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1. Introduction

Let L; : £; =0 (0 < j < n+1) be hyperplanes in the k-dimensional projective
space P* in general position. For

n+1
O‘:(GOa-“aan-}—l)y QjGC\Z, Zaj:()v
=0

we consider the logarithmic 1-from

n+1

dl;

w=) o;5t
j=0

J

and the covariant derivation V,, = d + wA with respect to w on X = P¥\ U*]L;.
The k-th twisted de Rham cohomology group on X with respect to w and that with

compact support are defined as

HY(X,V,) = {€ € £5(X) | V€ = 0}/V.EFH(X),

HE(X,V.) = {§ € £:(X) | Vo€ = 0}/VuEETH(X),
where £™(X) is the space of smooth m-forms on X and £™(X) is the space of s-
mooth m-forms on X with compact support. It is known that the inclusion of £7*(X)

in £™(X) induces a natural isomorphism of H*(X,V,) onto H¥(X,V,) and that
H*(X,V,,) is spanned by

0 . b,
<p1=dlog(ﬂ)/\dlog(ﬁ>/\.../\dlog( — ),
éil Ziz eik

I = (i0,%1,---,0k), 0<ip<i1<...<ix<n+1.

The groups H*(X,V,) and H*(X,V_,) for —a = (-ayg,...,—Qny;) are dual
to each other under the pairing
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/Xﬁf\n,

where ¢ and 7 are representatives of H¥(X,V,) and H*(X,V_,), respectively. The
inverse «* : H*(X,V,) - H¥(X,V,,) of this natural isomorphism induces the pair-
ing (, ), on the space spanned by the ¢;’s as follows:

(o1, 00)w =Abf,(<.01)/\901-

We call (@5, @) the intersection number of the logarithmic k-forms ¢ and ¢; with
respect to w. Our main theorem 2.1 evaluates explicitly the intersection numbers.

It seems that Professor K. Cho has obtained the same result in his private note [3]
by using algebraic geometrical tools: spectral sequences, hypercohomology, the Serre
duality, etc. In this paper, we prove the theorem by using only the Stokes theorem
and the residue theorem. Since our proof bases on elementary tools, we can apply the
technique in the proof to other computations for intersection numbers of forms, refer
to [8] and [9].

Let us here recall the role of the intersection numbers of logarithmic k-forms in
the theory of twisted period relations for hypergeometric functions. Let Hy(X,L_.)
be the k-th twisted homology group with respect to the locally constant sheaf L£_,,
defined by holomorphic functions ¢ on U C X satisfying V__1 = 0. Note that the 1
are branches of u* = H;':& ¢% and that any element v of Hy(X,L_,) is represented
by a finite sum of pairs of a k-th topological chain p; and a branch uj, of u® along
pi. The group H*(X,V,,) and H;(X,L_,) are dual to each other under the pairing

[0, 7] =Z/ u, @,

7 Pi

where ¢ is a representative of H*(X,V,,). The so-called Euler integral representations
for different hypergeometric functions can be interpreted as this pairing.

The isomorphism ¢* and the duality between H*(X,V,) and H*(X,V_,)
induce an isomorphism of H*(X,V,) onto Hy(X,L,) and the duality between
Hi(X,L_,) and Hi(X,L,). The value (v,7') for v € Hp(X,L_,) and ' €
Hi(X,L,) is called the intersection number of v and 4’ with respect to w. The inter-
section theory for representatives of Hy(X,Lx,) is established in [6]. Choose bases

of four groups H*(X,V,,) and Hi(X, L+.) as

& € HY(X,Viw), n;y € HYX,V-.),
of € Hy(X,L_,), 77 € Hp(X,Lyy),

and make four (})x () matrices:

Ip = ((fja”j))w y Ip = ((a?—”rj—))ij’
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mre = ([, 0f)),;, T = (In7,77)) ;-

i 9Yjg
The naturality of the four pairings leads to the twisted period relations:
oot I =1y, e, "I I = U

* In this way, the evaluation of intersection numbers of logarithmic k-forms together
with results in [6] yields quadratic identities for hypergeometric functions. Refer to [5]
and [7] for other applications of the twisted period relations.

2. Main Theorem

For a fixed (k+1) X (n+2) matrix = = (Zi;)o<i<k,0<j<n+1 sSuch that no (k+1)-
minor vanishes, put

k
Zj:Zti:mj, Lj={t€P’°|gj:0}, 0<j<n+1,
1=0

where t = (to,...,tx) is a coordinate system of the k-dimensional complex projective
space P*. Note that any k hyperplanes L;,...,Lj, intersect at one point Lj . i,
through which passes no other hyperplanes L;. For

n+1

a:(ao,...,an+1), ajEC\Z, Eaj:o’
7=0

we consider the logarithmic 1-form

on P* and the covariant derivation V,, = d + wA with respect to w on X = Pk —
U745 Lj. Note that

VeoV, =0.

Let £™(X) be the space of smooth m-forms on X and £7(X) the space of s-
mooth m-forms on X with compact support. The m-th twisted de Rham cohomology
groups on X with respect to w and those with compact support are defined as

H™(X,V,) = {£ € E™(X) | Vo€ = 0}/V,EmH(X),
HI'(X,V.) = {£ € £7(X) | Vot = 0}/VuEITH(X).
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It is known that the natural inclusion of £7*(X) in £™(X) induces the isomorphism
between H™(X,V,) and H*(X,V,) under the condition a; € C\ Z for any j; let

vt H™(X,V,) > H"(X,V,)

be the inverse of this isomorphism.
Let 7™(X) be the C vector space spanned by

¢; ¢; b,y
¢r = dlog (Zi) Adlog <€—1> A...ANdlog <—e"i——> ,

I:(io,il,...,im), 0<ip<i1 <... <ty <n+1,

where we regard F°(X) and F~1(X) as C and {0}, respectively. It is shown in
[1] that the natural inclusion of F™(X) into £™(X) induces the isomorphism from
F(X)/(wAF™ (X)) to H™(X,V,,). This isomorphism implies that H™(X, V)
is 0 for m < k and that the ¢y with multi-index I = (¢g,%1,...,%) %0 =0, it < n,
span H*(X,V,); especially the rank of H*(X,V.,) is (}).

For —a = (—ao,. .., —Qn+1), We consider H*(X,V_,) and H*(X,V_,). The
groups H*(X,V,) and H*(X,V_,) are dual to each other under the pairing

/Xﬁ/\n,

where ¢ and 7 are representatives of H*(X,V,) and H*(X,V_,), respectively. The
isomorphism ¢* induces the pairing ( , ), on F¥(X), which descents to that on
F¥(X)/(w A FF1(X)), as follows:

(0,00 = /X W) A,

where p,¢' € F¥(X). We call (p,¢'), the intersection number of the logarithmic
k-forms ¢ and ¢’ with respect to w. The following is our main theorem.

Theorem 2.1. For multi-indices

I = (ig,01,-.-,%), 0<ip<i1<...<ipx<n+1,
J = (Jo,j1,--»dk)y 0<jo<ji<...<jr<n+1,

we have
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o
ier &

’(%ﬂV% if 1=1,

(pro0)w =4 @rvmDF LT i (1N g) =,

ierns

\ 0 otherwise,

where in case #(INJ) =k, u and v are determined as

{i} =I\INJ), {i}=J\INJ).

3. Preliminaries

We prepare some notations. Let Z<q be the set {0, —1,—2,...}. For multi-indices
Ppi1 = (po,---,Pm), Po < p1 < ... < pm of cardinality m+1 and P,, =
(q1,---,qm) of cardinality m, set

(-1)* if P, C Py,

(5Pm;Pm =
( +1) { 0 if P, ¢Pm+17

where p is determined as {p,} = Pny1 \ Pn in case P, C Ppnyi. For every

p =0,...,n+ 1, we take sufficiently small tubular neighborhoods U, and V,, of L,
satisfying V, C Up. Put D, = U, \ V,,; the case k = 1, see the following.

Uo Up—1 Up Up+1 Uns1

Lpy,omw =LpyNeecNLy s Upyp =Up, NN Upps
Vorvoom = Vo NNV s Dpiopn =Dp, 0.0 Dy .

Put

Note that if m > k then U, ., is empty. Let h, be a smooth function satisfying

m

hp(t) =1 teV,
0< hy(t) <1 te D,,
hp(t) =0 teU;.

Note that
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VolAn) =dEAn) +wAlAn
=déAn+ (-1)™EANdn+wAEAY
= (Vo) An+(-1)™&Adn
= (d§) An+ (-1)™EA Vun,

for a smooth m-form £ and a smooth form n on X.

4. Proof of Theorem for k =1

Theorem for £ = 1 is proved in [2]. In this section, we give another proof of
Theorem for k£ = 1, since this will be a model of our proof of Theorem for general
k. The key point for computation of the value (@, ). is to find the image ¢ (¢r)
explicitly. Since ¢! (py) is with compact support, it vanishes on small neighborhoods
around L,. Thus we need local solutions of the differential equation V13 = ¢; on
U,. After finding 1} (¢r), the value [, ¢l (¢r) A @y can be computed by the Stokes
theorem and the residue theorem. We will give the local solutions of V9 = ¢, and
the image ¢} (¢7) in Lemma 4.1 and Lemma 4.2, respectively.

Lemma 4.1. If a, ¢ Z<o, for any @1 = dlog(l;, /i) € F*(X) there exists a
unique holomorphic function y? on U, such that

VP =1, on Up\ {Lp}.
The value of ¢Y? at L, is the ratio of the residues of @ and w at Ly:

- 6P,i1 — 6(]), I)
P o

¢P(Lp) = 5p,i0

where 6; ; is Kronecker’s symbol.

Proof. In terms of a local coordinate z around L,, w and ¢ can be expressed

as
a—1 b_1
w= (—z—+ao+a1z+-~-)dz, wr = —Z—+bo+b1z+--- dz;
note that
a_1 = Qap, b_l = 61,,,'0 - 6,,,1-1 = (5(p, I)
Put |

oo
YP = Z cm2™.
m=0
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Then V9P = p; reduces to
oo m—1 oo
Z (mcm + Z aqcm_q_1> 2l = Z bz™ L.
m=0 q=-1 m=0

This equation implies that ¢g = b_;/a_; and that ¢,, are expressed in terms of the
am’s and the by,’s by the assumption a, ¢ Z<o. Since w and ¢ are meromorphic
around L,, the series ) >°_ cn2™ converges on the small neighborhood U, of L,.

O

Note that the function hpy? and the form Pdh, are regarded as defined on X.

Lemma 4.2. The form

n+1
@1 =01 — Y Vo(hpy?)

p=0

is with compact support on X.

Proof.  Since
Vo (hp?) = YPdhy + hpy Vo yP = Pdhy, + hyor,
the form @; vanishes on each V. ]

Proof of Theorem for k = 1. Lemma 4.2 asserts that ¢; represents ¢} (pr) €
H!(X,V.,). Since

n+1 n+1
Gripr=—> YPdh, Aoy =~ dhyPes)
p=0 p=0

for ¢; € F}(X), we have

(P, @)w =/)(Li,(<PI)A<PJ

n+1 n+1
= —Z/ YPdh, A g = —Z/ hpPpy.
p=0 DP p=0 aDP

Since 0D, = OU, — 0V,

{0 on AU,
hy =

1 on 0Vp;
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we have
_/BD hpypPps = 2mv/—1Resy, (¥Pp)
e )
@p
This proves Theorem for k = 1. U

5. Proof of Theorem for k = 2

In this section, we give a proof of Theorem for k = 2, since it will help the reader
understand the proof for general k. The key point is to find the image ¢2 (¢s) explic-
itly. We need not only 1-forms YP on U, such that Vo §P = or but also functions
1,5”"1 on U, , such that V9P = ¢» — 7. In order to construct ¢? and ¥P?, we
prepare three lemmas. We will give the image 2 (y) in Lemma 5.4. Once (2 (i) is
found explicitly, we have only to apply the Stokes theorem and the residue theorem
repeatedly.

For a fixed multi-index P = (p,q), let (z1,22) be local coordinates around Lp
such that L, and L, are expressed by z; = 0 and 2, = 0, respectively.

Lemma 5.1. If a,,0, ¢ Z<o, for any ¢; € F2(X), I = (io,i1,i2), there exist
1-forms ¢}, and ¥}, on Up \ (L, U Ly) such that

Vb = Votb = o1, on Up\(L,UL,),

dzo dz;
= f}';(zl,zz)z, Yvp = ff:(zl,zz)?,

where f, and f}, are holomorphic on Up satisfying

R

Moreover, we can extend {%, and ¢}, to single-valued holomorphic 1-forms on U,NX
and Uy N X, respectively.

Proof. Note that in terms of the local coordinates (21, 23), the forms w and ¢y
are expressed as

d21 A d22
2122

W= (%+~-)dz1+(zﬁ+---)d22, o1 = ((P;1) +---)
2

21

We can regard
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de
Vo (f]’;(zla 22)2—2 =1

as an ordinary differential equation with independent variable z; (22 being a parame-
ter) and

d
v, (f;(zl,zz)—zl) = o
21

with independent variable z, (z; being a parameter). Follow the argument in the proof
of Lemma 4.1. O

Lemma 5.2. There exists a unique holomorphic function Y& on Up such that
Vop = Yp —vp, onUp\(L,ULy)
for P = (p,q), p < q. The value of YE at Lp is

vh(Lp) = 28D,

QpQyq

Proof. For a smooth function f, we have

0 a 9 a
Vo f = (6_z1f+<z_:’+...>f)dzl+<52-2-f+(;;1+...)f)sz

We can find oF satisfying
8 P a d22
(6—221/)19 + (Z_Z +) ¢£> dzy =y = f;(zl,h)z,
by regarding the above as an ordinary differential equation with variable z, (2; being
a parameter) and by following the argument in the proof of Lemma 4.1. Since V,, o

V. =0 and V9% = V, 9} = @1, we have

0

1

VoAVo¥E — W% — yi)}
0
o { (e (5 ) ) ).

By regarding this as an ordinary differential equation with variable z, (2; being a pa-
rameter), the uniqueness of the solution in Lemma 4.1 implies

ﬁ.P 7 p q _
(azl¢p+<zl+ )wp)dzl+wp—0,



882 K. MATSUMOTO

which shows
Vop = ¥p — V. O
Lemma 5.3. Let S and S' be multi-indices of cardinality two including the index
p. There exists a unique holomorphic function g% on U, \ UgzpLy such that
Vog¥% =98 — 9%, onUpnX.
The function g% vanishes along Ly \ UgzpL,.

Proof. Follow a similar argument in the proof of Lemma 5.2 for local coordi-
nates (z1,z2) so that L, is expressed by zo = 0. Since 4%, — % is holomorphic on
Up\UgxpL, and L, is a component of the pole divisor of w, g %% must vanish along
Ly \ UgztpLy. O

For each p, put
iy p
V= Ypy)

where P(p) is the smallest multi-index of cardinality two including p in the lexico-
graphic order; note that on U, N X,

sz];” = @r.
For each multi-index P = (p, q), put
P = YE + pipy¥h — pgy ¥
note that on Up N X,
Vot = ( b —vp) + ("/J;(,,) —9¥p) — ( g:<q) — )
= Vb ~Vhi =¥ Y.
We can regard h,¢? and h,yFdh, as defined on X.

Lemma 5.4. The form

n+1
or=¢r—Vy <Z gphp'/’p> -V, Z hq‘/JPth
p=0

P=(pvq)
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is with compact support on X, where
p—1
gozlv g”:H(l—h,),p?_l.

r=0

Proof. =~ We show that @; vanishes on V,.. Suppose P = (p,q) with p < ¢ and
r € {p,q}. Then on Up, @ reduces to

1 =V (hp@zp +(1- hp)hq";q) -V, ((hqz/;P)th)
= (1= hp)(1 = hg)pr — (1 — hg)dhy AP — (1 — hy)dhy A 1
+9Fdh, A dh,.

On U, \ U,cpUp, @1 reduces to
o1 = Vo (hetp") = (1= hp)or — dhe A"
Note that dh, and (1 — h,) vanish on V. O
Proof of Theorem for k = 2. Lemma 5.4 asserts that ¢; represents (2 (py) €

H2*(X,V,). Note that @; A ¢, vanishes on (Ut} D,)¢ for p; € F?(X). By the
expressions of @y on Up and on U, in the proof of Lemma 5.4, we have

(er, 00w = /th;(w)/\w

= Y / PP dh, Adhg A @y
Dp

P=(p,q)

Express Dp and ¢ as
Dp ={(21,22) | &1 < |21],|22] S €2}, s = @u(21,22)d21 Adzy

in terms of the local coordinates (z;,z3) around Lp, and use the Stokes theorem and
the residue theorem, then

$FPdh, Adhy Aoy = / hppFdhy A @y

Dp 8Dp

= - / QZPdhq(Z2) Aoy (21, Zz)dzl Adzs
[21|=¢€1,e1<]22|<e2

—ory/~1 dhg(z2) A (Resz,zoz/?”w(zl, z2)) dz

e1<|22|<e2
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= 2rv/-1 o (Res,1=oi/;£<m(zl,zz)) dzy
22|=¢€1
= (2mv/-1)’Res.,-o (Res,l=01/~)£goJ(zl,Z2)) .
By Lemma 5.2, Lemma 5.3 and

lim  z12305(21, 22) = 6(P; J),

(21,22)—>(0,0)
we have
; 6(P; 1)6(P; J)
Res.,=o ( Res. =0¢P<PJ(21, z3) ) = —————,
2 ( 1 P ) apay
which yields Theorem for k = 2. g

6. Proof of Theorem for general k

The key point of our proof of Theorem is to find the image ¥ () explicitly. We
need systems of (k—m)-forms ¢yF= on Up,_ such that

vw,‘/;Pl = @I,

Vu"jpm = Z J(Pm—l;Pm)"j}};m-la 2 S m S kv
Pm—lCPm

where P,,’s are multi-indices of cardinality m. To construct such systems we prepare
some lemmas. Once ¢ () is found, we have only to apply the Stokes theorem and
the residue theorem repeatedly.

For a fixed multi-index P = (p1,...,pk), let (21,...,2) be coordinates around
Lp such that each L,, is expressed by z, = 0.

Lemma 6.1. For ¢; € F*(X) and a multi-index P of cardinality k, if o, ¢
Z<o, p € P, there uniquely exists a system of (k—m)-forms z[;g"‘ on Up N X with
multi-index P,, C P of cardinality m such that

wal;l = I,
Vopm = Y. 8(Pu_iiPa)¥p", 2<Sm <k
Pm—lCPm
Puepm
dz
Pm — m v
P fP /\ 2z, ’
1<v<k

where f};"‘ is holomorphic on Up satisfying
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PAEPm L\
FE(Lp) = (~)memt0r2g(pry ] 2
1<A<k Qpx

Moreover, we can extend the form 1/15’" on Up,, \Upgp,, L, holomorphically.
Proof. Follow the arguments in the proofs of Lemma 5.1 and Lemma 5.2. [

Let P(P,,) be the smallest multi-index of cardinality k including P,, in the lexi-
cographic order. Put

W = Yhiy
Since we have
VoW — %) =¢r—pr =0

for multi-indices S and S’ including p, the argument in the proof of Lemma 5.3 im-
plies that there uniquely exists holomorphic (k—2)-form g% on U, N X vanishing
along L, \ UgpL, such that the expression of g % in terms of the local coordinates
(21,...,2x) around Lg consists of terms not including dz,, where v is determined by
s, = p, and that

Vs =95 — ¥5.
For a multi-index S of cardinality k including p and ¢, we have

PP =7 = (Yh,y — WB) — (Wb, — V) + (W5 — ¥)
= Vulpp¥s — pg)¥s + ¥5")-

Put
U = pp¥s — po ¥ +VE,
P9 — ,Pq
Y= Ublpgy-

Note that

Vo (05 — 95 = (9 - 99) - (" - %) =0.
for multi-indices S and S’ of cardinality k including p and gq.

Lemma 6.2. There uniquely exists holomorphic (k—3)-form g% on Upy N X
satisfying the following conditions:
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(1)  the expression of s dg’q in terms of the local coordinates (z1,...,2,) around Lg
consists of terms not including dz,, where s, € {p,q},
(i) it decomposes into a sum of a holomorphic form on Upy \ UrzpL, vanishing
along L and that on Upq \ Upzq L, vanishing along L,
(i) V,goh =P — b
Proof. It is sufficient to show the existence and uniqueness of gi/%! satisfying
the condition (ii) and (iii) for k = 3, (p,q) = (1,2) and S = (1,2,3), S' = (0,1,2).
By the expression of 152 and L7, in terms of the local coordinate (z;, 22,23) around
Ls, % — 1/;’5"’ is expressed as

(ff + fB)dzy + (fs + f2)dzo + fadzs,

where f} is holomorphic in the variable z; and f} and f2 vanish along z; = 0 and
29 = 0, respectively. Since fi and f2 are holomorphic in the variable z; and 25, re-
spectively, there exist F; and F» vanishing along 2; = 0 and z; = 0, respectively,
such that

o0F; OF,
-1 F, = 1 it F, = 1
21 +w F1 = fy, 52, +woFy = fy,
where w = w1d2z; + wadzy + w3dzz. Since

V(@5 —95) =0, VoV (F +F)=0,

we have

(o) - (5 e ma) = (v {1 - (2 0 )}

Since the left hand side of the above is holomorphic in z; and the right hand side
of the above is holomorphic in z;, both sides are holomorphic in 2; and z;, which

implies that
OF: OF;
fi- (6—2-2‘ +F2w2) fi- ( : +F1w1>

are holomorphic in z; and z5. By following the argument in the proof of Lemma 5.2,
there exists function F' vanishing along z; = 0 and 22 = 0 such that

0 1o} 1o} 1o}
(Z+W1)F=fl2—(a—l2+FQWQ), (;2—+w2>F=f21—(81+F1w1>
Put

S"Zg‘? = (F+F1) + F5,
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then the coefficients of dz; and dz; of V, g% coincides with those of %! — 4%
The argument in the proof of Lemma 5.2 implies the coincidence of the coefficients
of dzz and the uniqueness of %7 O

For a multi-index S of cardinality k£ including p,q and r, we have

G
= (WP — V5 = W5, — 98) + (05, — 95F) + (V8§ — 98 +9F)
= Vw(P<pq)¢s - P(pr>1/’s + P<qr)¢s ) + (ppy ¥ — pgy ¥ + V%
~(pp¥% = Py ¥s T V8 ) + (p)¥% — p(rny¥s + %)
= vw(P(pq)J)gq — peny ¥ + P(qr)'/;g +95").

Put

VE" = oo ¥5' — pr U5 + pn P8 + V5"
Tpqr __ 7.PqT
Yo P(pgr)*

In general, for multi-indices P,, of cardinality m and S of cardinality & including P,,,
we define (k—m)-forms on Up,,

1/3?" = Z 6(Pm—1;PM)P(Pm_,)1Z’§m + 1/1?",

Py 1CPp

For multi-indices P,, of cardinality m and S, S’ of cardinality k including P,,, there

uniquely exists holomorphic (k — m — 1)-form S&g,"' on Up_ N X satisfying the fol-

lowing conditions:

(i) the expression of Sn/;g'" in terms of the local coordinates (zi,...,z;) around
Lg consists of terms not including dz,, where s, € P,,,

(i) it decomposes into a sum of holomorphic forms on Up,, \ Urxp, L, vanishing
along L, for certain p,u € P,

(i) usllbs = 1/"5! - ws :

Thus we have the following lemma.
Lemma 6.3. The forms = satisfy

VMZJP‘ = @I,
Vo = Y 6(Pno1; Pn)pPm, 2<m <k,

Pp-1CPm

on Up,, \ Upep, Ly for any multi-index P,,.
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For multi-index P = (py,...,pk), by using P and hy (Pm C P, p € P),
we construct a smooth k-form such that it is cohomologous to ¢, and that it vanishes
identically on Vp. We fix P = (1,...,k) for simplicity. Put

gtr = H(l —h) =1 =hu)(1 = hyy1)--- (1= hy),
A=p

where 1 < u < v < k. Note that
14
=u

=1-hy— (U =h)hyp1 == (L= hp) - (1= hy_y)hy = g*,

and that

dgl-‘y" — XV: gﬂy)\—l dh)\ g)\+1,u’
A=p
where we regard g##~! as 1. For a multi-index P,,, = (u(1),...,u(m)) C P, put
77'\(Pm) — g“(’\_l)“"‘(’\)'ldhu(x),
H(Pm) = 771 (Pm) AooA nm_l(Pm) : g;z.(m:—l)+l,u(m)—1h#(m),
G(Ppn) = 11 (Pm) Ao AN (Pr) A™(Prm),

where we regard p(0) as 0. Note that H(P,,) is (m—1)-form and G(P,,) is m-form
and that

G(Py,) = H(P,) Ndlog h“(m).

Put
U= Y H(Pn) AP
P,CP
Lemma 6.4.
VLU = (1-g"M)pr+ Y H(P) A VPP
P,CP
+ ) G(P)gHIFLk AP

P,CP

()™ V™ = Y H(P)AVu®T + D H(Pmy1) A Ve
P,CP Pp41CP
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+ Y GPR)gH I AYP 2 <m <k-1,
P,.CP

(-1)F 1V, 9% = H(P) AVYT +dhy A ... ANdhy - PF,
where P, = (u(1),...,u(m)) C P =(1,...,k). The form

k

k
pr— D VT =gl o+ 3 N (—1)"G(Py)gHmIFLE A P
m=1

m=1P,,CP

vanishes on UpepVp.

Proof. Since we have

VU™ = Y V{H(Pn) AP}

P,CP

> (dH(Pp) AP + (=)™ T H(Py) A V9,
P,CP

we show that

Y dH(Pn) AQPm = (=)™ 3" H(Ppyy) A V9P

P,CP Ppn41CP
+( lmIZG(P +1k/\,¢)P
P.CP
Since
r(2)—-1
dgy(,\—l)-}-l,u()«)—l - _ Z gy(/\—1)+1,v—1 dh,, gu+1,p()\)-—l
v=p(A-1)+1
r(A)-1
== Y PEAE) g
=p(A=1)+1

where P2 (v) is the multi-index of cardinality m + 1 as

Pri‘z(’/) = (ﬂ(1)7 o 7/‘(’\ - 1)7V’ll'(’\)" e ’l"‘(m))’ ,U,(A - 1) <v< ’-‘(A)a
we have

dH(Pn)
n(1)-1
= = 3 PBLW) A AGT(PL)) - gD
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u(2)-1
+(=12 Y nM(PEL@)A . AGT(PL)) - gAML
=p(1)+1
n(m)—1
+H=D™ Y N PR@) A ARTPR W) - g Ry
v=p(m—1)+1
+(=1)"'G(Pp)

m r(A)-1

=Y > (DHEENW)

A=1v=p(A-1)+1

+(=1)mH Z G(P,)gHm+tr—1p,

v=p(m)+1
k
D™ TG(P) = ()™ D G(Br)gh MR,
v=p(m)+1

m+1  p(A)-1
= Z Z (—I)AH(P:;(V)) + (-l)m_lG(Pm)g”(m)"’l’k,

A=1 v=p(A—1)+1

where we regard u(m + 1) as k + 1. Thus

> dH(Pp) AP
Pn.CP
m+1 716y

> {X Z (=1 H(P)®) AP

PCP A=l v=p(A-1)+1
+(_1)m—IG(Pm)gp.(m)+1,k A 'I;P"‘}
(D)™ > H(Png1) A Vs
P, CP

+(_1)m—1 Z G(Pm)gp(m)+1,k /\QZ’P"‘.
P,,CP

Note that

k
> H(P) VP = ¢ - ( =D N e lhA)

A=1
= (1-¢""er.

for m = 1. Since each term of



INTERSECTION NUMBERS 891

k
Yr — Z Vw‘I»'m
m=1

includes either (1 — h,) or dh, for any index p € P, it vanishes on U,cpV). ]

For a general multi-index P = (p,...,px), put

= > Hp(Pm) A",
P,,CP
where

v

gp" = [ =hp), 1<p<v<k,
A=p

TIP(Pm) '\ DFLm)- th#(A)’
Hp(P,) = np<Pm) Ao AT (Py) - gl DT L,
GP(Pm) = 7’}’(Pm)/\ /\7133 l(Pm)/\n?(Pm)'

Pu(m)?

By an argument similar to the one in the proof of Lemma 6.4, we can show that
k ~
or— Y V.U =gptpo+ Z Y- (“)"Gp(Pm)g ™t AP
m=1 m=1 P,,CP

and that it vanishes on U,cpV,. Moreover, Lemma 6.3 implies that the form p; —
anzl V., ¥% coincides with ¢ — an=1 V,¥3 on Upng for any multi-indices P
and @ of cardinality k. Hence we have a smooth k-form @; such that it is cohomolo-
gous to oy and that it coincides with the forms ¢; — an=1 V.98, Pn C P onUp
for any P.

Proof of Theorem for genmeral k. It is clear that ¢ represents tX(p;) €
HF(X,V,). By the expression of ¢y — zm=1 V.¥%, we have

(o1, 00)0 = /be}(w)/\(p.z

= Z/D VFdhy, A ... Adhy, Ay,
P P

where P = (py,...,pr). Express Dp and ¢ as

DP = {(zl,-"azk)lsl S lzl|a"'7|zk| S€2}a
ey = pilz1y...,25)dzy A ... Adzg,
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in terms of the local coordinates (z,...,z2x) around Lp, and use the Stokes theorem
and the residue theorem repeatedly, then

/ OFPdhy, A ... Adhy, Ay
Dp

= (2mv/—=1)FRes., o (Reszk_l=0 ( .- (Reszlzoiﬁgsw(zl,---,Zk.)))) .

Note that

21 “‘szOJ(Zl,--ka) = J(P;J)-

1m
(21492 )—(0,...,0)

Since

PP =yf + Z 6(Pi—1; P)p(p,_y¥p
P._1CP

and pp )1/3,’3 is a sum of holomorphic functions on Up \ U,%p, L, vanishing along
L,, for certain p, € P, Lemma 6.1 implies

Res;, =0 (Reszk_l:o ( .- (ReSzlzo’l])};SOJ(Zh...,Zk))))

_ §(P;D)é(P; J)

Qp, " Qp,

which completes our proof of Theorem. O
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