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Introduction

In terms of nonstandard analysis, Todorov ([8], [9]) showed that every
Schwartz distribution on R” can be represented by a * -integral with *C* internal
kernel function without the necessity of saying, “up to an infinitesimal” (for the
case #=1, see also [5]). From the differential-geometric viewpoint, it would be
desirable to obtain nonstandard representations of generalized sections of vector
bundles in an intrinsic manner.

The main purpose of this note is to prove in a simple way that every general-
ized section (see §1 or [2]) T of a C* vector bundle E over a o-compact manifold
M can be represented by a * -integral in the sense that there exists a *C* internal

section Ar of the nonstandard extension *E of E such that T(u)Z_[M Br+*u for

every compactly supported C* section # of E' @ |Aul|, where E' is the dual
bundle of E and |/\u| stands for the density bundle over M.

After devoting §1 to some notational preliminaries, we obtain in §2 non-
standard representations of linear maps from the space of C* sections of E with
compact support and then the desired representations of generalized sections. In §
3 we get a result on nonstandard representations of linear maps either from the
space of C* sections of E or from its subspace consisting of compactly supported
sections.

As for nonstandard analysis, see, e.g., [1], [3], or [4]; we work with a
sufficiently saturated nonstandard model.

1. Notational preliminaries

Throughout the paper we let K be either R (the real numbers) or C (the
complex numbers). Furthermore, let IV be the (strictly) positive integers and * N
the infinite elements in *V.

By a vector bundle 7z : E— M we mean a C” vector bundle with typical fiber
K? (for some pEN) over a o-compact C* manifold M with dim M EN. For each
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xEM, we write Ex:=nr5'(x), the fiber of E over x. The dual bundle of E is
denoted by E'. For 2{0}UN U{0}, let I'*(E) be the space of all C* sections
of E and I(E) the space of C* sections of E with compact support.

The K-line bundle of densities over M is denoted by |Ax|. Given a C*
Riemannian metric ¢ on M, we let dvs=I"(|/\u|) be the Riemannian volume
density associated with g (see [7]). A generalized section of a vector bundle E—M
is defined as a continuous linear functional on the space I5°(E'®|/\x|) (endowed
with the canonical LF-topology); cf. [2].

For two vector bundles E—M and F—N, we denote by EXF the vector
bundle over M X N such that (EXF)x,»=Ex ® F, for every (x, V)EM XN. We
will write ® and X for *@ and *XI, respectively.

2. Nonstandard representations of generalized sections of vector bundles

Let E—M be a vector bundle. Choose a C* Riemannian metric g on M. By
the saturation principle, there exists a hyperfinite-dimensional vector subspace V'
of the internal vector space *(I5°(E)) such that °(I5°(E)) :={*s: s€It*(E))}is an
external subset of V. Take a C* fiber metric % in E and pick ¢;:€V (:=1,2, ...,
7 with p=*dim VE*N.,) such that

2.1 [M*h(g/u, ¢;) *dvg=04; (Kronecker delta) ; 7, j=1,2, ..., 7.

Regard ¢} :=*h(-, ¢;) as an element of *(/3°(E")) in a natural manner. Define an
internal section FE*(I77(E'XE)) by

(22) U(x, ):=2 $HDY() (x, yE*M).
Moreover, define T €*(IT(E' ® |Au)KE)) by
23) F(x, y) =3 (P00 *dvg(x)@¢i(y) (x, yE*M).

Proposition 2.1. Given a vector bundle E—M and a C® Riemannian
metric g on M, let ¥ and ¥ be as in (2.2) and (2.3), respectively.
(1) For every s€Iy(E) and every yE*M,

(24) *s(y)= /; 500 Tx, ).

[The map *M X*M >(x, y) —*s(x)- T(x, y)E*(|AulXE) x5 gives an element
of *Is(|A\u|XE)) obtained from *s(x) ® @ (x, y) by the canonical pairing
between *Ex :=*(mz)"N(x) and *E}.]

(2) For every x, zE*M,

(2.5) fy oy T, 9)- ¥y, 2) ® *dve(y)=¥(x, 2).
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Proof. Since every *s€?(I3°(E)) is expressed as
(2.6) *s=§}l ci(*s)¢; with c,-(*s)=[M*s-¢,’-’ *dvg,
we have (2.4). Formula (2.5) follows immediately from (2.1). [

Proposition 2.2. Let E—M and F—N be vector bundles. Let U<
*IT((E'®|AM)XE)) be as in (2.3). For a K-linear map L : It*(E)—I(F),
define U.*(I'"(E' @ |A\ul)XF)) by

~ 7
¥(y, 2) =L o, @ *LYE(y, ))(2)=2Z (¢1(y) ® *dve(y)) ® *L($:)(2)

for yE*M and zE*N, where Iz oin), is the identity transformation of
*(E'®|Aul)y. Then L is represented as

(LU= [ *s() Bily, 2) (SETT(E), 2E*N).
Proof. Let s€I7°(E) and 2€*N. By the expression (2.6),
7
HLN(2)=*L(*s)2) =*L(Z cd*s)$:)(2)
i
=3 L) = [, *s()- Bulp,2). O

i= yexm

We can now represent every generalized section of £ by a * -integral.

Theorem 2.3. Let E—M be a vector bundle, and let ¥ be as in (2.3). For
each generalized section T of E, define fr<*(I5(E)) by

Br(3) :=(*TRL:)F(-, )= 2 *T(41 @ *dv,)d(y) (yE*M).
Then
T()= [ Br*u, uSTF(E' @ | Aul.

Proof. Apply Proposition 2.2 to the K-linear map Lr: IT(E' ® [Au|)Du
—Lr(u)eI™(M x K) defined by Lr(u)(z)=(z2, T(u)) for ze&M. [

REMARK. If there exists a section SEI3°(E) such that 7 ()= /;{ s+ u for all
usTy(E' ® |Aul), then *T (¢ Q *dvg)=ci(*s) (see (2.6)) and thus fr="=*s.

EXAMPLE. Given a o-compact C* Riemannian manifold (M, g), we obtain a
“nonstandard delta function” with respect to *dv, using the above results. In fact,
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let C*(M ; K) denote the space of K-valued C* functions on M and let C3°(M ;
K):={feC~(M; K): supp(f) compact}. Let V; be a hyperfinite-dimensional
vector space over *R such that

(Ce(M; R)):={*f: f€eCe(M; R)}CVoC*Cs(M ; R)).

Pick ¢.€ Vo (=1, 2, ..., v with v=*dim V,) such that [M 0:0; ¥dvg=134
(7, 7=1, 2, ..., v) and define an internal function §€*(C5(M X M ; R)) by 8(x,
y) =21 edx)ei(y) (x, yE*M). Noting that C3(M; C)=C:(M; R)
+J/—1C5(M ; R), for x, v, zE*M we have:

(1) o(x, x)=0, 6(x, ¥)=68(y, x), and (8(x, ¥)’<8(x, x)(y, ¥).

@ @)= [ 80, () *dvo(y) for FECFM; ©).

3) /y _.,, 0, )8y, 2) *dve(y)=06(x, 2).

@ If T:D=C3(M; C)—C is a Schwartz distribution on M, then
T(f)=jy‘EW *F(3)rr(y) *dve(y) (fED), where yrE*(C(M ; C)) is defined by
rr(¥) = =*T(6(-. y)=2Z1*T(p)ey) (YE*M).

3. Nonstandard representations of linear maps from I'*(E) or I[}(E) to
I'"(F)

Let E—M and F— N be vector bundles. For sEI'°(E), define Ts:Iv7(ET &
|Aul) =K by

Tw)= [ svu, wSIF(E' @ |Aul.

Furthermore, for 2€{0} U N U{o0}, let U# be either I'*(E) or I#(E).

We first note that if s1, Sz, . .., Sm (mE N) are linearly independent in U%, then
there exist 7 elements 0;SI5°(E' ® | An|) such that Ts(0;)=0s (7, j=1,2, ...,
m). Indeed, Ts,, ..., Tsn are linearly independent in the vector space {7s: sE
U#} over K. Therefore there exist 7 elements :EI(ET Q@ [Aul) (=1, 2, ...,
m) such that the m X m matrix A=(Ts,(7;))i<ij<n is nonsingular; for a simple
nonstandard proof (in a more general setting), see [6, Lemma 1.1]. Then we have
only to put 0;=22" b;z: where (b;;) is the inverse of the matrix A.

Now, for »E{0}UN U{0}, let §"[resp. §4] be the internal set of all &
*I"((E' ® | Au|)XF)) of the form

(3.1) £, 9)=2u(0)@vy) (xE*M, yE*N)

for some vE*N, u,€*(IT(E' @ | Aul)), v:€*(I'"(F)) [resp. v:€*(IT(F))] (i=
1,2 ..., v).
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Theorem 3.1. Let k »E{0}JUNU{} be fixed Let UF be as above.
Suppose that L : Uf—I"(F) is a K-linear map. Then there exists an element @,
€867 such that

(L= [, *sG0)- 0ulx, v) (s UE, yE*N).
Moreover, if L(s)EIV(F) for all s< Uz, then @, can be chosen from 3.
Proof. For s€ Uf, define an internal map Gs: §—*(I""(F)) by
GO = [ *s(x) £z, )= 3} ((T)()vdy) (YE*N),

where £E 67 is as in (3.1). Let Bs be the internal set
Bs:={t€97: G(O)=*(L(s))}.

We shall show that the family {8 : s& U#} has the finite intersection property. To
do this, let P(m) (mEN) be the following proposition :
For s;€ Ug, i=1, 2, ..., m, the system of equations

(3.2) Gs{§)=*(L(s) (i=1,2, ..., m)

has a solution ¢ in §".

Consider first the case m=1. If s1=0, any {€ §{ satisfies (3.2) for m=1. If
s:%#0, then there exists an element 7€ I (E' ® |Au|) with Ts,(7)#0 and thus we
can choose 0EIT(E" @ |Aul) such that Ts,(6)=1; therefore, if we let

&(x, y)=*o(x)Q@*(L(s))(y) (xE*M, yE*N),

then {€ ¢ " and moreover this ¢ satisfies (3.2) for m=1, since *( Ts,)(*0)= Ts,(0)
=1. Hence P(1) is true.
Next, assume that 7 >1 and that P(m—1) is true. If si, ..., s» are linearly

m—1
dependent in U¥Z, then we may assume that sn= 21 a:s: (a:€ K) without loss of
£

generality, so that the system (3.2) is equivalent to the system of equations for i =
1,2, ...,m—1 1If sy, ..., sm are linearly independent, then, as noticed earlier, we
can choose 0:E I (E" @ |Au|) such that Ts(0;)=05 (7, j=1, ..., m); so, if we
let

£x, )= 21 *0x) ® HL(s)(y) (xE*M, yE*N),

then ¢ belongs to §7 and satisfies (3.2). Thus P(m—1) implies P(m).

Hence P(m) is true for all mEN. Then, by the saturation principle, the
intersection B =()sc:Bs is nonempty ; accordingly, there exists an element @ E
AB.

If L(s)EIY(F) for all s€ U#, then by replacing §” with §{ in the above
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discussion, we see that @ can be chosen from §§. [

(1]
(2]

(4]

(5]
(6]

(7
(8]
(9]
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