|

) <

The University of Osaka
Institutional Knowledge Archive

Folding maps on spacelike and timelike surfaces

Title and duality

Izumiya, Shyuichi; Takahashi, Masatomo; Tari,

Author (s) Farid

, , Osaka Journal of Mathematics. 2010, 47(3), bp.
Citation 839-862

Version Type|VoR

URL https://doi.org/10.18910/11576

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Izumiya, S., Takahashi, M. and Tari, F.
Osaka J. Math.
47 (2010), 839-862

FOLDING MAPS
ON SPACELIKE AND TIMELIKE SURFACES
AND DUALITY

SHYUICHI IZUMIYA, M AsaToMO TAKAHASHI and FARID TARI

(Received February 27, 2008, revised May 13, 2009)

Abstract
We study the reflectional symmetry of a generically embedtidimensional sur-
face M in the hyperbolic or de Sitter 3-dimensional spaces. Thisrsgtry is picked
up by the singularities of folding maps that are defined andistd here. We also
define the evolute and symmetry setMf and prove duality results that relate them
to the bifurcation sets of the family of folding maps.

1. Introduction

The investigation in this paper is the analogue of that iB@,for surfaces in the
Euclidean spac®3. In [5] is studied the reflectional symmetry of a smooth stefa
M c R® in planes inR3. A surfaceM is reflectionally more symmetric across planes
with normals a principal direction gi € M than any other plane through This reflec-
tional symmetry is studied via the family of folding maps,iahis a 3-parameter family
of mappings obtained by conjugating the fold map y, z) — (X, Y2, z) by Euclidean
motions ([2, 5]). The following result, with important geetric consequences, is shown
in [5]: the bifurcation set of the family of folding maps is @uo the union of the focal
and symmetry sets oM. The focal set and the symmetry set also arise as the bifur-
cation sets of the family of distance squared functionsrietl to M. Recall that the
distance squared function measures the contact of thecewtfith spheres, so the focal
set is the centre of osculating spheres and the symmetrys dbeicentre of bi-tangent
spheres to the surface. The duality result in [5] provideswgufull tool for studying the
affine geometry of the focal set & and in turn obtain geometric information about the
surfaceM itself; see for example [3, 4,5, 27, 28, 32] and [7, 8] for thane curves case.

Here we consider a smooth surfabk in the hyperbolic spacéi?(—1) or in the
de Sitter spaces}. The hyperbolic and the de Sitter spaces sit in the Minkowpkice
R?} endowed with the Laurentz pseudo-scalar produGty) = —XoYo + X1y1 + X2Y2 +
X3Y3, Wherex = (Xg, X1, X2, X3) andy = (Yo, Y1, Y2, ¥3). In Section 3 we deal with
surfaces inH3(—1). For such surfaces we define the family of folding maps,ctvhi
is a 3-parameter family of mappings frohﬂli(—l) to Hf(—l) obtained by conjugat-
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840 S. kuMiYA, M. TAKAHASHI AND F. TARI

ing the fold map<\/x§ + X2 4+ X3 + 1, X1, Xz, Xg) > (\/xg + X{ 4+ X§ + 1,1, X3, Xg)

by hyperbolic motions (see Section 3 for details). The finsalegous result to the
Euclidean case is that the surfab& is reflectionally more symmetric across hyper-
planes with normals a principal direction pte M than any other hyperplane through
p. For the analogous duality result we require some ingresliéor dealing with the
extrinsic geometry of submanifolds iR}™. These are the duality concepts introduced
by the first author in [11, 12], and the concepts of evolute syrdmetry set of surfaces
in H3(=1). The concept of evolute is introduced in [19, 22] and thewsyetry set is
defined in this paper. With these ingredients at hand, we sheivthe bifurcation set
of the family of folding maps is dual to the union of the evelind symmetry set
(Theorem 5.3). The evolute and symmetry set are the localramiti-local strata of
the bifurcation set of the family of timelike and spacelikeidght functions. We draw
geometric consequences about the geometriiofrom the duality result.

We also deal in this paper with families of folding maps oncgbie and timelike
surfaces inS} and prove similar results to those for surfaces in the hygiertspace
(85.2 and 85.3). We need to define for theses cases the ndtiemotute and sym-
metry set. We do this following the same approach in [19, 22hg the timelike and
spacelike height functions. We observe that timelike ssapresent distinct geometric
properties to those of spacelike surfaces. This is due tgpthsence of two lightlike
directions on each tangent space of the surface.

2. Preliminaries

The Minkowski(n + 1)-space(R]*, ( , )) is the f+ 1)-dimensional vector space
R"*! endowed with thgyseudo scalar product

n
(X, ¥) = —XYo+ D> _ %V,

i=1

for X = (Xo, ..., %») andy = (¥o,..., ) in RT™L. We say that a vectox in R\ {0} is
spacelikeif (x, x) > 0, lightlike if (x, x) = 0, timelikeif (x, x) < O.

The norm of a vectox € R’l‘“ is defined by|x|| = +/|{X, X)|. Given a vector
VRS RQ“ and a real numbec, the hyperplane with pseudo normalis defined by

HP(v, ¢) = {x e RI** | (x, v) = c}.

We say thatHP(v, c) is a spacelike timelike or lightlike hyperplaneif v is timelike,
spacelike or lightlike respectively. We have the followithgee pseudo-spheres ]R{l‘“:

Hyperbolic n-space H"(-1) = {x € R]** | (x, x) = —1},
de Sitter n-spaceS) = {x € R} | (x, x) = 1},
(open lightcone LC* = {x e RI™\ {0} | (x, x) = O}.
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The hyperbolic space has two connected componeifté-1) = {x € H"(—1) | xo = 1}
andH"(—1) = {x € H"(=1) | Xo < —1}. We only consider embedded surfacedifi(—1)
as the study is similar for those embeddedHA(—1).

The wedge product of vectorsay, ..., a, € RQ“ is given by
—€ € €n
g o - al
2 2 2
ajA---Aa,=| % & a, |,
& a - a
where{eg,ey,...,€,} is the canonical basis ®]** anda; = (&),al,...,a), i =1,...,n.
One can check thata, a; A--- A ap) = det(a, ag, - . ., a,), so the vectora; A--- A ay
is pseudo orthogonal to all the vectas i =1,...,n.

We require some properties of contact manifolds and Legamdrubmanifolds for
the duality results in this paper (for more details see foaneple [1]). LetN be a
(2n 4 1)-dimensional smooth manifold and be a field of tangent hyperplanes dh
Such a field is locally defined by a 1-formm The tangent hyperplane field is said
to benon-degeneraté a A (da)" # 0 at any point onN. The pair (N, K) is a contact
manifold if K is a non-degenerate hyperplane field. In this cidses called acontact
structureand « a contact form

A submanifoldi: L c N of a contact manifold i, K) is said to beLegendrianif
dimL =n anddix(TxL) C Kj) at anyx € L. A smooth fibre bundler: E — M is
called alLegendrian fibrationif its total spaceE is furnished with a contact structure
and the fibres ofr are Legendrian submanifolds. Lat: E — M be a Legendrian
fibration. For a Legendrian submanifoldL C E, 7oi: L — M is called aLegendrian
map The image of the Legendrian mapo i is called awavefront setof i and is
denoted byw(i).

In [11, 12, 22] are considered five double fibrations. We ieuate only those that
are needed in this paper (and keep the notation of [11, 12, 22]
(1) (@) H'(-1)x S D A1={(v, w) | (v, w) =0},

(b) m11: Ay — H"(=1), m2: Ay — ],

(c) 611 = (dv, w)|Ay, 612 = (v, dw)|A;.
5) @ S xS D As={(v, w)] (v, w) =0},

(b) ms1: As — §, 752 As = S,

(c) 051 = (dv, w}|As, 052 = (v, dw)|As.

Here,1(v, w) = v andmjz(v,w) = w fori = 1,5, (dv,w) = —wodvo+zin:1widvi
and (v, dw) = —vodw0+zi"=1 vidwi. The 1-forms;; and6;,, i = 1,5, define the same
tangent hyperplane field oveX; which is denoted bK;.
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Theorem 2.1 ([11, 12, 22]). The pairs(Aj, K;), i =1, 5, are contact manifolds
and rj; and i, are Legendrian fibrations.

REMARK 2.2. (1) Given a Legendrian submanifold L — A;, i = 1,5, The-
orem 2.1 states that;j1(i(L)) is dual tom;,(i(L)) and vice-versa. We shall call this
duality A;-duality.

(2) If m11(i(L)) is smooth at a pointr11(i(u)), thenmyo(i(u)) is the normal vector to
the hypersurfacery;(i(L)) C HI(—1) at m11(i(u)). Conversely, ifr1o(i(L)) is smooth
at a pointrio(i (u)), thenmq1(i (u)) is the normal vector to the hypersurfaee(i(L)) C
S'. The same properties hold for thes-duality.

3. Gauss maps of surfaces im-li(—l) and S}

A spacelike surfacés a surface whose tangent plane at any point is a spacelike
vector space (i.e., the tangent plane contains only spa&cedictors). Atimelike surface
is a surface whose tangent plane at any point is a timelikéovespace (i.e., it con-
tains both spacelike and timelike vectors). Thus, any serfa H3(—1) is a spacelike
surface, but this is not the case for surfacesSfn We shall work with some Gauss
maps of an embedded surfad" in H3(—1) or M? in S}. The differential of these
maps are self-adjoint operators &dh. An important observation for a spacelike surface
is that the restriction of the pseudo-scalar produdRinto the surface is a scalar prod-
uct. Therefore, the differential of the Gauss map has alwegkeigenvalues. However,
this is not the case for a timelike surfadé? in S as the restriction of the pseudo-
scalar product taM¢ is Lorentzian [29]. We deal separatly with spacelike andetike
surfaces.

3.1. Spacelike surfaces irHi(—l) and S}. The extrinsic geometry of hyper-
surfaces in the hyperbolic space is studied in [11,12,13,8416,17,18, 19, 20, 21, 23].
We deal with local properties of mappings, so we consider mbegldingx": U —
H3(-1), whereU is an open subset &2, and write M" = x"(U). Since (x", x") =
—1, we have(x}, x") = 0, for i =1, 2, whereu = (u1, uz) € U andx[} = ax"/au;.
We define the spacelike unit normal vecidi(u) to the surface ax"(u) by

X"(u) A xG, () A X[, (u)
1P (u) A B, () A XE W

x4(u) =

We call the mapping®: U — S} the de Sitter Gauss indicatrief M" ([17]). For any

p = x"(uo) € M", one can show thax € T,M". The linear transformatiorA? =
—dx9(up), called thede Sitter shape operatpis a self-adjoint operator. Because the re-
striction of the pseudo-scalar product®f to M" is a scalar produc’rA% has an orthog-
onal basis formed by its eigenvectors when its eigenvaluesistinct. Its eigenvalues
(kq)i, 1 = 1,2, are called thedg Sitte} principal curvatureand the corresponding eigen-
vectorsp?, i = 1, 2, are called thedg Sitte) principal directions We say that a point
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p = X(Up) € M" is anumbilic point if AS = kq(p)idy,mn. We also say thaM is totally
umbilic if all points of M are umbilic.

DEerFINITION 3.1. A surface given by the intersection bff_(—l) with a space-
like, timelike or lightlike hyperplane is called respeefiy sphere equidistant surface
or horosphere The intersection of the surface with timelike hyperplaheotigh the
origin is called ahyperbolic plane(plane for short).

We call a vectorv in, respectively,H3(—1), S* or LC* which is orthogonal to
a given sphere, equidistant surface or horosphere, theecehthe sphere, equidistant
surface or horosphere.

Proposition 3.2 ([6, 17, 19]). Suppose that M= x"(U) is totally umbilic. Then
ka(p) is a constantcy for all p € M. Under this conditionwe have the following
classification.

(1) If k2 > 1, then M is part of a sphere.

(2) If k3 =1, then M is part of a horosphere.

(3) If k3 < 1, then M is part of an equidistant surface. In particujaf «q4 = 0, then
M" is a part of a plane.

The mappingC:: U — A4 defined byZi(u) = (x"(u), x4(u)) is a Legendrian em-
bedding. If we start with a spacelike embeddixfy U — S, we can construct a map-
ping x": U — Hf(—l) in exactly the same way as above and still obtain the Leggamd
embeddingL;.

By definition, £, is a Legendrian embedding if and onlyxﬁi is tangent to the space-
like surfaceM? = x%(U). The mapx": U — H3(-1) is called thehyperbolic Gauss in-
dicatrix of M?. Therefore, we have a linear transformatiéh = —dx": T,M? — T,M¢,
called thehyperbolic shape operatoof M¢ at p, which is a self-adjoint operator. Be-
cause the restriction of the pseudo-scalar produdtjino M¢ is a scalar product\¢ is
spacelike),A"‘J has an orthogonal basis formed by its eigenvectors wherigenealues
are distinct. Its eigenvaluesy);, i = 1, 2, are called théyperbolic principal curvature
and the corresponding eigenvectpfs i =1, 2, are called théyperbolic principal dir-
ections We say that a poinp = x%(up) € M¢ is anumbilic point if Al = kn(p)idr,us.
We also say thaM? is totally umbilicif all points of M¢ are umbilic.

DEFINITION 3.3. A surface given by the intersection 8f and a spacelike hyper-
plane, a timelike hyperplane or a lightlike hyperplane spestively called dyperbolic
anelliptic or aparabolic de Sitter quadricln particular, we call an elliptic (resp. hyper-
bolic) de Sitter quadric through the origin féat elliptic (resp. hyperboliy de Sitter
guadric.

We call a vectorv in, respectively,H3(—1), S$ or LC* which is orthogonal to a
given hyperbolic, elliptic or parabolic de Sitter quadrtbe centre of the hyperbolic,
elliptic or parabolic de Sitter quadric.
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The following classification of totally umbilic spacelikeirfaces in the de Sitter
space follows in the same way as that of surfaces in hyperisplace.

Proposition 3.4. Suppose that M= x%(U) is a totally umbilic spacelike surface
in S. Thenn(p) is constantc,. Under this conditionwe have the following classi-
fication.

(1) If k2 > 1, then M is part of a hyperbolic de Sitter quadric.

(2) If k2 =1, then M is part of a parabolic de Sitter quadric.

(3) If k? <1, then M is part of an elliptic de Sitter quadric. In particulaif x, = 0,
then M is a part of a flat elliptic de Sitter quadric.

3.2. Timelike surfaces inS. Some aspect of the extrinsic differential geometry
of timelike hypersurfaces it from the view point of singularity theory are studied
in [11]. The tangent space at each point on a timelike surfacg’ is timelike, so it
contains two lightlike directions. This makes such suréabehave in a distinct way to
the spacelike ones.

Let x: U — S® denote an embedding of a timelike surface, wherés an open
subset ofR?. For anyu € U, we have(x(u), x(u)) = 1, so(xy (u), x(u)) =0,i =1, 2.
We also have a unit normal vectai(u) to the surface ap = x(u) given by

X(U) A Xy, (U) A Xy, (U)
[ (u) A Xy (U) A X, (U]

X*(u) =

The vectorx*(u) is spacelike. We calk*: U — S} the de Sitter Gauss mapf M9 =
x(U). One can show that for ang = x(up) € M4, x; (Uo) € T,M? (i =1, 2). There-
fore, we have a linear transformatiok, = —dx*: ToM? — TyMY, which is a self-
adjoint operator. Because the restriction of the pseudtasgroduct inR7 to MY is
still a pseudo-scalar productM( is timelike), A, does not always have real eigen-
values. WhenA, has two distinct eigenvalues, i =1, 2, we call them theprincipal
curvatureof the surface ap, and the corresponding eigenvectprsi = 1,2, are called
the principal directions The set of points where the eigenvalues coincide is of éster
and we label it thdightlike principal locus

Proposition 3.5. (1) For a generic timelike surface Min the de Sitter space
the lightlike principal locus is a curve on M It can be characterised as the set of
points on M' where the two principal directions coincide and become &tlige dir-
ection.

(2) The lightlike principal locus divides the surfaces into tvegions. In one of them
there are no principal directions and in the other there aveotdistinct principal dir-
ections at each point. In the later casthe principal directions are orthogonal and
one is spacelike while the other is timelike.
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Proof. (1) The computations here are similar to the case afascproduct.
Denote by

E= (Xul’ XU1)! F= (XU1' XU2)1 G= (XU2' XUz)

the coefficients of the (pseudo) first fundamental form and by

| = (AD(XU1)1 XU1> = (X*’ Xulul)’
n= (Ap(xul)v XUz) = (X*’ XUl“z)’
m = (Ap(Xu,) Xu,) = (X*, Xu,u,)

those of the (pseudo) second fundamental form. Then theixvzitrA, with respect
to the basis{x,,, Xy,} iS given by the usual formula

1 G -F [ m
EG-F2\ -F E m n)/’
It follows that the equation of the principal direction isalgiven by the usual formula
(Gm—Fn)du3 + (Gl — En)du; dup + (FI — Em)duf = 0,

equivalently by,

dus —dupdu; du?
E F G
| m n

=0.

The discriminant of the above quadratic differential etprais
8(u1, Up) = ((Gl — En)®> — 4(Gm— Fn)(FI — Em))(uy, uy).
The sets~1(0) (the lightlike principal locus) is either empty or is aree on generic
surfacesM?. (Recall that on generic two dimensional Riemannian sedathe set
571(0) consists of isolated umbilic points; see for example].j31
A principal directionp = du; Xy, + duzXy, in T,M® is lightlike if and only if
(p,p) = Gdw + 2F duy du, + E di& = 0.
The resultant of this equation with that of the principalediions is

(EG — F9)?((Gl — En)2 — 4(Gm— Fn)(FI — Em)).

As EG — F2 # 0, it follows that a principal direction is lightlike at a i p if and
only if p is on the lightlike principal locus.
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(2) In the regions > 0 the equation of the principal directions has two distinct
solutions. It has no solutions in the region where< 0. The two principal direc-
tions at points in the region wher® > 0 are orthogonal (this follows from the fact
that k1(p1, P2) = (Ap(P1), P2) = (P1, Ap(P2)) = k2(P1, P2), andky # k2). As neither
of them are lightlike, one has to be timelike and the othercslike (see for example
Theorem 3.1.4 in [30]). ]

REMARK 3.6. The generic configurations of the lines of principalvetuire on
a timelike surface inS} (i.e., the pair of foliations defined by the principal diieas)
are studied in [24].

We can interpret the de Sitter Gauss mapby the Legendrian duality. We have a
Legendrian embeddings: U — As defined byLs(u) = (x(u), x*(u)). Thereforex(U)
and x*(U) are As-dual to each other.

We can also define the notion of umbilic points and have a ifieestson of totally
umbilic timelike surfaces irS} (see [11]). The arguments are similar to the spacelike
case and are omitted.

4. Evolute and symmetry set

In this section we introduce the notion of evolutes and sytryngets for surfaces
in H3(-1) or SE. We distinguish, as before, the cases when the surface ldE
or timelike.

4.1. Spacelike surfaces itH3(—-1) and S;. In [19] (see also [18] for the curves
case) is introduced the notion of evolute (or focal surfasfed hypersurface in a hyper-
bolic space. For a surface’: U — Hi(—l), the total evolute(evolute for short) of
x"(U) = M" is defined by

2
TES, = U{ﬂ:l((xd)i (u)x"(u) + x4(u)), ue U }
1

\/ (ka)P(W) — 1]

where (q)i(u), i = 1, 2, are the de Sitter principal curvature xdi(u). Observe that
TEys is the reflection of TE, with respect to the origin (so we have two copies of
the total evolute). We assume here tipat= x"(u) is not a horoparabolic point, that is,
(ka)?(u) # 1 fori = 1, 2. The evolute has the following decomposition

TEj» = HEj» U SEfn,

where HE;. is the hyperbolic space component of the evolute and caneispto points
u where {q)?(u) > 1, and SE;, is the de Sitter component of the evolute and corres-
ponds to pointal where fq)?(u) < 1.
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The evolute has some interesting geometric properties. Let
HhT: UxH3(-1)—>R
denote the hyperbolic timelike height function given By (u, v) = (x"(u), »), and
He:Ux S —R

denote the hyperbolic spacelike height function givenHyy(u, v) = (x"(u), »). The
function H measures the contact of the surface with spheres Hfidneasures its
contact with equidistant surfaces (see Definition 3.1). ©ae show that the evolute is
the union of the “local” strata of the bifurcation sets LBiff) and LBif(Hy) of the
families H,] and HS respectively, [19]. The local (resp. multi-local) stratwfy say
the family H,7, is the set of parametense H3(—1) for which H, = H[ (-, v) has a
unstable local (resp. multi-local) singularity. We have,

LBif( Hy ) = HE},» U HE,
LBif( HY) = SE},» U SEyn.

Therefore, the evolute parametrises the centres of splmereguidistant surfaces that
have degenerate contact wit" (i.e., parametrises the set of for which HT, =
Hy (-, v) or HS, = H3(-, v) has a singularity of typeA, or worse). Observe that
if uis a degenerate singularity ¢, , (resp.H>,) then it is also a degenerate singu-
larity of HT , (resp.H?_,). This is why we have two copies Tk and TEy, of the
evolute. The evolute can also be characterised as a caastictherefore has generic
Lagrangian singularities [19, 22].
We have the following observation needed for the dualitylteim this paper.

Proposition 4.1. Let g be a smooth point on the evolute associated to the prin-
cipal curvature(kq)i, i = 1 or 2. Then the normal to the evolute at q is parallel to
the principal directionp? associated tq(kg);.

Proof. Letc*:U — H3(-1)U S}, i =1, 2, given by

1

V/(ka)P(W) — 1]

be a local parametrisation of the evolute. Ipebe the point on the surface corresponding
to the pointg on the evolute. Ag is a smooth point on the evolute, the principal curva-
tures are distinct ap. We can then choose a local parametrisati®nU — H3(-1) of
the surface ap so thatu; = constantj = 1, 2, represent the lines of curvatures. The
part of the evolute that is associated to a given principalature q); is parametrised

by ¢*(u) = A% (U)((kq)i (u)x"(u) + x%(u)) wherer*(u) = il/, /|(kcg)?(u) — 1|. We have

Gi(u) =+ (g (W)x"(u) + x° (W),
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(c*, pf) = (x", p?) = 0 asp? is tangent toM". Because of the chosen parametrisation,
we have(x; , p{') = 0 for j #i. Also (xj, pf) = {dx®.x}}, p{) = (—«ix}, pf') and
(x{, Py = —j(x{, p{) = O for j #i. Therefore,

<Z(L:;|i p.d> = <)f.((f<d)ixh +x9) +24* (<aaui('€d)i) X"+ (ka)ixf) + XS) p|d> =0

and forj #1,

act + h d £ 9 h h d d
<, D > = <Auj((xd)ix +x9) + A ((au(Kd)i>X + (ka)i Xy, +Xu,->' P > =0
i

3Uj
which proves the assertion. ]

We consider now the multi-local strata of the bifurcatiotssef the spacelike and
timelike height functions. (This is analogous to the studiythe multi-local stratum of
the distance squared function on surfaces in the Euclidpane®R?3.)

DEFINITION 4.2. Thesymmetry sebf M", denoted by SS, is the closure of cen-
tres of spheres iH3(—1) or equidistant surfaces i6} that are tangent toM" in at
least two distinct points. It is the union of the closure oé tmulti-local strata of the
bifurcation sets of the spacelike and timelike family ofdtei functionsH® and H,T.

We denote by SS (resp. SS) the component of the symmetry set related to the
timelike (resp. spacelike) family of height function.

Proposition 4.3. (1) A point ge H3(-1) U S¥ is on theSS of a surface M C
Hf(—l) if and only if there exists two distinct points, pnd p on M" such that the
tangent planes FM" and T,,M" are symmetric with respect to the equidistant surface
orthogonal to the geodesic joining; @nd p and passing through the midpoint of the
segment pp;.

(2) Let g be a smooth point on th8S corresponding to the bi-tangency of a sphere
(resp. equidistant surfageo the surface M at two points p and . Then the normal
to the SSat q is the normal to the equidistant surface (i).

Proof. (1) Letx!:U; — MM andx}: U, — MM be local coordinates om1"
around x{‘(o, 0)= p; and xQ(O, 0) = p2. By a hyperbolic motion, we can suppose
that the equidistant surface orthogonal to the geodesitnip; and p, and passing
through the midpoint of the segmepi p; is given byx, = 0. If vg = (0, 0, 1, 0), then
P2 = P1— 2(P1, vo)vo.

The height functionH,”, (resp. H?,) has two singularities ap; and p, at the
same level if and only ifv = Ap; + ue; = aps + Bex with —12 + 2 = —1 and
—a?+ 2= —1 (resp.—r?+pu? = 1 and—a?+ B? = 1) and(p, v) = (p2, v). Heree;
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ande, are the normal vectors to the surfacepatand p, respectively. Sincép;, pi) =
—1 and(pi, e) =0 fori =1, 2, it follows that

1) (p1, v) = —A = a(p1, P2) + B(pP1, €2).

We have(p; — p2, v) = 0. Therefore(p; — p2, ap2 + Be2) = 0, equivalently,

2 a + a(p1, p2) + B{p1, &) = 0.

It follows from equations (1) and (2) that = « and hencex = +8. We can
assume thapw = B by changing the orientation of the surface @t if necessary (by
taking —e, as the normal vector ap,). Now Ap; + ue; = ap; + Be, soe; — e is
parallel to p; — p2, and hence is parallel tog. This implies thate, is symmetric toe;
with respect to the plang = 0 and hence the normal plaié, M" (generated byp,
ande,) is symmetric to the normal plaerlMh (generated byp; ande;) with respect
to x, = 0. ConsequentlyT,,M" is symmetric toT, M" with respect tox, = 0.

(2) We consider the setting in (1) and deal with the multialosingularities of
the timelike height function. The case of the spacelike thefgnction follows in the
same way. Consider the map' : U; x U, x H3(—1) — R® given by

(U, v, ) > ((x](U), ©) = (X3 (v), v), (XL, (W), v), (x], (), ), (x5, (), v), (x}_(v),))

with u = (u, Up) and v = (v1, v2). Then SS$ = 75((®7)"1(0)), wherens is the ca-
nonical projection to the third component. To prove theestant it is enough to show
that (vo, dv) = 0 atq, wherev € SS'. Since (I, v, v) € (®7)"%(0), we have(x}(u) —
x8(v), v) = 0. By differentiating, we havex!(u) — x3(v), dv) = 0, and the assertion
follows from the fact thatp; — p, is parallel towo. O

We now introduce the notion of evolute of a spacelike surfacde Sitter space.
For a spacelike surface’: U — S}, we define thetotal evoluteof x4(U) = MY by

2

1
e e —
IL=J1{ V()W) — 1]

where ()i (u), i = 1, 2, are the hyperbolic principal curvature »#(u). We assume
here that £1)?(u) # 1 for i = 1, 2. The total evolute has the following decomposition

TEje = (X"(U) + (in)i (u)x? (), u € U }

TEjs = HEjs U SEj,

where HE;« denotes the hyperbolic part of the total evolute and cooedp to point
u where n)?(u) < 1 and Sﬁd denotes the de Sitter part of the total evolute and cor-
responds to pointi where n)?(u) > 1. Let

Hf :Ux H3-1) >R



850 S. FuMIYA, M. TAKAHASHI AND F. TARI
denote the de Sitter timelike height function given By (u, v) = (x%(u), »), and
H:UxS —R

denote the de Sitter spacelike height function given Hyj(u, v) = (x%(u), v). The

function H] measures the contact of the surface with hyperbolic derSjttedrics and
H$ measures its contact with elliptic de Sitter quadrics (sedirtion 3.3). One can
show that the evolute is the union of the local strata of ttfartation sets LBiftH])

and LBif(HJ) of the familiesHJ and H{ respectively. More precisely,

LBif( Hy ) = HE},s U HEy,
LBif( Hy) = SE},s U SEya.

We consider now the multi-local singularities of the spieehlnd timelike height
functions.

DEFINITION 4.4. Thesymmetry sebf MY, denoted by SS, is defined to be the
closure of the set of centres of elliptic and hyperbolic déeBiguadrics that are tangent
to MY in at least two distinct points. It is the union of the closwfethe multi-local
strata of the bifurcation sets of the spacelike and timefigght functionsH5 and HJ
respectively.

REMARK 4.5. Suppose that both surfacg8U) = M" and x4(U) = MY are
smooth for the Legendrian embeddidg: U — A; given by £i(u) = (x"(u), x4(u)).
Then the principal curvatures satisfy(u)xq(u) = 1 by Aj-duality. It follows that the
total evolutes ofM" and MY coincide. In [22] is given a unified interpretation of
these concepts as caustics of a certain Lagrangian sulmithinifthe symplectification
A xR, of (A]_, K]_)

4.2. Timelike surfaces inS;. We define thede Sitter evolutef a parametrised
timelike surfacex: U — S to be the set

(ki (W) x(u) + x*(u)), ue U }

2
1
SE | Rat
|L=J1{ \/KPU) + 1

wherek;(u), i = 1, 2 are the principal curvature &tu). The evolute is related to the
family of spacelike height functions

HS:UxS >R

given by HS(u, v) = (x(u), v). The functionHS measures the contact of the surface
with elliptic de Sitter quadrics (see Definition 3.3). LEtS(u) = HS(u, v). One can
easily show the following.



FOLDING MAPS AND DUALITY 851

Proposition 4.6. The spacelike height function Hs singular at u if and only if
there exist real numbers, 1 such thatv = Ax(u) + pe(u) and A% 4+ u? = 1.

By Proposition 4.6, the discriminant (or catastrophe sétH§ is given by
C(HS) = {(u, v) € U x S | v = Ax(u) + pe(u), A% + u? = 1}.

We also have
82 H S

8Uian (U, v) = (XUin (U), ‘U) = _)"gij + Mh'J
on C(HS), wheregi1 = E, g1o = gp1 = F and gy, = G. If 4 = 0, thenv = £x and
det((H2>)(u)) = det(@;;) # 0, whereH denotes the Hessian &f>. So, detf/(h3)(u)) =
0 if and only if 1/ is a principal curvature. It follows that the local bifuricat set,
LBif( HS), of the family of the spacelike height functions is the exelof MY, that is,
LBif( HS) = SE/,, U SEyye.

REMARK 4.7. There is no hyperbolic component of the evolute of altkaesur-
facex: U — S%. The timelike height functiorHT: U x H3(—1) — R is not singular
at any point onx(U). The reason being that any hyperbolic de Sitter quadricoégh
tangent spaces are spacelike) is always transverse to hkénserrface.

For the duality result in this paper, we require the normathte evolute.

Proposition 4.8. Let g be a smooth point on the de Sitter evolute of a timelike
surface M Cc S associated to a point g M® not on the lightlike principal locus of
M. Then the normal to the evolute at q is along the principakdiionp; (i =1 or
2), associated to the principal curvaturg defining q.

The proof is similar to that of Proposition 4.1 and is omitted
We consider now the multi-local singularities of the spéeeheight function.

DEFINITION 4.9. Thesymmetry sebf MY, denoted by SS, is defined to be the
closure of the centres of elliptic de Sitter quadrics that @mgent toM? in at least
two distinct points. It is the closure of the multi-local atrm of the bifurcation set of
the spacelike height functiohi S.

We have the following result analogous to Proposition 4.3.

Proposition 4.10. (1) A point ge S} is on theSSof a timelike surface Mc S
if and only if there exists two distinct points; pnd p on MY such that the tangent
planes '[,lMd and szMd are symmetric with respect to the sphere orthogonal to the
geodesic joining pand p and passing through the midpoint of the segmer,p
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(2) Let q be a smooth point on tH&S corresponding to the bi-tangency of an elliptic
de Sitter quadric to the surface Mat two points p and . Then the normal to the
SSat g is the normal to the sphere if).

Proof. The proof is similar to that of Proposition 4.3. We sioler, by Lorentzian
motion, the sphere to be the intersection of the spaceliketpyanex, = 0 with S}
and follow the same steps in the proof of Proposition 4.3. O

5. The folding family

5.1. Surfaces inHi(—l). We shall restrict our study to 2-dimensional surfaces
in Hf(—l). However, the construction of the family of folding map® wive here
is valid in H(-1), n > 3, and for any embedded submanifold k(—1). For the
surface case irH3(—1), the folding maps can be represented locally by a map-germ
(R?,0) — (R%,0). A classification of the singularities of such mappings w&ell known
(see for example [25]) and one can deduce interesting gecadeproperties of the
surface from the singularities of the folding maps.

In the Euclidean case, given a plafecC R3, the folding map inR® with respect
to P identifies points with the same distance R If we want to follow this con-
struction for surfaces embedded in the hyperbolic spdéé—1), we need to identify
points with the same distance to some “flat” object. Planessarfaces with de Sitter
principal curvatures vanishing at all points ([6, 19]) anatdspheres are surfaces with
lightcone principal curvatures vanishing at all points7{j1 As we are aiming to pick
up the principal directions of the surfadd" and the fact that these are the same for
the de Sitter and lightcone shape operators, it is enougtotgider folding with re-
spect to planes. We observe that a folding with respect tocadistant surface can
be brought, by a hyperbolic motion, to a folding with resptcia plane.

Following the construction in the Euclidean case, foldinghwespect to a plane
in Hi(—l) means taking two distinct points on the same geodesicattgatit the same
distanced from the plane and mapping them to the point on this geodésitis at a
distanced? to the plane. This map is slightly messy to work with, and asane only
interested in its4-singularities, whered denotes the Mather left-right group, we shall
construct and-equivalent map as follows. (This new map still sends symm@oints
with respect to a fixed plane to the same image.)

The planes of interest above are timelike as they are normal geodesic which
has a spacelike tangent vector. Consider folding with resgeethe timelike hyperplane
X2 = 0. Thus, we seek a fold map that identifies any two poimts X1, X2, X3) and
(Xo, X1, =Xz, X3) in H3(-1). As

H3CD) = { (VX + 8+ 56+ 1,30, 30, %) | (60, %o, %5) € B,
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we define the folding map with respect to the timelike hypamplx, = 0 as the map

fi: H3(-1) > H3(-1)

given by f1<\/xf + X3 + %2+ 1, X1, Xz, x3) = <\/xf + X3 + %2+ 1, Xq, X3, Xg).

Let p € H3(—1) andC be the geodesic through and orthogonal toH2(—1) N
HP(e;, 0) at some poing. ThenC is parametrised by(9) = coshf)q + sinh@)e,.
Thus p = c(8y), for somefy, and the symmetric point op on C with respect to
Hf(—l) N HP(ey, 0) is the pointp = c(—06). It is clear that fi(p) = fi(p). This
means thatf; send the symmetric points with respect to the pI&IﬁE(—l)ﬂ HP(ez, 0)
to the same image. It follows that this property is invarianter the Lorentzian isom-
etry. Therefore we can proceed as in [2, 5]. The timelike hyla@e x, = 0 is of
course arbitrary. If we are interested in studying the réfleal symmetry of the sur-
face M" with respect to all timelike hyperplanes, we need to consttie family of
folding maps parametrised by these hyperplanes. Le$(5@) denotes the positive
Lorentzian group. We define

F: H3(—1) x SOy(1, 3) > H3(-1)

by F(p, A) = (Ao f0 A)(p). This is a 6-parameter family of folding maps. However,
there are some redundant parameters that can be elimimateghbidering the quotient
of SOy(1, 3) by the subgroug, of motions that preservg, = 0 (i.e., HP(e,, 0)). We
then obtain a family

F: H3(-1) x SOy(1, 3/ Hp — H3(-1).

We shall now show that S, 3)/H, =~ S;. We consider the action of S, 3)
on S} defined byvA for any (A, v) € SOy(1, 3)x S. It is well known (cf., [10]) that
this action is transitive (of course, one can also show bgatliinear algebra arguments
that this fact holds). Consider the two isotropic subgroap$Oy(1, 3) defined by

H = (Ae SOyl 3)|eA=e), i=23
Let
1 0 0O
01 00
Peo=| 0o o o 1[5 3)
0 010

so thate, P 4y = €3. One can show that iA € Hz then P(3,4)A|:>(§}4) € Hy, so that we
have a diffeomorphism

W: SOy(1, 3)/Hs — SOy(1, 3)/H>
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between homogeneous spaces definedlifyA]) = [P(3,4)AI3(§}4)]. Since

Hg = {(5 tf) B € SOy(1, 2)},

we have the canonical diffeomorphisms
SQy(1, 3)/Hy = SOy(1, 3YSH(1, 2) = S.
Therefore the family of folding maps can be considered asnalya
F:H3(-1)x S — H3(-1).
Given an embedding: M" — H3(-1), we obtain a family
Fo: M? x S8 — H3(-1)

by restriction toM" x S}. We have the following result where the term generic is define
in terms of transversality to submanifolds of multi-jet spa (see for example [9]).

Theorem 5.1. For a residual set of embeddings M" — H3(-1), the family K
is a generic family of mappings.

Proof. The mapf; defined above is a fold map, so it is aftstable map. There-
fore, the corresponding 3-dimensional family is an A-versal family of mappings
in the sense of Montaldi [26]. The assertion follows now from ntéddi's theorem
in [26]. O

For a givenv € S} and a pointp, € M", one can choose local coordinates so that
F¥(p) = Fx(p, v) can be considered locally as a map-geiR?,(0) — (R, 0). It fol-
lows from Theorem 5.1 that for generic embeddings of theaseifonly singularities of
Ae-codimension< 3 can occur in the members of the family of folding maps (3 gein
the dimension of the parameter spa8d. Therefore, we have the following result.

Proposition 5.2. For a residual set of embeddings M" — H3(-1), the folding
maps B: M" — Hﬁ(—l) in the family K have local singularities4-equivalent to one
in Table 1 Moreovey these singularities are versally unfolded by the family F

For a fixed embedding:: M" — H3(-1), we define a mappingly: S —
ce(M", Hi(—l)) by Wy (v) = F?. We remark that¥y is a continuous mapping with
respect to the Whitneg>-topology of C>*(M", H3(—1)). Since the set of stable map-
pings is open inC>*(M", H3(—1)), the set ofv € S} such thatF! is a stable map-
ping is an open subset 8. It also follows from Theorem 5.1 that for a generic
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Table 1. 4.-codimension< 3 singularities of map-germ®¢, 0) —
(R3, 0) ([25]).

Normal form Name  Ae-codimension
(x,y,0) Immersion 0

(X, Y2, Xy) Cross-cap 0

(x, y?, X2y £ y**1) k=1,2,3 By k

(x, y2, y3 £ x*1ly) k=2, 3 S k

(X, Y2, xy®* £ xXy), k =3 Cx k

embeddingx: M" — H3(—1) and forv in an open and dense subset $f the map
Fr: MN — Hi(—l) is stable, i.e., is locally an immersion, a cross-cap oraa pf
transverse planes. The set of vectors S¢ for which F? is not .A-stable is thebifur-
cation sef Bif(Fy), of Fx. This set consists of vectousfor which F; has a singularity
more degenerate than a cross-cap (generically one oBth&, Cy in Proposition 5.2)
or the image has a multi-local singularity of type self tamgeor worse. We have the
following duality result, analogous to the one in [5] for tReclidean case, where dual-
ity here refers taA;-duality when the evolute/symmetry set lies in the hypeadispace
and As-duality when it is in the de Sitter space (see Theorem 2.1Rechark 2.2).

Theorem 5.3. The bifurcation seBif( Fy) of the family of folding maps on a sur-
face M' c H3(—1) is the dual of the evolute and the symmetry set &f More pre-
cisely the local stratum oBif( Fy) is the dual of the evolute and the multi-local stratum
of Bif( Fy) is the dual of the symmetry set.

Proof. We take the surfadd", without loss of generality, in the hyperbolic Monge
form (see [17])

x(ug, Uz) = (\/gz(ul, Uz) + u + uj + 1, g(ug, Uz), us, UZ)

at the origin, withg and its first derivatives vanishing at the origin. We wijifg)(uy, u,) =
axoU? + apUiUy + appu3. The restriction of the folding mag to M" is given by

fi(us, uz) = (\/gz(ul, Uz) + uf + uf + 1, g(uy, Up), uj, UZ)-

If we project it to the tangent space d&fi(—l) at x(0, 0) (i.e., to the spaca; = 0)
we obtain a map-germRe, 0) — (R2, 0) which is.A-equivalent tof, and is given by

fi(u1, Up) = (g(ug, uz), U2, uy).

This map-germ has a singularity of type cross-cap at thdroifgand only if ap; # 0,
if and only if the normal to the hyperplane = 0 is not along a principal direction.
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— ;
’ 22N s,

Fig. 1. Bifurcation sets (local strata in thin and multidbctrata
in thick).

A

It follows then that the local stratum of the bifurcation sdtF, is the surface inSf’
traced by the (unit) principal directions &fi". However, by Proposition 4.1, a princi-
pal direction is the normal to the evolute and by Theorem 2¢k (also Remark 2.2),
these normals trace the dual of the evolute. Here, dualfersdo A;-duality when the
evolute lies in the hyperbolic space ang-duality when it is in the de Sitter space.
The duality for the multi-local stratum of the bifurcatioetsof the folding map
follows from Proposition 4.3, Theorem 2.1 and Remark 2.2. O

Since the familyF, is an A-versal unfolding of each of its singularities, we can
deduce the model (up-to diffeomorphism) of its bifurcatieet Bif(F¢), and hence of
the dual of the evolute and symmetry set. The models for thal Isingularities are
given in Fig. 1.

We can deduce from Theorem 5.3 and from the results in [19fdhewing geo-
metric characterisations of the singularities of the foidimaps:

B;: General smooth point of the evolute.

S: De Sitter parabolic smooth point of the evolute.

S: Swallowtail of the de Sitter Gauss indicatrix at smoothrpaif the evolute.
These are also the points where the principal directionesponding to the null prin-
cipal curvature is tangent to the parabolic set of the eeolut

B,: General cuspidal-edge point of the evolute.

Bs: Cuspidal-edge point of the evolute in the closure of the d&erSparabolic curve
on the symmetry set.

Cs: Intersection point of the cuspidal-edge and parabolivesion the evolute.

Here, thegeneral smooth pointneans a smooth point which is different fro& or
S and thegeneral cuspidal-edge poimheans a cuspidal-edge point which is different
from Bz or Cs.
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Following [5, 32], we shall call the pre-image dvi" of the de Sitter parabolic set
of the evolute thesub-parabolic curveof M". In the Euclidean case, the sub-parabolic
curve is the locus of points where lines of curvature havedgsig inflections. It is also
the locus of points where one principal curvature has aremdt value along lines of
the other principal curvature [27]. We have a similar chsmasation for surfaces in
the hyperbolic space. Recall that the restriction of theugeescalar product to the
hyperbolic space is a scalar product, so this space is a Rigara manifold.

The lines of curvature (i.e., curves dvi" whose tangent at each point is a prin-
cipal direction) are given, in the parameters space, by Humluequation

(Gm—Fn)du3 + (Gl —En)duy du + (FI —Em)du? =0

(see for example [31]) wherk, F, G are the coefficients of the first fundamental form
andl, m, n are the coefficients of the (de Sitter) second fundamentah.fo

Proposition 5.4. The sub-parabolic curve of an embedded surfadéilh/IHfL(—l)
can be characterised as follows.
(1) It is the locus of points where one principal curvature hasexitremal value along
lines of the other principal curvature.
(2) It is the locus of points where the other lines of curvaturereh@eodesic inflec-
tions.

Proof. (1) We take the surface in hyperbolic Monge form as i@ tinoof of
Theorem 5.3 and writg3g(uy, Up) = apU3 + apaU3 + asous + ag1U2Uy + agpUp U3 + asaus.
Then folding along the hyperplane = 0 yields a singularity worse than a cross-cap.
The folding map fi(uy, uz) = (g(us, us), u?, uy) has anS-singularity if and only if
ag; = 0 (andagg # 0). A calculation shows that the 1-jet of the principal ctuuwe
associated to the other principal direction (0, 0, 0, 1) at ¢higin (which is contained
in the hyperplanex; = 0) is given by jlk, = 2a,, + 2azu; + 6agsUy. It has an ex-
tremal value along the line of principal curvature assedato (0, 0, 1, 0) if and only
if agx = 0, which proves statement (1).

(2) We get the initial term of the line of curvature tangent{®31) in the param-
eter space by solving the equation of the lines of curvatitk the hyperbolic Monge
form setting above. It is given byu{(s), u»(s)) = ((asz2/2(az0 — az0))s®> + h.o.t.,s). The
principal curvex"(usi(s), ux(s)) has a geodesic inflection at the origin if and only if
az, = 0, if and only if x"(0, 0) is a sub-parabolic point. ]

5.2. Spacelike surfaces ir§}. As the surface is spacelike, we have everywhere
defined principal directions (away from umbilic points) ahése are spacelike. There-
fore, we are interested in measuring the reflectional symyeft the surface with re-
spect to timelike hyperplanes. We proceed as in 85.1 and Isfaconsidering folding
with respect to the hyperplang = 0. For the de Sitter space, unlike for the hyperbolic
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space, one needs several charts to express it as the grapfumétn. We define the
fold map using a global parametrisation.

Let g(u, 0, @) = (Xo, X1, X2, X3)(U, 6, ¢) be a parametrisation of the de Sitter space
S? given by

Xo = U,
X1 = mcose sing,
X2 = \/1+ U2 cosg,

X3 = msine sing,

whereu e R, 0<60 <27 and 0< ¢ < . We define the folding map with respect to
the hyperplanex; = 0 as the mapf,: S$$ — S} given by

fZ((X07 X1, X2, X3)(U, 0, ¢)) = g(U, 0, t((b))

where

This is simply a folding map on each level sphege= constant inS}. We can then
follow the same analysis in 85.1 and deduce the same duabtyltr where the evolute
and symmetry set refer to the sets defined in §4.1. In praciiseve are considering
local or multi-local properties of the surface, we can cloaddifferent folding mapf;
defined on a chart wher&} is given as a graph of a function. For example, we can

work with the local chartxy = :I:\/—l + X2 + x2 + x3, with Xo # 0, and define the
folding map as

fz(i\/—l + X2 + X2 + X3, X1, X2, X3) = (i\/—1+ X2 + X3 + X2, X1, X3, X3)-

5.3. Timelike surfaces inS;. The folding maps measure the reflectional sym-
metry of a surface with respect to hyperplanes. In the casspa€elike surfaces the
hyperplanes of interest are those whose normals are paindipections. In the case of
timelike surfaces, when the principal directions existe as timelike and the other is
spacelike (Proposition 3.5). Thus, we need to consider &woilfes of folding maps.
One is with respect to timelike hyperplanes. This familytie same as that considered
in 85.2. The duality result in 85.2 is valid here too (awaynirthe lightlike principal
locus), with duality meaning\s-duality only (recall the there is no hyperbolic compo-
nent of the evolute of a timelike surface 8§). The second family, which we construct
below, is the family of folding maps with respect to spacelityperplanes. We proceed
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as in §5.1. Given the parametrisatigfu, 6, ¢) of S in §5.2, we define the folding
map with respect to the spacelike hyperplage= 0 as the mapfz: S$ — S} given

f3((X01 X1, X2, X3)(U, 01 ¢)) = g(u21 91 d’)

In a local chart, say; = +4/1+ x3 —x3 — x3, with x; # 0, the above folding

map has the following expression

fs(xO, +1/14 %3 — X3 — %, X, X3> = <XS, £1/1+ X — x5 — %, X, X3).

We now proceed as in 85.1. The spacelike hyperpbane- 0 is of course arbi-
trary. If we are interested in studying the reflectional syetmn of the surfaceM? with
respect to all spacelike hyperplanes, we need to considefatmily of folding maps
parametrised by these hyperplanes. We define

G: S xS;(1,3)— S

by G(p, A) = (Ao fz0 A)(p). This is a 6-parameter family of folding maps. However,
there are some redundant parameters and we need to corgdgudtion of SQ(1, 3)
by the subgroup of Lorentzian motions that presexye= 0 (that is, HP(ep, 0)).

We consider the action of @, 3) on H3(—1) defined byvA for any (A, v) €
SOy(1, 3)x Hf(—l). It is well known that this action is transitive. Let

Ho = {A € SOy(1, 3) | e A = e}

be an isotropic subgroup of $@, 3). Since

H0={<é ts) BeSO(s)},

we have the canonical diffeomorphisms
SOy(1, 3)/Ho = SOy(1, 3)/SO(3)= H3(-1).
Therefore the mais gives rise to a 3-parameter family of folding maps
G: S xH3(-1)—> S
Given a timelike embedding: MY — S}, we obtain a family
Gy: MY x H3(-1) - S

by restriction to: M¢ x H3(—1). We obtain the following results following the same
arguments as 85.1.
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Theorem 5.5. For a residual set of timelike embeddings MY — S}, the family
Gy is a generic family of mappings.

Proposition 5.6. For a residual set of timelike embeddingsM? — S}, the fold-
ing maps in the family G have local singularities4-equivalent to one inrable 1

We consider now the ma@): M4\ L — S%, whereL denotes the lightlike prin-
cipal locus.

Theorem 5.7. The bifurcation seBif(G;) of the folding map on M\ L is the
Ai-dual of the de Sitter evolute and the symmetry set 8f\M. More precisely the
local stratum of the bifurcation set is th&;-dual of the de Sitter evolute and the multi-
local stratum is theAi-dual of the symmetry set.

Proof. The proof is similar to that of Theorem 5.3 and folldvesm Propositions 4.8
and 4.10. O
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