=-2% (3-2y-1)-13 anda = (1).

Thus we can take the empty set &is if we do not assume (iii).

However, I:a(xl, x2) and E(xl,xz) are not strongly isomorphic ovePg , at the
ramified primep = (1++/-1) lying above p = 2. Indeed, it follows from Propo-
sition 2.7 thatL,(x1, x2) over Ok, is of type = for a prime element inp. On
the other hand,E(xy, x2) over Ok, is not of typer, since it has the transformer
x+ (=1+v=1)x?/2+ (-1 - 2/=1)x3/3 +---. Thus these formal groups are not
strongly isomorphic oveOy ;.

Hence Theorem 4.1 does not hold without the condition (iii).

As a corollary of Theorem 4.1 we have:
Corollary 4.5. The congruencé, =¢, modp holds forp ¢ S.

Proof. We have
0= (p —c¢pT +X(p)T2) x f(x)

— bﬂl’ np ~ b/L’LT np b'l 11p2
=D By Shxax(p) Y tx

n>1 n>1 n>1
~ ~ g0
= Z b”P — Cﬁbr[lf X" Z bnpz - Cpbn;; +x(p)pba xnpz modp.
n>1 n n>1 np
(n.p)=1 B

Thus the congruenck,, — ¢,b; = 0 modp holds for each natural number which is
coprime top . We note thak; = 1. By substitutingr = 1 to the congruence, we get
Corollary 4.5. O

Together with Weil's inequality:|c,| < 2,/p and Corollary 4.5, we see that
E(x1, xp) determinesc, for large prime integegs . We give a numericalmgle in
the following.

ExampLe.  We put¢ = (1++/=3)/2 andK :=Q((). We take theQ-curve, over
K, defined by the Weierstrass model

Y2+ (1—OXY —(L+QY = X3+ (X% + (19 +()X + 18— 30C,

as E . Then it is the minimal model for th®@-curve E(_3;6 defined by Hasegawa [4]
and it has an isogeny over K from E to E° of degree 3 witha =2 — (. Since we
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p | (=3/p) b, | b, mod p Cp
2 -1 —1+¢ 1+¢ || —V3
3 0 0 0 0
5 -1 27+ T 2+ | 2v3
7 1 57— 196 1 1
11 -1 9403— 26149 | -2-2¢ || —2V/3
13 1 —234583 + 113464 2 2
17 -1 —34917577 + 7749873 —-2-2¢ || —2V/3
19 1 95051239 + 36537Q0 —4 —4
23 -1 1705031103 + 2479523931 1 2+2 2V/3
29 —1 | 21826646904619 28272514599109 0 0

haveaa” =3, we havez: =1, m =1,d = 3. Furthermore it is a modular elliptic curve
with respect tol'g(63) (cf. [4]). We have

A=—¢?.3.72.(3-¢) anda=(1).

We can take the set of the ramified primeskn Sas

For each primep such that2 p <29,b,,b, modp,c, are given in the above
table. We note that, is given by Fourier coefficients of the riewn with respect
to I'g(63), corresponding to the restrictioh  of scalarsiof . Frdm table, we can
check Corollary 4.5 for 5 p < 29.

Conversely, by using Corollary 4.5 and Weil's inequality,,| < 2,/p, we can
determinec, (55 p < 29) from the values ob, mog in the above table.

For example, whep =5y remains primek  and we haye 2o mod 5 by
Corollary 4.5. Thus we havés/a” = ¢s/v/3 =2 mod 5 by Proposition 3.11. Together
with Weil's inequality |cs| < 2v/5, we seecs = 21/3.

When p = 7,p splits completely irKk . Since it follows from Coroifad.5 that
¢7 = 1 modp holds for each primeg lying abovep , we havé; =1 mod 7. Thus we
have¢; = ¢; = 1 mod 7 by Proposition 3.11. Together with Weil's inequality| <
2V/7, we seecy = 1.
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