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1. Introduction

Let (S(RY), L*(R?Y), S'(R%) be a rigged Hilbert space, where S(RY) is the
Schwartz space of test functions and S’(R?) is its dual space. Letting {¢;}7-1
CS(R?) be a complete orthonormal basis of L,(R%), we put FC7={f; fis a
function on S’(R%) of the form f(&)=Ff(<E, e, -, <&, ¢;) for some n and
a real Cy(R")-function f}, where <, ) is the dualization between S’(R?) and
S(R%. Let v be a quasi-invariant measure on S'(R?) with respect to S(R?).

We call the measure v admissible if the symmetric bilinear form &,(, v)=%

(Du, Dv),2ziei20y, 4, vEFCY, is closable. Its closed extension (&, &) is
said to be the energy form associated with the quasi-invariant admissible measure

v. Here, Du=§‘_. 6®@Ducs L{(RY)QL*v) and D; is a derivative in the direc-

tion of e¢;. Furthermore, a self-adjoint operator H, representing the energy
form (&,, &,) is said to be a diffusion operator. For example, the probability
measure g, on S’'(RY) defined by the following formula is quasi-invariant and
admissible:
69> = o~ WA (atm?)"1/%) d
S&(Rd)e Apo(E) = e+ v, pES(RY),

where ( , ) is the scalar product in L? (R?).

Let u¥ be the Euclidian random field <&*, 4> over R‘*!, defined by

S-S’(Rdu) ¢ dpf(E¥) = T AT E SR .

The random field <£*, 4»> can be regard as the restriction to S(R?*') of the
generalized random field indexed by the Sobolev space H_; the completion
of S(R?*Y) with respect to the norm [|(—A+m?)"2+|l. We denote by =,
the o-field generated by random variable {<£*, §,Q¢>; p=S(R%)}, and regard
the restriction of w§ to =, as the measure on S’(R?) by the natural identifica-
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tion of <&, ¢> with <&* §,Q¢>. Then, it coincides with w, and the diffusion
operator H,, corresponding to w, is nothing but the energy operator H of free
Euclidean field model p§. To see this, it is enough to show that H, and H
are the same operators on FC7 and that the symmetric operator S=H, 1 FC§
has a unique Markovian self-adjoint extension, where the notation H, { FC?
indicates the restriction of Hy to FCF. In fact, the operator S is known to
be an essentially self-adjoint operator.

Albeverio and Hgegh-Krohn have raised a question in [3] whether the
diffusion operator associated with p* 1 =, is identical with energy operator of
the Euclidean field model p* with trigonometric (or exponential) interaction
and have shown that these operators are the same on FC7 when d=1. Thus,
we now cope with the question: what kind of quasi-invariant admissible meas-
ure » induces the symmetric operator S,=H, { FC7 with a unique Markovian
self-adjoint extension?

In this paper, we consider this problem in a simpler case that » is an ab-
solutely continuous measure with respect to the Wiener measure on the abstract
Wiener space (H, B, p). We conclude the uniqueness of Markovian self-
adjoint extension of S, under the condition that the Radon-Nikodym derivative
p? is strictly positive and belongs to the space D.. (= N  Dj), where Dj is

$=1,7€ER
the Sobolev space of order r and degree p on the Wiener space. In the proof,
we use the Malliavin’s calculus and in particular the hypoellipticity of the Orn-
stein-Uhlenbeck generator. We note at the end of this paper that, if p happens
to be a tame function, then Wielens’ method [8] applies and S, becomes essen-
tially self-adjoint.

2. Notations and the closability of a symmetric form

Let (H, B, p) be an abstract Wiener space and {e;} 7., CB* (dual space
of B) be a complete orthonormal basis of H. We set FC7={f; f is a function
on B of the form f(x)=Ff(<e;,, x>, -+, <e;,, x)) for some n and FECF(R")} and

FC§(H)=A{F; F is a H-valued function on B which is of form F(x):i] ;R fi(x)

for some n, f;€FC7}. We denote by Dj the completion of FOF with respect
to the norm ||f|[;=IIf|l,+||D" fll,, where D" f, f€FC¥?, is the r-times iteration

P —
of the Fréchet derivative which is an element in L,(B—>HQ---QH). Note that

D" fll, = ”{0 'W%EN'(DM(D”Z...(D”'f)))z}llzm

where D; is the derivative in the direction of ¢;. It is convienient to use two
different expressions of D} (1< p< oo) according to Sugita [7] and Kusuoka

[6]:
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There exists some gL ,(B—H)
(2.1) D}, = { u€Ly(pu); such that (u, D*v)=(g, v), for
any veFO7(H)
and

u is stochastic H Gateaux differentiable

(SGD) with respect to p, ray absolutely
(2.2) D}, =+ usL,(u); continuous (RAC) and the stochastic

Gateaux derivative Du of u satisfies that

|| Du(x)|] 5 € L y( )
Here, a function % is called SGD, if there exists a measurable map Du; B—H
such that for any k€ B*, the convergence %[u(x—f—tk)—u(x)—t(Du(x), k)x]—0,

t—0, take place in probability with respect to w, and % is called RAC, if for
any k< B*, there exists a measurable function #, such that

1) d@(x)=u(x) for p-a.e.

2) #@,(x-+tk) is absolutely continuous in ¢ for each x&B (See [6; Definition

1,1 and Definition 1,2]). Then, we have for uDj, || Du(x)|| ”:\/ §1 (Du(x), e;)?
:,\/ i (D, u(x))% where D,-u(x):li‘m % (@, (x+te;)—h,(x)).

I=1 tyo

We fix a function p on B satisfying

(2.3) i) p>0 i) peD.

where D”:,Q Dj;. We define the symmetric bilinear form (€,, FC?) by
rer!

2.4) Eu(,0) = % L (Du(), Do(x))sp*(x) duy, u, vEFC5 .

Lemma 1. (&,, FC?) is closable on L,(p*u).

Proof. We follows the argument of [1; Theorem 2.3]. Since D¥p’=
—2pD;p+<e;, x)p*(x), we have for g FCF,

(Dg, e;® 1) o122y = (D; g, PZ)Lzm)
= (g, —‘ZPD;‘P‘I—Q’;, x>P2)L2(:~)

D.
,;p +<ei, %) 12%) +

= (g: —2

By noting that {(2:2)%67 du<<lplli< oo, we see that —2 PP-ce, x> Lion)
P P
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and ¢;®@1[D}], where D¥ denote the adjoint operator of D which is an
operator from L,(p°u) to HQL,(p’u). Put B(e)=D¥(¢;®1). Then, we see
that for g, feFCy

(Dg, ei®f Yrerzeiy = (D; g-f, 1)p%u
= (Dz (g'f)_gDif’l)pzu.
= (& ﬁ(ei)f—D.-f)pzy. .

Because the function B(¢;) f—D; f belongs to Ly(p?u), it holds that ¢,Qfs D[D¥]

and consequently FO7(H) is contained in P[Df]. Since FC7(H) is dense in

HQL,(p*w), the closure D=(D¥)* is well defined and hence (&,, FC¥) is clos-

able. q.e.d.
We denote by (&,, &) the closed extension of (&,, FCY).

3. The uniqueness of Markovian self-adjoint extension

Let H, be a self-adjoint operator associated with the closed form (&,, <)
and S be a symmetric operator defined by S=H, 1 FC7. S can be represented
as

(3.1) Su— %.Eu—kl(Dp, D>y, ueFCs
P

where _£ is a Ornstein-Uhlenbeck generator. We denote by 4,(S) the totality
of Markovian self-adjoint extensions: A& A,(S) means that 4 is a self-adjoint
extension of S which generates a strongly continuous contraction Markovian
semi-group on L,(p’u). H, is called the Friedrichs extension of S and is an
element of (A4,(S). Then, the following theorem holds.

Theorem 1. Under the condition (2.3), Ay(S) has only one element H,,
namely, S has a unique Markovian self-adjoint extension.

For any A€ Ay(S), the form domain 9D[\/—A4] is orthogonally decom-
posed with respect to €44 (=(vV—4 *,V/ —A4 *)etuta(, )o2u) as

(3.2) DIV —-A]1=9DT.NnD[V=4])),
where Jl,={ucs L,(p*n); (al—S*)u=0} ([4; Theorem 2.3.2]). Hence, for the
proof of Theorem 1 we must show that

(3.3) NaND[V—-A4]cF .

In order to prove (3.3) we introduce the intermediate space 4 by (3.4) and
prove that JI,N D [/ —4 | HCF (Lemma 2 and Lemma 4).
Let {a,(t)}7-1 be a sequence of C7(R')-functions satisfying that
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1

1 on ?<t<2'
1) 0=<q()=<1 i) at)= 1
0 on (= S (=21
¢ 2" on t§L ,
i) |ai(?)] = 2! for some constants ¢ and ¢’.
¢’ otherwise

We put ¢,(x)=a,op(x). If a function u satisfies ¢,ouc U Dj, for any [,
1<p<2

then we have D(¢;,, u)=D(p;*u) p-a.e. on M= {%<p<2’}, because D(¢p;~u)

=D(¢;* 11 #)=;* D(Ppy11°%)+ Py 4 Dp,;. Therefore, we can well define Du
by

Du = D(¢;*u) on H,.
Let we consider the function space

¢;rue U Dj for any [ and )
1<9<2

(34) H = { ucsLyp’u);
S(Du, Duppp*dp<<oo

Then, we have the following lemma.
Lemma 2. It holds that
(3.5) H cCTF.

Proof. For any ue H, we see that uyy=(—N Vu) ANE H since ¢, U=
((—N¢,)V o u) ANp,eD; by (2.2), ucyy converges to u in £,,. Furthermore
#(yy can be approximated by ¢, uyyEH. In fact, we have

(3.6) {1Duco—Dig o)l P

<2 [{ 11— FlIDucolly p'dpst-{uil D15 ]

The second term of the right hand side is equal to Squ) (ai(p))I|Dpll% p*dpe

and is not greater than | ad (27 1Dplly -+, uitwr ¢* 1Dpllis pds
P=1/2

{p22

<42N*? S [|Dpl|% dp—+c'*N* S [|Dpl|% p?dp, which tends to zero as [—> oo
(p=1/2") (p22")

by the assumption (2.3). Hence the left hand side of (3.6) tends to zero as [—>oo.
Next we show that there exists a sequence {f,}n-1 CFC7 such that

(3.7) brarfm = b1ty (m—>0)in &, ;.
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Since we see ¢, u)ED}; by
1D+ dps <20 11Dl Frdia-+ (ol DGl ]
<[ v e 1Dl A+ N 1ID i di]
<231 Ducl* dp+ 2N 1Dl d
oo,
there exists a sequence {f,}n-1 CFC7 such that 1) |f,|<N, 2) fa—>d:umw,

p-a.e., 3) fu—>¢, U in Di. Then, (3.7) follows because

(D11 )= D100 o s = (1D sl fu—bs Nl s
=2 [S¢?+1”Dfm—D(¢l uw)llap® dlb‘l—g(fm—dh u(N))2||D¢'1+1”§1P2 dM]
<2 1Df— DUy )l dist-2{(fo— b V1Dl i

-0 (m—>o0).

Finally we take a sequence {g,}i.; CFCy satisfying that g,—>¢;4, f,, in Di.
Then, we see that

(38) gn - ¢l+1fm in 80’,1 ’

since (11D(¢ 142 )~ Dgallie? s S (DB 11s £)— Dl day- ([t duy . qe.d.
Denote by S®, 1<p, the closure of S in L,(p*s). We need the following
lemma in the proof of Lemma 4.

Lemma 3. If weDj, p>1, then for any I, ,we N D[S®’] and
1<P<p
<2

(39) S92 yw) = 5 L)+ <Dp, Dy @)
Proof. First of all we show that ¢, &9 [S®], for +EFC;. Take a

sequence {g}r-1CFC§ such that g, converges to ¢, with respect to || 113
Then, we obtain

1
2

+‘%<Dp, Dg>x

5 Lorbty 1 LD, DYt ELDp, D,

(10)  S(eek) = 5 Lavb oy &Lt 5 <Dg DIy E<Dp, D>

o0
+%<Dp, Do >x
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1 1
= 2 —£(¢1‘P‘)+?<DP1 D(¢rr)on
the convergence being in L,(p*u). In fact, by Schwartz inequality we have

J1-Lomr— Lot dus((| Lo Lo duya (o) dpyr—0 (ko)

and in the same way we can show the convergence of other terms of (3.10).
Next, if {f,}m-1CFCF converges to w with respect to || ||3, we have

(11)  SO(biha) = 3 Los ks 61 Lhart <Dty Dhadict 1 b1 L
+5 <D, Dhy>s

— % L4, w+—;- é £w+%<D¢,, Dudirt-2<Dp, D>

m—> o0

+i’;—'<Dp, Dw)y
= 5 L) <Dp, D @,
the convergence being in L,(p°r). In fact, by Holder inequality, we get
{1t w— L a1 0 g (§ 10— Ay (1 L | g2y dyps'e
-0  (m—o),

and the second and the third terms of (3.11) also converge to the corresponding
terms in L,(p*p). Furthermore,

§12Dp, Du—Le<Dp, Dy41Y g = (10—l 1<Dp, Dbl

é(g |w—h,, ]’d,u)ﬁ/f"(S [<Dp, DDk p2~¥ | #11=¥ dy)e=¥tp

-0 (m—>o0),
and the last term in (3.11) also tends to -@—<Dp, Dw>. q.e.d.
P

Take any element A€ A,(S) and let {T}},>, be a semi-group on L,(p’w)
corresponding to 4. Then, by the contractivity and symmetry, we can extend
{T'} 0 to a strongly continuous semi-group {7'¥},», on L,(p’w). We denote
by {G{%} 4>, the corresponding resolvent.

Lemma 4. It hold that
(3.12) NoND [V —A1CH for A Ay(S).

Proof. Take any element v€Jl,ND [/ —A4]. We first show that ¢,ve
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N D} for any I Let w=%EDw. Then, by Lemma 3, we see wnp
1<p<2 p
(= P11 ¢f’);1’ )Eg) [S®], for any Y+ FC7. Then, by the definition

(vp% ap—SP@¢). = 0, for $=D[S?].
Hence, we obtain for Y€ FC?
(B13)  (oph L(ov))e = 20(vp, wir)u—2(vp, <Dp, D(e) D)
Now, we have for = FCY

(P10, L) = (8 V)

where g=2avp*w—2D*(vwpDp)—2p<{Dp, Dw)y—vp’Lw—D*(vp’Dw). Now,

we use the hypoellipticity of _L ([5]) as follows: since vwpDp and vp?Dw belong

to N L,(B—H), we have g& O 2D;‘. By [5], ¢,v belongs to the domain of
<2<

1<r<2
extended £, L(pv)€ N D;' and pv=R(L($v))E N Dj, where R is the
1<p<2 1<p<2
resolvent of L. Using this property of ¢,o and repeating the same procedure
as above, we get g€ N Dj and consequently ¢, o€ N Dj as was to be proved.
1<p<2 1<p<2
We next prove that S(Dv, Dvyyp*dp is finite.  To this end, let {b¢,)(2)} ma1C

C5(R") be a sequence satisfying that

l) b(,,)(t)zt on —n=<t=n ll) b(,,)(t)—b(”)(s)ét——s, t>s 111) Ib(,,)(t)l §n+1.
Then, v4,)=bw(®)ED [/ —A4 ] by virtue of the Markovian property of Dirich-
let space D [\/—A]. According to [4; (2.3.24)], we get

84(’0(”), 7)(“)) = (\/——A‘Uo.), \/——A?i(n)) lel'
= gigl EP (Wm» vm)
.1
= lim — ’ 1) p? ’
lim = (fo 1) P

where fo=—RB(vin—BGE vin)+2Bvum(Vw—BGTvm)+ven(1—BG 1).  First,
we see that

(14)  lim—B(eh—BG ohoy ) o' = lim—B(ot, $1—BCH) P

— lim—A(vl, BGE 52%) u

= (V% SP)) p'us -
But, since ¢,v(,) belongs to Dj for any I, we see that the right hand side of
(3.14) is equal to (1’(”)(-5’0(”)-1-%(179: Do pp)+<Dvey, Dveydn, ¢i) p’n. On
the other hand, ¢,v¢,) €D [SP], 1<p<2, by Lemma 3. Hence
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giig B@wm—BGEvw, $1 V) P’ = ;lj‘{.} B0, b1 v —BGE(d1 vm)) pP1
= lim B(v, ¢1 2w —BGP($1vw)) Pp
= (”(»):E—g“’ ) (¢1: V) PP
=75 YUn——p, DY) m PiVw) P 1 -
(= v <Dp, Do, $iow)
By noting 1€ 9 [\/—A4 ], we see that BG§’ 1=1. Hence,
8/1(7]’ v)ggA(v(n)’ v(ﬂ))
.1
=lim — 2
=lim = (o ¢1) P'1e
= —%‘ S<D7)(n)’ Dv(n)>1! ¢1P2 dﬂ
— 1 {tato)? <Do, Dody 167 de.
therefore, we can conclude that the function v belongs to by letting /, n—co.

q.e.d.

RemMARK. If p is a tame function represented as p(x)=p(<e;, x>, -+, <e,, %)),
p>0 C*R"), and szd,u,<<><>, we can show that S is an essentially self-adjoint
operator by using Wielens’ idea. In fact, let r(t) be a C5-function satisfying

that i) 0=wy(f)<1 ii) 1h={(1) o fj L1 G WHOL 1940 <M, and

Vi(r)=v(Ir]), rER". Put ¢)(x)=V<er, x>, -, ey, D) and J={rEB;
(Key, x>, -+, Lew xD)EB(={rER"; |r|<l})}. Then, it holds that ¢pjve P[S],
e Jl,, and that

(v, (@—S) ($To))p'u=a($iv, $:0) -+ |$:2<Dp1, Dody
+L{4KDo, Dody du = 0.
On the other hand, since
(6, (@—3) i0) ' = (o, $10) o'+ |6<D1, Doy i
+ {1, Do pdu-+-L{$KDo, Do>,
—{oXDé1, Do>w P,

we have

~oxDs1 Dodupduzalst ot gy
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therefore, —;—Mzns - pzd,u,gag - ©? p’dp and by letting [—oo0, we obtain
I1+1

v=0,

(1]
(2]
(31
(4]
(31
(6]
(7]
(8]

!
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