

Title	On the uniqueness of Markovian selfadjoint extension of diffusion operators on infinitedimensional spaces
Author(s)	Takeda, Masayoshi
Citation	Osaka Journal of Mathematics. 1985, 22(4), p. 733-742
Version Type	VoR
URL	https://doi.org/10.18910/11583
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ON THE UNIQUENESS OF MARKOVIAN SELF-ADJOINT EXTENSION OF DIFFUSION OPERATORS ON INFINITE DIMENSIONAL SPACES

Masayoshi TAKEDA

(Received November 19, 1984)

1. Introduction

Let $(S(R^d), L^2(R^d), S'(R^d))$ be a rigged Hilbert space, where $S(R^d)$ is the Schwartz space of test functions and $S'(R^d)$ is its dual space. Letting $\{e_i\}_{i=1}^{\infty}$ $\subset S(R^d)$ be a complete orthonormal basis of $L_2(R^d)$, we put $FC_0^{\infty} = \{f; f \text{ is a function on } S'(R^d)$ of the form $f(\xi) = \tilde{f}(\langle \xi, e_{i_1} \rangle, \dots, \langle \xi, e_{i_n} \rangle)$ for some n and a real $C_0^{\infty}(R^n)$ -function $\tilde{f}\}$, where \langle , \rangle is the dualization between $S'(R^d)$ and $S(R^d)$. Let v be a quasi-invariant measure on $S'(R^d)$ with respect to $S(R^d)$. We call the measure v admissible if the symmetric bilinear form $\varepsilon_v(u, v) = \frac{1}{2}$ $(Du, Dv)_{L^2(R^d) \otimes L^2(v)}, u, v \in FC_0^{\infty}$, is closable. Its closed extension $(\mathcal{E}_v, \mathcal{F}_v)$ is said to be the energy form associated with the quasi-invariant admissible measure v. Here, $Du = \sum_{i=1}^{\infty} e_i \otimes D_i u \in L^2(R^d) \otimes L^2(v)$ and D_i is a derivative in the direction of e_i . Furthermore, a self-adjoint operator H_v representing the energy form $(\mathcal{E}_v, \mathcal{F}_v)$ is said to be a diffusion operator. For example, the probability measure μ_0 on $S'(R^d)$ defined by the following formula is quasi-invariant and admissible:

$$\int_{\mathcal{S}'\!(R^d)} e^{i\langle \xi, \phi \rangle} \, d\mu_0(\xi) = e^{-1/4(\phi, (\Delta + m^2)^{-1/2}\phi)}, \, \phi \in \mathcal{S}(R^d) \,,$$

where (,) is the scalar product in $L^{2}(\mathbb{R}^{d})$.

Let μ_0^* be the Euclidian random field $\langle \xi^*, \psi \rangle$ over \mathbb{R}^{d+1} , defined by

$$\int_{\mathcal{S}'(R^{d+1})} e^{i\langle \xi^*,\psi
angle} \, d\mu_0^*(\xi^*) = e^{-1/2(\psi,(\Delta+m^2)^{-1}\psi)}, \, \psi \in \mathcal{S}(R^{d+1}) \, .$$

The random field $\langle \xi^*, \psi \rangle$ can be regard as the restriction to $\mathcal{S}(R^{d+1})$ of the generalized random field indexed by the Sobolev space H_{-1} the completion of $\mathcal{S}(R^{d+1})$ with respect to the norm $||(-\Delta + m^2)^{-1/2}\psi||$. We denote by Σ_0 the σ -field generated by random variable $\{\langle \xi^*, \delta_0 \otimes \phi \rangle; \phi \in \mathcal{S}(R^d) \}$, and regard the restriction of μ_0^* to Σ_0 as the measure on $\mathcal{S}'(R^d)$ by the natural identifica-

tion of $\langle \xi, \phi \rangle$ with $\langle \xi^*, \delta_0 \otimes \phi \rangle$. Then, it coincides with μ_0 and the diffusion operator H_{μ_0} corresponding to μ_0 is nothing but the energy operator H of free Euclidean field model μ_0^* . To see this, it is enough to show that H_{μ_0} and H are the same operators on FC_0^{∞} and that the symmetric operator $S=H_{\mu_0} \uparrow FC_0^{\infty}$ has a unique Markovian self-adjoint extension, where the notation $H_{\mu_0} \uparrow FC_0^{\infty}$ indicates the restriction of H_{μ_0} to FC_0^{∞} . In fact, the operator S is known to be an essentially self-adjoint operator.

Albeverio and Høegh-Krohn have raised a question in [3] whether the diffusion operator associated with $\mu^* \uparrow \Sigma_0$ is identical with energy operator of the Euclidean field model μ^* with trigonometric (or exponential) interaction and have shown that these operators are the same on FC_0^{∞} when d=1. Thus, we now cope with the question: what kind of quasi-invariant admissible measure ν induces the symmetric operator $S_{\nu}=H_{\nu} \uparrow FC_0^{\infty}$ with a unique Markovian self-adjoint extension?

In this paper, we consider this problem in a simpler case that ν is an absolutely continuous measure with respect to the Wiener measure on the abstract Wiener space (H, B, μ) . We conclude the uniqueness of Markovian self-adjoint extension of S_{ν} under the condition that the Radon-Nikodym derivative ρ^2 is strictly positive and belongs to the space $D_{\infty} (=\bigcap_{p\geq 1, r\in\mathbb{R}^1} D_p^r)$, where D_p^r is the Sobolev space of order r and degree p on the Wiener space. In the proof, we use the Malliavin's calculus and in particular the hypoellipticity of the Ornstein-Uhlenbeck generator. We note at the end of this paper that, if ρ happens to be a tame function, then Wielens' method [8] applies and S_{ν} becomes essentially self-adjoint.

2. Notations and the closability of a symmetric form

Let (H, B, μ) be an abstract Wiener space and $\{e_i\}_{i=1}^{\infty} \subset B^*$ (dual space of B) be a complete orthonormal basis of H. We set $FC_0^{\infty} = \{f; f \text{ is a function on } B \text{ of the form } f(x) = \overline{f}(\langle e_{i_1}, x \rangle, \dots, \langle e_{i_n}, x \rangle) \text{ for some } n \text{ and } \overline{f} \in C_0^{\infty}(R^n)\}$ and $FC_0^{\infty}(H) = \{F; F \text{ is a } H\text{-valued function on } B \text{ which is of form } F(x) = \sum_{i=1}^{n} e_i \otimes f_i(x) \text{ for some } n, f_i \in FC_0^{\infty}\}$. We denote by D_f^r the completion of FC_0^{∞} with respect to the norm $||f||_p^r = ||f||_p + ||D^r f||_p$, where $D^r f, f \in FC_0^{\infty}$, is the r-times iteration of the Fréchet derivative which is an element in $L_p(B \to H \otimes \dots \otimes H)$. Note that

$$||D^r f||_p = ||\{\sum_{(n_1, \cdots, n_r) \in N^r} (D_{n_1}(D_{n_2} \cdots (D_{n_r} f)))^2\}^{1/2}||_p$$

where D_i is the derivative in the direction of e_i . It is convienient to use two different expressions of D_p^1 (1) according to Sugita [7] and Kusuoka [6]:

(2.1)
$$D_{p}^{1} = \left\{ u \in L_{p}(\mu); \text{ such that } (u, D^{*}v) = (g, v), \text{ for any } v \in FC_{0}^{\infty}(H) \right\}$$

and

(2.2)
$$D_{p}^{1} = \begin{cases} u \text{ is stochastic } H \text{ Gateaux differentiable} \\ (SGD) \text{ with respect to } \mu, \text{ ray absolutely} \\ u \in L_{p}(\mu); \text{ continuous } (RAC) \text{ and the stochastic} \\ \text{Gateaux derivative } Du \text{ of } u \text{ satisfies that} \\ ||Du(x)||_{H} \in L_{p}(\mu) \end{cases}$$

Here, a function u is called SGD, if there exists a measurable map Du; $B \rightarrow H$ such that for any $k \in B^*$, the convergence $\frac{1}{t}[u(x+tk)-u(x)-t(Du(x),\ k)_H]\rightarrow 0$, $t\rightarrow 0$, take place in probability with respect to μ , and u is called RAC, if for any $k\in B^*$, there exists a measurable function u_k such that

- 1) $\tilde{u}_k(x) = u(x)$ for μ -a.e.
- 2) $\tilde{u}_k(x+tk)$ is absolutely continuous in t for each $x \in B$ (See [6; Definition 1,1 and Definition 1,2]). Then, we have for $u \in D_p^1$, $||Du(x)||_H = \sqrt{\sum_{i=1}^{\infty} (Du(x), e_i)^2} = \sqrt{\sum_{i=1}^{\infty} (D_i u(x))^2}$, where $D_i u(x) = \lim_{t \downarrow 0} \frac{1}{t} (\tilde{u}_{e_i}(x+te_i) \tilde{u}_{e_i}(x))$.

We fix a function ρ on B satisfying

(2.3) i)
$$\rho > 0$$
 ii) $\rho \in D_{\infty}$

where $D_{\infty} = \bigcap_{\substack{p \geq 1 \\ r \in \mathbb{R}^1}} D_p^r$. We define the symmetric bilinear form $(\mathcal{E}_{\rho}, FC_0^{\infty})$ by

(2.4)
$$\mathcal{E}_{\rho}(u,v) = \frac{1}{2} \int_{B} (Du(x), Dv(x))_{H} \rho^{2}(x) d\mu, \quad u, v \in FC_{0}^{\infty}.$$

Lemma 1. $(\mathcal{E}_{\rho}, FC_0^{\infty})$ is closable on $L_2(\rho^2\mu)$.

Proof. We follows the argument of [1; Theorem 2.3]. Since $D_i^* \rho^2 = -2\rho D_i \rho + \langle e_i, x \rangle \rho^2(x)$, we have for $g \in FC_0^{\infty}$,

$$(Dg, e_i \otimes 1)_{H \otimes L^2(\rho^2 \mu)} = (D_i g, \rho^2)_{L^2(\mu)}$$

= $(g, -2\rho D_i \rho + \langle e_i, x \rangle \rho^2)_{L^2(\mu)}$
= $(g, -2\frac{D_i \rho}{\rho} + \langle e_i, x \rangle)_{L^2(\rho^2 \mu)}$.

By noting that $\int \left(\frac{D_i \rho}{\rho}\right)^2 \rho^2 d\mu \leq ||\rho||_2^1 < \infty$, we see that $-2 \frac{D_i \rho}{\rho} + \langle e_i, x \rangle \in L_2(\rho^2 \mu)$

and $e_i \otimes 1 \in [D_\rho^*]$, where D_ρ^* denote the adjoint operator of D which is an operator from $L_2(\rho^2\mu)$ to $H \otimes L_2(\rho^2\mu)$. Put $\beta(e_i) = D_\rho^*(e_i \otimes 1)$. Then, we see that for $g, f \in FC_0^{\circ}$

$$\begin{aligned} (Dg, e_i \otimes f)_{H \otimes L^2(\rho^2 \mu)} &= (D_i g \cdot f, 1)_{\rho^2 \mu} \\ &= (D_i (g \cdot f) - g D_i f, 1)_{\rho^2 \mu} \\ &= (g, \beta(e_i) f - D_i f)_{\rho^2 \mu} \,. \end{aligned}$$

Because the function $\beta(e_i)f - D_i f$ belongs to $L_2(\rho^2 \mu)$, it holds that $e_i \otimes f \in \mathcal{D}[D_\rho^*]$ and consequently $FC_0^\infty(H)$ is contained in $\mathcal{D}[D_\rho^*]$. Since $FC_0^\infty(H)$ is dense in $H \otimes L_2(\rho^2 \mu)$, the closure $\bar{D} = (D_\rho^*)^*$ is well defined and hence $(\mathcal{E}_\rho, FC_0^\infty)$ is closable.

We denote by $(\mathcal{E}_{\rho}, \mathcal{F})$ the closed extension of $(\mathcal{E}_{\rho}, FC_0^{\infty})$.

3. The uniqueness of Markovian self-adjoint extension

Let H_{ρ} be a self-adjoint operator associated with the closed form $(\mathcal{E}_{\rho}, \mathcal{F})$ and S be a symmetric operator defined by $S=H_{\rho} \uparrow FC_0^{\infty}$. S can be represented as

$$Su = \frac{1}{2} \mathcal{L}u + \frac{1}{\rho} \langle D\rho, Du \rangle_{H}, u \in FC_0^{\infty},$$

where \mathcal{L} is a Ornstein-Uhlenbeck generator. We denote by $\mathcal{A}_{M}(S)$ the totality of Markovian self-adjoint extensions: $A \in \mathcal{A}_{M}(S)$ means that A is a self-adjoint extension of S which generates a strongly continuous contraction Markovian semi-group on $L_{2}(\rho^{2}\mu)$. H_{ρ} is called the Friedrichs extension of S and is an element of $\mathcal{A}_{M}(S)$. Then, the following theorem holds.

Theorem 1. Under the condition (2.3), $\mathcal{A}_{M}(S)$ has only one element H_{p} , namely, S has a unique Markovian self-adjoint extension.

For any $A \in \mathcal{A}_{M}(S)$, the form domain $\mathcal{D}[\sqrt{-A}]$ is orthogonally decomposed with respect to $\mathcal{E}_{A,\alpha}$ (= $(\sqrt{-A} \cdot ,\sqrt{-A} \cdot)_{\rho^{2}\mu} + \alpha(,)_{\rho^{2}\mu}$) as

(3.2)
$$\mathscr{D}[\sqrt{-A}] = \mathscr{F} \oplus (\mathscr{N}_{\alpha} \cap \mathscr{D}[\sqrt{-A}]),$$

where $\mathcal{H}_a = \{u \in L_2(\rho^2 \mu); (\alpha I - S^*) u = 0\}$ ([4; Theorem 2.3.2]). Hence, for the proof of Theorem 1 we must show that

(3.3)
$$\mathcal{I}_{\alpha} \cap \mathcal{D}\left[\sqrt{-A}\right] \subset \mathcal{F}.$$

In order to prove (3.3) we introduce the intermediate space \mathcal{H} by (3.4) and prove that $\mathcal{N}_{\alpha} \cap \mathcal{D}[\sqrt{-A}] \subset \mathcal{H} \subset \mathcal{F}$ (Lemma 2 and Lemma 4).

Let $\{a_l(t)\}_{l=1}^{\infty}$ be a sequence of $C_0^{\infty}(R^1)$ -functions satisfying that

i)
$$0 \le a_l(t) \le 1$$
 ii) $a_l(t) = \begin{cases} 1 & \text{on } \frac{1}{2^l} < t < 2^l \\ 0 & \text{on } t \le \frac{1}{2^{l+1}}, t \ge 2^{l+1} \end{cases}$

iii)
$$|a'_{l}(t)| \le \begin{cases} c \ 2^{l+1} & \text{on } t \le \frac{1}{2^{l}} \\ c' & \text{otherwise} \end{cases}$$

We put $d_{l}(t) = a \cos(t)$. If a function t satisfies t and t' .

We put $\phi_l(x) = a_l \circ \rho(x)$. If a function u satisfies $\phi_l \cdot u \in \bigcup_{1 , for any <math>l$, then we have $D(\phi_{l+1} \cdot u) = D(\phi_l \cdot u)$ μ -a.e. on $\mathcal{M}_l = \left\{ \frac{1}{2^l} < \rho < 2^l \right\}$, because $D(\phi_l \cdot u) = D(\phi_l \cdot \phi_{l+1} \cdot u) = \phi_l \cdot D(\phi_{l+1} \cdot u) + \phi_{l+1} \cdot u \cdot D\phi_l$. Therefore, we can well define Du by

$$Du = D(\phi_l \cdot u)$$
 on \mathcal{M}_l .

Let we consider the function space

(3.4)
$$\mathcal{H} = \left\{ u \in L_2(\rho^2 \mu); \begin{array}{l} \phi_l \cdot u \in \bigcup_{1$$

Then, we have the following lemma.

Lemma 2. It holds that

$$\mathcal{A} \subset \mathcal{F}.$$

Proof. For any $u \in \mathcal{H}$, we see that $u_{(N)} = (-N \vee u) \wedge N \in \mathcal{H}$ since $\phi_l \cdot u_{(N)} = ((-N\phi_l) \vee \phi_l u) \wedge N\phi_l \in D_p^1$ by (2.2), $u_{(N)}$ converges to u in $\mathcal{E}_{\rho,1}$. Furthermore $u_{(N)}$ can be approximated by $\phi_l \cdot u_{(N)} \in \mathcal{H}$. In fact, we have

(3.6)
$$\int ||Du_{(N)} - D(\phi_I \cdot u_{(N)})||_H^2 \rho^2 d\mu$$

$$\leq 2 \left[\int |1 - \phi_I|^2 ||Du_{(N)}||_H^2 \rho^2 d\mu + \int u_{(N)}^2 ||D\phi_I||_H^2 \rho^2 d\mu \right].$$

The second term of the right hand side is equal to $\int u_{(N)}^2 \left(a_l'(\rho)\right)^2 ||D\rho||_H^2 \rho^2 d\mu$ and is not greater than $\int_{\{\rho \leq 1/2^l\}} u_{(N)}^2 \cdot (c2^{l+1})^2 ||D\rho||_H^2 \rho^2 d\mu + \int_{\{\rho \geq 2^l\}} u_{(N)}^2 c'^2 ||D\rho||_H^2 \rho^2 d\mu$ $\leq 4c^2 N^2 \int_{\{\rho \leq 1/2^l\}} ||D\rho||_H^2 d\mu + c'^2 N^2 \int_{\{\rho \geq 2^l\}} ||D\rho||_H^2 \rho^2 d\mu, \text{ which tends to zero as } l \to \infty$ by the assumption (2.3). Hence the left hand side of (3.6) tends to zero as $l \to \infty$. Next we show that there exists a sequence $\{f_m\}_{m=1}^\infty \subset FC_0^\infty$ such that

(3.7)
$$\phi_{l+1}f_m \to \phi_l \ u_{(N)} \ (m \to \infty) \text{ in } \mathcal{E}_{\rho,1}.$$

Since we see $\phi_l u_{(N)} \in D^1_{2,b}$ by

$$\begin{split} \int &||D(\phi_{I} \cdot u_{(N)})||_{H}^{2} d\mu \leq 2 \left[\int \phi_{I}^{2} ||Du_{(N)}||_{H}^{2} d\mu + \int u_{(N)}^{2} ||D\phi_{I}||_{H}^{2} d\mu \right] \\ &\leq 2 \left[\int_{\{1/2^{I+1} < \rho < 2^{I+1}\}} ||\phi_{I}^{2}||Du_{(N)}||_{H}^{2} d\mu + N^{2} \int ||D\phi_{I}||_{H}^{2} d\mu \right] \\ &\leq 2^{2I+3} \int &||Du_{(N)}||_{H}^{2} \rho^{2} d\mu + 2N^{2} \int &||D\phi_{I}||_{H}^{2} d\mu \\ &< \infty \end{split}$$

there exists a sequence $\{f_m\}_{m=1}^{\infty} \subset FC_0^{\infty}$ such that 1) $|f_m| \leq N$, 2) $f_m \rightarrow \phi_l u_{(N)}$, μ -a.e., 3) $f_m \rightarrow \phi_l u_{(N)}$ in D_2^1 . Then, (3.7) follows because

$$\begin{split} &\int ||D(\phi_{l+1}f_m) - D(\phi_l u_{(N)})||_H^2 \rho^2 \, d\mu = \int ||D(\phi_{l+1}(f_m - \phi_l u_{(N)}))||_H^2 \rho^2 \, d\mu \\ &\leq 2 \left[\int \phi_{l+1}^2 ||Df_m - D(\phi_l u_{(N)})||_H^2 \rho^2 \, d\mu + \int (f_m - \phi_l u_{(N)})^2 ||D\phi_{l+1}||_H^2 \rho^2 \, d\mu \right] \\ &\leq 2^{2l+5} \int ||Df_m - D(\phi_l u_{(N)})||_H^2 \, d\mu + 2 \int (f_m - \phi_l u_{(N)})^2 ||D\phi_{l+1}||_H^2 \rho^2 \, d\mu \\ &\to 0 \quad (m \to \infty) \, . \end{split}$$

Finally we take a sequence $\{g_n\}_{n=1}^{\infty} \subset FC_0^{\infty}$ satisfying that $g_n \rightarrow \phi_{l+1} f_m$ in D_4^1 . Then, we see that

(3.8)
$$g_n \to \phi_{l+1} f_m \text{ in } \mathcal{E}_{\rho,1}$$
,

since
$$\int ||D(\phi_{l+1}f_m) - Dg_n||_H^2 \rho^2 d\mu \le (\int ||D(\phi_{l+1}f_m) - Dg_n||_H^4 d\mu)^{1/2} \cdot (\int \rho^4 d\mu)^{1/2}$$
. q.e.d.

Denote by $\bar{S}^{(p)}$, 1 < p, the closure of S in $L_p(\rho^2 \mu)$. We need the following lemma in the proof of Lemma 4.

Lemma 3. If $w \in D_p^2$, p > 1, then for any l, $\phi_l w \in \bigcap_{\substack{1 < p' < p \\ p' < 2}} \mathcal{Q}\left[\bar{S}^{(p')}\right]$ and

(3.9)
$$\bar{S}^{(p')}(\phi_I w) = \frac{1}{2} \mathcal{L}(\phi_I w) + \frac{1}{\rho} \langle D\rho, D(\phi_I w) \rangle_H.$$

Proof. First of all we show that $\phi_l \psi \in \mathcal{D}[\bar{S}^{(2)}]$, for $\psi \in FC_0^{\infty}$. Take a sequence $\{g_k\}_{k=1}^{\infty} \subset FC_0^{\infty}$ such that g_k converges to ϕ_l with respect to $||\cdot||_4^2$. Then, we obtain

$$(3.10) S(g_{k}\psi) = \frac{1}{2} \mathcal{L}g_{k}\psi + \frac{1}{2}g_{k}\mathcal{L}\psi + \frac{1}{2}\langle Dg_{k}, D\psi \rangle_{H} + \frac{g_{k}}{\rho}\langle D\rho, D\psi \rangle_{H}$$

$$+ \frac{\psi}{\rho}\langle D\rho, Dg_{k} \rangle_{H}$$

$$\xrightarrow{k \to \infty} \frac{1}{2} \mathcal{L}\phi_{l}\psi + \frac{1}{2}\phi_{l}\mathcal{L}\psi + \frac{1}{2}\langle D\phi_{l}, D\psi \rangle_{H} + \frac{\phi_{l}}{\rho}\langle D\rho, D\psi \rangle_{H}$$

$$+ \frac{\psi}{\rho}\langle D\rho, D\phi_{l} \rangle_{H}$$

$$=rac{1}{2}\,\mathcal{L}(\phi_I\psi)+rac{1}{
ho}\langle D
ho,\,D(\phi_I\psi)
angle_{_H}$$
 ,

the convergence being in $L_2(\rho^2\mu)$. In fact, by Schwartz inequality we have

$$\int |\mathcal{L}g_k\psi - \mathcal{L}\phi_l\psi|^2\rho^2 d\mu \leq (\int |\mathcal{L}g_k - \mathcal{L}\phi_l|^4 d\mu)^{1/2} (\int (\psi\rho)^4 d\mu)^{1/2} \to 0 \ (k \to \infty),$$

and in the same way we can show the convergence of other terms of (3.10). Next, if $\{h_m\}_{m=1}^{\infty} \subset FC_0^{\infty}$ converges to w with respect to $||\cdot||_p^2$, we have

$$(3.11) \quad \bar{S}^{(2)}(\phi_{l}h_{m}) = \frac{1}{2} \mathcal{L}\phi_{l} h_{m} + \frac{1}{2} \phi_{l} \mathcal{L}h_{m} + \frac{1}{2} \langle D\phi_{l}, Dh_{m} \rangle_{H} + \frac{1}{2} \phi_{l} \mathcal{L}h_{m} + \frac{1}{2} \langle D\phi_{l}, Dh_{m} \rangle_{H}$$

$$\longrightarrow \frac{1}{2} \mathcal{L}\phi_{l} w + \frac{1}{2} \phi_{l} \mathcal{L}w + \frac{1}{2} \langle D\phi_{l}, Dw \rangle_{H} + \frac{w}{\rho} \langle D\rho, D\phi_{l} \rangle_{H}$$

$$+ \frac{\phi_{l}}{\rho} \langle D\rho, Dw \rangle_{H}$$

$$= \frac{1}{2} \mathcal{L}(\phi_{l} w) + \frac{1}{\rho} \langle D\rho, D(\phi_{l} w) \rangle_{H},$$

the convergence being in $L_{p'}(\rho^2\mu)$. In fact, by Hölder inequality, we get

$$\int |\mathcal{L}\phi_{l} w - \mathcal{L}\phi_{l} h_{m}|^{p'} \rho^{2} d\mu \leq (\int |w - h_{m}|^{p} d\mu)^{p'/p} (\int (|\mathcal{L}\phi_{l}|^{p'} \rho^{2})^{p/p-p'} d\mu)^{p-p'/p}$$

$$\rightarrow 0 \qquad (m \rightarrow \infty),$$

and the second and the third terms of (3.11) also converge to the corresponding terms in $L_{\nu'}(\rho^2\mu)$. Furthermore,

$$\int \left| \frac{w}{\rho} \langle D\rho, D\phi_{l} \rangle_{H} - \frac{h_{m}}{\rho} \langle D\rho, D\phi_{l} \rangle_{H} \right|^{p'} \rho^{2} d\mu = \int |w - h_{m}|^{p'} |\langle D\rho, D\phi_{l} \rangle_{H} |^{p'} \rho^{2-p'} d\mu
\leq \left(\int |w - h_{m}|^{p} d\mu \right)^{p/p'} \left(\int |\langle D\rho, D\phi_{l} \rangle_{H}^{p'} \rho^{2-p'} |^{p/p-p'} d\mu \right)^{p-p'/p}
\to 0 \qquad (m \to \infty),$$

and the last term in (3.11) also tends to $\frac{\phi_I}{\rho} \langle D\rho, Dw \rangle_H$. q.e.d.

Take any element $A \in \mathcal{A}_M(S)$ and let $\{T_t\}_{t \geq 0}$ be a semi-group on $L_2(\rho^2 \mu)$ corresponding to A. Then, by the contractivity and symmetry, we can extend $\{T_t\}_{t \geq 0}$ to a strongly continuous semi-group $\{T_t^{(p)}\}_{t \geq 0}$ on $L_p(\rho^2 \mu)$. We denote by $\{G_{\alpha}^{(p)}\}_{\alpha>0}$ the corresponding resolvent.

Lemma 4. It hold that

Proof. Take any element $v \in \mathcal{I}_{\omega} \cap \mathcal{D}[\sqrt{-A}]$. We first show that $\phi_i v \in \mathcal{I}_{\omega}$

 $\bigcap_{1<\rho<2} D^1_{\rho} \text{ for any } l. \text{ Let } w = \frac{\phi_l}{\rho^2} \in D_{\infty}. \text{ Then, by Lemma 3, we see } w\psi$ $\left(= \phi_{l+1} \frac{\phi_l \psi}{\rho^2} \right) \in \mathcal{D}\left[\bar{S}^{(2)}\right], \text{ for any } \psi \in FC_0^{\infty}. \text{ Then, by the definition}$

$$(v\rho^2, \alpha\phi - \bar{S}^{(2)}\phi)_{\mu} = 0$$
, for $\phi \in \mathcal{D}[\bar{S}^{(2)}]$.

Hence, we obtain for $\psi \in FC_0^{\infty}$

$$(3.13) \qquad (v\rho^2, \mathcal{L}(w\psi))_{\mu} = 2\alpha(v\rho^2, w\psi)_{\mu} - 2(v\rho, \langle D\rho, D(w\psi) \rangle_{H})_{\mu}.$$

Now, we have for $\psi \in FC_0^{\infty}$

$$(\phi_l v, \mathcal{L}\psi)_{\mu} = (g, \psi)_{\mu}$$

where $g=2\alpha v\rho^2 w-2D^*(vw\rho D\rho)-2\rho\langle D\rho,\ Dw\rangle_H-v\rho^2\mathcal{L}w-D^*(v\rho^2Dw)$. Now, we use the hypoellipticity of \mathcal{L} ([5]) as follows: since $vw\rho D\rho$ and $v\rho^2Dw$ belong to $\bigcap_{1<\rho<2}L_\rho(B\to H)$, we have $g\in\bigcap_{1<\rho<2}D_\rho^{-1}$. By [5], ϕ_Iv belongs to the domain of extended \mathcal{L} , $\mathcal{L}(\phi_Iv)\in\bigcap_{1<\rho<2}D_\rho^{-1}$ and $\phi_Iv=R(\mathcal{L}(\phi_Iv))\in\bigcap_{1<\rho<2}D_\rho^{1}$, where R is the resolvent of \mathcal{L} . Using this property of ϕ_Iv and repeating the same procedure as above, we get $g\in\bigcap_{1<\rho<2}D_\rho^0$ and consequently $\phi_Iv\in\bigcap_{1<\rho<2}D_\rho^2$ as was to be proved.

We next prove that $\int \langle Dv, Dv \rangle_H \rho^2 d\mu$ is finite. To this end, let $\{b_{(n)}(t)\}_{n=1}^{\infty} \subset C_b^{\infty}(\mathbb{R}^1)$ be a sequence satisfying that

i) $b_{(n)}(t) = t$ on $-n \le t \le n$ ii) $b_{(n)}(t) - b_{(n)}(s) \le t - s$, t > s iii) $|b_{(n)}(t)| \le n + 1$. Then, $v_{(n)} = b_{(n)}(v) \in \mathcal{D}[\sqrt{-A}]$ by virtue of the Markovian property of Dirichlet space $\mathcal{D}[\sqrt{-A}]$. According to [4; (2.3.24)], we get

$$\begin{split} \mathcal{E}_{A}(v_{(n)}, v_{(n)}) &= (\sqrt{-A}v_{(n)}, \sqrt{-A}v_{(n)}) \rho^{2}\mu \\ &= \lim_{\beta \to \infty} \mathcal{E}_{A}^{(\beta)}(v_{(n)}, v_{(n)}) \\ &= \lim_{\beta \to \infty} \frac{1}{2} (f_{\beta}, 1) \rho^{2}\mu , \end{split}$$

where $f_{\beta} = -\beta(v_{(n)}^2 - \beta G_{\beta}^{(2)} v_{(n)}^2) + 2\beta v_{(n)}(v_{(n)} - \beta G_{\beta}^{(2)} v_{(n)}) + v_{(u)}^2(1 - \beta G_{\beta}^{(2)} 1)$. First, we see that

(3.14)
$$\lim_{\beta \to \infty} -\beta(v_{(n)}^{2} - \beta G_{\beta}^{(2)} v_{(n)}^{2}, \phi_{l}) \rho^{2} \mu = \lim_{\beta \to \infty} -\beta(v_{(n)}^{2}, \phi_{l} - \beta G_{\beta}^{(2)} \phi_{l}) \rho^{2} \mu$$
$$= \lim_{\beta \to \infty} -\beta(v_{(n)}^{2}, \beta G_{\beta}^{(2)} \bar{S}^{(2)} \phi_{l}) \rho^{2} \mu$$
$$= (v_{(n)}^{2}, \bar{S}^{(2)} \phi_{l}) \rho^{2} \mu.$$

But, since $\phi_l v_{(n)}$ belongs to D_p^2 for any l, we see that the right hand side of (3.14) is equal to $(v_{(n)}(\mathcal{L}v_{(n)}+\frac{2}{\rho}\langle D\rho, Dv_{(n)}\rangle_H)+\langle Dv_{(n)}, Dv_{(n)}\rangle_H$, $\phi_l)\rho^2\mu$. On the other hand, $\phi_l v_{(n)} \in \mathcal{D}[\bar{S}^{(p)}]$, 1 , by Lemma 3. Hence

$$\begin{split} \lim_{\beta \to \infty} \beta(v_{(n)} - \beta G_{\beta}^{(2)} v_{(n)}, \phi_l \, v_{(n)}) \, \rho^2 \mu &= \lim_{\beta \to \infty} \beta(v_{(n)}, \phi_l \, v_{(n)} - \beta G_{\beta}^{(p)}(\phi_l \, v_{(n)})) \, \rho^2 \mu \\ &= \lim_{\beta \to \infty} \beta(v_{(n)}, \phi_l \, v_{(n)} - \beta G_{\beta}^{(p)}(\phi_l \, v_{(n)})) \, \rho^2 \mu \\ &= (v_{(n)}, \, -\bar{S}^{(p)}(\phi_l \, v_{(n)})) \, \rho^2 \mu \\ &= (-\frac{\mathcal{L}}{2} \, v_{(n)} - \frac{1}{\rho} \langle D\rho, Dv_{(n)} \rangle_H, \phi_l v_{(n)}) \, \rho^2 \mu \, . \end{split}$$

By noting $1 \in \mathcal{D}[\sqrt{-A}]$, we see that $\beta G_{\beta}^{(2)} 1 = 1$. Hence,

$$\begin{split} \mathcal{E}_{A}(v, v) &\geq \mathcal{E}_{A}(v_{(n)}, v_{(n)}) \\ &\geq \lim_{\beta \to \infty} \frac{1}{2} \left(f_{\beta}, \phi_{I} \right) \rho^{2} \mu \\ &= \frac{1}{2} \int \langle Dv_{(n)}, Dv_{(n)} \rangle_{H} \phi_{I} \rho^{2} d\mu \\ &= \frac{1}{2} \int (b'_{(n)}(v))^{2} \langle Dv, Dv \rangle_{H} \phi_{I} \rho^{2} d\mu \,. \end{split}$$

therefore, we can conclude that the function v belongs to \mathcal{H} by letting l, $n \rightarrow \infty$.

REMARK. If ρ is a tame function represented as $\rho(x) = \tilde{\rho}(\langle e_1, x \rangle, \cdots, \langle e_n, x \rangle)$, $\tilde{\rho} > 0$ $C^2(R^n)$, and $\int \rho^2 d\mu < \infty$, we can show that S is an essentially self-adjoint operator by using Wielens' idea. In fact, let $\psi_l(t)$ be a C_b^∞ -function satisfying that i) $0 \le \psi_l(t) \le 1$ ii) $\psi_l = \begin{cases} 1 \text{ on } t \le l \\ 0 \text{ on } t \ge l+1 \end{cases}$ iii) $|\psi'_l(t)|$, $|\psi''_l(t)| < M$, and $\tilde{\psi}_l(r) = \psi_l(|r|)$, $r \in R^n$. Put $\phi_l(x) = \tilde{\psi}_l(\langle e_1, x \rangle, \cdots, \langle e_n, x \rangle)$ and $\mathcal{M}_l = \{x \in B; (\langle e_1, x \rangle, \cdots, \langle e_n, x \rangle) \in B_l(= \{r \in R^n; |r| < l\}) \}$. Then, it holds that $\phi_l^2 v \in \mathcal{D}[\bar{S}]$, $v \in \mathcal{N}_a$, and that

$$egin{aligned} &(v,(lpha-ar{S})\,(\phi_{\,l}^{2}v))
ho^{2}\mu\!=\!lpha(\phi_{\,l}v,\phi_{\,l}v)\,
ho^{2}\mu\!+\!\!\int\!\!\phi_{\,l}v\!\!<\!\!D\phi_{\,l},\,Dv\!\!>_{\!H}
ho^{2}\!d\mu \ &+\!\!rac{1}{2}\!\!\int\!\!\phi_{\,l}^{2}\!\!<\!\!Dv,\,Dv\!\!>_{\!H}
ho^{2}\!d\mu =0\,. \end{aligned}$$

On the other hand, since

$$egin{aligned} (\phi_l v, (lpha - ar{S}) \, \phi_l v) \,
ho^2 \mu &= lpha (\phi_l v, \, \phi_l v) \,
ho^2 \mu + \int \!\!\!\! \phi_l v \!\!\!\! \langle D \phi_l, \, D v
angle_H \,
ho^2 d\mu \ &+ rac{1}{2} \!\! \int \!\!\! v^2 \!\!\! \langle D \phi_l, \, D \phi_l
angle_H \!\!\!\! \cdot \!
ho^2 d\mu + rac{1}{2} \!\!\! \int \!\!\! \phi_l^2 \!\!\! \langle D v, \, D v
angle_H \,
ho^2 d\mu \ &= \!\!\! rac{1}{2} \!\! \int \!\!\! v^2 \!\!\! \langle D \phi_l, \, D \phi_l
angle_H \,
ho^2 d\mu \, , \end{aligned}$$

we have

$$\frac{1}{2} \int v^2 \langle D\phi_l, D\phi_l \rangle_H \rho^2 d\mu \geq \alpha \int \phi_l^2 v^2 \rho^2 d\mu.$$

therefore, $\frac{1}{2} M^2 \cdot n \int_{\mathcal{M}_l^c} \rho^2 d\mu \ge \alpha \int_{\mathcal{M}_{l+1}} v^2 \rho^2 d\mu$ and by letting $l \to \infty$, we obtain v = 0.

References

- [1] S. Albeverio and R. Høegh-Krohn: Hunt processes and analytic potential theory on rigged Hilbert spaces, Ann. Inst. H. Poincaré B 13 (1977), 269–291.
- [2] S. Albeverio and R. Høegh-Krohn: Dirichlet forms and diffusion processes on rigged Hilbert space, Z. Wahrsch. Verw. Gebiete 40 (1977), 1-55.
- [3] S. Albeverio and R. Hφegh-Krohn: Diffusion, quantum fields and groups of mappings, Springer, Lect. Note 923, pp. 133-145, 1981.
- [4] M. Fukushima: Dirichlet forms and Markov processes, North-Holland, Kodansha, 1980.
- [5] N. Ikeda and S. Watanabe: An introduction to Malliavin's calculus, Proc. Taniguchi Symposium on Stochastic Analysis, Katata, 1982.
- [6] S. Kusuoka: Dirichlet forms and diffusion processes on Banach space, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 79-95.
- [7] H. Sugita: Sobolev space of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ. 25 (1985), 31-48.
- [8] N. Wielens: On the essential self-adjointness of generalized Schrödinger operators, ZIF preprint, 1984.

Department of Mathematics Osaka University, Toyonaka, Osaka 560, Japan