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Abstract
We study the reflectional symmetry of a generically embedded2-dimensional sur-

face M in the hyperbolic or de Sitter 3-dimensional spaces. This symmetry is picked
up by the singularities of folding maps that are defined and studied here. We also
define the evolute and symmetry set ofM and prove duality results that relate them
to the bifurcation sets of the family of folding maps.

1. Introduction

The investigation in this paper is the analogue of that in [5,32] for surfaces in the
Euclidean spaceR3. In [5] is studied the reflectional symmetry of a smooth surface
M � R3 in planes inR3. A surfaceM is reflectionally more symmetric across planes
with normals a principal direction atp 2 M than any other plane throughp. This reflec-
tional symmetry is studied via the family of folding maps, which is a 3-parameter family
of mappings obtained by conjugating the fold map (x, y, z) ! (x, y2, z) by Euclidean
motions ([2, 5]). The following result, with important geometric consequences, is shown
in [5]: the bifurcation set of the family of folding maps is dual to the union of the focal
and symmetry sets ofM. The focal set and the symmetry set also arise as the bifur-
cation sets of the family of distance squared functions restricted to M. Recall that the
distance squared function measures the contact of the surface with spheres, so the focal
set is the centre of osculating spheres and the symmetry set is the centre of bi-tangent
spheres to the surface. The duality result in [5] provides a powerfull tool for studying the
affine geometry of the focal set ofM and in turn obtain geometric information about the
surfaceM itself; see for example [3, 4, 5, 27, 28, 32] and [7, 8] for the plane curves case.

Here we consider a smooth surfaceM in the hyperbolic spaceH3C(�1) or in the
de Sitter spaceS3

1. The hyperbolic and the de Sitter spaces sit in the Minkowski spaceR4
1 endowed with the Laurentz pseudo-scalar producthx, yi D �x0y0C x1y1C x2y2C

x3y3, where x D (x0, x1, x2, x3) and y D (y0, y1, y2, y3). In Section 3 we deal with
surfaces inH3C(�1). For such surfaces we define the family of folding maps, which
is a 3-parameter family of mappings fromH3C(�1) to H3C(�1) obtained by conjugat-
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ing the fold map
(
√

x2
0 C x2

1 C x2
2 C 1, x1, x2, x3

) 7! (
√

x2
0 C x4

1 C x2
2 C 1, x1, x2

2, x3

)

by hyperbolic motions (see Section 3 for details). The first analogous result to the
Euclidean case is that the surfaceM is reflectionally more symmetric across hyper-
planes with normals a principal direction atp 2 M than any other hyperplane through
p. For the analogous duality result we require some ingredients for dealing with the
extrinsic geometry of submanifolds inRnC1

1 . These are the duality concepts introduced
by the first author in [11, 12], and the concepts of evolute andsymmetry set of surfaces
in H3(�1). The concept of evolute is introduced in [19, 22] and the symmetry set is
defined in this paper. With these ingredients at hand, we showthat the bifurcation set
of the family of folding maps is dual to the union of the evolute and symmetry set
(Theorem 5.3). The evolute and symmetry set are the local andmulti-local strata of
the bifurcation set of the family of timelike and spacelike height functions. We draw
geometric consequences about the geometry ofM from the duality result.

We also deal in this paper with families of folding maps on spacelike and timelike
surfaces inS3

1 and prove similar results to those for surfaces in the hyperbolic space
(§5.2 and §5.3). We need to define for theses cases the notion of evolute and sym-
metry set. We do this following the same approach in [19, 22] using the timelike and
spacelike height functions. We observe that timelike surfaces present distinct geometric
properties to those of spacelike surfaces. This is due to thepresence of two lightlike
directions on each tangent space of the surface.

2. Preliminaries

The Minkowski(nC1)-space(RnC1
1 , h , i) is the (nC1)-dimensional vector spaceRnC1 endowed with thepseudo scalar product

hx, yi D �x0y0C n
∑

iD1

xi yi ,

for xD (x0, : : : , xn) andy D (y0, : : : , yn) in RnC1
1 . We say that a vectorx in RnC1

1 nf0g is
spacelikeif hx, xi > 0, lightlike if hx, xi D 0, timelike if hx, xi < 0.

The norm of a vectorx 2 RnC1
1 is defined bykxk D √jhx, xij. Given a vectorv 2 RnC1

1 and a real numberc, the hyperplane with pseudo normalv is defined by

HP(v, c) D fx 2 RnC1
1 j hx, vi D cg.

We say thatHP(v, c) is a spacelike, timelike or lightlike hyperplaneif v is timelike,
spacelike or lightlike respectively. We have the followingthree pseudo-spheres inRnC1

1 :

Hyperbolic n-spaceW Hn(�1)D fx 2 RnC1
1 j hx, xi D �1g,

de Sitter n-spaceW Sn
1 D fx 2 RnC1

1 j hx, xi D 1g,
(open) lightconeW LC� D fx 2 RnC1

1 n f0g j hx, xi D 0g.
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The hyperbolic space has two connected components,HnC(�1)D fx 2 Hn(�1) j x0 � 1g
andHn�(�1)D fx 2 Hn(�1) j x0 � �1g. We only consider embedded surfaces inHnC(�1)
as the study is similar for those embedded inHn�(�1).

The wedge product ofn vectorsa1, : : : , an 2 RnC1
1 is given by

a1 ^ � � � ^ an D

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

�e0 e1 � � � en

a1
0 a1

1 � � � a1
n

a2
0 a2

1 � � � a2
n

...
... � � � ...

an
0 an

1 � � � an
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

wherefe0,e1,:::,eng is the canonical basis ofRnC1
1 andai D (ai

0,ai
1,:::,ai

n), i D 1,:::,n.
One can check thatha, a1^ � � � ^ ani D det(a, a1, : : : , an), so the vectora1^ � � � ^ an

is pseudo orthogonal to all the vectorsai , i D 1, : : : , n.
We require some properties of contact manifolds and Legendrian submanifolds for

the duality results in this paper (for more details see for example [1]). Let N be a
(2nC 1)-dimensional smooth manifold andK be a field of tangent hyperplanes onN.
Such a field is locally defined by a 1-form�. The tangent hyperplane fieldK is said
to be non-degenerateif �^ (d�)n ¤ 0 at any point onN. The pair (N, K ) is a contact
manifold if K is a non-degenerate hyperplane field. In this caseK is called acontact
structureand � a contact form.

A submanifoldi W L � N of a contact manifold (N, K ) is said to beLegendrianif
dim L D n and d ix(Tx L) � K i(x) at any x 2 L. A smooth fibre bundle� W E ! M is
called aLegendrian fibrationif its total spaceE is furnished with a contact structure
and the fibres of� are Legendrian submanifolds. Let� W E ! M be a Legendrian
fibration. For a Legendrian submanifoldiW L � E, � Æ iW L! M is called aLegendrian
map. The image of the Legendrian map� Æ i is called awavefront setof i and is
denoted byW( i ).

In [11, 12, 22] are considered five double fibrations. We recall here only those that
are needed in this paper (and keep the notation of [11, 12, 22]).
(1) (a) Hn(�1)� Sn

1 � 11 D f(v, w) j hv, wi D 0g,
(b) �11 W 11! Hn(�1), �12 W 11! Sn

1 ,
(c) �11D hdv, wij11, �12D hv, dwij11.

(5) (a) Sn
1 � Sn

1 � 15 D f(v, w) j hv, wi D 0g,
(b) �51 W 15! Sn

1 , �52 W 15! Sn
1 ,

(c) �51D hdv, wij15, �52D hv, dwij15.
Here,�i 1(v,w)D v and�i 2(v,w)D w for i D 1, 5, hdv,wi D �w0dv0C∑n

iD1wi dvi

andhv, dwi D �v0dw0C∑n
iD1vi dwi . The 1-forms�i 1 and�i 2, i D 1, 5, define the same

tangent hyperplane field over1i which is denoted byK i .
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Theorem 2.1 ([11, 12, 22]). The pairs(1i , K i ), i D 1, 5, are contact manifolds
and �i 1 and �i 2 are Legendrian fibrations.

REMARK 2.2. (1) Given a Legendrian submanifoldi W L ! 1i , i D 1, 5, The-
orem 2.1 states that�i 1( i (L)) is dual to�i 2( i (L)) and vice-versa. We shall call this
duality 1i -duality.
(2) If �11( i (L)) is smooth at a point�11( i (u)), then�12( i (u)) is the normal vector to
the hypersurface�11( i (L)) � HnC(�1) at �11( i (u)). Conversely, if�12( i (L)) is smooth
at a point�12( i (u)), then�11( i (u)) is the normal vector to the hypersurface�12( i (L))�
Sn

1 . The same properties hold for the15-duality.

3. Gauss maps of surfaces inH3C(�1) and S3
1

A spacelike surfaceis a surface whose tangent plane at any point is a spacelike
vector space (i.e., the tangent plane contains only spacelike vectors). Atimelike surface
is a surface whose tangent plane at any point is a timelike vector space (i.e., it con-
tains both spacelike and timelike vectors). Thus, any surface in H3C(�1) is a spacelike
surface, but this is not the case for surfaces inS3

1. We shall work with some Gauss
maps of an embedded surfaceMh in H3C(�1) or Md in S3

1. The differential of these
maps are self-adjoint operators onM. An important observation for a spacelike surface
is that the restriction of the pseudo-scalar product inR4

1 to the surface is a scalar prod-
uct. Therefore, the differential of the Gauss map has alwaysreal eigenvalues. However,
this is not the case for a timelike surfaceMd in S3

1 as the restriction of the pseudo-
scalar product toMd is Lorentzian [29]. We deal separatly with spacelike and timelike
surfaces.

3.1. Spacelike surfaces inH3C(�1) and S3
1. The extrinsic geometry of hyper-

surfaces in the hyperbolic space is studied in [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23].
We deal with local properties of mappings, so we consider an embeddingxh W U !
H3C(�1), whereU is an open subset ofR2, and write Mh D xh(U ). Sincehxh, xhi ��1, we havehxh

ui
, xhi � 0, for i D 1, 2, whereu D (u1, u2) 2 U and xh

ui
D �xh=�ui .

We define the spacelike unit normal vectorxd(u) to the surface atxh(u) by

xd(u) D xh(u) ^ xh
u1

(u) ^ xh
u2

(u)kxh(u) ^ xh
u1

(u) ^ xh
u2

(u)k .

We call the mappingxd W U ! S3
1 the de Sitter Gauss indicatrixof Mh ([17]). For any

p D xh(u0) 2 Mh, one can show thatxd
ui
2 TpMh. The linear transformationAd

p D�dxd(u0), called thede Sitter shape operator, is a self-adjoint operator. Because the re-
striction of the pseudo-scalar product inR4

1 to Mh is a scalar product,Ad
p has an orthog-

onal basis formed by its eigenvectors when its eigenvalues are distinct. Its eigenvalues
(�d)i , i D 1, 2, are called the (de Sitter) principal curvatureand the corresponding eigen-
vectorspd

i , i D 1, 2, are called the (de Sitter) principal directions. We say that a point
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pD x(u0) 2 Mh is anumbilic point if Ad
p D kd(p) idTpMh . We also say thatM is totally

umbilic if all points of M are umbilic.

DEFINITION 3.1. A surface given by the intersection ofH3C(�1) with a space-
like, timelike or lightlike hyperplane is called respectively sphere, equidistant surface
or horosphere. The intersection of the surface with timelike hyperplane through the
origin is called ahyperbolic plane(plane for short).

We call a vectorv in, respectively,H3(�1), S3
1 or LC� which is orthogonal to

a given sphere, equidistant surface or horosphere, the centre of the sphere, equidistant
surface or horosphere.

Proposition 3.2 ([6, 17, 19]). Suppose that Mh D xh(U ) is totally umbilic. Then�d(p) is a constant�d for all p 2 Mh. Under this condition, we have the following
classification.
(1) If �2

d > 1, then Mh is part of a sphere.
(2) If �2

d D 1, then Mh is part of a horosphere.
(3) If �2

d < 1, then Mh is part of an equidistant surface. In particular, if �d D 0, then
Mh is a part of a plane.

The mappingL1W U ! 11 defined byL1(u) D (xh(u), xd(u)) is a Legendrian em-
bedding. If we start with a spacelike embeddingxd W U ! S3

1, we can construct a map-
ping xhW U ! H3C(�1) in exactly the same way as above and still obtain the Legendrian
embeddingL1.

By definition,L1 is a Legendrian embedding if and only ifxh
ui

is tangent to the space-

like surfaceMd D xd(U ). The mapxh W U ! H3C(�1) is called thehyperbolic Gauss in-
dicatrix of Md. Therefore, we have a linear transformationAh

p D �dxhW TpMd! TpMd,

called thehyperbolic shape operatorof Md at p, which is a self-adjoint operator. Be-
cause the restriction of the pseudo-scalar product inR4

1 to Md is a scalar product (Md is
spacelike),Ah

p has an orthogonal basis formed by its eigenvectors when its eigenvalues
are distinct. Its eigenvalues (�h)i , i D 1, 2, are called thehyperbolic principal curvature
and the corresponding eigenvectorsph

i , i D 1, 2, are called thehyperbolic principal dir-
ections. We say that a pointp D xd(u0) 2 Md is anumbilic point if Ah

p D kh(p) idTpMd .

We also say thatMd is totally umbilic if all points of Md are umbilic.

DEFINITION 3.3. A surface given by the intersection ofS3
1 and a spacelike hyper-

plane, a timelike hyperplane or a lightlike hyperplane is respectively called ahyperbolic,
an elliptic or a parabolic de Sitter quadric. In particular, we call an elliptic (resp. hyper-
bolic) de Sitter quadric through the origin aflat elliptic (resp. hyperbolic) de Sitter
quadric.

We call a vectorv in, respectively,H3(�1), S3
1 or LC� which is orthogonal to a

given hyperbolic, elliptic or parabolic de Sitter quadric,the centre of the hyperbolic,
elliptic or parabolic de Sitter quadric.



844 S. IZUMIYA , M. TAKAHASHI AND F. TARI

The following classification of totally umbilic spacelike surfaces in the de Sitter
space follows in the same way as that of surfaces in hyperbolic space.

Proposition 3.4. Suppose that Md D xd(U ) is a totally umbilic spacelike surface
in S3

1. Then�h(p) is constant�h. Under this condition, we have the following classi-
fication.
(1) If �2

h > 1, then Md is part of a hyperbolic de Sitter quadric.
(2) If �2

h D 1, then Md is part of a parabolic de Sitter quadric.
(3) If �2

h < 1, then Md is part of an elliptic de Sitter quadric. In particular, if �h D 0,
then Md is a part of a flat elliptic de Sitter quadric.

3.2. Timelike surfaces inS3
1. Some aspect of the extrinsic differential geometry

of timelike hypersurfaces inSn
1 from the view point of singularity theory are studied

in [11]. The tangent space at each point on a timelike surfacein S3
1 is timelike, so it

contains two lightlike directions. This makes such surfaces behave in a distinct way to
the spacelike ones.

Let x W U ! S3
1 denote an embedding of a timelike surface, whereU is an open

subset ofR2. For anyu 2 U , we havehx(u), x(u)i D 1, sohxui (u), x(u)i D 0, i D 1, 2.
We also have a unit normal vectorx�(u) to the surface atp D x(u) given by

x�(u) D x(u) ^ xu1(u) ^ xu2(u)kx(u) ^ xu1(u) ^ xu2(u)k .

The vectorx�(u) is spacelike. We callx� W U ! S3
1 the de Sitter Gauss mapof Md D

x(U ). One can show that for anyp D x(u0) 2 Md, x�ui
(u0) 2 TpMd (i D 1, 2). There-

fore, we have a linear transformationAp D �dx� W TpMd ! TpMd, which is a self-
adjoint operator. Because the restriction of the pseudo-scalar product inR4

1 to Md is
still a pseudo-scalar product (Md is timelike), Ap does not always have real eigen-
values. WhenAp has two distinct eigenvalues�i , i D 1, 2, we call them theprincipal
curvatureof the surface atp, and the corresponding eigenvectorspi , i D 1, 2, are called
the principal directions. The set of points where the eigenvalues coincide is of interest
and we label it thelightlike principal locus.

Proposition 3.5. (1) For a generic timelike surface Md in the de Sitter space,
the lightlike principal locus is a curve on Md. It can be characterised as the set of
points on Md where the two principal directions coincide and become a lightlike dir-
ection.
(2) The lightlike principal locus divides the surfaces into tworegions. In one of them
there are no principal directions and in the other there are two distinct principal dir-
ections at each point. In the later case, the principal directions are orthogonal and
one is spacelike while the other is timelike.
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Proof. (1) The computations here are similar to the case of scalar product.
Denote by

E D hxu1, xu1i, F D hxu1, xu2i, G D hxu2, xu2i
the coefficients of the (pseudo) first fundamental form and by

l D hAp(xu1), xu1i D hx�, xu1u1i,
n D hAp(xu1), xu2i D hx�, xu1u2i,
mD hAp(xu2), xu2i D hx�, xu2u2i

those of the (pseudo) second fundamental form. Then the matrix of Ap with respect
to the basisfxu1, xu2g is given by the usual formula

1

EG� F2

(

G �F�F E

)(

l m
m n

)

.

It follows that the equation of the principal direction is also given by the usual formula

(Gm� Fn) du2
2C (Gl � En) du1 du2C (Fl � Em) du2

1 D 0,

equivalently by,

∣

∣

∣

∣

∣

∣

du2
2 �du1 du2 du2

1

E F G
l m n

∣

∣

∣

∣

∣

∣

D 0.

The discriminant of the above quadratic differential equation is

Æ(u1, u2) D ((Gl � En)2 � 4(Gm� Fn)(Fl � Em))(u1, u2).

The setÆ�1(0) (the lightlike principal locus) is either empty or is a curve on generic
surfacesMd. (Recall that on generic two dimensional Riemannian surfaces, the setÆ�1(0) consists of isolated umbilic points; see for example [31].)

A principal directionp D du1 xu1 C du2 xu2 in TpMd is lightlike if and only if

hp, pi D G du2
2C 2F du1 du2C E du2

1 D 0.

The resultant of this equation with that of the principal directions is

(EG� F2)2((Gl � En)2 � 4(Gm� Fn)(Fl � Em)).

As EG� F2 ¤ 0, it follows that a principal direction is lightlike at a point p if and
only if p is on the lightlike principal locus.
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(2) In the regionÆ > 0 the equation of the principal directions has two distinct
solutions. It has no solutions in the region whereÆ < 0. The two principal direc-
tions at points in the region whereÆ > 0 are orthogonal (this follows from the fact
that �1hp1, p2i D hAp( p1), p2i D hp1, Ap( p2)i D �2hp1, p2i, and�1 ¤ �2). As neither
of them are lightlike, one has to be timelike and the other spacelike (see for example
Theorem 3.1.4 in [30]).

REMARK 3.6. The generic configurations of the lines of principal curvature on
a timelike surface inS3

1 (i.e., the pair of foliations defined by the principal directions)
are studied in [24].

We can interpret the de Sitter Gauss mapx� by the Legendrian duality. We have a
Legendrian embeddingL5W U ! 15 defined byL5(u)D (x(u), x�(u)). Therefore,x(U )
and x�(U ) are15-dual to each other.

We can also define the notion of umbilic points and have a classification of totally
umbilic timelike surfaces inS3

1 (see [11]). The arguments are similar to the spacelike
case and are omitted.

4. Evolute and symmetry set

In this section we introduce the notion of evolutes and symmetry sets for surfaces
in H3C(�1) or S3

1. We distinguish, as before, the cases when the surface is spacelike
or timelike.

4.1. Spacelike surfaces inH3C(�1) and S3
1. In [19] (see also [18] for the curves

case) is introduced the notion of evolute (or focal surface)of a hypersurface in a hyper-
bolic space. For a surfacexh W U ! H3C(�1), the total evolute(evolute for short) of
xh(U ) D Mh is defined by

TE�Mh D 2
⋃

iD1







� 1
√j(�d)2

i (u) � 1j ((�d)i (u)xh(u)C xd(u)), u 2 U







,

where (�d)i (u), i D 1, 2, are the de Sitter principal curvature atxh(u). Observe that
TE�Mh is the reflection of TECMh with respect to the origin (so we have two copies of
the total evolute). We assume here thatpD xh(u) is not a horoparabolic point, that is,
(�d)2

i (u) ¤ 1 for i D 1, 2. The evolute has the following decomposition

TE�Mh D HE�Mh [ SE�Mh ,

where HE�Mh is the hyperbolic space component of the evolute and corresponds to points
u where (�d)2

i (u) > 1, and SE�Mh is the de Sitter component of the evolute and corres-
ponds to pointsu where (�d)2

i (u) < 1.
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The evolute has some interesting geometric properties. Let

H T
h W U � H3(�1)! R

denote the hyperbolic timelike height function given byH T
h (u, v) D hxh(u), vi, and

H S
h W U � S3

1 ! R
denote the hyperbolic spacelike height function given byH S

h (u, v) D hxh(u), vi. The
function H T

h measures the contact of the surface with spheres andH S
h measures its

contact with equidistant surfaces (see Definition 3.1). Onecan show that the evolute is
the union of the “local” strata of the bifurcation sets LBif(H T

h ) and LBif(H S
h ) of the

families H T
h and H S

h respectively, [19]. The local (resp. multi-local) stratumof, say
the family H T

h , is the set of parametersv 2 H3(�1) for which H T
h v D H T

h ( � , v) has a
unstable local (resp. multi-local) singularity. We have,

LBif( H T
h ) D HECMh [ HE�Mh ,

LBif( H S
h ) D SECMh [ SE�Mh .

Therefore, the evolute parametrises the centres of spheresor equidistant surfaces that
have degenerate contact withMh (i.e., parametrises the set ofv for which H T

h v D
H T

h ( � , v) or H S
h v D H S

h ( � , v) has a singularity of typeA2 or worse). Observe that
if u is a degenerate singularity ofH T

h v (resp. H S
h v) then it is also a degenerate singu-

larity of H T
h �v (resp. H S

h �v). This is why we have two copies TECMh and TE�Mh of the
evolute. The evolute can also be characterised as a caustic,and therefore has generic
Lagrangian singularities [19, 22].

We have the following observation needed for the duality result in this paper.

Proposition 4.1. Let q be a smooth point on the evolute associated to the prin-
cipal curvature (�d)i , i D 1 or 2. Then the normal to the evolute at q is parallel to
the principal directionpd

i associated to(�d)i .

Proof. Let c�i W U ! H3(�1)[ S3
1, i D 1, 2, given by

c�i (u) D � 1
√j(�d)2

i (u) � 1j ((�d)i (u)xh(u)C xd(u)),

be a local parametrisation of the evolute. Letp be the point on the surface corresponding
to the pointq on the evolute. Asq is a smooth point on the evolute, the principal curva-
tures are distinct atp. We can then choose a local parametrisationxh W U ! H3C(�1) of
the surface atp so thatui D constant,i D 1, 2, represent the lines of curvatures. The
part of the evolute that is associated to a given principal curvature (�d)i is parametrised

by c�i (u) D ��(u)((�d)i (u)xh(u)Cxd(u)) where��(u) D �1
/
√j(�d)2

i (u) � 1j. We have
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hc�i , pd
i i D hxh, pd

i i D 0 aspd
i is tangent toMh. Because of the chosen parametrisation,

we havehxh
u j

, pd
i i D 0 for j ¤ i . Also hxd

ui
, pd

i i D hdxd.xh
ui

, pd
i i D h��i xh

ui
, pd

i i and

hxd
u j

, pd
i i D �� j hxh

u j
, pd

i i D 0 for j ¤ i . Therefore,

〈�c�i�ui
, pd

i

〉 D 〈��ui
((�d)i xh C xd)C ��(( ��ui

(�d)i

)

xh C (�d)i xh
ui
C xd

ui

)

, pd
i

〉 D 0

and for j ¤ i ,

〈�c�i�u j
, pd

i

〉 D 〈��u j
((�d)i xh C xd)C ��(( ��u j

(�d)i

)

xh C (�d)i xh
u j
C xd

u j

)

, pd
i

〉 D 0

which proves the assertion.

We consider now the multi-local strata of the bifurcation sets of the spacelike and
timelike height functions. (This is analogous to the study of the multi-local stratum of
the distance squared function on surfaces in the Euclidean spaceR3.)

DEFINITION 4.2. Thesymmetry setof Mh, denoted by SS, is the closure of cen-
tres of spheres inH3(�1) or equidistant surfaces inS3

1 that are tangent toMh in at
least two distinct points. It is the union of the closure of the multi-local strata of the
bifurcation sets of the spacelike and timelike family of height functionsH S

h and H T
h .

We denote by SST (resp. SSS) the component of the symmetry set related to the
timelike (resp. spacelike) family of height function.

Proposition 4.3. (1) A point q2 H3(�1)[ S3
1 is on theSS of a surface Mh �

H3C(�1) if and only if there exists two distinct points p1 and p2 on Mh such that the
tangent planes Tp1 Mh and Tp2 Mh are symmetric with respect to the equidistant surface
orthogonal to the geodesic joining p1 and p2 and passing through the midpoint of the
segment p1 p2.
(2) Let q be a smooth point on theSS corresponding to the bi-tangency of a sphere
(resp. equidistant surface) to the surface Mh at two points p1 and p2. Then the normal
to the SS at q is the normal to the equidistant surface in(1).

Proof. (1) Let xh
1 W U1 ! Mh and xh

2 W U2 ! Mh be local coordinates onMh

around xh
1(0, 0)D p1 and xh

2(0, 0)D p2. By a hyperbolic motion, we can suppose
that the equidistant surface orthogonal to the geodesic joining p1 and p2 and passing
through the midpoint of the segmentp1 p2 is given byx2 D 0. If v0 D (0, 0, 1, 0), then
p2 D p1 � 2hp1, v0iv0.

The height functionH T
h v (resp. H S

h v) has two singularities atp1 and p2 at the
same level if and only ifv D �p1 C �e1 D �p2 C �e2 with ��2 C �2 D �1 and��2C�2 D �1 (resp.��2C�2 D 1 and��2C�2 D 1) andhp1, vi D hp2, vi. Heree1
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ande2 are the normal vectors to the surface atp1 and p2 respectively. Sincehpi , pi i D�1 and hpi , ei i D 0 for i D 1, 2, it follows that

(1) hp1, vi D �� D �hp1, p2i C �hp1, e2i.
We havehp1 � p2, vi D 0. Thereforehp1 � p2, �p2C �e2i D 0, equivalently,

(2) � C �hp1, p2i C �hp1, e2i D 0.

It follows from equations (1) and (2) that� D � and hence� D ��. We can
assume that� D � by changing the orientation of the surface atp2 if necessary (by
taking �e2 as the normal vector atp2). Now �p1 C �e1 D �p2 C �e2, so e1 � e2 is
parallel to p1� p2, and hence is parallel tov0. This implies thate2 is symmetric toe1

with respect to the planex2 D 0 and hence the normal planeNp2 Mh (generated byp2

ande2) is symmetric to the normal planeNp1 Mh (generated byp1 ande1) with respect
to x2 D 0. Consequently,Tp2 Mh is symmetric toTp1 Mh with respect tox2 D 0.

(2) We consider the setting in (1) and deal with the multi-local singularities of
the timelike height function. The case of the spacelike height function follows in the
same way. Consider the map8T W U1 �U2 � H3C(�1)! R5 given by

(u, v, v) 7! (hxh
1(u), vi � hxh

2(v), vi, 〈xh
1u1

(u), v〉, 〈xh
1u2

(u), v〉, 〈xh
2v1

(v), v〉, 〈xh
2v2

(v), v〉)
with u D (u1, u2) and v D (v1, v2). Then SST D �3((8T )�1(0)), where�3 is the ca-
nonical projection to the third component. To prove the statement it is enough to show
that hv0, dvi D 0 at q, wherev 2 SST . Since (u, v, v) 2 (8T )�1(0), we havehxh

1(u) �
xh

2(v), vi D 0. By differentiating, we havehxh
1(u) � xh

2(v), dvi D 0, and the assertion
follows from the fact thatp1 � p2 is parallel tov0.

We now introduce the notion of evolute of a spacelike surfacein de Sitter space.
For a spacelike surfacexd W U ! S3

1, we define thetotal evoluteof xd(U ) D Md by

TE�Md D 2
⋃

iD1







� 1
√j(�h)2

i (u) � 1j (xh(u)C (�h)i (u)xd(u)), u 2 U







,

where (�h)i (u), i D 1, 2, are the hyperbolic principal curvature atxd(u). We assume
here that (�h)2

i (u) ¤ 1 for i D 1, 2. The total evolute has the following decomposition

TE�Md D HE�Md [ SE�Md ,

where HE�Md denotes the hyperbolic part of the total evolute and corresponds to point
u where (�h)2

i (u) < 1 and SE�Md denotes the de Sitter part of the total evolute and cor-
responds to pointu where (�h)2

i (u) > 1. Let

H T
d W U � H3(�1)! R
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denote the de Sitter timelike height function given byH T
d (u, v) D hxd(u), vi, and

H S
d W U � S3

1 ! R
denote the de Sitter spacelike height function given byH S

d (u, v) D hxd(u), vi. The
function H T

d measures the contact of the surface with hyperbolic de Sitter quadrics and
H S

d measures its contact with elliptic de Sitter quadrics (see Definition 3.3). One can
show that the evolute is the union of the local strata of the bifurcation sets LBif(H T

d )
and LBif(H S

d ) of the families H T
d and H S

d respectively. More precisely,

LBif( H T
d ) D HECMd [ HE�Md ,

LBif( H S
d ) D SECMd [ SE�Md .

We consider now the multi-local singularities of the spacelike and timelike height
functions.

DEFINITION 4.4. Thesymmetry setof Md, denoted by SS, is defined to be the
closure of the set of centres of elliptic and hyperbolic de Sitter quadrics that are tangent
to Md in at least two distinct points. It is the union of the closureof the multi-local
strata of the bifurcation sets of the spacelike and timelikeheight functionsH S

d and H T
d

respectively.

REMARK 4.5. Suppose that both surfacesxh(U ) D Mh and xd(U ) D Md are
smooth for the Legendrian embeddingL1 W U ! 11 given by L1(u) D (xh(u), xd(u)).
Then the principal curvatures satisfy�h(u)�d(u) D 1 by 11-duality. It follows that the
total evolutes ofMh and Md coincide. In [22] is given a unified interpretation of
these concepts as caustics of a certain Lagrangian submanifold in the symplectification11 � RC of (11, K1).

4.2. Timelike surfaces inS3
1. We define thede Sitter evoluteof a parametrised

timelike surfacex W U ! S3
1 to be the set

SE�Md D 2
⋃

iD1







� 1
√�2

i (u)C 1
(�i (u)x(u)C x�(u)), u 2 U







,

where�i (u), i D 1, 2 are the principal curvature atx(u). The evolute is related to the
family of spacelike height functions

H SW U � S3
1 ! R

given by H S(u, v) D hx(u), vi. The function H S measures the contact of the surface
with elliptic de Sitter quadrics (see Definition 3.3). LetH Sv (u) D H S(u, v). One can
easily show the following.
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Proposition 4.6. The spacelike height function HSv is singular at u if and only if
there exist real numbers�, � such thatv D �x(u)C �e(u) and �2C �2 D 1.

By Proposition 4.6, the discriminant (or catastrophe set) of H S is given by

C(H S) D f(u, v) 2 U � S3
1 j v D �x(u)C �e(u), �2C �2 D 1g.

We also have

�2H S

�ui �u j
(u, v) D hxui u j (u), vi D ��gi j C �hi j

on C(H S), whereg11 D E, g12 D g21 D F and g22 D G. If � D 0, thenv D �x and
det(H(H Sv )(u))D det(gi j )¤ 0, whereH denotes the Hessian ofH Sv . So, det(H(hSv )(u))D
0 if and only if �=� is a principal curvature. It follows that the local bifurcation set,
LBif( H S), of the family of the spacelike height functions is the evolute of Md, that is,
LBif( H S) D SECMd [ SE�Md .

REMARK 4.7. There is no hyperbolic component of the evolute of a timelike sur-
face x W U ! S3

1. The timelike height functionH T W U � H3(�1)! R is not singular
at any point onx(U ). The reason being that any hyperbolic de Sitter quadric (whose
tangent spaces are spacelike) is always transverse to a timelike surface.

For the duality result in this paper, we require the normal tothe evolute.

Proposition 4.8. Let q be a smooth point on the de Sitter evolute of a timelike
surface Md � S3

1 associated to a point p2 Md not on the lightlike principal locus of
Md. Then the normal to the evolute at q is along the principal direction pi (i D 1 or
2), associated to the principal curvature�i defining q.

The proof is similar to that of Proposition 4.1 and is omitted.
We consider now the multi-local singularities of the spacelike height function.

DEFINITION 4.9. Thesymmetry setof Md, denoted by SS, is defined to be the
closure of the centres of elliptic de Sitter quadrics that are tangent toMd in at least
two distinct points. It is the closure of the multi-local stratum of the bifurcation set of
the spacelike height functionH S.

We have the following result analogous to Proposition 4.3.

Proposition 4.10. (1) A point q2 S3
1 is on theSSof a timelike surface Md � S3

1

if and only if there exists two distinct points p1 and p2 on Md such that the tangent
planes Tp1 Md and Tp2 Md are symmetric with respect to the sphere orthogonal to the
geodesic joining p1 and p2 and passing through the midpoint of the segment p1 p2.
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(2) Let q be a smooth point on theSS corresponding to the bi-tangency of an elliptic
de Sitter quadric to the surface Md at two points p1 and p2. Then the normal to the
SS at q is the normal to the sphere in(1).

Proof. The proof is similar to that of Proposition 4.3. We consider, by Lorentzian
motion, the sphere to be the intersection of the spacelike hyperplanex0 D 0 with S3

1
and follow the same steps in the proof of Proposition 4.3.

5. The folding family

5.1. Surfaces inH3C(�1). We shall restrict our study to 2-dimensional surfaces
in H3C(�1). However, the construction of the family of folding maps we give here
is valid in HnC(�1), n � 3, and for any embedded submanifold inHnC(�1). For the
surface case inH3C(�1), the folding maps can be represented locally by a map-germ
(R2, 0)! (R3, 0). A classification of the singularities of such mappings are well known
(see for example [25]) and one can deduce interesting geometrical properties of the
surface from the singularities of the folding maps.

In the Euclidean case, given a planeP � R3, the folding map inR3 with respect
to P identifies points with the same distance toP. If we want to follow this con-
struction for surfaces embedded in the hyperbolic spaceH3C(�1), we need to identify
points with the same distance to some “flat” object. Planes are surfaces with de Sitter
principal curvatures vanishing at all points ([6, 19]) and horospheres are surfaces with
lightcone principal curvatures vanishing at all points ([17]). As we are aiming to pick
up the principal directions of the surfaceMh and the fact that these are the same for
the de Sitter and lightcone shape operators, it is enough to consider folding with re-
spect to planes. We observe that a folding with respect to an equidistant surface can
be brought, by a hyperbolic motion, to a folding with respectto a plane.

Following the construction in the Euclidean case, folding with respect to a plane
in H3C(�1) means taking two distinct points on the same geodesic thatare at the same
distanced from the plane and mapping them to the point on this geodesic that is at a
distanced2 to the plane. This map is slightly messy to work with, and as weare only
interested in itsA-singularities, whereA denotes the Mather left-right group, we shall
construct anA-equivalent map as follows. (This new map still sends symmetric points
with respect to a fixed plane to the same image.)

The planes of interest above are timelike as they are normal to a geodesic which
has a spacelike tangent vector. Consider folding with respect to the timelike hyperplane
x2 D 0. Thus, we seek a fold map that identifies any two points (x0, x1, x2, x3) and
(x0, x1, �x2, x3) in H3C(�1). As

H3C(�1)D {(√x2
1 C x2

2 C x2
3 C 1, x1, x2, x3

)

(x1, x2, x3) 2 R3
}

,
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we define the folding map with respect to the timelike hyperplane x2 D 0 as the map

f1 W H3C(�1)! H3C(�1)

given by f1

(
√

x2
1 C x2

2 C x2
3 C 1, x1, x2, x3

) D (√x2
1 C x4

2 C x2
3 C 1, x1, x2

2, x3

)

.

Let p 2 H3C(�1) and C be the geodesic throughp and orthogonal toH3C(�1)\
HP(e2, 0) at some pointq. Then C is parametrised byc(�) D cosh(�)q C sinh(�)e2.
Thus p D c(�0), for some �0, and the symmetric point ofp on C with respect to
H3C(�1) \ HP(e2, 0) is the point Np D c(��0). It is clear that f1(p) D f1( Np). This
means thatf1 send the symmetric points with respect to the planeH3C(�1)\HP(e2, 0)
to the same image. It follows that this property is invariantunder the Lorentzian isom-
etry. Therefore we can proceed as in [2, 5]. The timelike hyperplane x2 D 0 is of
course arbitrary. If we are interested in studying the reflectional symmetry of the sur-
face Mh with respect to all timelike hyperplanes, we need to consider the family of
folding maps parametrised by these hyperplanes. Let SO0(1, 3) denotes the positive
Lorentzian group. We define

NF W H3C(�1)� SO0(1, 3)! H3C(�1)

by NF(p, A)D (A�1Æ f1ÆA)(p). This is a 6-parameter family of folding maps. However,
there are some redundant parameters that can be eliminated by considering the quotient
of SO0(1, 3) by the subgroupH2 of motions that preservex2 D 0 (i.e., HP(e2, 0)). We
then obtain a family

F W H3C(�1)� SO0(1, 3)=H2! H3C(�1).

We shall now show that SO0(1, 3)=H2 � S3
1. We consider the action of SO0(1, 3)

on S3
1 defined byvA for any (A, v) 2 SO0(1, 3)� S3

1. It is well known (cf., [10]) that
this action is transitive (of course, one can also show by direct linear algebra arguments
that this fact holds). Consider the two isotropic subgroupsof SO0(1, 3) defined by

Hi D fA 2 SO0(1, 3) j ei AD ei g, i D 2, 3.

Let

P(3,4)D








1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









2 SO0(1, 3)

so thate2P(3,4)D e3. One can show that ifA 2 H3 then P(3,4)AP�1
(3,4) 2 H2, so that we

have a diffeomorphism

9 W SO0(1, 3)=H3! SO0(1, 3)=H2
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between homogeneous spaces defined by9([ A]) D [ P(3,4)AP�1
(3,4)]. Since

H3 D
{(

B t0
0 1

)

B 2 SO0(1, 2)

}

,

we have the canonical diffeomorphisms

SO0(1, 3)=H2 � SO0(1, 3)=SO0(1, 2)� S3
1.

Therefore the family of folding maps can be considered as a family

F W H3C(�1)� S3
1 ! H3C(�1).

Given an embeddingx W Mh ! H3C(�1), we obtain a family

Fx W Mh � S3
1 ! H3C(�1)

by restriction toMh�S3
1. We have the following result where the term generic is defined

in terms of transversality to submanifolds of multi-jet spaces (see for example [9]).

Theorem 5.1. For a residual set of embeddingsxW Mh! H3C(�1), the family Fx
is a generic family of mappings.

Proof. The mapf1 defined above is a fold map, so it is anA-stable map. There-
fore, the corresponding 3-dimensional familyF is an A-versal family of mappings
in the sense of Montaldi [26]. The assertion follows now from Montaldi’s theorem
in [26].

For a givenv 2 S3
1 and a pointp0 2 Mh, one can choose local coordinates so that

Fv
x (p) D Fx(p, v) can be considered locally as a map-germ (R2, 0)! (R3, 0). It fol-

lows from Theorem 5.1 that for generic embeddings of the surface, only singularities of
Ae-codimension� 3 can occur in the members of the family of folding maps (3 being
the dimension of the parameter spaceS3

1). Therefore, we have the following result.

Proposition 5.2. For a residual set of embeddingsxW Mh! H3C(�1), the folding
maps Fvx W Mh! H3C(�1) in the family Fx have local singularitiesA-equivalent to one
in Table 1. Moreover, these singularities are versally unfolded by the family Fx.

For a fixed embeddingx W Mh ! H3C(�1), we define a mapping9x W S3
1 !

C1(Mh, H3C(�1)) by 9x(v) D Fv
x . We remark that9x is a continuous mapping with

respect to the WhitneyC1-topology ofC1(Mh, H3C(�1)). Since the set of stable map-
pings is open inC1(Mh, H3C(�1)), the set ofv 2 S3

1 such thatFv
x is a stable map-

ping is an open subset ofS3
1. It also follows from Theorem 5.1 that for a generic
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Table 1.Ae-codimension� 3 singularities of map-germs (R2, 0)!
(R3, 0) ([25]).

Normal form Name Ae-codimension
(x, y, 0) Immersion 0
(x, y2, xy) Cross-cap 0
(x, y2, x2y� y2kC1), k D 1, 2, 3 Bk k
(x, y2, y3� xkC1y), k D 2, 3 Sk k
(x, y2, xy3� xk y), k D 3 Ck k

embeddingx W Mh ! H3C(�1) and for v in an open and dense subset ofS3
1, the map

Fv
x W Mh ! H3C(�1) is stable, i.e., is locally an immersion, a cross-cap or a pair of

transverse planes. The set of vectorsv 2 S3
1 for which Fv

x is not A-stable is thebifur-
cation set, Bif( Fx), of Fx. This set consists of vectorsv for which Fv

x has a singularity
more degenerate than a cross-cap (generically one of theBk, Sk, Ck in Proposition 5.2)
or the image has a multi-local singularity of type self tangency or worse. We have the
following duality result, analogous to the one in [5] for theEuclidean case, where dual-
ity here refers to11-duality when the evolute/symmetry set lies in the hyperbolic space
and15-duality when it is in the de Sitter space (see Theorem 2.1 andRemark 2.2).

Theorem 5.3. The bifurcation setBif( Fx) of the family of folding maps on a sur-
face Mh � H3C(�1) is the dual of the evolute and the symmetry set of Mh. More pre-
cisely, the local stratum ofBif( Fx) is the dual of the evolute and the multi-local stratum
of Bif( Fx) is the dual of the symmetry set.

Proof. We take the surfaceMh, without loss of generality, in the hyperbolic Monge
form (see [17])

x(u1, u2) D (√g2(u1, u2)C u2
1C u2

2C 1, g(u1, u2), u1, u2

)

at the origin, withg and its first derivatives vanishing at the origin. We writej 2g(u1,u2)D
a20u2

1C a21u1u2C a22u2
2. The restriction of the folding mapf to Mh is given by

f1(u1, u2) D (√g2(u1, u2)C u4
1C u2

2C 1, g(u1, u2), u2
1, u2

)

.

If we project it to the tangent space ofH3C(�1) at x(0, 0) (i.e., to the spacex0 D 0)
we obtain a map-germ (R2, 0)! (R3, 0) which isA-equivalent to f1 and is given by

Qf1(u1, u2) D (g(u1, u2), u2
1, u2).

This map-germ has a singularity of type cross-cap at the origin if and only if a21¤ 0,
if and only if the normal to the hyperplanex2 D 0 is not along a principal direction.
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Fig. 1. Bifurcation sets (local strata in thin and multi-local strata
in thick).

It follows then that the local stratum of the bifurcation setof Fx is the surface inS3
1

traced by the (unit) principal directions ofMh. However, by Proposition 4.1, a princi-
pal direction is the normal to the evolute and by Theorem 2.1 (see also Remark 2.2),
these normals trace the dual of the evolute. Here, duality refers to11-duality when the
evolute lies in the hyperbolic space and15-duality when it is in the de Sitter space.

The duality for the multi-local stratum of the bifurcation set of the folding map
follows from Proposition 4.3, Theorem 2.1 and Remark 2.2.

Since the familyFx is an A-versal unfolding of each of its singularities, we can
deduce the model (up-to diffeomorphism) of its bifurcationset Bif(Fx), and hence of
the dual of the evolute and symmetry set. The models for the local singularities are
given in Fig. 1.

We can deduce from Theorem 5.3 and from the results in [19] thefollowing geo-
metric characterisations of the singularities of the folding maps:
B1: General smooth point of the evolute.
S2: De Sitter parabolic smooth point of the evolute.
S3: Swallowtail of the de Sitter Gauss indicatrix at smooth point of the evolute.
These are also the points where the principal direction corresponding to the null prin-
cipal curvature is tangent to the parabolic set of the evolute.
B2: General cuspidal-edge point of the evolute.
B3: Cuspidal-edge point of the evolute in the closure of the de Sitter parabolic curve
on the symmetry set.
C3: Intersection point of the cuspidal-edge and parabolic curves on the evolute.
Here, thegeneral smooth pointmeans a smooth point which is different fromS2 or
S3 and thegeneral cuspidal-edge pointmeans a cuspidal-edge point which is different
from B3 or C3.
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Following [5, 32], we shall call the pre-image onMh of the de Sitter parabolic set
of the evolute thesub-parabolic curveof Mh. In the Euclidean case, the sub-parabolic
curve is the locus of points where lines of curvature have geodesic inflections. It is also
the locus of points where one principal curvature has an extremal value along lines of
the other principal curvature [27]. We have a similar characterisation for surfaces in
the hyperbolic space. Recall that the restriction of the pseudo-scalar product to the
hyperbolic space is a scalar product, so this space is a Riemannian manifold.

The lines of curvature (i.e., curves onMh whose tangent at each point is a prin-
cipal direction) are given, in the parameters space, by the usual equation

(Gm� Fn) du2
2C (Gl � En) du2 du1C (Fl � Em) du2

1 D 0

(see for example [31]) whereE, F , G are the coefficients of the first fundamental form
and l , m, n are the coefficients of the (de Sitter) second fundamental form.

Proposition 5.4. The sub-parabolic curve of an embedded surface Mh in H3C(�1)
can be characterised as follows.
(1) It is the locus of points where one principal curvature has anextremal value along
lines of the other principal curvature.
(2) It is the locus of points where the other lines of curvature have geodesic inflec-
tions.

Proof. (1) We take the surface in hyperbolic Monge form as in the proof of
Theorem 5.3 and writej 3g(u1, u2)D a20u2

1Ca22u2
2Ca30u3

1Ca31u2
1u2Ca32u1u2

2Ca33u3
2.

Then folding along the hyperplanex2 D 0 yields a singularity worse than a cross-cap.
The folding map Qf1(u1, u2) D (g(u1, u2), u2

1, u2) has anS2-singularity if and only if
a32 D 0 (and a30 ¤ 0). A calculation shows that the 1-jet of the principal curvature
associated to the other principal direction (0, 0, 0, 1) at the origin (which is contained
in the hyperplanex2 D 0) is given by j 1�2 D 2a22C 2a32u1 C 6a33u2. It has an ex-
tremal value along the line of principal curvature associated to (0, 0, 1, 0) if and only
if a32 D 0, which proves statement (1).

(2) We get the initial term of the line of curvature tangent to(0, 1) in the param-
eter space by solving the equation of the lines of curvature with the hyperbolic Monge
form setting above. It is given by (u1(s), u2(s)) D ((a32=2(a20� a22))s2C h.o.t.,s). The
principal curvexh(u1(s), u2(s)) has a geodesic inflection at the origin if and only if
a32 D 0, if and only if xh(0, 0) is a sub-parabolic point.

5.2. Spacelike surfaces inS3
1. As the surface is spacelike, we have everywhere

defined principal directions (away from umbilic points) andthese are spacelike. There-
fore, we are interested in measuring the reflectional symmetry of the surface with re-
spect to timelike hyperplanes. We proceed as in §5.1 and start by considering folding
with respect to the hyperplanex2D 0. For the de Sitter space, unlike for the hyperbolic



858 S. IZUMIYA , M. TAKAHASHI AND F. TARI

space, one needs several charts to express it as the graph of afunction. We define the
fold map using a global parametrisation.

Let g(u, � , �) D (x0, x1, x2, x3)(u, � , �) be a parametrisation of the de Sitter space
S3

1 given by

x0 D u,

x1 D√1C u2 cos� sin�,

x2 D√1C u2 cos�,

x3 D√1C u2 sin� sin�,

whereu 2 R, 0� � � 2� and 0� � � � . We define the folding map with respect to
the hyperplanex2 D 0 as the mapf2 W S3

1 ! S3
1 given by

f2((x0, x1, x2, x3)(u, � , �)) D g(u, � , t(�))

where

t(�) D �
2
� 2�

(� � �
2

)2

.

This is simply a folding map on each level spherex0 D constant inS3
1. We can then

follow the same analysis in §5.1 and deduce the same duality result, where the evolute
and symmetry set refer to the sets defined in §4.1. In practise, as we are considering
local or multi-local properties of the surface, we can choose a different folding mapf2

defined on a chart whereS3
1 is given as a graph of a function. For example, we can

work with the local chartx0 D �√�1C x2
1 C x2

2 C x2
3, with x0 ¤ 0, and define the

folding map as

f2

(�√�1C x2
1 C x2

2 C x2
3, x1, x2, x3

) D (�√�1C x2
1 C x4

2 C x2
3, x1, x2

2, x3

)

.

5.3. Timelike surfaces inS3
1. The folding maps measure the reflectional sym-

metry of a surface with respect to hyperplanes. In the case ofspacelike surfaces the
hyperplanes of interest are those whose normals are principal directions. In the case of
timelike surfaces, when the principal directions exist, one is timelike and the other is
spacelike (Proposition 3.5). Thus, we need to consider two families of folding maps.
One is with respect to timelike hyperplanes. This family is the same as that considered
in §5.2. The duality result in §5.2 is valid here too (away from the lightlike principal
locus), with duality meaning15-duality only (recall the there is no hyperbolic compo-
nent of the evolute of a timelike surface inS3

1). The second family, which we construct
below, is the family of folding maps with respect to spacelike hyperplanes. We proceed
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as in §5.1. Given the parametrisationg(u, � , �) of S3
1 in §5.2, we define the folding

map with respect to the spacelike hyperplanex0 D 0 as the mapf3 W S3
1 ! S3

1 given

f3((x0, x1, x2, x3)(u, � , �)) D g(u2, � , �).

In a local chart, sayx1 D �√1C x2
0 � x2

2 � x2
3, with x1 ¤ 0, the above folding

map has the following expression

f3

(

x0, �√1C x2
0 � x2

2 � x2
3, x2, x3

) D (x2
0, �√1C x4

0 � x2
2 � x2

3, x2, x3

)

.

We now proceed as in §5.1. The spacelike hyperplanex0 D 0 is of course arbi-
trary. If we are interested in studying the reflectional symmetry of the surfaceMd with
respect to all spacelike hyperplanes, we need to consider the family of folding maps
parametrised by these hyperplanes. We define

NG W S3
1 � SO0(1, 3)! S3

1

by NG(p, A)D (A�1Æ f3ÆA)(p). This is a 6-parameter family of folding maps. However,
there are some redundant parameters and we need to consider the quotion of SO0(1, 3)
by the subgroup of Lorentzian motions that preservex0 D 0 (that is,HP(e0, 0)).

We consider the action of SO0(1, 3) on H3C(�1) defined byvA for any (A, v) 2
SO0(1, 3)� H3C(�1). It is well known that this action is transitive. Let

H0 D fA 2 SO0(1, 3) j e0AD e0g
be an isotropic subgroup of SO0(1, 3). Since

H0 D
{(

1 t0
0 B

)

B 2 SO(3)

}

,

we have the canonical diffeomorphisms

SO0(1, 3)=H0 � SO0(1, 3)=SO(3)� H3C(�1).

Therefore the mapNG gives rise to a 3-parameter family of folding maps

G W S3
1 � H3C(�1)! S3

1.

Given a timelike embeddingx W Md ! S3
1, we obtain a family

Gx W Md � H3C(�1)! S3
1

by restriction to: Md � H3C(�1). We obtain the following results following the same
arguments as §5.1.
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Theorem 5.5. For a residual set of timelike embeddingsxW Md ! S3
1, the family

Gx is a generic family of mappings.

Proposition 5.6. For a residual set of timelike embeddingsxW Md! S3
1, the fold-

ing maps in the family Gx have local singularitiesA-equivalent to one inTable 1.

We consider now the mapG0
x W Md n L ! S3

1, where L denotes the lightlike prin-
cipal locus.

Theorem 5.7. The bifurcation setBif(G0
x) of the folding map on Md n L is the11-dual of the de Sitter evolute and the symmetry set of Md n L. More precisely, the

local stratum of the bifurcation set is the11-dual of the de Sitter evolute and the multi-
local stratum is the11-dual of the symmetry set.

Proof. The proof is similar to that of Theorem 5.3 and followsfrom Propositions 4.8
and 4.10.
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