

Title	Nonstandard representations of generalized sections of vector bundles
Author(s)	Akiyama, Hiroshi
Citation	Osaka Journal of Mathematics. 1995, 32(3), p. 817-822
Version Type	VoR
URL	https://doi.org/10.18910/11589
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Akiyama, H.
Osaka J. Math.
32 (1995), 817-822

NONSTANDARD REPRESENTATIONS OF GENERALIZED SECTIONS OF VECTOR BUNDLES

HIROSHI AKIYAMA

(Received January 17, 1994)

Introduction

In terms of nonstandard analysis, Todorov ([8], [9]) showed that every Schwartz distribution on \mathbf{R}^n can be represented by a $*$ -integral with $*C^\infty$ internal kernel function without the necessity of saying, “up to an infinitesimal” (for the case $n=1$, see also [5]). From the differential-geometric viewpoint, it would be desirable to obtain nonstandard representations of generalized sections of vector bundles in an intrinsic manner.

The main purpose of this note is to prove in a simple way that every generalized section (see §1 or [2]) T of a C^∞ vector bundle E over a σ -compact manifold M can be represented by a $*$ -integral in the sense that there exists a $*C^\infty$ internal section β_T of the nonstandard extension $*E$ of E such that $T(u) = \int_{*M} \beta_T \cdot *u$ for every compactly supported C^∞ section u of $E^\dagger \otimes |\wedge_M|$, where E^\dagger is the dual bundle of E and $|\wedge_M|$ stands for the density bundle over M .

After devoting §1 to some notational preliminaries, we obtain in §2 nonstandard representations of linear maps from the space of C^∞ sections of E with compact support and then the desired representations of generalized sections. In §3 we get a result on nonstandard representations of linear maps either from the space of C^k sections of E or from its subspace consisting of compactly supported sections.

As for nonstandard analysis, see, e.g., [1], [3], or [4]; we work with a sufficiently saturated nonstandard model.

1. Notational preliminaries

Throughout the paper we let \mathbf{K} be either \mathbf{R} (the real numbers) or \mathbf{C} (the complex numbers). Furthermore, let N be the (strictly) positive integers and $*N_\infty$ the infinite elements in $*N$.

By a vector bundle $\pi_E : E \rightarrow M$ we mean a C^∞ vector bundle with typical fiber \mathbf{K}^p (for some $p \in N$) over a σ -compact C^∞ manifold M with $\dim M \in N$. For each

$x \in M$, we write $E_x := \pi_E^{-1}(x)$, the fiber of E over x . The dual bundle of E is denoted by E^\dagger . For $k \in \{0\} \cup N \cup \{\infty\}$, let $\Gamma^k(E)$ be the space of all C^k sections of E and $\Gamma_0^k(E)$ the space of C^k sections of E with compact support.

The K -line bundle of densities over M is denoted by $|\wedge_M|$. Given a C^∞ Riemannian metric g on M , we let $dv_g \in \Gamma^\infty(|\wedge_M|)$ be the Riemannian volume density associated with g (see [7]). A *generalized section* of a vector bundle $E \rightarrow M$ is defined as a continuous linear functional on the space $\Gamma_0^\infty(E^\dagger \otimes |\wedge_M|)$ (endowed with the canonical LF -topology); cf. [2].

For two vector bundles $E \rightarrow M$ and $F \rightarrow N$, we denote by $E \boxtimes F$ the vector bundle over $M \times N$ such that $(E \boxtimes F)_{(x,y)} = E_x \otimes F_y$ for every $(x, y) \in M \times N$. We will write \otimes and \boxtimes for $^*\otimes$ and $^*\boxtimes$, respectively.

2. Nonstandard representations of generalized sections of vector bundles

Let $E \rightarrow M$ be a vector bundle. Choose a C^∞ Riemannian metric g on M . By the saturation principle, there exists a hyperfinite-dimensional vector subspace V of the internal vector space $^*(\Gamma_0^\infty(E))$ such that ${}^*(\Gamma_0^\infty(E)) := \{{}^*s : s \in \Gamma_0^\infty(E)\}$ is an external subset of V . Take a C^∞ fiber metric h in E and pick $\psi_i \in V$ ($i = 1, 2, \dots, \eta$) with $\eta = {}^*\dim V \in {}^*N_\infty$ such that

$$(2.1) \quad \int_{*M} {}^*h(\psi_i, \psi_j) {}^*dv_g = \delta_{ij} \text{ (Kronecker delta); } i, j = 1, 2, \dots, \eta.$$

Regard $\psi_j^h := {}^*h(\cdot, \psi_j)$ as an element of ${}^*(\Gamma_0^\infty(E^\dagger))$ in a natural manner. Define an internal section $\Psi \in {}^*(\Gamma_0^\infty(E^\dagger \boxtimes E))$ by

$$(2.2) \quad \Psi(x, y) := \sum_{i=1}^{\eta} \psi_i^h(x) \otimes \psi_i(y) \quad (x, y \in {}^*M).$$

Moreover, define $\tilde{\Psi} \in {}^*(\Gamma_0^\infty((E^\dagger \otimes |\wedge_M|) \boxtimes E))$ by

$$(2.3) \quad \tilde{\Psi}(x, y) := \sum_{i=1}^{\eta} (\psi_i^h(x) \otimes {}^*dv_g(x)) \otimes \psi_i(y) \quad (x, y \in {}^*M).$$

Proposition 2.1. *Given a vector bundle $E \rightarrow M$ and a C^∞ Riemannian metric g on M , let Ψ and $\tilde{\Psi}$ be as in (2.2) and (2.3), respectively.*

(1) *For every $s \in \Gamma_0^\infty(E)$ and every $y \in {}^*M$,*

$$(2.4) \quad {}^*s(y) = \int_{x \in {}^*M} {}^*s(x) \cdot \tilde{\Psi}(x, y).$$

[The map ${}^*M \times {}^*M \ni (x, y) \mapsto {}^*s(x) \cdot \tilde{\Psi}(x, y) \in {}^*(|\wedge_M| \boxtimes E)_{(x,y)}$ gives an element of ${}^*(\Gamma_0^\infty(|\wedge_M| \boxtimes E))$ obtained from ${}^*s(x) \otimes \tilde{\Psi}(x, y)$ by the canonical pairing between ${}^*E_x := {}^*(\pi_E)^{-1}(x)$ and ${}^*E_x^\dagger$.]

(2) *For every $x, z \in {}^*M$,*

$$(2.5) \quad \int_{y \in {}^*M} \Psi(x, y) \cdot \Psi(y, z) \otimes {}^*dv_g(y) = \Psi(x, z).$$

Proof. Since every $*s \in \Gamma_0^\infty(E)$ is expressed as

$$(2.6) \quad *s = \sum_{j=1}^n c_j(*s) \psi_j \text{ with } c_j(*s) = \int_{*M} *s \cdot \psi_j^h *dv_g,$$

we have (2.4). Formula (2.5) follows immediately from (2.1). \square

Proposition 2.2. *Let $E \rightarrow M$ and $F \rightarrow N$ be vector bundles. Let $\tilde{\Psi} \in \Gamma_0^\infty((E^\dagger \otimes |\wedge_M|) \boxtimes E)$ be as in (2.3). For a K -linear map $L: \Gamma_0^\infty(E) \rightarrow \Gamma^\infty(F)$, define $\Psi_L \in \Gamma^\infty((E^\dagger \otimes |\wedge_M|) \boxtimes F)$ by*

$$\Psi_L(y, z) := (I_{*(E^\dagger \otimes |\wedge_M|)_y} \otimes *L)(\tilde{\Psi}(y, \cdot))(z) = \sum_{i=1}^n (\psi_i^h(y) \otimes *dv_g(y)) \otimes *L(\psi_i)(z)$$

for $y \in *M$ and $z \in *N$, where $I_{*(E^\dagger \otimes |\wedge_M|)_y}$ is the identity transformation of $(E^\dagger \otimes |\wedge_M|)_y$. Then L is represented as

$$*(L(s))(z) = \int_{y \in *M} *s(y) \cdot \Psi_L(y, z) \quad (s \in \Gamma_0^\infty(E), z \in *N).$$

Proof. Let $s \in \Gamma_0^\infty(E)$ and $z \in *N$. By the expression (2.6),

$$\begin{aligned} *(L(s))(z) &= *L(*s)(z) = *L\left(\sum_{i=1}^n c_i(*s) \psi_i\right)(z) \\ &= \sum_{i=1}^n c_i(*s) *L(\psi_i)(z) = \int_{y \in *M} *s(y) \cdot \Psi_L(y, z). \end{aligned} \quad \square$$

We can now represent every generalized section of E by a $*$ -integral.

Theorem 2.3. *Let $E \rightarrow M$ be a vector bundle, and let $\tilde{\Psi}$ be as in (2.3). For each generalized section T of E , define $\beta_T \in \Gamma_0^\infty(E)$ by*

$$\beta_T(y) := (*T \otimes I_{*E})(\tilde{\Psi}(\cdot, y)) = \sum_{i=1}^n *T(\psi_i^h \otimes *dv_g) \psi_i(y) \quad (y \in *M).$$

Then

$$T(u) = \int_M \beta_T \cdot *u, \quad u \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|).$$

Proof. Apply Proposition 2.2 to the K -linear map $L_T: \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|) \ni u \mapsto L_T(u) \in \Gamma^\infty(M \times K)$ defined by $L_T(u)(z) = (z, T(u))$ for $z \in M$. \square

REMARK. If there exists a section $s \in \Gamma_0^\infty(E)$ such that $T(u) = \int_M s \cdot u$ for all $u \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|)$, then $*T(\psi_i^h \otimes *dv_g) = c_i(*s)$ (see (2.6)) and thus $\beta_T = *s$.

EXAMPLE. Given a σ -compact C^∞ Riemannian manifold (M, g) , we obtain a “nonstandard delta function” with respect to $*dv_g$ using the above results. In fact,

let $C^\infty(M; \mathbf{K})$ denote the space of \mathbf{K} -valued C^∞ functions on M and let $C_0^\infty(M; \mathbf{K}) := \{f \in C^\infty(M; \mathbf{K}) : \text{supp}(f) \text{ compact}\}$. Let V_0 be a hyperfinite-dimensional vector space over *R such that

$${}^*(C_0^\infty(M; \mathbf{R})) := \{{}^*f : f \in C_0^\infty(M; \mathbf{R})\} \subset V_0 \subset {}^*(C_0^\infty(M; \mathbf{R})).$$

Pick $\varphi_i \in V_0$ ($i=1, 2, \dots, \nu$ with $\nu = {}^*\dim V_0$) such that $\int_M \varphi_i \varphi_j {}^*dv_g = \delta_{ij}$ ($i, j=1, 2, \dots, \nu$) and define an internal function $\delta \in {}^*(C_0^\infty(M \times M; \mathbf{R}))$ by $\delta(x, y) := \sum_{i=1}^\nu \varphi_i(x) \varphi_i(y)$ ($x, y \in {}^*M$). Noting that $C_0^\infty(M; \mathbf{C}) = C_0^\infty(M; \mathbf{R}) + \sqrt{-1} C_0^\infty(M; \mathbf{R})$, for $x, y, z \in {}^*M$ we have :

$$(1) \quad \delta(x, x) \geq 0, \quad \delta(x, y) = \delta(y, x), \quad \text{and} \quad (\delta(x, y))^2 \leq \delta(x, x) \delta(y, y).$$

$$(2) \quad {}^*f(x) = \int_{{}^*M} \delta(x, y) {}^*f(y) {}^*dv_g(y) \quad \text{for } f \in C_0^\infty(M; \mathbf{C}).$$

$$(3) \quad \int_{{}^*M} \delta(x, y) \delta(y, z) {}^*dv_g(y) = \delta(x, z).$$

(4) If $T : \mathcal{D} = C_0^\infty(M; \mathbf{C}) \rightarrow \mathbf{C}$ is a Schwartz distribution on M , then $T(f) = \int_{{}^*M} {}^*f(y) \gamma_T(y) {}^*dv_g(y)$ ($f \in \mathcal{D}$), where $\gamma_T \in {}^*(C_0^\infty(M; \mathbf{C}))$ is defined by $\gamma_T(y) := {}^*T(\delta(\cdot, y)) = \sum_{i=1}^\nu {}^*T(\varphi_i) \varphi_i(y)$ ($y \in {}^*M$).

3. Nonstandard representations of linear maps from $\Gamma^k(E)$ or $\Gamma_0^k(E)$ to $\Gamma^r(F)$

Let $E \rightarrow M$ and $F \rightarrow N$ be vector bundles. For $s \in \Gamma^0(E)$, define $T_s : \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|) \rightarrow \mathbf{K}$ by

$$T_s(u) = \int_M s \cdot u, \quad u \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|).$$

Furthermore, for $k \in \{0\} \cup N \cup \{\infty\}$, let U_E^k be either $\Gamma^k(E)$ or $\Gamma_0^k(E)$.

We first note that if s_1, s_2, \dots, s_m ($m \in N$) are linearly independent in U_E^k , then there exist m elements $\sigma_i \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|)$ such that $T_{s_i}(\sigma_j) = \delta_{ij}$ ($i, j = 1, 2, \dots, m$). Indeed, T_{s_1}, \dots, T_{s_m} are linearly independent in the vector space $\{T_s : s \in U_E^k\}$ over \mathbf{K} . Therefore there exist m elements $\tau_i \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|)$ ($i = 1, 2, \dots, m$) such that the $m \times m$ matrix $A = (T_{s_i}(\tau_j))_{1 \leq i, j \leq m}$ is nonsingular; for a simple nonstandard proof (in a more general setting), see [6, Lemma 1.1]. Then we have only to put $\sigma_j = \sum_{i=1}^m b_{ij} \tau_i$ where (b_{ij}) is the inverse of the matrix A .

Now, for $r \in \{0\} \cup N \cup \{\infty\}$, let \mathcal{G}^r [resp. \mathcal{G}_0^r] be the internal set of all $\zeta \in {}^*(\Gamma^r((E^\dagger \otimes |\wedge_M|) \boxtimes F))$ of the form

$$(3.1) \quad \zeta(x, y) = \sum_{i=1}^\nu u_i(x) \otimes v_i(y) \quad (x \in {}^*M, y \in {}^*N)$$

for some $\nu \in {}^*N$, $u_i \in {}^*(\Gamma_0^\infty(E^\dagger \otimes |\wedge_M|))$, $v_i \in {}^*(\Gamma^r(F))$ [resp. $v_i \in {}^*(\Gamma_0^r(F))$] ($i = 1, 2, \dots, \nu$).

Theorem 3.1. Let $k, r \in \{0\} \cup N \cup \{\infty\}$ be fixed. Let U_E^k be as above. Suppose that $L: U_E^k \rightarrow \Gamma^r(F)$ is a \mathbf{K} -linear map. Then there exists an element $\Phi_L \in \mathcal{G}^r$ such that

$$*(L(s))(y) = \int_{x \in {}^*M} {}^*s(x) \cdot \Phi_L(x, y) \quad (s \in U_E^k, y \in {}^*N).$$

Moreover, if $L(s) \in \Gamma_0^r(F)$ for all $s \in U_E^k$, then Φ_L can be chosen from \mathcal{G}_0^r .

Proof. For $s \in U_E^k$, define an internal map $G_s: \mathcal{G}^r \rightarrow {}^*(\Gamma^r(F))$ by

$$G_s(\zeta)(y) := \int_{x \in {}^*M} {}^*s(x) \cdot \zeta(x, y) = \sum_{i=1}^r (*T_s(u_i))v_i(y) \quad (y \in {}^*N),$$

where $\zeta \in \mathcal{G}^r$ is as in (3.1). Let \mathcal{B}_s be the internal set

$$\mathcal{B}_s := \{\zeta \in \mathcal{G}^r : G_s(\zeta) = {}^*(L(s))\}.$$

We shall show that the family $\{\mathcal{B}_s : s \in U_E^k\}$ has the finite intersection property. To do this, let $P(m)$ ($m \in N$) be the following proposition :

For $s_i \in U_E^k$, $i=1, 2, \dots, m$, the system of equations

$$(3.2) \quad G_{s_i}(\zeta) = {}^*(L(s_i)) \quad (i=1, 2, \dots, m)$$

has a solution ζ in \mathcal{G}^r .

Consider first the case $m=1$. If $s_1=0$, any $\zeta \in \mathcal{G}_0^r$ satisfies (3.2) for $m=1$. If $s_1 \neq 0$, then there exists an element $\tau \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|)$ with $T_{s_1}(\tau) \neq 0$ and thus we can choose $\sigma \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|)$ such that $T_{s_1}(\sigma)=1$; therefore, if we let

$$\zeta(x, y) = {}^*\sigma(x) \otimes {}^*(L(s_1))(y) \quad (x \in {}^*M, y \in {}^*N),$$

then $\zeta \in \mathcal{G}^r$ and moreover this ζ satisfies (3.2) for $m=1$, since ${}^*(T_{s_1})({}^*\sigma) = T_{s_1}(\sigma) = 1$. Hence $P(1)$ is true.

Next, assume that $m > 1$ and that $P(m-1)$ is true. If s_1, \dots, s_m are linearly dependent in U_E^k , then we may assume that $s_m = \sum_{i=1}^{m-1} a_i s_i$ ($a_i \in \mathbf{K}$) without loss of generality, so that the system (3.2) is equivalent to the system of equations for $i=1, 2, \dots, m-1$. If s_1, \dots, s_m are linearly independent, then, as noticed earlier, we can choose $\sigma_i \in \Gamma_0^\infty(E^\dagger \otimes |\wedge_M|)$ such that $T_{s_i}(\sigma_j) = \delta_{ij}$ ($i, j=1, \dots, m$); so, if we let

$$\zeta(x, y) = \sum_{j=1}^m {}^*\sigma_j(x) \otimes {}^*(L(s_j))(y) \quad (x \in {}^*M, y \in {}^*N),$$

then ζ belongs to \mathcal{G}^r and satisfies (3.2). Thus $P(m-1)$ implies $P(m)$.

Hence $P(m)$ is true for all $m \in N$. Then, by the saturation principle, the intersection $\mathcal{B} = \bigcap_{s \in U_E^k} \mathcal{B}_s$ is nonempty; accordingly, there exists an element $\Phi_L \in \mathcal{B}$.

If $L(s) \in \Gamma_0^r(F)$ for all $s \in U_E^k$, then by replacing \mathcal{G}^r with \mathcal{G}_0^r in the above

discussion, we see that Φ_L can be chosen from \mathcal{G}_6 . \square

References

- [1] S. Albeverio, J.E. Fenstad, R. Høegh-Krohn and T. Lindstrøm : Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York, 1986.
- [2] V. Guillemin and S. Sternberg : Geometric Asymptotics, rev. ed., Mathematical surveys and monographs No. 14, Amer. Math. Soc., Providence, R.I., 1990.
- [3] A.E. Hurd and P.A. Loeb : An Introduction to Nonstandard Real Analysis, Academic Press, New York, 1985.
- [4] T. Kawai : *Nonstandard analysis by axiomatic method*, in "Southeast Asian Conference on Logic" (ed. by C.-T. Chong and M.J. Wicks), Proc. Logic Conf., Singapore, 1981, Elsevier (North-Holland), Amsterdam, 1983, pp. 55-76.
- [5] A. Robinson : Non-Standard Analysis, North-Holland, Amsterdam, 1966 ; 2nd ed., 1974.
- [6] M. Saito : *On the non-standard representation of linear mappings from a function space*, Comment. Math. Univ. St. Pauli **26** (1977), 165-185.
- [7] S. Sternberg : Lectures on Differential Geometry, 2nd ed., Chelsea, New York, 1983.
- [8] T. Todorov : *A nonstandard delta function*, Proc. Amer. Math. Soc. **110** (1990), 1143-1144.
- [9] T. Todorov : *Pointwise kernels of Schwartz distributions*, Proc. Amer. Math. Soc. **114** (1992), 817-819.

Department of Applied Mathematics
 Faculty of Engineering
 Shizuoka University
 Hamamatsu 432, Japan