|

) <

The University of Osaka
Institutional Knowledge Archive

Title A Study on Methods and Tools for Developing
Service-Oriented Grid Application

Author(s) |[m)ll, &F

Citation |KFRKZ, 2008, HIFwX

Version Type|VoR

URL https://hdl. handle.net/11094/1160

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

A Study on Methods and Tools for Developing
Service-Oriented Grid Application

Submitted to
Graduate School of Information Science and Technology
Osaka University

January 2008

Kohei ICHIKAWA

Author’s Publications for Doctoral
Degree Application

A. Journal Paper

1. Kohei Ichikawa, Susumu Date, Takeshi Kaishima and Shinji Shimojo. “A framework
supporting the development of Grid portal for analysis based on ROIL,” Methods of
Information in Medicine, vol. 44, no.2, pp. 265-269, June 2005.

B. International Conference Papers

1. Kohei Ichikawa, Susumu Date and Shinji Shimojo. “A framework for meta-scheduling
WSREF based services,” in Proceedings of 2007 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 481-484, August 2007.

2. Kohei Ichikawa, Susumu Date, Sriram Krishnan, Wilfred Li, Kazuto Nakata, Ya-
sushige Yonezawa, Haruki Nakamura and Shinji Shimojo. “Opal OP: An extensible
Grid-enabling wrapping approach for legacy applications,” in Proceedings of 3rd
Workshop on Grid Computing and Applications, pp. 117-127, June 2007.

Summary

The application of service-oriented architecture to Grid technologies is leading a new mode
of wide-area distributed computing in scientific and engineering areas such as life science,
high-energy physics, and earth science, and a new computing approach has gathered con-
cerns and interests from experts with various research backgrounds. The new computing
approach allows such experts to perform loosely-coupled large-scale simulation by seam-
lessly and flexibly federating Grid services, each of which is built from a computer pro-
gram and delivers its own function. The application realized by federating multiple Grid
services is referred as “service-oriented Grid application” in this dissertation. The service-
oriented Grid application has gathered a lot of attention especially in the research fields of
the recently emerged multi-scale, multi-physics simulations composed of multiple different
simulations, because it complements the missing part of the current computing approach
which is a single tightly-coupled large-scale simulation. In reality, however, even scientists
with knowledge on Grid technologies have difficulty in developing a Grid service from an
existing program due to the complicated configuration and implementation accompanying
Grid service development. Also, both the deployment of Grid services onto multiple orga-
nizations and the development of a Grid application composed of these Grid services are
not a piece of cake. For the reason, methods and tools for facilitating the development of
service-oriented Grid application is demanded today.

This dissertation focuses on addressing some of the issues described above. In the area
of application development, a new wrapping method that would make an existing program
into a service-oriented Grid application with minimal effort is proposed. To facilitate the
development based on the new method, a tool called Opal Operation Provider (Opal OP)
is developed. The Opal OP allows an application developer to import the functions for
handling an existing program into his/her Grid service by utilizing a plug-in technique for
Grid service or operation provider. This tool is demonstrated in real use to be effective in
providing the application developer with the ease-of-use and flexibility that is not available
in other conventional wrapping methods.

Another contribution of this dissertation is the proposal of Meta-Scheduling Services

1l

v SUMMARY

Architecture (MSSA) and the development of a meta-scheduler as a Grid service to operate
in the service-oriented Grid environment. This architecture focuses on providing an inter-
face transparent way for selecting a Grid service among multiple Grid services deployed
on the service-oriented Grid environment. The architecture takes advantage of the factory
pattern technique, which is used for state management of the Grid service. The experi-
ment in this dissertation proves that MSSA is fault-tolerant to failures of Grid services in
execution and the additional overhead for achieving the fault-tolerance is minimal.

This dissertation is organized as follows. In Chapter 1, the background and goal of
this study is described. After that, Chapter 2 clarifies the technical issues to achieve in
this study through the consideration of the difficulties and problems in Grid application
development process. In particular, the developing stage of a Grid service from an existing
program and the developing stage of a Grid application composed of multiple Grid services
deployed on wide-area computing environment are highlighted.

In Chapter 3, a new method that facilitates the development of a Grid service from an
existing program is proposed. The new method reduces the difficulties and problems in
Grid application development process. Also, a new tool named Opal OP which helps the
development along with the proposed method is proposed and implemented. After that, the
usefulness and effectiveness of the proposed method and the tool is discussed through the
actual example of the system developed based on the proposed method and tool.

In Chapter 4, a new method named MSSA and the corresponding tool that simplifies the
development of service-oriented Grid application composed of multiple Grid services de-
ployed on computing service-oriented Grid environment from standpoints of performance
improvement, load balancing, and fault-tolerance enhancement are proposed. Discussion
in this dissertation focuses on the usefulness of the proposed MSSA by showing an actual
scientific Grid application.

Finally, Chapter 5 concludes this study and discusses directions for future research.

Contents

1 Introduction 1
1.1 ResearchBackground 1
1.2 Research Objective 4
1.3 Outline of the Dissertation 5
2 Technical Issues in Developing Service-Oriented Grid Application 7
2.1 Introduction L
2.2 Grid Application Development Procedure and Difficulties
2.3 Review of Conventional Approaches 18
2.3.1 Development of a WSRF-based Service from an Existing Program 19
2.3.2 Development of a Grid Application Utilizing Multiple WSRF-based
Services 24
2.4 Technical Issues in Developing Service-oriented Grid Application 26
24.1 AtDevelopment of a WSRF-based Service from an Existing Program 26
24.2 At Development of a Grid Application Utilizing Multiple WSRF-
based Services 27
2.5 ConcludingRemarks 27
3 Extensible Grid-Enabling Wrapping Method 29
3.1 Introduction 29
3.2 Conventional Wrapping Methods and Problems 30
3.2.1 Conventional Methodsand Tools 30
3.2.2 Wrapping Service Model behind Existing Wrapping Tools 33
3.2.3 Inextensibility and Inflexibility in Development based on Wrap-
ping Service Model L Lo 35
3.3 Extensible Wrapping Service Model 36
3.4 Opal Operation Provider (Opal OP) 38
34.1 Overviewof Opal OP. 38

Vi CONTENTS

34.2 OperationProvider
3.4.3 Design and Implementation of Opal Operation Provider Module .
3.4.4 Design and Implementation of Opal OP Toolkit
3.5 Evaluation and Discussion Lo
3.5.1 Application Developer’s Work Reduction
352 CaseStudies
3.6 Concluding Remarks

4 Transparent Meta-Scheduling Architecture for Grid Applications

4.1 Introduction L

4.2 Requirement Analysis of Meta-Scheduler
42.1 Meta-Scheduler Lo
4.2.2 Requirement to Meta-Scheduler for WSRF-based Service

4.3 MSSA: Meta-Scheduling Services Architecture
4.3.1 Factory Pattern in WSRF-based Service
432 Overviewof MSSA L o
4.3.3 Design and Implementation of Meta-factory Service
4.3.4 Design and Implementation of Information Provider
4.3.5 Design and Implementation of MSSA Toolkit

4.4 Evaluation and Discussion Lo
4.4.1 Prototype System for Drug-docking Simulation
4.4.2 Detailed Behavior of MSSA-based System

4.5 ConcludingRemarks L.

S Conclusion
5.1 ConcludingRemarks

5.2 Future Directions e
Acknowledgments

Bibliography

43
47
53
54
55
59

87
87
89

93

94

Chapter 1

Introduction

1.1 Research Background

The computer usage pattern of researchers has been changing since the emergence of the
computer. In the era of the mainframe computer, a single large computer was shared with
multiple users. Today, conversely, people utilize multiple computers simultaneously to
solve their computational problems. Network Of Workstations (NOW) [1] and Beowulf
[2-5] are typical examples of such computer usage patterns. The change in computer usage
pattern has been driven by the users’ infinite pursuit of computational performance and

throughput. This trend is supposed to continue from now on.

According to Moore’s Law, the number of transistors that can be inexpensively placed
on an integrated circuit increases exponentially, and as a result doubles approximately ev-
ery two years [6]. Similarly Gilder’s Law, which pertains to network bandwidth, says that
wide-area network capacity doubles every nine months [7]. In fact, processor and net-
working technology have been advancing following these rules. Figure 1.1 illustrates such
a development situation. These two facts mean that the cost of transmitting a bit over a
network decreases faster than the performance increase of a processor. Taking these de-
velopment situations into consideration, much effort has focused on the development of
distributed computing systems linking multiple computers on a high-speed network rather

than the development of a single large computer.

Distributed computing technologies have also made dramatic improvement in the last
few decades. During these decades, a variety of software technologies have been proposed
and implemented. RPC (Remote Procedure Call) [8] is a representative example of such
technologies. RPC allows a computer program to call a subroutine or procedure of the
program executed on a remote computer. MPI (Message Passing Interface) [9] is another

typical example of such technologies. MPI is mainly used today for high performance

1

2 CHAPTER 1. INTRODUCTION

Optical Fiber
(Bits per Second)
(Doubling time 9 Months)

Silicon Computer Chips
(Number of Transistors)
(Doubling time 24 Months)

-
-
-
\ =<
-
-

-
PSSy Lot

-
-
------------d------

Performance per Dollars Spent

1999 2000 2001 2003 2004 2005 2007

Year

Figure 1.1: Moore’s law and Gilder’s law

computing on a computing cluster system, and it allows users to easily write program with
communication among multiple processes, each of which runs on a computing node of the
cluster system. These days, many scientific programs have been developed with MPI for

high-performance computing on a cluster system.

Furthermore, the emergence of object-oriented architecture has been accelerating the
advancement of distributed computing technologies. In object-oriented architecture, a pro-
gram is composed of independent components or objects, each of which encapsulates a
certain function. Examples of object-oriented architecture include CORBA [10, 11] and
DCOM [12]. In this architecture, various components or objects communicate with each
other in an architecture-independent manner. Very recently, this distributed object-oriented
architecture has transformed to a new architecture inspired by a more sophisticated con-

cept, that is, service-oriented architecture represented by Web service technologies.

The service-oriented architecture puts more focus on the interoperation among different
computers. The software components in this architecture are defined as Web services which
communicate with each other using XML messages following the SOAP standard. In
addition, the interfaces of the Web service are written in a machine readable description,

Web Services Description Language (WSDL).

Today, this service-oriented architecture typified by Web service is playing an important

role in terms of not only data and information exchange but also business process devel-

1.1. RESEARCH BACKGROUND 3

opment. The success of the service-oriented architecture typified by Web service in the
business area stimulates the necessity of the counterpart in scientific research area. For the
reason, the Grid computing technologies, which had been developed as high-performance
computing technologies for scientific research, is transforming to new high-performance
computing technology that allows us to loosely couple multiple computational resources,
by integrating the concept of service-oriented architecture. Furthermore, the transforma-
tion has been further accelerated by the recent scientists’ expectation to the collaboration
with different multiple organizations on the Internet. From these backgrounds, a new ar-
chitecture of Grid, that is, service-oriented Grid architecture [13] has emerged. As a result,
the latest Grid middleware, that is, Globus Toolkit 4 (GT4) [14-16], has combined service-
oriented architecture and the traditional high-performance computing Grid to two new con-
cepts, Open Grid Services Architecture (OGSA) and Web Services Resource Framework
(WSRF) [17].

The technological development described above is changing how researches are per-
formed in various scientific fields such as social science [18], high-energy physics [19,
20], earth sciences [21, 22] and bioinformatics [23]. Today, scientists and researchers can
obtain enormous amount of data and information through the Internet due to the devel-
opment of network technology, even if data source are located in different organizations.
Furthermore, scientists and researchers can take advantage of the enormous computational
power by aggregating multiple computational resources. Moreover, scientists can control
scientific measurement devices such as microscopes [24] and medical devices [25, 26] on
the Internet. These facts mean that the geographical distances of research organizations is
being reduced and a new research environment where scientists at multiple research orga-
nizations can perform their research in a collaborative manner for their common research

purpose is increasingly demanded.

The recently emerged service-oriented Grid is considered a building block technology
for establishing such a collaboration environment on the Internet since it allows computa-
tional and data resources to be loosely coupled in an on-demand way. From this consid-
eration, scientists and researchers in various research fields are attempting to re-develop
their own scientific programs to Grid services these days. This service-oriented Grid has
gathered a lot of attention especially in the research fields of multi-scale and multi-physics
simulation federating multiple simulations in terms of collaborative research on such en-
vironment. In practice, however, many difficulties still exist despite the recent maturity of
distributed computing technologies when scientists develop a Grid application composed

of multiple Grid services. For example, the development of a Grid service from an exist-

4 CHAPTER 1. INTRODUCTION

ing program requires a change in mind set and in-depth knowledge on the service-oriented
Grid. Also, the development of Grid applications utilizing such Grid services distributed
over multiple organizations is hard for computational scientists without detailed knowledge
and techniques of information technologies.

The author believes these difficulties in the development of service-oriented Grid ap-
plication as major reason hampering the advancement and promotion of computational
science. In fact, scientists’ expectations of an easy method for facilitating the develop-
ment of service-oriented Grid application are increasingly growing with the maturity of
Grid technologies. More specifically, a method for exposing existing programs as software
components or Grid services and utilizing these Grid services over multiple organizations

18 now demanded.

1.2 Research Objective

From the research background described in section 1.1, this research proposes easy meth-
ods for developing a service-oriented Grid application. At the same time, new user-
supporting tools that facilitate the development of Grid applications based on the proposed
methods are designed and implemented.

In particular, this dissertation focuses on the inefficiency of the following two main

stages composed of service-oriented Grid application development:
1. Developing stage of a Grid service from an existing scientific program
2. Developing stage of a service-oriented Grid application from multiple Grid services

For the first stage, this study focuses on the wrapping service which allows the applica-
tion developer to build a Grid service encapsulating an existing scientific program without
writing additional codes. This study proposes a technique to implement the functions of the
wrapping service as a software module or operation provider, and allows the application
developer to import the functions into his/her Grid service.

For the second stage, this study proposes a new meta-scheduling architecture which
allows the application developer to develop a meta-scheduler to handle multiple Grid ser-
vices. The problem here is how to handle the Grid service which may has different interface
each other. To tackle this problem, the proposed scheduling architecture focuses on pro-
viding an interface transparent way for selecting a Grid service by taking advantage of the

factory pattern technique, which is used for state management of the Grid service.

1.3. OUTLINE OF THE DISSERTATION 5

The ultimate goal of the study summarized in this dissertation is the promotion of
service-oriented Grid technologies by realizing new and easy methods and the correspond-
ing supporting tools for developing service-oriented Grid application. Moreover, this re-
search hopefully contributes to the advancement of computational science through the pro-

motion of service-oriented Grid.

1.3 Outline of the Dissertation

This dissertation is organized as follows. Chapter 2 reviews the general procedure of Grid
application development and the foregoing related researches. Through the review, the
technical issues to solve in this dissertation are clarified. After that, as a solution to tech-
nical issues clarified in chapter 2, chapter 3 proposes a new wrapping service model and
method for encapsulating an existing program to a Grid service. Also, a tool for facilitating
the development of Grid service based on the proposed method is shown. Subsequently,
chapter 4 proposes a new meta-scheduling model for building service-oriented Grid appli-
cation and the corresponding tool for supporting this method. Finally, chapter 5 concludes

this dissertation with summary of achievements and directions for future research.

Chapter 2

Technical Issues in Developing
Service-Oriented Grid Application

2.1 Introduction

This chapter focuses on the technical issues faced by the application developer in develop-
ing a service-oriented Grid application from existing programs. For this purpose, the gen-
eral procedure of Grid application development is first reviewed. Then, difficulties at the
development are particularly focused. Second, a couple of approaches possibly available to
develop a Grid application are investigated. Finally, the technical issues to achieve in this
study are clarified. Before going into the detail of discussion, this introduction explains
the service-oriented Grid architecture and Web Services Resource Framework (WSRF) as
a basic knowledge for discussion later in this chapter.

Figure 2.1 shows the general architecture of service-oriented Grid [27, 28]. Today, the
term of “Grid” is used to refer to various types of wide-area distributed computing . Cam-
pus Grid and Desktop Grid are some examples. This dissertation uses the term of “Grid”
to refer to the service-oriented Grid which conforms to the architecture as shown in Fig.
2.1. The service-oriented Grid has a three-tier architecture composed of resource, service,
and presentation tiers. The resource tier includes applications, computing resources, data
storage resources, and instruments. The access from a user to these resources is taken in the
presentation tier, and then virtualized through Web/Grid services in the service tier. Portal
frameworks such as GridSphere [29] and Jetspeed [30] provide the user with intuitive Web
interfaces of the Grid applications. To process the response to the user request, the portal
accesses the appropriate resources via Web/Grid services.

Figure 2.2 shows the overview of WSRF. The outstanding feature of WSRF is the
stateful Web service. In WSRE, the stateful Web service is prescribed to hold its states as

Resource Properties (a set of variables) so that it allows the client program to reuse the

7

8 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

: I
: I
W .
3 : SEE/'(cTsd _’: Application
0 | | Embedded Client vi !
4% Program/Portlet [I
(] I |
o I
58 |
5 Web/Grid : |
) '@- I (Services : 3 Computing
O Embedded Client :
2,9 Program/Portlet |
-~ ‘ I
Web/Grid I
. / e Datastorage
Services |
© |
o
o 2 |
- o !
[-E' . !
g = ! Web/'Gnd —+—3] Instrument
O 1 Services I
: I
: I
Presentation Tier ! Service Tier I Resource Tier

Figure 2.1: General architecture of service-oriented Grid

previous computing results, check the progress of computation and so on. The Resource
properties can be defined in Web Services Definition Language (WSDL) as well as the
interface of the service. Therefore, they can be accessed through the use of SOAP messages

in the same way as the access to the interface of the service.

As described in Chapter 1, the development of Grid application which conforms to this
newly emerged service-oriented Grid architecture and WSREF is increasingly demanded.
However, there are still many difficulties which developers encounter in developing a
service-oriented Grid application conforming to WSRE. In the following sections, such
difficulties are investigated through the careful review of the general procedure of Grid ap-

plication development. After that, the technical issues to achieve in this study are derived.

2.2. GRID APPLICATION DEVELOPMENT PROCEDURE AND DIFFICULTIES

s mm Em Em Em o Em Em ===

2.2 Grid Application Development Procedure and Diffi-

Web Services Resource Framework (WSRF)

Request
operation: A
input: xxxx

Traditional Web Service

WSDL

Resource
stateA =10

Interface Definitions
<portType>
<operation name="A">
<operation name="B”>

</portType>

Resource Properties
Definitions
<type>
<element name="“stateA”
type=“xsd:int”>
<element name="“stateB”>
type="xsd:string”>

<[type> 7

bind
‘>

bind

Service
Implementation

Resource
Implementation

culties

Figure 2.2: Concept of WSRF

R .

As mentioned in sections 1.1 and 2.1, the application developer encounters many diffi-

culties when he/she develops a service-oriented Grid application from existing scientific

programs. This section investigates such difficulties and analyzes the causes of them.

Figure 2.3 illustrates the procedure of Grid application development. In general, the

procedure is composed of four stages. The four stages are (1) writing stage of target pro-

gram, (2) developing stage of WSRF-based service, (3) deploying stage of WSRF-based
service, and (4) developing stage of a Grid application composed of multiple WSRF-based

services. Each stage of development is reviewed in the following subsections to analyze

what kind of difficulties exists and what causes the difficulties.

10 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

Stage:1
Target
Program
; develop
. rewrite
Stage: 2 1« directory
WSRF-based

Service

Stage:3 —
WSRF-based —1 | WSRF-based WSRF-based
Service Service Service

WSRF-based
Service

Stage: 4 utilize

Service-oriented Grid Application

Figure 2.3: Procedure of Grid application development

Stage 1 : Writing Stage of Target Program

The first stage is the development of a target program which a scientist as an application
developer wants to build as a WSRF-based service. At this stage, the application developer
may reuse an existing program or write a program from scratch. In the former case, the
application developer can skip this stage. On the other hand, in the latter case, the scientist
writes a target program by modeling his/her scientific problems based on his/her profes-
sional experience. The works occurred at this stage are mostly derived from the scientist’s
research fields. In the area of life sciences, for example, the scientist has to consider how
chemical compounds as drug candidates are modeled and expressed on a computer, how
accurate the model is and so on for writing a target program. This dissertation does not
cover these kinds of science-oriented works observed at this stage. Rather, this dissertation
assumes that the scientist has an existing program that he/she wants to benefit from Grid

technologies.

2.2. GRID APPLICATION DEVELOPMENT PROCEDURE AND DIFFICULTIES 11

MathService Value
. 1
add(5) > Value+=5 !
)D Value=5
€
<€ B I
H]
add(10) H Value+=10 |
>D Value=15
€
<€ H I
|]
X]
subtract(3) 1 Value-=3 i
End User e >|:| Value=12
B !
1

Figure 2.4: Behavior of MathService

Stage 2: Developing Stage of WSRF-based Service

The second stage is the development of a WSRF-based service from a target program. At
this stage, the application developer rewrites the target program to a WSRF-based service.
More technically, the operations and the corresponding interfaces of the WSRF-based ser-
vice are designed and implemented based on the consideration on how the target program
should be accessed by end users. At this stage, the implementation and configuration works
become the hardest ones to the application developer.

At this stage, alternatively, the application developer can develop a WSRF-based ser-
vice from scratch without going through the first stage. In this case, however, the applica-
tion developer encounters more programming difficulties than the development case using
the target program, since the detailed knowledge and techniques on the Grid technologies
as well as in his/her own scientific area are simultaneously required for the development of
a WSRF-based service from scratch.

For further understanding of difficulties related to implementation and configuration of
the WSRF-based service, how hard the implementation and configuration of the WSRF-
based service is analyzed through the following step-by-step review of the development
example of MathService.

MathService is a simple service from GT4 tutorial documentations [31] and just per-
forms simple two types of calculations (add() and subtract()) by repeatedly receiving the

inputs from the user (Fig. 2.4). Table 2.1 summarizes the amount of configuration and

12 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

Table 2.1: Configuration files and implementation for a WSRF-based service example

Configuration files Implementation files
File name Lines File name Lines
Math.wsdl 119 MathFactoryService.java 51
Factory.wsdl 71 MathQNames.java 16
deploy-server.wsdd 27 MathResource.java 73
deploy-jndi-config.xml 38 MathResourceHome.java 20
MathService.java 50

/* Remotely-accessible operations */
public AddResponse add(int a) throws RemoteException {
value += a;
lastOp = "ADDITION";
return new AddResponse();

}

public SubtractResponse subtract(int a) throws RemoteException {
value -= 3;
lastOp = "SUBTRACTION";
return new SubtractResponse();

}

Figure 2.5: Implementation of MathService operations

implementation required for developing this MathService. As the table indicates, the ap-
plication developer has to prepare total 255 lines for configuration files and total 210 lines
for implementation files even for MathService whose substantial operations are realized by
only approximately 10-line codes as shown in Fig. 2.5. This large amount of configuration
and implementation required for building a WSRF-based service becomes a big obstacle
for the development at this stage.

The developing stage of a WSRF-based service is, in general, further divided to the
following seven steps. Figure 2.6 shows the overview of WSRF-based service develop-
ment composed of the seven steps. At the first step, the application developer designs the
interfaces of the WSRF-based service. In this step, the application developer decides the
specification of operations (functions provided by the service) and resource properties (a
set of variables to hold the state of the service) which the WSRF-based service provides to
the end user. At this step, the application developer designs add() and subtract() operations

and its interfaces as well as variables as resource properties.

2.2. GRID APPLICATION DEVELOPMENT PROCEDURE AND DIFFICULTIES

13

WSDD

£ [A] I

: | WSRF-based | _ _|_ - WSDL

Service ! 1

i il

EI’I: inputData YU | (B]

access i Il 1 I

—>:I[] calculate 11 | 7

| | N

al getResult il : Service

| I 5 Impl

H | Resource | | l_ -

H | property | I} , 4 ==+ [C]

NS = | I

i | Stepl. I |

designing : : Resource

interface | Impl

-

: [D]

IJNDI

Config

»“’. _7

Step 7

configuring the binding:
among the service, theE
interface and the
implementation

Step 2.
defining the
interface and the
resource property
in WSDL

Step 3.
implementing
the service

Step 4.
implementing :
the resource property i

Step 6.
configuring the binding
between the service i
and the resource
implementation

building and deploying the WSRF-based service
into the Globus server container

GlobusServer Container

Figure 2.6: Overview of WSRF-based service development

At the second step, the application developer defines the interfaces and resource proper-

ties in the WSRF-based service in WSDL to allow the client program to know what kind of

interfaces and resource properties are available for the access to the WSRF-based service.

Figure 2.7 shows a part of the actual definition of operation “void add(int a)”. As the figure

indicates, the application developer has to prepare at least more than 15-line configuration

in WSDL just for defining add() operation and making it accessible from the end users. As

easily imagined, in the case of the WSRF-based services which are used for practical scien-

tific computation, the work at this step becomes time-consuming and error-prone work due

to the increase in the amount of implementation and configuration which the application

14 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

<xsd:element name="add" type="xsd:int"/>

<xsd:element name="addResponse">
<xsd:complexType/>

</xsd:element>

<message name="AddInputMessage">

<part name="parameters" element="tns:add"/>
</message>
<message name="AddOutputMessage">

<part name="parameters" element="tns:addResponse"/>
</message>

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>
</operation>

4

Figure 2.7: Part of interface definition of add() operation

developer has to prepare.

At the third and fourth steps, the application developer implements the operations and
resource properties of the WSRF-based service. At these two steps, the operations and
resource properties are actually implemented so that the WSRF-based service provides
the actual functionalities of add() and subtract() operations using resource properties (a
set of variables). In the example of MathService, add() and subtract() operations can be
easily implemented because of the small number of operations. However, in the case of the
development of the WSRF-based service from the existing practical scientific application,
the amount of program codes which the application developer has to rewrite becomes large
because the WSRF-based service for such practical scientific application usually requires
many operations to be available via service interfaces. Moreover, the knowledge on and
skills of WSRF-based service development are heavily required at these stages. Thus, the
reduction of program codes which the application developer has to rewrite is an important

technical issue to achieve in these steps.

At fifth and sixth steps, the application developer writes the configuration files to bind
the WSRF-based service ([A] in Fig. 2.6) with the interface definition ([B] in Fig. 2.6), the
implementation of the service ([C] in Fig. 2.6) and the resource properties ([D] in Fig. 2.6).
For this purpose, the application developer himself has to prepare for deploy-server.wsdd,

and deploy-jndi-config.xml configuration files. Figure 2.8 shows the actual examples of

2.2. GRID APPLICATION DEVELOPMENT PROCEDURE AND DIFFICULTIES 15

<service name="examples/core/rp/MathService" provider="Handler"
use="literal" style="document">
<parameter name="className*
value="org.globus.examples.services.core.rp.impl.MathService"/>

<wsdIFile>
share/schema/examples/MathService_instance_rp/Math_service.wsdl
</wsdlIFile>
</service>
4
deploy-server.wsdd
<service name="examples/core/rp/MathService">
<resource name="home" type="org.globus.wsrf.impl.ServiceResourceHome">
</resource>
</service>
I 4

deploy-jndi-config.wsdd

Figure 2.8: Examples of configuration files for a WSRF-based service

these configuration files for MathService: deploy-server.wsdd, and deploy-jndi-config.xml.
As easily imagined, writing this configuration is cumbersome, time-consuming and error-

prone.

At the last step, the application developer builds and deploys the WSRF-based service
into the Globus container which controls the behavior of the WSRF-based service, just by

executing ant-based building tools provided by GT4.

As mentioned above in detail, much larger amount of configuration files and imple-
mentation in comparison with the operations provided by the WSRF-based service is a big
obstacle of the second stage of the development of Grid application. In reality, the prepa-
ration for such large amount of configuration files and implementation is time-consuming
and error-prone. Furthermore, the fact that the configuration for the WSRF-based service
cannot be written in a single file makes the configuration work more inefficient. What is
worse, every time the application developer adds an operation to the WSRF-based service,

all seven steps must be repeated step by step.

The reason that these complicated configuration and implementation are required is
explained from the fact that the WSRF standard provides flexibility when the application
developer develops a WSRF-based service. By separating the interface definition and the

implementation of the service and the resource properties, the developer can prepare sev-

16 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

Global Application
Repository

App

App

share

Figure 2.9: An example of global application repository

eral implementations for the service and the resource properties under a same interface
definition. This flexibility is particularly useful for porting a WSRF-based service from
a legacy implementation to a new implementation, because the developer can handle the
legacy implementation and the new implementation under a uniform interface. However,
from the aspect of developing a WSRF-based service which reutilizes the existing program
prepared at the first stage, this implementation flexibility is not fully necessary. Therefore,
a method to reduce the application developer’s works of writing configurations and im-
plementations should be proposed based on an assumption that the WSRF-based service

reutilizes the existing program.

Stage 3: Deploying Stage of WSRF-based Service

The third stage is the deployment of the WSRF-based service developed at the second
stage to multiple resources so that they can be simultaneously used for fault-tolerance,
workload distribution and so on. In this stage, the application developer copies and sets
up the WSRF-based service to appropriate directories on multiple remote computing re-
sources. The difficulties at this stage mostly come from not only the development itself,
but also from cumbersome installation works. In fact, the administrators of remote comput-
ing resources have to install and deploy the WSRF-based services so that they can launch
and work correctly to the access from the end users. Examples of such installation works
include the setup of the programs on every remote site, and the management of program

version and license. For the alleviation of the difficulties at the third stage, an application

2.2. GRID APPLICATION DEVELOPMENT PROCEDURE AND DIFFICULTIES 17

o mEEEEEEEEEEEEEEEEmEEm_—_—_————— —
/ e
: WSRF-based [|__ | 1 =
I Service : -T‘¥=-=
: Tocal Scheduler 1
I PBS = B
1 I —_EE
1 T —— !
| WSRF-based ||y| [=
: Grid Service —:‘ I~
: Application Cocal Scheduler |I
I check CPU load, job queue, I
I and determine where to use. 2
: WSRF-based 1
" Service B ‘TXL
: Local Scheduler |
\ LSF]
N o o o o o e e e e e e e e o s’

Figure 2.10: An example of a Grid application utilizing multiple WSRF-based services

repository with a global-shared file system such as Gfarm [32] and Global File System [33]
can be used as shown in Fig. 2.9, so that multiple remote computing resources can share
the directories where the WSRF-based service is deployed. The difficulties at this stage
lie in the deployment work rather than the development work. In addition, the deployment
work is tightly related to the administration policies in remote sites. Thus, this dissertation

does not cover these difficulties.

Stage 4: Developing Stage of Grid Application Composed of Multiple WSRF-based
Services

At the final stage, the application developer develops a service-oriented Grid application by
making maximum use of the WSRF-based services deployed at the third stage, in hope that
the Grid application improves performance, balances loads, and enhances fault-tolerance.
To utilize multiple WSRF-based services for the hope, the application developer currently
has to develop a Grid application as shown in Fig. 2.10 which checks each job queue
of remote sites to determine where to run jobs, and then submits the jobs to remote sites
from scratch. The development of such Grid application from scratch is the hardest at the
last stage. The reason can be explained from the heterogeneity of administration policies

among multiple computing resources.

18 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

In general, each site has its own administration policy of computational resources. For
example, some remote sites may use Portable Batch Scheduler (PBS) as a local scheduler
of computational resources and others may use Sun Grid Engine (SGE) and Load Sharing
Facility (LSF). In this case, the application developer has to know how to submit, monitor
and control such local scheduling systems in advance and then develop a Grid application
that is capable of handling this heterogeneity of administration policies. However, the
development of such Grid application is very hard. As imagined easily, this kind of work
is also time-consuming and error-prone. These situations mean that an easy-to-use method
for building a Grid application from WSRF-based services deployed on the Internet is

demanded.

As reviewed above, the large amount of configuration and implementation required for
the development of a WSRF-based service makes the development of Grid application at
the second stage of the Grid application development inefficient, and the complicated work
for handling multiple WSRF-based services prevents the application developer from ef-
ficiently developing a Grid application composed of multiple WSRF-based services. On
the other hand, the difficulties at the first stage of the Grid application development are
mostly derived from scientific research fields, and the difficulties at the third stage lies in
the deployment work rather than the development work. Therefore, this study focuses on
the second stage and the last stage of Grid application development. In the following sec-
tions, the author investigates the conventional approaches possibly available for building a
Grid application by solving the difficulties at the second and last stages of Grid application

development.

2.3 Review of Conventional Approaches

This section reviews conventional approaches which can be possibly available for the de-
velopment of a Grid application from an existing application. For this purpose, three
classes of conventional methods are first discussed for the second stage of developing a
Grid application. Second, conventional meta-schedulers are investigated for the last stage.
Finally, through the review of the conventional approaches, this section reveals the techni-

cal issues on the development of service-oriented Grid applications.

2.3. REVIEW OF CONVENTIONAL APPROACHES 19

Wrapping

Service

Abstraction

Grid-enabled
Conventional
Method

Flexibility

Figure 2.11: Classification of conventional method

2.3.1 Development of a WSRF-based Service from an Existing Pro-
gram

For developing a WSRF-based service from an existing program, the program has to be-
come accessible on the Grid environment at the second stage of Grid application develop-

ment. To do this, the following classes of methods can be available.
e Grid Resource Allocation Manager (GRAM)
e Grid-enabled distributed communication method (GridMPI/GridRPC)
e Wrapping service

GRAM and Wrapping service provide a WSRF-based service interface to execute a pro-
gram on a computing resource. On the other hand, GridMPI/GridRPC extends the inter-
faces for traditional distributed computing to the ones for Grid computing.

Figure 2.11 roughly summarizes the features of these three methods. The X-axis in
the graph represents flexibility, showing how flexible the development style provided by
the method is. The Y-axis represents abstraction, showing how much the method hides
the heterogeneity of the computational resources and programs. From the standpoint of
service-oriented Grid application development, high abstraction and high flexibility are

desirable.

20 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

Job Description

<job>
<directory>${GLOBUS_USER_HOME}</directory>
<executable>/opt/dock6/bin/dockémpi</executable>
<argument>-i</argument>
<argument>dock.in</argument>
<argument>-o</argument>
<argument>dock.out</argument>
<stdout>${GLOBUS_USER_HOME}/stdout</stdout>
<stderr>${GLOBUS_USER_HOME}/stderr</stderr>

<count>10</count>
</job> V
read
l Computing Resource
s GRAM Service
£ < (ManagedJobFactory,
& o ManagedJob)
bl o
o | z |[request 2 Program
e | < |tolaunch launch
21 € createManagedJob()
(S
O

Figure 2.12: GRAM architecture

The following subsections explain each of these methods in detail in order to clarify

the technical issues in later discussion.

1. Grid Resource Allocation Manager (GRAM)

The GRAM [34] provides a single WSRF-based interface for requesting and using remote
resources for job execution on the Grid environment. The most common usage of GRAM
is remote job submission and control. It is designed to provide a uniform and flexible in-
terface to local schedulers. By using GRAM, the user can execute any arbitrary commands
as far as the local site policy permits.

Figure 2.12 shows the GRAM architecture. The access to a remote program through
GRAM is realized as follows: 1) writing a job description file, and 2) requesting to launch
through the interface of GRAM, createManagedJob(). Assuming that a program, dock6mpi,

is installed into /opt/dock6/bin on a remote site. At this time, the user needs to write the job

2.3. REVIEW OF CONVENTIONAL APPROACHES 21

description file as shown in Fig. 2.12. In the job description file, the user needs to specify
the location where the program is deployed, command-line arguments and so on. To start
the program, the client program reads the job description file, and requests to launch a pro-
gram by accessing the createManagedJob() with this job description file. As shown above,
the user can start a program remotely via GRAM.

The advantage of utilizing the GRAM is that the application developer does not need
to write complicated WSRF-based service interface to execute his/her existing program,
since it already provides WSRF-based interfaces for the execution of any programs. How-
ever, the GRAM has the following three problems. The first problem is that GRAM does
not hide the heterogeneity of the deployment location of a program. To execute a program
through GRAM, a user needs to specify the path where the program is deployed. Generally,
the path where a program is deployed differs among remote sites. A user, therefore, needs
to write an appropriate job description file for each site. The second is that GRAM has
little flexibility in developing Grid applications. Because the GRAM just provides an in-
terface for starting a program on remote sites, the programs started via GRAM do not have
any interfaces to interact each other. The application developer therefore cannot develop
sophisticated Grid applications that allow loosely-coupled and federating programs exe-
cuted on different sites only with the GRAM. The third problem is that GRAM allows the
user to execute arbitrary commands. Considering from the aspect of exposing a program
on the Grid environment, the user should be allowed to start only the exposed program for
security reasons. This functionality may cause a serious security problem.

For the reasons above, in case that each site develops a WSRF-based service for a target
program with this GRAM, it manages to provide the information on where the program is
deployed within the site. Furthermore, if a remote site allows the user to use GRAM, the
site administrator has to design site policy carefully to prevent the user from producing an

unexpected result.

2. Grid-enabled Distributed Communication Method

The second class of methods possibly available for building a WSRF-based service from an
existing program is Grid-enabled traditional distributed communication technologies such
as GridMPI [35, 36] and GridRPC [37, 38]. As introduced in Chapter 1, MPI and RPC have
emerged in the history of distributed computing. As these technologies facilitate the coding
of communication among processes, the application developer can write high-performance
distributed programs on the distributed environment composed of multiple computers. To-

day, these technologies are widely accepted in the development of distributed programs

22 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

Extended Site B ﬁ \

Communication
for Global Network

o e e e e e e e e oo

--------------- Program

AN =/

/SiteA

il

Do ccay

Program

Local High-Performance
Communication =

Figure 2.13: Concept of Grid-enabled distributed communication

within a single organization. Since Grid computing technologies emerged, these conven-
tional technologies naturally have been extended to meet Grid computing technologies

needs.

The advantage of these two technologies is that the new Grid-enabled communication
interfaces are the same as traditional communication interfaces provided by original MPI
and RPC. These two technologies hide the details of global communication among the
Grid environment behind the traditional communication interfaces. For this reason, the
application developer can use traditional tightly-coupled flexible communication interfaces
on the Grid environment. In this way, these technologies make it easy for the application
developer to rewrite his/her programs for the Grid environment. Figure 2.13 shows the

concept of these Grid-enabled distributed communication methods.

However, these two technologies lack the abstraction capability to implement a pro-
gram as a software component (a WSRF-based service). These technologies focus on the
extension of traditional tightly-coupled communication technologies into the Grid environ-
ment, while the service-oriented Grid focuses more on the loosely-coupling of programs,
organizations and researchers. Therefore, the use of this class of methods is not inherently

appropriate for the development of WSRF-based service.

2.3. REVIEW OF CONVENTIONAL APPROACHES 23

Application Meta Data

Application Location:
Jopt/dock6/bin/dock6mpi
Launch Method:
PBS
Standard output:
stdout.txt
access read | standard error:

——[] launch() € stderr.txt

Wrapping Service

4

O queryStatus()
Computing Resource

] setResult() launch

> Program

Figure 2.14: Basic design of wrapping service

3. Wrapping Service

Another type of method possibly available for building a WSRF-based service from an
existing program is wrapping service. In this solution, a wrapper encapsulates a program
as a Web/Grid service. The service encapsulating the program executes the program on a
certain computing resource and then provides a Web service interface with which allows

the user to request program execution, obtain the result, and so on.

This method could also be explained as a method that removes the disadvantages of
using GRAM directly. As mentioned previously, each remote site has to provide the in-
formation where a program is exactly deployed to enable the invocation of the program in
the case of GRAM. Furthermore, whereas the GRAM allows the user to execute any com-
mands that are not related to the target program, the wrapping service provides an interface
to execute only the target program. Thus, the wrapping service is better than GRAM from

the aspect of exposing a program as a Web/Grid service.

There are several wrapping tool implementations that construct wrapping services. Al-

24 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

though the implementations are different among the wrapping tools, the basic design of
these tools is very similar. Figure 2.14 shows the basic design behind these wrapping
services. In the basic design, the wrapping service provides the interfaces for launching
applications, querying about application status, and acquiring the result to the user. If a user
requests starting the program, the wrapping service reads application metadata which de-
scribes program location, the way to start the program, and so on. After that, the wrapping
service launches the program appropriately on a computing resource.

The wrapping service allows the application developer to expose his/her program as
Web/Grid service with minimal effort. In fact, for building such services, all the appli-
cation developer has to do is write a single or a couple of a few line-configuration files
with most wrapping tools. Therefore, with the wrapping tools, the application developer is
relieved from the large amount of configuration and implementation works observed at the
second stage. In practice, however, there is little flexibility and extensibility in developing
practical Web/Grid services with this wrapping service. Sometimes, a scientist as an ap-
plication developer needs to extend the service constructed by these wrapping services for
the purpose of federating multiple Web/Grid services. In this case, the application devel-
oper has greater difficulty in extending the service by reutilizing it, because the wrapping
service is specially designed and implemented so that not the application developer but the

user of the service constructed by the wrapping service can easily use the service.

2.3.2 Development of a Grid Application Utilizing Multiple WSRF-
based Services

To develop a service-oriented Grid application from multiple WSRF-based services, an
easy way to allow the application developer to utilize WSRF-based services on multiple
resources is necessary at the last stage of Grid application development. In order to re-
lieve the application developer from the difficulties in utilizing WSRF-based services on
multiple resources, a single logical resource aggregating computing power from multiple
resources is needed. A meta-scheduler could be a solution for that. The meta-scheduler
relieves the user from the complicated management of multiple resources, and allows the
user to submit jobs to cluster systems composing the Grid environment. The term “meta-
scheduler” is used as compared to the term “local scheduling system” such as PBS and SGE
set up in a cluster system. A meta-scheduler is an upper-layer scheduler that schedules jobs
to multiple local scheduling systems. When a user submits a job through a meta-scheduler,
the meta-scheduler determines where the job should run by checking the state of multiple

resources.

2.3. REVIEW OF CONVENTIONAL APPROACHES 25

EXECUTABLE=/opt/dock6/bin/dockempi
ARGUMENTS=-idock.in

STDIN_FILE=/dev/null

STDOUT _FILE=stdout.${JOB_ID}
STDERR_FILE=stderr.5{JOB_ID}
ENVIRONMENT=LD_LIBRARY_PATH=/usr/local/lib

} read | REQUIREMENTS=HOSTNAME="*.osaka-u.ac.jp"
Grid Way e INPUT_FILES=dock.in
RANK = CPU_MHZ
choose an appropriate TYPE="mpi"
resource and submit a job NP=10
via GRAM 7
v
GlobusToolkit GlobusToolkit GlobusToolkit
GRAM service GRAM service GRAM service
o o o
Local Scheduler| | Local Scheduler| | Local Scheduler
PBS Condor 1 SGE
Site A L Site B L} Site C L}

Figure 2.15: Overview of GridWay architecture

There are several implementations of the meta-scheduler. Major examples are Condor-
G [39], CSF4 [40] and GridWay [41]. All of these meta-schedulers utilize the resource
management service of Globus Toolkit, GRAM, to submit jobs into underlying computing
resources, since GRAM hides the heterogeneity of local schedulers and provides a uniform
interface for submitting jobs. In submitting a job to a meta-scheduler, therefore, a job
description file is required as well as a job submission at GRAM. Figure 2.15 shows an
example of a job description file (GWJT) of GridWay and its architecture. In the job
description, the user needs to specify almost the same parameters as the job description
in case of GRAM. In addition, the user can specify some parameters to control global
scheduling policy. In this example, the description requests a job to be submitted into
sites only matched with *.osaka-u.ac.jp and also requests the fastest-ranked site based on
the clock frequencies of CPUs (CPU_MHZ). When a job description is given, the meta-
scheduler selects an appropriate resource among multiple sites which best matches the

request and submits a job via the GRAM service of the selected site.

26 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

However, these meta-schedulers are basically extension of local schedulers and do not
assume WSRF-based services as scheduling targets. These meta-schedulers are designed
to provide an upper job submission service over existing job submission services, GRAM.
The specification of the GRAM service interface has been fixed with Globus Toolkit.
Therefore, preparing an upper job submission service over such fixed service is not difficult
essentially. Such meta-schedulers are applicable only for scheduling of GRAM services.
The meta-schedulers which have been developed until today are, thus, not applicable for

WSRF-based services developed by application developers.

2.4 Technical Issues in Developing Service-oriented Grid
Application

2.4.1 AtDevelopment of a WSRF-based Service from an Existing Pro-
gram

From the aspect of exposing an application on the Grid environment, to allow the ap-
plication developer to use APIs provided by the resource management service of Globus
Toolkit or GRAM is not a good solution, because the GRAM-based method does not hide
the heterogeneity of the application deployment environment completely. In addition, it
may cause critical security problems because it allows the user to execute arbitrary pro-
grams. Grid-enabled traditional distributed computing technologies such as GridMPI and
GridRPC allow an application developer to easily write very flexible programs because
they provide the functionalities of explicitly writing codes of communication among multi-
ple computers. Taking the abstraction of a program as a WSRF-based service into consider-
ation, however, the use of conventional tightly-coupled distributed computing technologies
as-is over global network is not efficient.

Compared to the above two classes of technologies, the wrapping service approach is
the most possible way to expose a program on a Grid environment. The wrapping service
method abstracts the access to the program as a Web/Grid service, while GRAM does not
hide the application deployment environment. Also, since the wrapping service approach
can reduce the amount of configuration and implementation, the wrapping service approach
is superior to other two classes of methods. However, the problem on the inflexibility of
the wrapping service approach has to be taken into account. The wrapping service just
provides a set of interfaces to execute a program on a computing resource. In most cases,
the application developer may be satisfied with just executing his/her program. However,

to develop a more sophisticated Web/Grid service which interacts and federates with other

2.5. CONCLUDING REMARKS 27

Web/Grid services, the wrapping service should be designed and implemented so that the
application developer can extend the wrapping service to meet his/her demands.

By relieving this disadvantage of the inflexibility, the author believes that the wrap-
ping service can become a new method for the development characterized by high abstrac-
tion and high flexibility. The establishment of a flexible and extensible wrapping service
method is, therefore, an important technical issue to achieve, in order to encourage the

development of Grid applications.

2.4.2 AtDevelopment of a Grid Application Utilizing Multiple WSRF-
based Services

To facilitate the management and utilization of multiple computing resources, the meta-
scheduler is useful for the submission of jobs to multiple resources. However, meta-
schedulers which have been implemented so far can take only GRAM services as schedul-
ing targets. In other words, such meta-schedulers provide an interface only for executing a
program on a remote site through the GRAM.

In order to develop a Grid application composed of multiple WSRF-based services
developed by the application developer, a new meta-scheduler suitable for the service-
oriented Grid architecture is essential. In other words, the establishment of a new meta-
scheduling method which can utilize the multiple WSRF-based services as scheduling tar-
gets is demanded for facilitating the development of Grid application composed of multiple
WSRF-based services.

2.5 Concluding Remarks

For the purpose of establishing methods for service-oriented Grid application develop-
ment, this chapter clarified technical issues to be solved in this dissertation. Through the
reviews of the Grid application development procedure, this chapter clarified the difficul-
ties in developing service-oriented Grid applications. In particular, the developing stage of
a WSRF-based service from an existing program, and the developing stage of a Grid appli-
cation utilizing WSRF-based service deployed over multiple resources were discussed. In
this chapter, the author considered conventional approaches possibly available for solving

the difficulties at these two stages, and then clarified the following technical issues.

e Establishment of a new flexible and extensible wrapping service method

e Establishment of a new meta-scheduling method suitable for WSRF-based services

28 CHAPTER 2. TECHNICAL ISSUES IN DEVELOPING SERVICE-ORIENTED GRID APPLICATION

To tackle these technical issues and relieve difficulties at the two developing stages of
the Grid application development procedure is important in encouraging the development

of service-oriented Grid applications.

Chapter 3

Extensible Grid-Enabling Wrapping
Method

3.1 Introduction

Despite the maturity of Grid computing middleware, the methods for exposing an existing
application as a service have not been well developed. The wrapping method [42-45]
that executes a command-line program on a computing resource and provides interfaces
for accessing the result has been studied as a possible way for easily exposing existing
applications such as the Web/Grid service. In practice, however, there is little flexibility
and extensibility for the application developer to further develop the wrapped application.
In other words, the application developer cannot implement application specific interfaces

in the service realized by such traditional wrapping tools.

Considering this situation and the issues revealed in Chapter 2, a new wrapping method,
the “Extensible Grid-enabling Wrapping method”, and its tool, Opal Operation Provider
(Opal OP), which allows the application developer to easily build a WSRF-based service
from an existing application, are proposed in this chapter. The proposed wrapping method

is based on the new Extensible Wrapping Service model.

This chapter is organized as follows. Section 3.2 attempts to find a common model
behind the traditional wrapping methods available today, and then clarifies the problems.
In section 3.3, the Extensible Wrapping Service Model is proposed to solve the problem
mentioned in section 3.2. Section 3.4 describes a tool, Opal Operation Provider (Opal
OP), which implements the new model. Section 3.5 introduces three examples including
bio-molecular simulation system using Opal OP and discusses the usability of Opal OP.

Section 3.6 concludes this chapter.

29

30 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

GAP

Wrapping
Method

P -
'
4
,' Wrapping Service Wrapping
\ Model Method

7/
Wrapping

Method

GEMLCA

Wrapping
Method

Opal

GFac

Figure 3.1: Wrapping tools available today

3.2 Conventional Wrapping Methods and Problems

Figure 3.1 shows the author’s view to the current situation of wrapping methods. This sec-
tion first finds a common model behind the conventional wrapping methods by reviewing

them. After that, the problem encountered in the common model is described.

3.2.1 Conventional Methods and Tools

Until recently, several wrapping methods, which allow the application developer to easily
build a Web/Grid service from a legacy program, have been proposed, and the correspond-
ing tools have been implemented. Figure 3.1 shows some examples of such methods and
tools discussed later in this subsection. As the name indicates, the wrapping method gen-
erally wraps a program and then exposes the program as a Web/Grid service. However,
the wrapping method cannot encapsulate all kind of programs. The target program to be
wrapped is supposed to be a simple command-line program which inputs data from files,
command-line arguments, and standard input, and outputs data to files, standard output,
and standard errors (Fig. 3.2). The current wrapping method cannot support programs
with Graphical User Interface (GUI), network server programs (e.g., Web server), OS and
so on. However, in most cases, this is not a disadvantage in developing Grid applications,
because most scientific programs are implemented as a command-line program.

In general, a command-line program has the following states: 1) starting, 2) reading

3.2. CONVENTIONAL WRAPPING METHODS AND PROBLEMS 31

Output
Files

Standard
Input

Standard
Output

> Program

Standard
-limit 120 Error

-indata.in

Command-line Arguments

Figure 3.2: Model of command-line program

input data, 3) computation, 4) writing output data, and 5) finishing. The wrapping tool,
therefore, has only to control these five states of the command-line program by providing
the interface of Web/Grid services. In order to govern these behaviors of the command-line
program, the wrapping tool offers a suite of interfaces for transferring input data, starting
the program, retrieving output data, and monitoring the program status.

The following are typical examples of wrapping tools facilitating the development of

Web/Grid service based on the corresponding wrapping methods.
e Opal
e GEMLCA (Grid Execution Management for Legacy Code Architecture)
e GAP Service (Generic Application Service)
e Gfac (Generic Application Service Factory)

Opal is a tool that allows the application developer to encapsulate a command-line program
to a Web service [42]. The second example is GEMLCA [43]. It encapsulates a command-
line program to a Grid service, utilizing Globus Toolkit 3. The third example is GAP.
This GAP encapsulates a command-line program to a visualization component used in the
visualization middleware named In-VIGO framework [44]. Gfac encapsulates a command-

line program to a Web service [45].

32 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

<appConfig xmIns="http://nbcr.sdsc.edu/opal/types"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema">
<metadata>
<usage>
<|[CDATA[./babel [-i<input-type>] <name> [-0<output-type>] <name>]]>

</usage>

<info xsd:type="xsd:string">

<|[CDATA[

Currently supported input types
alc -- Alchemy file
prep -- Amber PREP file

Currently supported output types

caccrt -- Cacao Cartesian file
cacint -- Cacao Internal file

Additional options :

1>

</info>
</metadata>
<binarylLocation>/Users/sriramkrishnan/bin/babel</binaryLocation>
<defaultArgs></defaultArgs>

<parallel>false</parallel>
</appConfig>

4

Figure 3.3: An example of a configuration file used by Opal

All of these tools encapsulate a command-line program as a Web/Grid service. Al-
though the details of the implementations of these wrapping tools differ, the concept behind
these tools is almost the same. Specifically, these tools commonly control the behavior of
the program by governing the five program states through a Web/Grid service.

In addition, in order to allow a scientist as an application developer to wrap his/her pro-
gram as a Web/Grid service with minimal effort, all of these wrapping tools force him/her
to write only a configuration file. In other words, the application developer does not have
to write any additional program code in wrapping their programs.

The configuration files for these wrapping tools available today contain the meta-data
of the target program. Where the target program is deployed on a system, how to start the
program, and what the command-line arguments are, are the example descriptions required

for configuration. By referring this meta-data, these wrapping tools can automatically

3.2. CONVENTIONAL WRAPPING METHODS AND PROBLEMS 33

Wrapping Tool Developer Application Developer
| |
1implement 1 describe
1 |
Y Y

Wrapping Service Application Meta-data
Q access Application Location:
>[] launch() read Jopt/dock6/bin/dock6mpi
La;:;;:h Method:
O queryStatus()
Standard output:
stdout.txt
End User] getResult() Standard error:
stderr.txt
launch
A 4
Program

ComputingResource

Figure 3.4: Wrapping service model

encapsulate the program. Figure 3.3 shows an example of a configuration file used by Opal.
binaryLocation specifies the path of target program where the program is deployed. By
defaultArgs, default command-line arguments are specified. parallel specifies whether the
target program needs to be started as a parallel computing program (e.g., MPI) or not. This
example indicates that the target program is deployed at /Users/sriramkrishnan/bin/babel,

needs no default argument, and does not need to be started as a parallel computing program.

3.2.2 Wrapping Service Model behind Existing Wrapping Tools

In section 3.2.1, several conventional wrapping methods and tools were reviewed. Through
this review, the author has come up with a common model which lies behind these con-
ventional wrapping methods available today for encapsulating a command-line program
to a Web/Grid service. Figure 3.4 shows the common model and its architecture behind

the wrapping methods available today. In this dissertation, the author refers to this model

34 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

as the “Wrapping Service Model”. There are three actors: the application developer, the
wrapping tool developer, and the end user in this model. The application developer is the
actor who develops a program encapsulated with the wrapping tool to a Web/Grid service,
the wrapping tool developer is the actor who develops the wrapping tool encapsulating ap-
plication developer’s program, and the end user is the actor who uses the Web/Grid service
encapsulating the application developer’s program. In this model, all the application de-
veloper has to do is to describe a configuration file specifying the meta-data of the target
program. All the wrapping methods do not force the application developer to write addi-
tional program codes to encapsulate a program as a Web/Grid service. Wrapping service
in Fig. 3.4 is a Web/Grid service encapsulating the target program, which is built using
wrapping tools such as Opal and Gfac. In response to a request from the end user, the
wrapping service starts a program job on the computing resources based on the meta-data

in the configuration file.

The wrapping service method on the model shown in Fig. 3.4 is helpful to the appli-
cation developer who just wants to convert his/her own program to a Web/Grid service.
However, this wrapping method is not useful and effective to the application developer
who wants to extend the Web/Grid service wrapping his/her own application because it
cannot satisfy all requirements from such a developer. For example, a program, which an
application developer wants to run on a Grid environment, may sometimes need to inter-
act with other programs during program execution. In this case, the application developer
may need to implement additional specific functions for these purposes on the wrapping
services in an extensible manner. However, the conventional wrapping tools such as Opal
and GEMLCA do not allow the application developer to easily develop the wrapping ser-
vice in such an extensible way. Exceptionally, only Gfac allows the application developer
to extend the implementation of the wrapping service. However, the mechanism provided
by Gfac just allows the application developer to add simple pre-process and post-process
routines to each interface provided by the wrapping service. In other words, the application
developer is only allowed to extend the functions such as launchJob() provided by Gfac.
The mechanism does not allow the application developer to design and add application
specific functions freely. As stated above, as far as the conventional wrapping methods
are used, many difficulties take place when the application developer attempts to further
develop the wrapped application. The reason is that these wrapping tools never assume the
application developer’s further extension of the wrapping service built through their use,

and therefore, only a limited suite of interfaces for using the wrapping service is provided.

3.2. CONVENTIONAL WRAPPING METHODS AND PROBLEMS 35

— treated with QM-based simulation

treated with MM-based simulation

Figure 3.5: QM/MM hybrid simulation

3.2.3 Inextensibility and Inflexibility in Development based on Wrap-
ping Service Model

For further understanding of this inextensibility and inflexibility in the existing wrapping
service model, this subsection briefly introduces an actual problem in the development of a
Grid service based on the wrapping service model by reviewing a development example, a
bio-molecular simulation called QM/MM hybrid simulation composed of multi-scale and
multi-physics simulations.

Multi-scale/multi-physics simulation is a simulation that attempts to simulate complex
phenomena by integrating multiple simulations across different viewpoints. Until today,
many simulation programs solving a simple problem have been developed based on a single
viewpoint. However, understanding of complex scientific phenomena (e.g., life scientific
phenomena, and global climatic phenomena) cannot be achieved with a single viewpoint.
Therefore, a new simulation trend for integrating several simulations to understand scien-
tific phenomena from multiple viewpoints has emerged recently. This trend is believed to
lead to a new paradigm shift in computational sciences [46].

As an example of such multi-scale simulations, a bio-molecular simulation called QM/
MM hybrid simulation can be considered. The QM/MM hybrid simulation attempts to in-
tegrate a molecular orbital simulation and a molecular dynamic simulation. These two sim-
ulations calculate and predict the behavior of the molecule, based on different scale physics
of Quantum Mechanics (QM) and Molecular dynamic Mechanics (MM), respectively. In

order to accurately understand the dynamic behavior and detailed chemical reactions of

36 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

bio-molecules, performing these two types of simulations in an integrated and simultane-
ous manner is essential (Fig. 3.5). To this end, the exchange of intermediate data (e.g.,
coordinates of molecules, force between molecules) between the two programs during the
execution of these simulations is required.

In this actual development case, in order to execute each of these two simulation pro-
grams as a single simulation individually, each of the simulations can be easily developed
as a Web/Grid service through the use of existing wrapping methods. Importantly, however,
to develop the integrated QM/MM hybrid simulation, the further development of these two
Web/Grid services built through the use of the wrapping method is required so that two

Grid services synchronize and exchange data.

3.3 [Extensible Wrapping Service Model

This section proposes a new model to overcome the inflexibility and the inextensibility
in further developing the wrapped application. Figure 3.6 shows the new wrapping model.
The author calls this model the “Extensible Wrapping Service Model”. The concept behind
the proposed model is the modularization of the target application as a program module,
which allows the application developer to easily integrate the module into his/her WSRF-
based service. The difference from the model shown in Fig. 3.4 is that the target program is
first encapsulated as a wrapping module and subsequently imported into the WSRF-based
service developed by the application developer. In this model, the application developer
can develop his/her WSRF-based service by him/herself whereas he/she could only write
application meta-data in the previous model.

In this model, there are three actors as in the previous model: the application developer,
the wrapping tool developer, and the end user. The wrapping tool developer provides a
wrapping tool that allows the application developer to encapsulate the target program into a
wrapping module. The application developer designs and implements his/her WSRF-based
service, and imports the wrapping module into his/her service. If the end user accesses to
an interface related to the wrapping modules, the request of the end user is delegated to
the wrapping module implementation. On the other hand, if the end user accesses to the
application specific functions, the request is dealt within the WSRF-based service.

The advantage of this model is that the implementation of the wrapping module is
separately performed from an application specific implementation. The application de-
veloper, therefore, can design and implement the WSRF-based service flexibly and exten-

sively without being aware of the implementation restrictions of the conventional wrapping

3.3. EXTENSIBLE WRAPPING SERVICE MODEL 37

Application Developer WrappingTool Developer

| |
1implement 1implement

| |
\'4 "2
WSRF-based Service Wrapping Module Application
I h Meta-data
Wrapping Module | launch() read
access '"terface/ O quenystatus) [
—>] launch()~ delegate
O getResult() 7
O queryStatus()
End User
O getResult() launch

¥
Application Specific
Implementation Program

Application Specific
Implementation

Computing Resource

Figure 3.6: Extensible wrapping service model

service. In other words, the wrapping tool developer can concentrate on the design and im-
plementation of wrapping tool, while the application developer can concentrate on solving

application-specific problems.

In this model, the wrapping module provides a set of functions (launch(), queryStatus(),
and getResult()) for encapsulating an existing program to a WSRF-based service. If these
functions are not sufficient for the development of WSRF-based service, the application de-
veloper can further develop new interfaces of his/her WSRF-based service by him/herself.
In addition, if the names of the functions of the wrapping module (i.e., “launch”, “queryS-
tatus”, “getResult”) are not appropriate for the WSRF-based service, the application devel-
oper can prepare his/her own interfaces instead of them.

In order to execute and manage an existing program on a computing resource, this
model reutilizes the same idea as the wrapping service model. Therefore, the program

handled in this model has to be a command-line program. However, unlike the wrapping

38 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

service model, the application developer can handle the intermediate status and data of
the program with application specific implementation under the proposed model. Thus,
this proposed model is applicable to not only a simple command-line program but also a
program which outputs intermediate data needed to be transferred to other programs.
However, there is a big demerit although the proposed model facilitates the applica-
tion developer’s development of a WSRF-based service. The demerit is that the proposed
model requires the application developer to build a WSRF-based service using the wrap-
ping module by him/herself in addition to the preparation of application meta-data whereas
the conventional wrapping methods just require the application developer to prepare an
application meta-data. For avoiding this demerit, a tool which reduces the application de-

veloper’s implementation and configuration works is proposed in the section 3.4.4.

3.4 Opal Operation Provider (Opal OP)

The idea of modularizing a target application as a wrapping module is not a new idea
because this idea is similar to the one of making some functions a program library. Im-
portantly, the challenge here is how to technically establish the extensible Grid-enabling
wrapping method using the extensible wrapping service model, and how to provide a tool
which facilitates the development of WSRF-based service from the existing application.
To this end, the author considers operation provider, which is one of implementation
techniques used in GT4 to build plug-in modules, as a building block in establishing the ex-
tensible Grid-enabling wrapping method based on the extensible wrapping service model.
Also, the combination of the operation provider technique and Opal, which is a conven-
tional wrapping tool for building a wrapping module, is considered to be a good solution.
From this consideration, the author has come up with a new wrapping tool named “Opal
Operation Provider (Opal OP)”. The Opal OP allows the application developer to develop
a WSRF-based service from an existing program, and the Opal OP is composed of two im-
portant components of the Opal OP module as a wrapping module, and the Opal OP toolkit

which facilitates the development of WSRF-based service from an existing program.

3.4.1 Overview of Opal OP

Figure 3.7 shows the software stack of Opal OP on top of the Globus Toolkit architecture.
The Opal OP module and Opal OP toolkit were developed in this research. The dark gray
boxes show software components implemented in the Globus Toolkit. The Opal OP module

implements a wrapping module for Opal functions as one of the operation providers on the

3.4. OPAL OPERATION PROVIDER (OPAL OP) 39

WSRF-based Services

r______l

Operation Providers || Operation Providers
for WSRF for Notification
Opal OP

|

|

|

|

|

|

| .

! :

: . Module I . - -

I Toolkit IL%LI I_SubscrlbeProwder I
|

| .

I |

|

|

|

|

|

|

QueryRPProvider NotificationConsumer
Provider

Globus Server Container

Opal Operation Provider

Figure 3.7: Software stack of the Opal OP in Globus Toolkit architecture

Globus Toolkit so that the application developer can use the wrapping module in the same
manner as other operation providers of the Globus Toolkit. The application developer
imports the functions of Opal OP into his/her WSRF-based service, and also he/she is
allowed to extend and further develop the WSRF-based service. Opal OP toolkit supports
the procedure from the generation of the WSRF-based service until deployment, and also
provides common command-line tools to access the WSRF-based service.

This section explains how Opal OP is implemented in detail. For this explanation, the
operation provider as an implementation technique for Opal OP module is described first.

Next, the detail implementation of Opal OP and Opal OP toolkit is described.

3.4.2 Operation Provider

Under the GT4 architecture, operation provider is believed to be a good solution to imple-
ment common features that can be shared with various WSRF-based services. GT4 has
a software stack as shown in Fig. 3.7. In the software stack, WSRF-based services are
handled on top of the Globus server container. Operation providers are pluggable modules,
from which the WSRF-based services can import the necessary operations. For exam-

ple, the primary features of GT4 such as the management operation of resource properties

40 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

(i.e., a prominent feature of WSRF) and the asynchronous communication operation (WS-
Notification [47]) are realized as operation providers.

The advantage of the operation provider is ease-of-use. The WSRF-based service can
import the set of operations of the operation provider without any modification of the
WSRF-based service. The implementation method of operation provider is very similar
to the implementation method of Web service. In fact, an operation provider is composed
of an interface definition described in WSDL and an implementation of the interface, sim-
ilar to a Web service. On the other hand, as a possible disadvantage of operation provider,
the configuration and implementation works increase.

As described above, taking the importance of the operation provider on GT4 architec-
ture and its advantage into consideration, operation provider is an appropriate technique
for implementing Opal OP module although the increase of configuration and implemen-
tation works is considered to be a disadvantage. Therefore, this study adopts the operation
provider technique as an implementation technique for the Opal OP module.

In the following, how to use operation providers for a WSRF-based service is intro-
duced for further discussion later on the implementation of the Opal OP module. The

operation provider is used based on the following three steps:

e [Step 1] specifying the operation provider’s interfaces to import into a WSRF-based
service in the WSDL file of the WSRF-based service

e [Step 2] generating a unified WSDL definition which imports all operations from

operation providers to the WSRF-based service

e [Step 3] binding the implementation of the operation providers whose operations are

imported to the WSRF-based service

[Step 1] The first step is to specify the operation provider’s names to the extends at-
tribute in the WSDL file of the WSRF-based service. The top of Fig. 3.8 shows an example
of a WSDL definition. In this example, the WSRF-based service named SampleService im-
ports two operation providers: GetResourceProperty and NotificationProducer. These two
are operation providers for the basic functions of GT4 for WSRF and WS-Notification.
The bottom of Fig. 3.8 shows a portType definition of the first operation provider imported
in SampleService. This operation provider has the operation named GetResourceProperty.
Based on this configuration, the SampleService imports this operation, GetResourceProp-
erty from WS-ResourceProperties.wsdl. For the first step, the application developer has to

prepare for these configurations by hand.

3.4. OPAL OPERATION PROVIDER (OPAL OP) 41

<portType name="SampleService"
wsdlpp:extends="wsrpw:GetResourceProperty <€
wsntw:NotificationProducer"
wsrp:ResourceProperties
="tns:SampleResourceProperties">

<l-- operations -->

</portType>

<wsdl:portType name="GetResourceProperty"> -
<wsdl:operation name="GetResourceProperty">
<wsdl:input name="GetResourcePropertyRequest"

<wsdl:output name="GetResourcePropertyResponse"

<wsdl:fault name="ResourceUnknownFault"
<wsdl:fault name="InvalidResourcePropertyQNameFault"

</wsdl:operation>
</wsdl:portType>

Figure 3.8: sample_service.wsdl

[Step 2] The second step is to generate a unified WSDL definition containing all opera-
tions from operation providers whose operations are imported to the WSRF-based service.
This process is called flatten and is executed by the building tool shipped with GT4. A
generated large WSDL is called flatten WSDL. Figure 3.9 diagrams the flatten process. In
the example shown in the figure, a WSRF-based service extends two operation providers.
One of the operation providers has two operations, operationA, and operationB. The other
operation provider has an operation, operationC. The WSRF-based service has two oper-
ations, appspecificD, and appspecificE. All of these operations are aggregated into a large

flattened WSDL. The application developer has to manage generating a flattened WSDL.

[Step 3] The last step is to bind the implementation of operation providers and the

CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

Flatten WSDL

operationA
operationB
operationC

appspecificD
appspecifick

Operation
Application Providers
Service)
operationA
appspecificD extends operationB
flatten appspecificE e operationC
_
extends
€
| 4

I 4

Figure 3.9: Flatten process

</service>

<wsdIFile>
share/schema/samples/sample_service.wsdl
</wsdIFile>

<service name="examples/SampleService”
provider="Handler" use="literal" style="document">

<parameter name="className*“
value="sample.services.impl.SampleService"/>

<parameter name="providers”
value="GetRPProvider

SubscribeProvider
GetCurrentMessageProvider"/>

Figure 3.10: deploy-server.wsdd

3.4. OPAL OPERATION PROVIDER (OPAL OP) 43

WSRF-based service. In building the Web service, the developer needs to describe the Web
Services Deployment Description (WSDD) file to specify the binding between service in-
terface (i.e., WSDL file) and the corresponding service’s actual implementation. Likewise,
in case of the WSRF-based service, the binding information between WSRF-based service
interface and the operation provider’s implementation is specified in a WSDD file. Figure
3.10 shows an example WSDD file of a WSRF-based service, deploy-server.wsdd. In this
example, the WSDD file binds a WSDL file, sample_service.wsdl and a Java class imple-
mentation, sample.services.impl.SampleService. Furthermore, three operation providers of
GetRPProvider, SubscribeProvider, and GetCurrentMessageProvider are specified in the
WSDD file. These three are operation providers which implement the basic functions
of GT4, WSRF and WS-Notification. The Globus container refers these elements of the
WSDD file to load Java class implementations, and binds the implementations with the
WSRF-based service.

In this way, the application developer can import the functions of several operation
providers into his/her WSRF-based service. The important advantage of using the op-
eration provider technique is that the application developer needs to write no additional
program codes in order to integrate the operations defined as an operation provider into
a WSRF-based service although the application developer still needs to prepare several

configuration files.

3.4.3 Design and Implementation of Opal Operation Provider Module

This subsection describes the design and implementation of the Opal OP module. Figure
3.11 illustrates how the Opal OP module as a wrapping module works. In this illustration,
any WSRF-based service can import the operations of the wrapping module in a plug-in
manner. To realize this Opal OP module, Opal has been extensively reutilized. In this
subsection, how the functions of Opal were reutilized and ported into a new wrapping
module, the Opal OP module, is described.

The reason why Opal has been reutilized as an implementation technology to establish
the extensible Grid-enabling wrapping method is explained from the following two rea-
sons. The first reason is that Opal has been implemented as a standard Web service for
wrapping existing application, and the functions of Opal are very simple and limited for
wrapping a target program as a Web service. As mentioned in section 3.4.2, the implemen-
tation method of an operation provider is very similar to an implementation method of a
Web service. Therefore, Opal is considered to be easily ported as an operation provider due

to the implementational similarity between Opal and the operation provider. The second

44 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

Flatten WSDL WSRF-based Opal OP Module
Service (Wrapping Module)
] launch() Application Specific launch()

flatten] Implementation extendg
«— «——

O queryStatus() Application Specific queryStatus()
Implementation
O getResult() getResult()
launch

Application Specific
Implementation

y

Program

Application Specific
Implementation

Computing Resource

Figure 3.11: Overview of Opal OP

reason is that the simple implementation of Opal is suitable to the implementation of Opal
OP module. As described in section 2.4.1, the wrapping module should not have any un-
necessary functions except for wrapping a target program for security reasons. Therefore,
the simple implementation of Opal is advantageous.

The important factor to consider in porting the functions of Opal into the Opal OP
module as a operation provider is the state management functionality of the job. If the
state management functionality was ported in a way not following the WSREF standard, the
implementation of the Opal OP module would prevent the interoperation among WSRF-
based services. Thus, the functionality is ported to the Opal OP module while conforming
to the WSRF standard.

Opal provides the following interfaces and functions for state management to allow the

end user to control the five states of the command-line program described in section 3.2.1.
e [launchJob]: launching a job into computing resources
e [queryStatus]: querying the job status
e [getOutput]: retrieving the result of the job

The mechanism and usage for handling the states of a job with these functions is shown in

Fig. 3.12. When an end user requests starting a job with input files and arguments, Opal

3.4. OPAL OPERATION PROVIDER (OPAL OP) 45

Input
1. Files

Arguments Opal Computing Resource
> 2.launch
(3. JobID O launch() >
4. JobID
5} Job Status
(6. JobStatus [queryStatus() Program
End User
7. JobID
8. Outputg
9. Outputs O getOutputs() <
<€

Figure 3.12: Usage of Opal

launches a job for the target program on a computing resource and returns the job ID to the
end user. Once a job is launched, the end user can query the status of the job (e.g., running,

done, abort), and retrieve the result with the job ID.

Description of how each of these functionalities for state management in Opal is ported

to a new Opal OP module so that it conforms to the WSRF standard is as follows:

[launchJob] To handle job status, the launchJob function of Opal returns a unique ID as
a job ID corresponding to the job status in response to a request from the end user. The Opal
allows the end user to access the job status by specifying the job ID in subsequent requests.
As mentioned in section 2.1, in the WSRF standard, the states of a WSRF-based service
must be defined as resource properties in a WSDL file, and exposed in an architecture-
independent way. The author, therefore, has replaced the original implementation of Opal

with resource properties according to the WSRF standard as follows.

The author has newly defined a resource property representing the job ID and the job
status as shown in Fig. 3.13 to expose job status as a resource property defined in the
WSREF standard. The resource property is named OpalOPRP, and defined in the WSDL file
of the Opal OP module. This definition is imported into each WSRF-based service WSDL
files during the flatten process. By defining the states as resource properties, the states are
automatically bound to subsequent requests of the end user. The end user, therefore, no

longer needs to specify the job ID explicitly every time the end user accesses the service.

46 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

<!- Definition of OpalOP Resource Properties-->
<xsd:element name="JobID" type="xsd:string"/>
<xsd:element name="Status" type="types:StatusOutputType"/>
<xsd:element name="OpalOPRP">
<xsd:complexType>
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" ref="types:JobID"/>
<xsd:element maxOccurs="1" minOccurs="1" ref="types:Status"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<wsdl:portType name="AppServicePortType"
wsrp:ResourceProperties="types:OpalOPRP" >

</ wsdl:portType>

Figure 3.13: Definition of Opal OP resource property

[queryStatus] The job status is defined as a resource property so that it conforms to
the WSRF standard. Furthermore, the WSRF standard prescribes that the resource property
can be accessible through a common interface named getResourceProperty. As the Opal
OP module has been developed based on WSRF, the Opal OP module does not need to
provide another interface to access the resource property. In the Opal OP module, the

function of queryStatus is kept to maintain backward-compatibility with the original Opal.

[getOutput] In the case of the original implementation of Opal, the end user needs to
specify a job ID when the end user requests results through the getOutput interface. In
the Opal OP module, the job ID is implemented in a resource property, and automatically
bound to the end user’s request. The end user, thus, does not need to specify a job ID
anymore. For the implementation of getOutput, the author has removed the argument for

the job ID from the getOutput interface.

3.4. OPAL OPERATION PROVIDER (OPAL OP) 47

3.4.4 Design and Implementation of Opal OP Toolkit

This subsection describes the implementation of the Opal OP toolkit which facilitates the
development of WSRF-based services with the Opal OP module. As mentioned in sec-
tion 3.3, under the proposed extensible wrapping service model, the application developer
has to prepare a WSRF-based service implementation and configurations as well as an ap-
plication meta-data, whereas the conventional wrapping methods just require writing the
application meta-data. In addition, to import the wrapping module implemented as an op-
eration provider into his/her WSRF-based service, the cumbersome configuration works

described in section 3.4.2 are still necessary.

The Opal OP toolkit has been developed to minimize these cumbersome implementa-
tion and configuration works imposed on the application developer when the application
developer sets up and deploys the wrapping module which encapsulates a target appli-
cation. In summary, the Opal OP toolkit attempts to allow the application developer to
develop a WSRF-based service by just writing a single configuration file. This means that
the Opal OP toolkit aims to minimize the cumbersome works to the same level of works
required in utilizing the conventional wrapping methods. Furthermore, the Opal OP toolkit
also provides the end user with a simple command-line tool to access the WSRF-based ser-
vice developed with the Opal OP module so that the end user can access the WSRF-based

service without writing codes.

The Opal OP toolkit alleviates the burdens that come from the following two works.
The first work alleviated by the Opal OP toolkit is the implementation and configuration
works during the development, building, and deployment process of a service using the
Opal OP module. The Opal OP toolkit generates the template implementation codes and
configuration files for the service, which results in the application developer not needing
to write any codes to use the Opal OP module. Also, the Opal OP toolkit automates the

process from the building to the deployment of the service into a Globus toolkit container.

The second work alleviated by the Opal OP toolkit is the developing work of the client
program to the service. The Opal OP toolkit provides a suite of command-line tools for
accessing the WSRF-based service developed with the Opal OP module. Specifically, the
suite of command-line tools provided by the Opal OP toolkit includes the tools to request
launching a job, querying the job status, and retrieving a URL for the result of the job.
Without this suite of command-line tools, the end user would need to develop a client
program that uses WSRF-based SOAP API to access the service. Even if the end user

is not familiar with WSRF-based services technologies, the end user can easily use the

48 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

A set of template program codes
and configurations

|
I WSDL I
! I
|
I WSDD :
|
! I
Configuration File :
] |
: Service I
Build-and- Impl |
—> deployment I
Tool I
I |
|
Resource I
Impl !
. |
|
|

Figure 3.14: Concept of the build-and-deployment tool

$ ant -f build-opal.xml -propertyfile configuration-file new-service
$ cd services/Dock
$ ant deploy

Figure 3.15: An example command-line sequence for developing a WSRF-based service
from an existing program

wrapping services through these command-line tools.

Below, how these works are alleviated by the Opal OP toolkit is explained in detail.

1. Build-and-deployment Tool for Opal OP

The basic idea of the build-and-deployment tool for the Opal OP is to generate a set of tem-
plates for implementation files and configuration files of a WSRF-based service utilizing
the Opal OP module from as small the number of configuration files as possible. From this
consideration, the author has designed and implemented the build-and-deployment tool as
shown in Fig. 3.14 so that the toolkit automatically generates a set of template implementa-
tion files and configuration files from a single configuration file prepared by the application

developer by hand.

3.4. OPAL OPERATION PROVIDER (OPAL OP)

Dock Service
|
v v
deploy-server.wsdd deploy-jndi-config.xml
<service <service
name="“DockService”> name=“DockService”>
HesXXX</wsdIFile> <resource name=“home”
<p3jrameter rtype=4XXX">
ndme="className” <parameter>
vdlue="XXX" <name>resourceClass</
<parameter <valuse>XXX
ndme="providers” </parameter>
vdlye=“XX X"
Docl;l.lwsdl jf).biogrid.servi(.:es. o .v . !'p.biogrid.services.
impl.DockService jp.biogrid.services. impl.DockResource
<portType o Service Impl | impl.DockResourceHome [Resource
name="DockService
extendg==OpalOP” Resource Impl
Home Impl
| 4
Y A 4
OpalOoP OpalOP
WSDL Impl

Figure 3.16: Overview of dependency among a WSRF-based service, interfaces and im-

plementations

50 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

interface.name=Dock

binary.location=/opt/dock6/bin/dock6mpi
target.namespace=http://biogrid.jp/namespaces/DockService
package=jp.biogrid.services.dock

stubs.package=jp.biogrid.stubs.dock

prefix.publish.path=example/dock
factory.target.namespace=http://biogrid.jp/namespaces/DockFactoryService

4

Figure 3.17: DockService.properties

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="@SERVICE_NAME@"
targetNamespace="@TARGET_NAMESPACE@"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlins:tns="@TARGET_NAMESPACE@"“

<portType name="@INTERFACE_NAME@PortType"
wsdlpp:extends="wsrpw:GetResourceProperty opal:AppServicePortType"
wsrp:ResourceProperties="tns: @INTERFACE_NAME@ResourceProperties">

Figure 3.18: An example of template source for WSDL

With this build-and-deployment tool, the development of a WSRF-based service from
an existing program is performed as follows: 1) creating a configuration file used in the
code generation of the WSRF-based service, 2) executing a toolkit command to generate
the WSRF-based service, and 3) executing a toolkit command to build and deploy the
generated WSRF-based service into a Globus server container. The example command-
lines which the application developer needs to execute are shown in Fig. 3.15. These
works are believed to be same level of the works required in utilizing the conventional
wrapping methods, which just require writing an application meta-data. In the following,

how the build-and-deployment tool realizes this work reduction is explained.

To realize this mechanism, the author has leveraged parameter dependency among a

set of implementation files and configuration files necessary for developing a WSRF-based

3.4. OPAL OPERATION PROVIDER (OPAL OP) 51

service. Figure 3.16 illustrates an example of parameter dependency among interface def-
inition files and implementation files necessary for a WSRF-based service for a Docking
simulation program [48]. These interfaces and the actual implementations are bound with
the WSRF-based service in configuration files. To define a WSRF-based service, there are
two important configuration files: deploy-server.wsdd and deploy-jndi-config.xml. The for-
mer specifies interface definitions (WSDL) and service implementations, while the latter
specifies resource implementations.

Another point the author focuses on is to make sure that these configuration files have
the same or redundant descriptions with each other. Only a few parameters in the config-
uration files specify the binding among interface definition files and implementation files.
Furthermore, such parameters can be automatically determined if the name of service and
implementation files are determined. Through this investigation, the author has found that
the parameters as shown in Fig. 3.17 are the smallest ones for generating a set of templates
for implementation and configuration files.

Figure 3.18 is the example of the template WSDL file. The build-and-deployment
tool first extracts parameters from properties file shown in Fig. 3.17, and then replace
keywords starting with “ @ ” | like @ SERVICE_NAME@ in Fig. 3.18 with the correspond-
ing parameters. Table 3.1 shows the total lists of keywords used for generating a set of
template implementation files and configuration files. The actual values corresponding to
these keywords are extracted from the properties files provided by the application devel-
oper (configuration file in Fig. 3.14), and a set of template implementation files (WSDD,
JNDI, and WSDL files in Fig. 3.14) and configuration files (service impl and resource impl
in Fig. 3.14) are generated from these extracted values automatically. For further devel-
opment of the WSRF-based service, the application developer has to extend the generated
implementation files by him/herself.

More specifically, this build-and-deployment tool assumes that the generated WSRF-
based service encapsulates a command-line program through the Opal OP module and
provides the fixed set of interfaces. Based on this assumption, the build-and-deployment
tool can have a set of templates as shown in Fig. 3.18. Also, the number of items required
for the configuration file which the application developer has to prepare can be reduced
to seven. Therefore, the build-and-deployment tool can generate actual template files for
configuration and implementation from the 7-line properties file as shown in Fig. 3.17 by
replacing the keywords with the actual values in the template files. With this mechanism,
the tool helps the generation of a set of template implementation files and configuration

files necessary for building a WSRF-based service. This build-and-deploy tool has been

52

CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

Table 3.1: Description of the keywords required for generating templates

Keyword

Description

@GLOBUS_LOCATION@

@BINARY_LOCATION@

@INTERFACE_NAME@

@SERVICE_NAME®@

@PACKAGE@

@STUBS_PACKAGE@

@PACKAGE_DIR@

@TARGET_NAMESPACE@

@SCHEMA_PATH®@

@FACTORY_INTERFACE_NAME®@

@FACTORY_TARGET_NAMESPACE@

@FACTORY_SCHEMA_PATH®@

@PREFIX_PUBLISH_PATH@

@GAR_FILENAME@

Where the Globus Toolkit is installed. This keyword is determined from a
system environment value, GLOBUS_LOCATION (e.g., /opt/globus).

Theinstallation path of the target program wrapped with Opal OP. The
value of “binary.location” propertiesis used
(e.g., /opt/dock6/bin/dock6mpi).

Theinterface name of the generated service. The value of
“interface.name” is used (e.g., Dock).

The service name of the generated service. This keyword is determined
from “interface.name” (e.g., DockService).

The package name for the generated service source codes. The value of
“package” is used (e.g., jp.biogrid.services.dock).

The package name for the generated stub source codes. The value of
“stubs.package” isused (e.g., jp.biogrid.stubs.dock).

The name of directory where the generated source codes are stored.
This keyword is determined from “package” (e.g.,
/ip/biogrid/services/dock).

The namespace of XML file for the WSDL of service. The value of
“target.namespace” is used
(e.g., http://www.biogrid.jp/namespaces/dock/DockService).

The name of directory where the generated WSDL file is stored. This
keyword is determined from “interface.name” (e.g., DockService).

Theinterface name of the generated factory service. This keyword is
determined from “interface.name” (e.g., DockFactory).

The namespace of XML file for the WSDL of factory service. The value of
“factory.target.namespace” is used
(e.g., http://www.biogrid.jp/namespaces/dock/DockFactoryService).

The name of directory where the generated WSDL file is stored. This
keyword is determined from “interface.name” (e.g., DockFactoryService).

The URI to publish the service on the Globus server container. The value
of “prefix.publish.path” is used (e.g., dock).

The name of the archive file which contains the service implementation.
This keyword is determined from “package” and “interface.name”
(e.g., jp_biogrid_dock_services_Dock.gar).

3.5. EVALUATION AND DISCUSSION 53

developed as an ant-based tool [49].

The assumption described above restricts the targets which the proposed method and
tool can cover to command-line programs. However, in terms of developing a WSRF-based
service for an existing scientific program, the restriction derived from this assumption is
not a problem. Most programs treating a scientific problem run for a long time without
the interaction with end users, and then they are implemented as command-line programs.
Such programs therefore can be taken as WSRF-based services by the proposed method.

However, the WSRF-based service can be covered with Opal OP is limited than the gen-
eral WSRF-based services built without Opal OP. Generally, the WSRF technologies real-
ize a Grid environment composed of various types of WSRF-based services which commu-
nicates each other with XML messages standardized by SOAP. For example, a Grid envi-
ronment includes WSRF-based services handling account management and database man-
agement system. These kinds of WSRF-based services are studied as Grid Account Man-
agement Architecture (GAMA) and OGSA Data Access and Integration (OGSA-DAI),
respectively. The proposed method does not cover these kinds of WSRF-based services

built from programs other than command-line programs used for scientific computation.

2. Tools to Access WSRF-based Services Developed with Opal OP

To use the WSRF-based service, the end user has to write program codes with WSRF-based
service API. The provision of command-line tools for accessing the WSRF-based service
minimizes this end user’s work. The Opal OP toolkit provides the following command-line
tools for launching a job and querying the job status: opalop-jobrun and opalop-jobquery,
respectively.

In practice, the implementation of each WSRF-based service generated by the Opal
OP toolkit is individually different from each other. On the other hand, all WSRF-based
services extend a common interface of the Opal OP module in WSDL. With these tools, the
end user can access the WSRF-based service developed with the Opal OP module without

writing any client program codes.

3.5 Evaluation and Discussion

This section discusses the usability and effectiveness of the Opal OP from two aspects.
The first aspect is how much the Opal OP reduces the work in developing a WSRF-based
service from an existing program. The second aspect is how the Opal OP has been utilized

for development of service-oriented Grid applications.

54 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

Table 3.2: Generated templates from Opal OP toolkit

Implementation files lines
XXXFactoryService.java 53
XXXQNames.java 14
XXXResource.java 80
XXXResourceHome.java 20
XXXService.java 37

Configuration files lines
XXX.wsdl 95
XXXFactory.wsdl 55
deploy-server.wsdd 29
deploy-jndi-config.xml 38
namespace2package.mappings 15
build.properties 8
opal_config.xml 8

3.5.1 Application Developer’s Work Reduction

To discuss the usability of the proposed Opal OP, this section reviews the works for devel-
oping a WSRF-based service based on the proposed extensible wrapping service model. In
this section, how the proposed Opal OP reduces the works for developing a WSRF-based

service is discussed.

To reduce the works of developing a WSRF-based service from scratch, the proposed
Opal OP provides the Opal OP module as an operation provider encapsulating an existing
program. However, at least the set of implementation files and configuration files shown
in Table 3.2 are still required in utilizing the Opal OP module. Table 3.2 shows the total
lines of configuration and implementation files for which the application developer has
to prepare in the case of developing a WSRF-based service of a typical command-line
program. As this table shows, development using the Opal OP module requires many
works related to the setup and configuration of the developed WSRF-based service based
on the Opal OP module. However, the Opal OP toolkit, which was explained in section
3.4.4, reduces this amount of works imposed on the application developer to only a 7-
lines configuration, by taking advantage of parameter-dependency and by removing the
inherent redundancy among configuration files for setting up a WSRF-based service. This

reduction is realized by the assumption that the WSRF-based service just encapsulates an

3.5. EVALUATION AND DISCUSSION

55

Client Program
launch Iexchange data launch 1exchange data
Opal OP based Opal OP based
QM Service MM Service
Opal OP Opal OP
¥ $exchangedata | v $exchange data
Adaptor Adaptor
3 VPl $ mpi
Application Application
AMOSS cosgene

Figure 3.19: Overview of the QM/MM hybrid simulation system

existing program through the Opal OP module. Importantly, this 7-lines configuration file
can work for the development of a WSRF-based service using the Opal OP module from
any type of command-line program, and the application developer does not have to write

any program code and configuration file in this process.

3.5.2 Case Studies

The author has been developing several simulation services using Opal OP. In this subsec-
tion, the author introduces a bio-molecular simulation system as an example of Grid ap-
plications using Opal OP. Also, this subsection shows a protein structure similarity search

system and a drug docking simulation system as examples of easy service development.

QM/MM Hybrid Simulation System

The author has been developing a QM/MM hybrid simulation system to simulate bio-
molecular behaviors. This system calculates forces interacting among atoms at short time
steps (e.g. 0.5 femto-sec), and then simulates molecular behavior by repeating these cal-
culations tens of thousands of times. The QM/MM hybrid simulation system consists of
two simulation programs. One is AMOSS [50], based on Quantum Mechanics (QM), and
the other is cosgene [51], based on Molecular Dynamics Mechanics (MM). The QM-based
calculation is time-consuming, but has high accuracy. The MM-based calculation is fast,
but has low accuracy. This research tries to develop a highly accurate and large-scale

bio-molecular simulation by adopting QM-based calculations to the important part of the

56 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

simulation and MM-based calculations to the remaining parts.

To calculate molecular behavior, these two simulations have to exchange data at every
time step while the two applications are running. This kind of requirement in computation
cannot be handled by the traditional wrapping approaches. To handle this kind of require-
ment, a mechanism like Opal OP is needed that can handle application-specific problems.
The author has implemented a QM/MM hybrid simulation system using the following three
steps. Figure 3.19 shows an overview of the architecture of the system implemented by the
Opal OP.

First, in order to hide the complexity of the dynamic process creation of QM and MM
programs from a local scheduler and then enable the synchronization between the two
programs, the author has developed adapter programs. Both QM and MM programs con-
sist of several program modules, and the modules are executed and combined by a dy-
namic process-creation method (spwan) of MPI-2 [52-54]. The adapter programs hide
such dynamic process creation and make the applications simple MPI programs. Also,
these adapter programs help to synchronize QM and MM programs to exchange data using
a traditional file-locking mechanism. When calculations of each simulation step start, the
adapter creates a lock file, and then removes it after the step is completed. Each of QM
and MM service checks the existence of the lock file on the computing resource where the
service running, and determines the timing for transferring data.

Second, the author wrapped the adapter programs using Opal OP. For this process, the
author did not need to write any codes. The author configured these services as parallel
applications in the Opal’s application meta-data file.

Finally, the author added operations to exchange data into the services generated by
Opal OP. Also, the author added operations to check the lock files for synchronization. For
this work, the author did not need to consider how the Opal OP wrapped the application.

Generally, application developers find it difficult to develop this kind of service from
scratch. Using Opal OP, the author concentrated only on how to synchronize two applica-

tions in the process of development. This is the advantage brought about by Opal OP.

Protein Structure Similarity-search System and Drug-docking Simulation System

This subsection describes a protein structure similarity search system and a drug-docking
simulation system developed by utilizing Opal OP.

The protein structure similarity-search system was developed as a Web portal with
Java servlet technologies, and used a protein structure similarity searching program as a

backend program [55]. To distribute the processes of the backend program, the system

3.5. EVALUATION AND DISCUSSION 57

Ui @3
S TI T Bl e e g Protein Structure

PDBj Structure Navigator-RT (Opal-OP Grid) PD B j Similarity-search
Service

[FE) Chain Opal OP

7.@ The Institute of Medical Science,

Web Portal The University of Tokyo

The Institute for Protein Research,

Osaka University Protein Structure
Similarity-search

Service

Opal OP

Cybermedia Center, ==
Osaka University

Figure 3.20: Protein structure similarity-search system

needed to use Grid technologies. A researcher of the Institute for Protein Research, Osaka
University, who was not familiar with Grid technologies, had developed protein structure
similarity-search services using Opal OP and a Web portal which accesses the services via
the interfaces with SOAP (Fig. 3.20). In the development of this system, Opal OP helped
to develop a WSRF-based service to handle the protein structure similarity searching pro-
gram. The researcher had no knowledge of Grid technologies at the time of development,
but it took approximately three weeks to build such a system. This system was devel-
oped on two cluster systems, and currently provides the protein structure similarity-search
service as a part of services of Protein Data Bank Japan (PDBj) at the following site:
http://pdbjs3.protein.osaka-u.ac.jp/stnavirtx_opalop/.

Another example utilizing Opal OP is the drug-docking simulation system which has
been developed by a UCSD undergraduate student whose major is bio-engineering. The
system uses DOCK, a docking program for drug discovery. To benefit from a large amount
of computing resources, the Opal OP-based docking services, which wrap DOCK, were de-
veloped and deployed into Grid resources (Fig. 3.21). Although the student was not even
familiar with computer science as well as Grid technologies, he was able to use the com-
mon command-line tools provided in the Opal OP toolkit to access the services. He used
with ease the command-line tools in Perl scripting to build the distributed drug-docking

simulation system. It took approximately three weeks to build this system, with most of

58 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

= S

Docking Docking
Service Service
Client |_OpaloP™ Opal OP
Program e
LZU, China
UCSD, USA — UCSD, USA
i Docking
Service Service
\Opal oP Opal OP
TEEEE | !
ZH, S\Wjtzerlan Osaka Univ., Japan
Docking Docking Docking
Service Service Service
Opal OP Opal OP Opal OP
NCSA, USA NGO, Singapore AIST, Japan

Figure 3.21: Drug-docking simulation system

the time spent learning Perl programming. In the development of this system, Opal OP
helped the student to develop a WSRF-based service to handle the docking program and
also supported to develop the client program. This system was developed on seven cluster

systems, and used for screening approximately 2 million drug candidates in a week.

Table 3.3 compares these two examples. In both cases, the researcher and the student
spent just ten percents of the overall development time for the WSRF-based services. On
the other hand, they had difficulties and spent much time to construct the environment for
their system because they are not experts of Grid technologies and information technolo-
gies. To construct these systems, they needed to install Globus Toolkit and deploy their
WSRF-based services on each of computing resources. This deployment work was men-
tioned as the third stage of developing a Grid application in section 2.2. Although this
dissertation introduced that this study did not cover this stage, this stage is needed to be
taken into account from the viewpoint of the total development procedure.

These two examples show how the development of services is made simple by using

Opal OP in comparison with the development of service using traditional wrapping meth-

3.6. CONCLUDING REMARKS 59

Table 3.3: Summary of two examples using Opal OP

System System System Reduced works with Weeks Const;lfjctlon Learning Develz:)ment
name type environment Opal OP worked environment technologies Grid service
S;/L;c:’tj;i Web 2 cluster systems Developmentofa approx 70% 20% 10%
I§T Portal (60 CPUs) WSRF-based service ~ 3weeks (14 days) (4 days) (2 days)
Drug— Perl 7 cluster systems Development ofa' approx 60% 30% 10%
Docking script (350 CPUs) WSRF-based service 3weeks (12 days) (6 days) (2 days)
Simulation P and a client program ¥ ¥ v

ods. The Opal OP enables the building of services that wrap existing programs without

knowledge of Grid technologies.

3.6 Concluding Remarks

This chapter established a new, flexible, and extensible wrapping method listed as a tech-
nical issue in Chapter 2. For this purpose, the author proposed a new wrapping model,
the extensible wrapping service model and the corresponding extensible Grid-enabling
method based on the model. Whereas traditional wrapping service methods such as Opal
and GEMLCA provide a fixed implementation of the wrapping service, the method allows
the application developer to extend and further develop his/her WSRF-based service. The
advantage of the extensible Grid-enabling method is that the method enables the separate
implementation of WSRF-based service and the implementation of a wrapping module. In
other words, the extensible Grid-enabling wrapping method based on the model allows the
application developer to concentrate on the further development of WSRF-based applica-
tion from the existing application.

To realize the development based on the extensible Grid-enabling method, the author
has developed a new wrapping tool named the Opal Operation Provider (Opal OP), which
allows the application developer to develop a WSRF-based service from an existing pro-
gram. Opal OP is composed of an Opal OP module and an Opal OP toolkit. The former
helps the application developer to import the features of Opal into his/her WSRF-based
services, and the latter helps the application developer to develop a WSRF-based service
from an existing program without writing any additional program codes. To develop this
tool, the author combined the operation provider technique and the Opal technology.

In the evaluation in this chapter, the author reviewed the Opal OP from two different

aspects to verify the usability and effectiveness of the proposed Opal OP. Specifically, how

60 CHAPTER 3. EXTENSIBLE GRID-ENABLING WRAPPING METHOD

the Opal OP reduced the work involved in developing a WSRF-based service was inves-
tigated. The result indicates that the Opal OP reduced the configuring and implementing
works into just writing a single configuration file in developing a WSRF-based service
based on the extensible wrapping service model. Second, the author reviewed three actual
examples of Grid applications developed with the proposed Opal OP as case studies. This
evaluation and review showed that the application developer was able to develop his/her

application as a Grid application with ease.

Chapter 4

Transparent Meta-Scheduling
Architecture for Grid Applications

4.1 Introduction

Many scientific institutions and universities are attempting to redevelop the scientific ap-
plications they have developed so far as WSRF-based services so that their research col-
laborators can use such applications from remote sites. The Opal OP presented in Chapter
3 provides an easy way to build up an application as a WSRF-based service, thus helping
the developer.

However, Opal OP does not provide sufficient tools to dramatically make the appli-
cation developers work efficient from the standpoint of developing a service-oriented Grid
application composed of multiple WSRF-based services. The remaining issue or the provi-
sion of a meta-scheduling method suitable for a service-oriented Grid application still must
be achieved. As described in Chapter 2, the application developers deploy WSRF-based
services to multiple sites for the demands of enhancing performance, balancing loads, and
increasing fault tolerance. This fact means that end users have to selectively use a WSRF-
based service among multiple ones from the standpoint of meeting the above demands.

In this chapter, the author proposes a new meta-scheduling architecture (MSSA: Meta-
Scheduling Services Architecture) that allows the application developer to easily develop
a Grid application composed of multiple WSRF-based services deployed on the Internet.
This architecture focuses on providing a transparent interace to select a WSRF-based ser-
vice from multiple WSRF-based services. For this purpose, this architecture takes advan-
tage of the factory pattern technique, which is used in typical WSRF-based service for
handling resource properties. Then, how the proposed scheduling architecture provides the
transparent scheduling mechanism is detailed.

The rest of this chapter is organized as follows. In section 4.2, the requirements on

61

62 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

the meta-scheduler, which takes the important role of meta-scheduling WSRF-based ser-
vices, are analyzed. After that, the meta-scheduling architecture is proposed in section 4.3,
and evaluation and discussion of the architecture is presented in section 4.4. Section 4.5

concludes this chapter.

4.2 Requirement Analysis of Meta-Scheduler

This section first describes the different structures of the Grid application and the role of

the meta-scheduler. Next, the requirements on the meta-scheduler are analyzed.

4.2.1 Meta-Scheduler

Figure 4.1 illustrates the different structures of the Grid application. The first case (a)
shows the easiest way to use the WSRF-based service. An end user utilizes a WSRF-based
service, which is deployed on a computing resource from a client program. The Opal
OP allows the application developer to build the WSRF-based service from an existing
program and provides a program template for the client program, as described in Chapter 3.
In this case, therefore, most of development works necessary for building this environment
(Fig. 4.1 (a)) is covered by Opal OP.

The second case (b) happens when each end user wants to pursue the improvement of
performance and throughput or the enhancement of fault-tolerance independently of other
end users. For this structure of Grid application, a WSRF-based service is first deployed in
multiple computing resources by the application developer, and the WSRF-based services
are shared among multiple users. In this structure, the end user has to check the availability
and usability of the computing resources on which the WSRF-services are deployed in prior
to the use of the WSRF-based services. Also, the end user must know the locations and
URLSs of his/her target WSRF-services in advance.

The third case (c) is the advanced mode of the second case (b). In this case, a meta-
scheduler plays an important role in helping the end user’s selection of a WSRF-based
service. The meta-scheduler is expected to aggregate the end user’s access requests to the
WSRF-based services and then select an appropriate set of WSRF-based services on behalf
of the end user. Recently, the development of a Grid application based on this structure has
been increasingly demanded. However, there has been little research exploring the techni-
cal solutions which facilitate the development of a Grid application based on this structure
composed of multiple WSRF-based services, whereas conventional meta-schedulers focus

on just scheduling GRAM services. For this reason, this chapter focuses on how to techni-

63

4.2. REQUIREMENT ANALYSIS OF META-SCHEDULER

92IAIBS

9IIAISS Ipaseq-44SM
paseq-4YS

9JIAISS

IINISS Ipaseq-44SM
paseq-1y4S

ERIIVELS

Poaseq-4Jd4SM

Figure 4.1: Different types of Grid application structures

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
! ! J9|npayos
1 1 -
! ! SETA|
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

LI LT _
1 1

weisold ! weJsdoid weusoud weJadoid ! weisold weuso.d weJsdo.d
usliD ! usli|D usli|D lual|D ! usliD ual|D usli|D

1 1
1 1
1 1

o—3 o3

nd User

ndise r
End User|
ndise r
ndise r
ndise r
ndise r

E
E
E
E
E
E

(a)
(b)
(c)

64 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

cally realize this kind of meta-scheduler that allows the application developer to develop a

Grid application composed of multiple WSRF-based services.

4.2.2 Requirement to Meta-Scheduler for WSRF-based Service

As shown in Fig. 4.1, the meta-scheduler mediates the communication between the WSRF-
based service and its client program. For this reason, the interfaces provided by the meta-
scheduler should be transparent to both the client program and the WSRF-based service.
In other words, the meta-scheduler should be built so that the client program communi-
cates with the meta-scheduler in the same manner it does with the WSRF-based service
and vice versa. Otherwise, the client program and the WSRF-based services deployed on
multiple sites must be modified so that they communicate with the meta-scheduler. Thus,
the transparency of the meta-scheduler interface must be achieved to avoid the additional
development work in introducing the meta-scheduler.

This consideration is lacked in the conventional meta-scheduler approach. As men-
tioned in section 2.3.2, the conventional meta-scheduler is designed to provide a global
batch queuing service over only the job submission service, GRAM. Therefore, the con-
ventional meta-scheduler does not need to assume to schedule various interface designs of
WSRF-based service developed by the application developer. Moreover, in the batch queu-
ing system, the ways for job submission and acquisition of the result are primary focused
on, but little attention has been paid to the interaction between services and end users. Thus,
the interface transparency is not an important issue in the conventional meta-scheduler.

Therefore, in order to address the meta-scheduler for WSRF-based services, the discus-
sion on the conventional meta-scheduler is missing the point. For the purpose to achieve
the interface transparency of meta-scheduler, a new meta-scheduling mechanism must be

realized.

4.3 MSSA: Meta-Scheduling Services Architecture

Through the requirement analysis described in the previous section, the author has pro-
posed a new meta-scheduling architecture named, “Meta-Scheduling Services Architec-
ture (MSSA)” and MSSA toolkit that facilitates the development of a Grid application
composed of multiple WSRF-based services based on MSSA. The primary feature of the
MSSA is that the MSSA uses the factory pattern technique, utilized in WSRF-based ser-
vice.

Before explaining the proposed MSSA, this section first explains the factory pattern

4.3. MSSA: META-SCHEDULING SERVICES ARCHITECTURE 65

1. request to

create resource R
. Application
£ 2.reply EPR Factor Create
© (Instance URI, Servi Y \
oo ervice
o Resource Key)
2 |« Resource
2 Property
)
5 3. access the instance
with the EPR | Application bind
End User Instance
[}
Service

GlobusServer Container

Figure 4.2: Factory pattern in WSRF-based service

technique in WSRF-based service. Next, this section introduces the proposed meta-schedul-
ing architecture, MSSA, and explains the design and implementation of the MSSA in de-
tail.

4.3.1 Factory Pattern in WSRF-based Service

As described in section 2.1, the WSREF standard realizes a stateful Web service. The WSRF
standard prescribes a resource property in order to allow a Web service to hold its state and
expose this state in the standard way. To create an instance of a resource property and then
bind the instance of the resource property with a WSRF-based service, the WSRF-based
service uses the factory pattern technique [17, 56].

Figure 4.2 shows the factory pattern in a typical WSRF-based service. In the factory
pattern, services are roughly categorized into factory services and instance services. A
factory service creates a resource property and binds the resource property with an instance
service. The instance service is a service that provides actual functions of the WSRF-based
service to end users.

This factory pattern works as follows. An end user first needs to send a “create” request
to the factory service of interest on a Globus server container (step (1) in Fig.4.2). The
factory service creates a resource property and returns an End Point Reference (EPR) (step
(2) in Fig.4.2), which contains a URI of the instance service and a resource key. At this

point, the end user can access the instance service via this EPR (step (3) in Fig.4.2). The

66 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

acquire CPU load
Information] queue length
Provider

2. acquire CPU load,

gueuelength Factory
Service
1. Resource
request Instance Property
to create Service
€
© Meta-Factory Site A
X 5. Service n
& |reply EPR acquire CPU load
£ [€] select a service and del (Information] queuelength
é’ delegate request 3. delegate Provider
O request
End User extends
Factory
4. reply EPR Service create
6. access the instance
with the EPR Resource
Instance Property
Service

Figure 4.3: Meta-factory service in MSSA

Globus server container binds the end user request with appropriate resource property by

referring the resource key contained within the end user request.

4.3.2 Overview of MSSA

The proposed MSSA makes use of the factory pattern technique to build a meta-scheduler
that mediates the communication between the client program and WSRF-based services.
Specifically, the author focuses on the fact that the end user always needs to access a fac-
tory service from the client before obtaining a URI of the corresponding instance service.
In more detail, the proposed MSSA leverages this switching mechanism in the factory
pattern technique from factory service to actual instance service to achieve the interface

transparency.

4.3. MSSA: META-SCHEDULING SERVICES ARCHITECTURE 67

Figure 4.3 shows the overview of the proposed MSSA. The MSSA is composed of two
important components, ‘“Meta-Factory Service” and “Information Provider”. The meta-
factory service mediates the communication between the client and a factory service of
the selected WSRF-based service. Basically, this meta-factory service is a WSRF-based
service whose role is as a meta-scheduler that receives a request from the end user via the
client program and then delegates the request to the factory service of the WSRF-based
service selected from multiple WSRF-based services. On the other hand, the information
provider is a component implemented as an operation provider that provides functions to
expose the information on computing resource (e.g., CPU load, queue length) where the
WSRF-based service runs to the meta-factory service.

The author has designed this MSSA architecture to be performed as follows: 1) an end
user sends a “create” request to the meta-factory service as a meta-scheduler instead of
the factory service of the target WSRF-based service, 2) the meta-factory service acquires
the necessary information on computing resource from information providers, 3) the meta-
factory service determines which WSRF-based service should be used based on its own
scheduling policy and then delegates the “create” request to the actual factory service of
that WSRF-based service, 4) the actual factory service creates a resource property and then
replies with an EPR (End Point Reference) to the meta-factory service, 5) the meta-factory
service forwards the EPR to the end user, and 6) the end user can finally access the actual
instance service selected by the meta-factory service.

Importantly, the factory pattern used in WSREF-based service has been originally lever-
aged for handling resource properties of the WSRF-based service. Usually, a factory ser-
vice is supposed to create a resource property and reply the EPR of an instance service
which is deployed on the same Globus server container where the factory service is de-
ployed. On the other hand, in MSSA, the meta-factory service replies the EPR of the
instance service which is selected as the result of scheduling process. This fact means that
the MSSA uses the factory pattern to hide the scheduling process from the end user, and

provides interface transparency to the end user.

4.3.3 Design and Implementation of Meta-factory Service

This section describes the design and implementation for meta-factory service as a meta-
scheduler. The meta-factory service is a key component of the proposed MSSA. More
technically, a common factory interface named “MssaFactoryInterface” introduced to the
inside of the meta-factory service is an important element in designing the meta-factory

service. The MssaFactorylnterface has been designed to satisfy the requirement for the

68 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

<portType name="MssaFactorylnterface"> schedule
<l-- create a resource and return an endpoint URI for
an instance service with a key of the resource --> @
<operation name="createResource">
<input message="tns:CreateResourceRequest" />

<output message="tns:CreateResourceResponse" /> MSSA Common
</operation>
</portType> Factory Interface
| 4
extends extends
Factory Service Meta-Factory Service
returns an instance URI lmplements ?
scheduling policy

Figure 4.4: Design of MSSAFactoryInterface

interface transparency.

Figure 4.4 shows the design of the common factory interface, MSS AFactoryInterface,
in WSDL. Both the actual factory service of the WSRF-based service and the meta-factory
service implement the common factory interface. The MSSAFatorylInterface is provided
so that the end user can use the both services transparently. The idea behind this design
is that the meta-factory service as a meta-scheduler and the actual factory service of the
WSRF-based service use the common interfaces through the inheritance mechanism. If
a meta-factory service and an actual factory service are developed to have the interfaces
inherited from MSSAFactorylInterface, the client program cannot distinguish these two
services. In other words, it makes no difference to the end user whether an EPR of the
instance service is obtained via the meta-factory service or via the actual factory service.
In this way, transparency of meta-factory service interface is achieved.

In practice, in order to inherit from MSSAFactorylnterface, both the actual factory
service and the meta-factory service have to import the operations from the definition of
MSSAFactoryInterface described in WSDL. In this study, the flatten process mentioned
in section 3.4.2 is leveraged again for this purpose. As mentioned in section 3.4.2, the
flatten process is used for importing operations of an operation provider into a WSRF-
based service. Here, it is used to import the operations of the MSSAFactorylInterface.

For designing the MssaFactorylInterface, the following two points also has been taken

into account: hierarchical deployment of meta-scheduler and flexibility of scheduling pol-

4.3. MSSA: META-SCHEDULING SERVICES ARCHITECTURE 69

icy. In the following, how the MssaFactoryInterface has been designed is explained through

the discussion of these two points.

1. Hierarchical Deployment of Meta-scheduler

The MSSAFactorylnterface has been designed so that multiple meta-factory services form
the hierarchical structure for achieving the scalability of the meta-scheduler deployment.
It is not realistic that only a single meta-scheduler is in charge of all WSRF-based services,
since a single point of failure at the meta-scheduler leads to the whole Grid application
failure. Moreover, since the deployment configuration of all WSRF-based services flocks
to the single meta-scheduler, every change of WSRF-based services deployment within an
organization requires changing the configuration of the single meta-scheduler, and this fact
prevents scalable expansion of the WSRF-based service deployment. From this considera-
tion, multiple meta-schedulers should be deployed so that they can cover the WSRF-based
services deployed over multiple organizations.

Taking the physical setup and deployment of the computing resources, the author has
come up with the conclusion that the hierarchical structure of meta-factory services is
suitable. It is because that most cluster systems are organized and managed with the hier-
archical structure on the Grid environment. Moreover, a cluster system itself is managed
through local scheduling systems such as SGE [57] and PBS [58] in a hierarchical manner.

For this reason, the MSSAFactorylInterface has been designed so that multiple meta-
factory services form the hierarchical structure for achieving the scalability of the meta-
scheduler deployment. Again, Fig. 4.4 illustrates how the MSSAFactorylInterface takes
the hierarchical structure of meta-schedulers. The important point is that the MSS AFacto-
rylnterface was designed so as to permit its recursive call. By the recursive call, the actual
factory services of the WSRF-based services and the meta-factory services which inherit
MSSAFactorylnterface can take a hierarchical structure.

Figure 4.5 diagrams how meta-schedulers are practically deployed over multiple orga-
nizations. In this example, there are three organizations: A, B, and C. Each organization
has some factory services of WSRF-based services on the computing resources. Organiza-
tion A has two factory services and a meta-factory service which controls the two factory
services. To schedule the WSRF-based services deployed on organizations A and B, there
is an upper meta-factory service AB for collaborative scheduling between organization A
and B. Between organization B and C, there is also a research community and an upper
meta-factory service BC. Through the use of the MSSAFactoryInfterface, this kind of hi-

erarchical structure can be realized.

70 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

Research Community BC

Research Community AB e, e - ———— -
e —————— > - —— - ~ N
ad 4 s \
! Meta / \ Meta \
I Factory AB I' \ | Factory BC 1
|
: ! ! :
I ' I |
| ! |
[1 [
i Meta I Meta "
I Factory A 1 Factory C I
[! [
[1 [
[= . : 1 . [
I Factory |5 Factory i Factory I Factory i Factory I
I Service Service H Service 1 Service H Service I
I Instance Instance Instance 1 Instance Instance I
1 Service Service Service 1 Service Service 1
| WSRF-based = WSRF-based WSRF-based : WSRF-based ~ WSRF-based !
‘\ Service Service \ Service Service Service I'
A - Organization A \ Organization B _ ,/ Organization C //
------------------ — ,
-_—en o e e o Ee e o o e o e e e o e e -

Figure 4.5: A realistic example of hierarchical meta-scheduling environment

2. Flexibility of Scheduling Policy

As described in section 4.1, a meta-scheduler is deployed for performance, throughput and
fault-tolerance. Which factors are most important depends on application type, Grid ad-
ministration perspective, and so on. For example, the applications requiring high-throughput
processing, such as drug-docking simulations, need many computing resources simultane-
ously. On the other hand, the applications requiring high-performance, such as QM/MM
hybrid simulation, need a few high-performance computing resources with heavy com-
munications. To satisfy various requirements to the scheduling policy, the meta-scheduler
should be able to flexibly accommodate various scheduling policies depending on applica-
tion type, Grid-administration perspective, and so on.

As described in section 4.1, the end user wants to select a single or a set of WSRF-
based services in terms of performance, load-balancing, fault-tolerance, and for other rea-
sons. This means that the meta-factory service as a meta-scheduler can satisfy these re-
quirements for the selection of WSRF-based services. Inherently, the Grid is composed of
computing resources of multiple research organizations which have its own administration
policies regarding the computing resources. Based on this consideration, the author there-

fore believes that the best way to achieve flexibility for scheduling policies is the provision

4.3. MSSA: META-SCHEDULING SERVICES ARCHITECTURE 71

Meta-Factory Service

deploy-server.wsdd

<service name="MetaFactoryService”>

wstFtesXXX</wsdlFile>
Kparameter name="“className”
value="“"XXX=k
A 2 A 4
MSSA Scheduling Policy
Factorylnterface Implementation

Figure 4.6: Mechanism for configuration of scheduling policy

of a mechanism that allows the administrator to manage scheduling policies in a plug-in

manner.

In MSSA, a meta-factory allows the administrator to manage scheduling policies in a
plug-in manner. Usually, a Web service is composed of an actual service implementation
and its interfaces. As shown in Fig. 4.6, the interface definition is bound to the implemen-
tation in a deploy-server.wsdd configuration file. Taking advantage of this feature of Web
service deployment, the administrator can flexibly switch his/her scheduling policy just by
modifying the WSDD configuration file if he/she has the corresponding implementation of
a scheduling policy.

Examples of such scheduling policies include round-robin and high-throughput schedul-
ing. The author has developed a simple round-robin scheduling policy, SimpleRoundRobin-
Scheduler, as a prototype. This scheduling policy just dispatches a request from the client
program to one of available factory services one by one. Figure 4.7 shows an example
configuration of a meta-factory service utilizing this round-robin scheduling policy. In the
example, mssa_factory_service.wsdl, which defines the common factory interface, is speci-
fied in the element of wsd[File, and the implementation of SimpleRoundRobinScheduler is

specified in the parameter className.

72 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

<service name="sample/SampleMetaFactoryService”
provider="Handler" use="literal" style="document">
<wsdIFile>
share/schema/mssa/mssa_factory_service.wsdl
</wsdlIFile>
<parameter name="className"“
value="jp.biogrid.mssa.impl.SimpleRoundRobinScheduler"/>

</service>

4

Figure 4.7: An example of meta-factory service utilizing SimpleRoundRobinScheduler

4.3.4 Design and Implementation of Information Provider

This section describes the design and the implementation of the information provider. In
MSSA, the information provider has the role of collecting the information on the com-
puting resource (e.g., CPU load, job queue length) necessary for meta-scheduling at the
meta-factory service. In order to have this information provider smoothly built into MSSA,
the author has developed this information provider as an operation provider so that it can
be easily imported to WSRF-based services for scheduling. This mechanism achieves the
interface transparency to the WSRF-based services.

As described in Chapter 3, the operation provider technique allows a WSRF-based
service to import a set of functions from an operation provider in a plug-in manner. To
import the functions of an operation provider into a WSRF-based service, the WSRF-based
service had to complete the following configurations: 1) specifying the operation provider
name in the “extends” attribute in a WSDL file and 2) specifying the implementation name
of the operation provider in the “providers” parameter in a WSDD file. For this advantage
of the operation provider technique, it is not required to modify the WSRF-based service
implementations, and the author has developed the information provider as an operation
provider so that it can be built into the factory service of the WSRF-based service. By
utilizing the information provider as an operation provider, the WSRF-based service as a
scheduling target can import the functions of information provider needed to expose the
information on their computing resources without writing any additional codes.

Figure 4.8 shows how the information provider works. Each information provider no-

tifies the availability of the computing resource of the meta-factory service. Next, the

4.3. MSSA: META-SCHEDULING SERVICES ARCHITECTURE 73

Meta-Factory
Service

available available
not available
Information Information Information
Provider Provider Provider
QueuelnfoPBS = QueuelnfoSGE = QueuelnfoFork =
Factory —~ | Factory —~ | Factory —~ |
Service Service Service
Instance Instance Instance
Service Service Service
WSRF-based Service WSRF-based Service WSRF-based Service
JobJuob] : | Job | Job | Job | Job | Job | CPU load: 0.05

Figure 4.8: Concept of information provider

meta-factory service determines which computing resource is appropriate to be used. The
availability of the computing resource can be decided based on information such as job
queue length and CPU load. The way to decide the availability of computing resource also
depends on what kind of local scheduler (e.g., SGE, PBYS) is installed on the computing
resource.

However, there is no standard implementation and way for aggregating the information
such as job queue length and CPU load from different local schedulers at the moment,
although a standard API (DRMAA: Distributed Resource Management Application API)
for the submission and control of jobs to various local schedulers is being explored recently
[59]. Considering this situation, to make the information provider usable at the realistic
environment, the author has developed three types of information collector mechanisms
aggregating the information on the computing resource: QueuelnfoSGE, QueuelnfoPBS
and QueuelnfoFork. SGE and PBS are the most widely deployed as local schedulers.
QueuelnfoSGE and QueuelnfoPBS are for SGE and PBS, respectively. QueuelnfoFork is
the information collector mechanism for fork process generation. The author has designed
this information provider so that it automatically selects an appropriate mechanism among
these three mechanisms depending on the local scheduler system. Specifically, when the

Globus server container starts on the cluster where WSRF-based services are deployed, the

74 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

instantiate yes execute “gstat” command, and
QueuelnfoSGE check whether or not the output
contains specific output come
from SGE.
no
instantiate yes execute “gstat” command, and
QueuelnfoPBS check whether or not the output
contains specific output come
from PBS.
no
instantiate

QueuelnfoFork <

Figure 4.9: Detection process of QueuelnfoXXX

information provider checks the type of local scheduler, and then chooses an appropriate
mechanism from the above three mechanism. Figure 4.9 shows the detection process of
local scheduler. Each implementation of information collector mechanism is detailed in

the following.

QueuelnfoSGE and QueuelnfoPBS

SGE and PBS are very similar local schedulers. QueuelnfoSGE and QueuelnfoPBS, there-
fore, share a common design. When QueuelnfoSGE and QueuelnfoPBS receive a request
from a meta-factory service about the availability of computing resources where a SGE
and a PBS are in charge, QueuelnfoSGE and QueuelnfoPBS works as follows. They first
check whether the end user’s jobs are already running on the computing resource. If there
are the end user’s jobs, they return the message showing “not available”. Next, they checks
job queue length. If there is no free CPU to launch a job on, they return the message
showing “not available”. If there is any free CPU, they return “available”. At the first
step, both QueuelnfoSGE and Queuelnfo execute gstat command to check the existence
of the end user’s jobs. At the second step, QueueInfoSGE executes gstat command, and

QueuelnfoPBS executes pbsnodes command to check the number of available CPUs.

4.3. MSSA: META-SCHEDULING SERVICES ARCHITECTURE 75

Table 4.1: Configuration files for a meta-factory service

Name lines
deploy-server.wsdd 40
deploy-jndi-config.xml 4
namespace2package.mappings 7
build.properties 8

interface.name=Dock
package=jp.biogrid.services.dock
prefix.publish.path=example/dock

Figure 4.10: An example configuration for MSSA toolkit

QueuelnfoFork

The information collector mechanism of QueuelnfoFork decides the availability of the
computing resources only from the CPU load, because there is no local scheduler. When
QueuelnfoFork receives a request from a meta-factory service about the availability of
computing resources, QueuelnfoFork executes uptime command to check CPU load, and
returns “available” if the CPU load is less than 0.50.

4.3.5 Design and Implementation of MSSA Toolkit

To develop a meta-factory service, configuration files shown in Table 4.1 are required.
These configuration files bind the common interface of the meta-factory service, MSS AFac-
toryInterface, and the implementation of scheduling policy. Writing these configuration
files by hand is also time-consuming and error-prone work.

The MSSA toolkit is a toolkit that facilitates the above work in developing a meta-
factory service. This MSSA toolkit is designed and implemented to reutilize the Opal OP
toolkit design treated in Chapter 3, and it is integrated with the Opal OP toolkit. Whereas
Opal OP toolkit generates a set of configuration and implementation files for a WSRF-
based service named like XXXService, MSSA toolkit generates a set of configuration files
for a meta-factory service named like MetaXXXFactoryService. The MSSA toolkit re-
quires the configuration as shown in Fig 4.10. The MSSA toolkit picks parameters from

this configuration file, and generates configuration files in the same mechanism of Opal OP

76 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

WSRF-based Service

' wsoL | !
1 1
I 1
1 1
| 7,
Service :
Impl I
1
G ———— - [
/ 1
. . |
Conflg'uratlon Opal OP INDI Resource :
File Toolkit Config Impl I
: 1 1
1 1
! It _ ==L l
[Meta-factory Service
| = == - I
I | I
MSSA Toolkit 1 WsDD JND.I I
‘ Config |
N e ! : |
. 1
integrated | B 4 7
I .
Nam Build !
\ uild 4
space Properties | |
1 | Mapping I
I I
=== F_ _ be—— ‘: J
Figure 4.11: MSSA toolkit and Opal OP toolkit
. . . N
$ ant -f build-opal.xml -propertyfile dock.properties new-service
$ cd services/Dock
$ ant deploy
$cd./.
$ ant -f build-opal.xml -propertyfile dock.properties
-Dfactories="sitel site2. . .” new-metaservice
$ cd services/DockMetaFactory
$ ant deploy
_ /

Figure 4.12: An example command-lines for developing a WSRF-based service and a

meta-factory service

4.4. EVALUATION AND DISCUSSION 77

toolkit. This configuration is subset of the configuration required by Opal OP toolkit. The
application developer, therefore, can reutilize the configuration file used in the developing
his/her WSRF-based service with Opal OP.

As shown in Fig. 4.11, by the integration of the MSSA toolkit and Opal OP toolkit,
the application developer can build his/her WSRF-based service and then develop a meta-
factory service for the WSRF-based service with the command-line execution shown in
Fig. 4.12. The upper 3-line command sequence goes to Opal OP toolkit for the devel-
opment of a WSRF-based service. The bottom 3-line command sequence goes to MSSA
toolkit for the development of a meta-factory service for the built WSRF-based service.

In the current implementation of MSSA toolkit, SimpleRoundRobinShceduler, which
the author developed as a prototype scheduler, is selected as a default scheduling policy.
By using MSSA, the procedure of the developing stage of a WSRF-based service from
existing program discussed in Chapter 3 and the developing stage of a Grid application

composed of multiple WSRF-based services are performed in an integrated manner.

4.4 Evaluation and Discussion

This section evaluates and discusses the proposed MSSA. For this purpose, a prototype
system for drug-docking simulation deployed based on the MSSA over multiple cluster
systems is discussed as an actual development example. Through the example, the author
verifies that a scalable Grid application composed of 175 CPUs can be developed. After
that, the more detailed behavior of the actual Grid application based on the proposed MSSA

is analyzed.

4.4.1 Prototype System for Drug-docking Simulation

This section discusses a drug-docking simulation system which was developed and de-
ployed over multiple cluster systems. Table 4.2 shows the cluster systems used for this

prototype system.

Development Procedure

In building this prototype system, the Opal OP toolkit and MSSA toolkit were used to
reduce the building works of the WSRF-based services for the drug-docking simulation
program and the meta-factory services as meta-schedulers. The Dock services shown in
Fig. 4.13 are WSRF-based services which encapsulate the drug-docking simulation pro-
gram. These Dock services were built up with the Opal OP toolkit and deployed into all

78 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

Table 4.2: Cluster systems used in prototype system for drug docking simulation

Cluster CPU Number of Local
name architecture worker CPUs scheduler
cafe Intel Xeon 2.8GHz 38 SGE
tea Intel Pentium III 1.4GHz 80 SGE
sibbs Intel Pentium III 1.4GHz 9 SGE
tdws AMD Opteron Processor 252 2.6GHz 22 N/A
rocks-52 Intel Xeon 2.4GHz 26 SGE

cluster systems shown in Fig. 4.13. On the other hand, the MetaDockFacotry services are
meta-factory services built up with the MSSA toolkit. In this prototype system, the author
deployed MetaDockFactory A, MetaDockFactory B, MetaDockFactory Root on the cafe,
sibbs and tea cluster system, respectively. These three cluster systems, therefore, run not
only as Dock services, but also MetaDockFactory services as meta-schedulers.

The development of the prototype system was realized as the following three steps.
First, the author wrote a configuration file for Opal OP toolkit described in Chapter 3. The
configuration file was used for building a WSRF-based service encapsulating the drug-
docking simulation program and also used for building a meta-factory service. Figure 4.14
shows the configuration file. Second, to generate a set of template files of the WSRF-based
service and the meta-factory service, the author executed the command-line sequentially
as shown in Fig. 4.12. By the command-line sequence, the WSRF-based service and the
meta-factory service were generated, built and deployed into the Globus server container
installed on where the machine on the author’s desk. At the last, the author succeeded to
construct the prototype system as shown in Fig. 4.13 by copying the generated services into
each of cluster systems, and starting up the Globus server container. Importantly, all the
author had to do was the only three steps: 1) writing a single configuration file, 2) executing
command-line tools and 3) deploying the generated services into cluster systems.

With the interface transparency provided by the MSSA, the MetaDockFacotry services
have the same interfaces with original Dock services. For this reason, the command-line
tools, which are available to the WSRF-based service which is composed of a factory
(e.g. Dock Factory) and the corresponding instance services (e.g. Dock Service), such
as opalop-jobrun and opalop-jobquery are also available to the meta-factory service (e.g.
MetaDockFactory Service). Thus, the end user can easily access multiple Dock services
through meta-factory service Root by utilizing the command-line tools provided by the
Opal OP toolkit.

4.4, EVALUATION AND DISCUSSION 79

Information
Provider(SGE)

Dock Factory

Dock Service

MetaDockFactory Information

Service A Provider(SGE)

SimpleRoundRobinQ Dock Factory g

Scheduler

Dock Service

tea

Information
Provider(SGE)

Dock Factory

Dock Service

Si b-B-s

MetaDockFactory MetaDockFactory
Service Root 2

: Information
Service B Provider(Fork)

SimpleRoundRobinQ Dock Factory g

SimpleRoundRobin |

Scheduler Scheduler

Dock Service

tdws
shutdown from 10 hours
to 12 hours

Information
Provider(SGE)

Dock Factory

Dock Service

rocks-“5“2
shutdown from 8 hours
to 13 hours

Figure 4.13: The environment for the prototype system

80 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

interface.name=Dock

binary.location=/opt/dock6/bin/dock6mpi
target.namespace=http://biogrid.jp/namespaces/DockService
package=jp.biogrid.services.dock

stubs.package=jp.biogrid.stubs.dock

prefix.publish.path=example/dock
factory.target.namespace=http://biogrid.jp/namespaces/DockFactoryService

4

Figure 4.14: Properties file used to develop the prototype system

Table 4.3: Comparison of the codes between the client program introduced in section 3.5.2
and this section

Client program Language Lines
Client program introduced in section 3.5.2 Perl script 143
Client program introduced in this section ~ Shell script 26

In the case of developing this kind of Grid application from scratch, the application
developer is required to have a deep knowledge to handle multiple WSRF-based services.
Also, the application developer has to do many configuration and implementation works.
For example, the drug-docking simulation introduced in section 3.5.2 has been developed
without the proposed MSSA. In this case, the end user had to have the client program
code choosing and accessing appropriate services among multiple WSRF-based services
by hand. Table 4.3 shows the comparison of the client program codes necessary for the
scheduling of and the access to the WSRF-based services for drug-docking simulation
with and without MSSA. According to the comparison, 143 lines of perl script were nec-
essary when the application developer had to develop the client program in the case of the
development without MSSA. On the other hand, when the application developer develops
the client program in the case of the development with MSSA, only 26 lines of shell script
was required. Although the language used in each case was different, the development with

MSSA is considered to reduce the implementation work of the client program.

Execution Profile

Figure 4.15 shows the number of the CPUs used during an experiment screening 100,000
drug candidates on this prototype system. In this experiment, each job performs the screen-

ing of 500 drug candidates. In short, 200 jobs in total were submitted. To investigate the

4.4. EVALUATION AND DISCUSSION 81

rocks-52 down : .
All jobs submitted
200 1
tdws down
<>
»n } ”l
2 150 -
o | 11 AL
G
(=]
@
o 100 1171 1 T T LR LN L T
£
=
2
50
0 r r T T
0 5 10 15 20
Time (hour)

Figure 4.15: Number of CPUs used during docking experience

strength of fault-tolerance to the sudden change of the computational environment, two
cluster systems of rocks-52 and tdws were separately shut down on purpose during the ex-
periment. The rocks-52 cluster system was shut down for 5 hours from 8 to 13 hours, and
the zdws cluster system was shut down for 2 hours from 10 to 12 hours since the start of

the experiment.

According to the result shown in Fig. 4.15, all 175 CPUs were used for computation
except during the rocks-52 and tdws cluster system’s shutdown. Importantly, this result
indicates that the meta-factory services built into the prototype docking simulation system
were tolerant to the sudden computational environmental change. While rocks-52, tdws, or
both were down, MetaFactroyDock services recognized the situation, and succeeded not to
dispatch any jobs to these two cluster systems. Also, when these cluster systems came up
again, the MetaFactroyDock service succeeded in restarting the dispatching jobs to these
two cluster systems again. This means that the meta-factory service as a meta-scheduler
built into the prototype system can perform the meta-scheduling of the underlying WSRF-
based services without the end user’s awareness of the failure of rocks-52 and tdws cluster

systems.

82

CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

Factory ||Instance
Case 1: access an Service || Service
actual service directly A1 A-1
Meta-Factory|
Client ~| Service Factory |[Instance
Program A Service || Service
\ Meta-Factory A-2 A-2
Service <
Root Factory ||Instance
Case 2: access services Meta-Factory Service || Service
via a meta-factory service _ Service B-1 B-1
B Factory |[Instance
Service || Service
B-2 B-2

Figure 4.16: Meta-scheduling environment for measurement

4.4.2 Detailed Behavior of MSSA-based System

The previous subsection shows that the prototype system which adopts the proposed MSSA
is tolerant to the change in the computational environment and can perform the meta-
scheduling of WSRF-based services according to the computational environment. In addi-
tion, the Opal OP toolkit and MSSA toolkit were practically used to facilitate the author’s
development of the prototype system. In this section, the author analyzes the characteristics

of the general system based on the proposed MSSA through a simple experiment.

To analyze the detailed behavior of the MSSA, the author developed a meta-scheduling
environment shown in Fig. 4.16 and measured the overhead of scheduling process and the
behavior under highly-loaded situation. This environment was constructed within a local
area network connected with a 1Gbps connection, and used four machines with dual Intel
Xeon 2.8GHz processors. There are four actual WSRF-based services in the environment:
A-1, A-2, B-1 and B-2. All of these WSRF-based services do not perform anything. These
WSR-based services are prepared for just reviewing the behavior of the MSSA. In this envi-
ronment, services of A-x and B-x are duplicated for the purpose of load balancing and fault
tolerance. The WSRF-based services are scheduled in two layers of meta-factory services.
Meta-factory service A governs the factory services A-1 and A-2, and the meta-factory

service B governs B-1 and B-2. Further, meta-factory service Root governs meta-factory

4.4. EVALUATION AND DISCUSSION 83

1400
1200
1000 lwwwuuw‘v
» 800 —e—Direct access
E
v 600
§ —Access via meta-
= 400 factory
200
0 L W
1 51 101 151 201
Number of Accesses

Figure 4.17: Time to get URIs of instance services

services A and B. All meta-factory services of Root, A and B implement the SimpleR-
oundRobinScheduler.

Evaluation of Overhead

In this evaluation, the time from when a client program sends a request to a factory service
until when the client program obtains a URL of an instance service were measured in
the following two cases to review the overhead of scheduling process. First, the time was
measured in the case where the client program accesses factory service A-1 directly without
using any meta-factory service as a meta-scheduler. Second, the time was measured in the
case where the top of the meta-factory service (Meta-Factory service Root) was accessed
from the client program. The measurement was performed 200 times for each case. After
the 100th access in either case, A-1 and B-1 services were shutdown on purpose to see how
the system behaves and how the overhead changes.

Figure 4.17 shows the measurement result. According to the measurement result, the
direct access case is better than the access via meta-factory service. Simultaneously, the
result indicates that the overhead of using the meta-factory service is approximately 120
msec. In case of the access via meta-factory service, the request from the client program
must be handled by two meta-factory services. Taking this fact into consideration, the

overhead of a single meta-factory service is around 60 msec.

84 CHAPTER 4. TRANSPARENT META-SCHEDULING ARCHITECTURE FOR GRID APPLICATIONS

L 4

Transactions per Second

0 T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

Number of Threads

Figure 4.18: Number of SOAP transactions executed per second

Also, the measurement result indicates that the system developed based on the pro-
posed MSSA continued running in spite of the sudden death of A-1 and B-1 without af-
fecting the time for obtaining the URL from the meta-factory services whereas the client
program stopped in the first case. Importantly, the client program did not know the change
of the computational environment, meaning that the system based on the proposed MSSA
could perform meta-scheduling according to the computational environment in a transpar-
ent manner. The client program used in this measurement was exactly the same in both

cases.

Evaluation of Behavior Under Highly-loaded Situation

In this evaluation, to measure the performance of meta-factory service under the highly-
loaded situation, a benchmark tool for Web service, WSTest [60], was utilized. Specit-
ically, it was reviewed how the number of SOAP transactions executed per second was
changed while multiple threads were accessing a meta-factory service. In order to allow
WSTest to access the top of the meta-factory service (Meta-Factory service Root) in Fig.
4.16, the implementation was modified so that it conformed to the WSRF standard.
Figure 4.18 shows the measurement result. According to the measurement result, ac-
cessing with 4 threads takes maximum performance, approximately 12 transactions per
second. After that, the performance dropped with the increase of threads accessing the

meta-factory service simultaneously. However, even when 100 threads were used, the

4.5, CONCLUDING REMARKS 85

meta-factory service could succeed in performing 9 transactions per second. This fact
means that the meta-factory service could dispatch 9 requests from clients to different 9
WSRF-based services in a second. Thus, if there are a hundred of WSRF-based services
as scheduling targets, the meta-factory service could dispatch the requests from clients to
all WSRF-based services in approximately 11 seconds. This performance is considered to

be enough in most cases of the usage.

4.5 Concluding Remarks

In this chapter, the author proposed a new scheduling architecture, Meta-Scheduling Ser-
vices Architecture (MSSA). The MSSA provides a transparent meta-scheduler interface
to WSRF-based services developed by application developers. The transparency of the
meta-scheduler interface allows the use of client program as-is for accessing the target
WSRF-based services via this scheduling architecture. The advantages of the MSSA are:
the hierarchical scheduling structure, and the flexibility of scheduling policy. The hierar-
chical scheduling structure allows the application developer to build a scalable and fault-
tolerant Grid application composed of multiple WSRF-based services. In addition, the site
administrator can flexibly switch the scheduling policy of the meta-factory service as a
meta-scheduler based on the site-administration policy.

To technically realize the proposed MSSA, the author has leveraged the factory pat-
tern utilized in WSRF-based service. Under the factory pattern mechanism, the end user
always has to access the factory service composing the target WSRF-based service before
accessing the instance service which provides the actual function of the target WSRF-based
service. The author has focused on this factory pattern mechanism and realized a techni-
cal solution that facilitates the development of a Grid application based on the proposed
MSSA. The technical solution provides a common interface named MSSAFactoryInfer-
face, with which the application developer can easily develop the meta-factory service as a
meta-scheduler.

Through the review of the development case of a prototype system for drug-docking
simulation, this chapter showed that the application developer could build a scalable and
fault-tolerant Grid application composed of WSRF-based services through the use of the
Opal OP toolkit and the MSSA toolkit. Also, the measurement result shown in this chapter
indicates that the system developed based on the proposed MSSA can obtain fault-tolerance

with a small overhead of 60ms also take high performance under highly-loaded.

Chapter 5

Conclusion

5.1 Concluding Remarks

Distributed computing technologies have made dramatic improvement in the last decades.
The integration of service-oriented architecture to Grid technologies is leading a new mode
of wide-area distributed computing in scientific and engineering areas. Despite the recent
maturity of Grid computing technologies represented by WSRF technologies, many diffi-
culties still exist in the development procedure from an application program to a service-
oriented Grid application composed of multiple WSRF-based services. For this reason, the
author has proposed methods and tools to facilitate the development of a service-oriented

Grid application in this dissertation.

Chapter 2 clarified the technical issues to achieve in this study. To understand the dif-
ficulties in developing the service-oriented Grid application, the author first reviewed the
Grid application development procedure. In this review, the developing stage of a WSRF-
based service from an existent program and the developing stage of a Grid application
utilizing WSRF-based services deployed over multiple organizations were particularly fo-
cused on. Next, through the discussion on conventional approaches available today for
solving the difficulties at these two stages, the author has come up with the conclusion that
the wrapping method and meta-scheduler are possibly available solutions that facilitates
the development for these two stages, respectively. In the conventional wrapping method,
however, the author pointed out that inflexibility and inextensibility became a serious prob-
lem in the process of developing a WSRF-based Grid service from an existent application
program. Also, the author revealed that the existent meta-scheduler targeting only GRAM
services does not satisfy the application developers’ requirements to the meta-scheduling
of multiple WSRF-based services composing a service-oriented Grid application. To solve

these problems, the author has concluded that two technical issues must be solved. The

87

88 CHAPTER 5. CONCLUSION

establishment of a new flexible and extensible wrapping service and a new meta-scheduler

suitable for service-oriented Grid application are the two issues that need to be solved.

In Chapter 3, as a solution to the first issue, the establishment of a new flexible and ex-
tensible wrapping service, the author has proposed a new wrapping model, the “Extensible
Wrapping Service Model” and its corresponding development method based on the model.
Also the corresponding tool named Opal Operation Provider (Opal OP), which allows the
application developer to easily build a WSRF-based service from an existing application,
was developed. The basic idea of the new model was the provision of a set of functions
for encapsulating an existing program as a module so that the application developer can
import the functions into his’/her WSRF-based service with minimal efforts. For the pur-
pose of modularizing the functions for encapsulation, the operation provider technique was
investigated. The author then developed the Opal OP module as an operation provider by
combining the operation provider technique and Opal technology. In addition, to support
the total development of a WSRF-based service from an existent program with the Opal
OP module, the author proposed the Opal OP toolkit. The Opal OP toolkit has leveraged
the dependency and redundancy among configuration files and implementation files for a
WSRF-based service to generate a set of template codes for a WSRF-based service auto-
matically from only a single small configuration file which the application developer has
to prepare. More specifically, the Opal OP toolkit assumes that the generated WSRF-based
service encapsulates a command-line program through the Opal OP module and provides
a fixed set of interfaces. This assumption restricts the targets of the proposed method
to command-line program whereas generally WSRF technologies realize various types of
Grid services (e.g., account management service and database management service). How-
ever, in terms of developing a WSRF-based service for an existing scientific program, the
restriction derived from this assumption is not a problem because most scientific programs
are implemented as command-line programs. The usefulness of the proposed method and
tool were shown through the review of three actual examples of Grid applications devel-
oped with the Opal OP.

In Chapter 4, the second technical issue revealed in Chapter 2, namely, the establish-
ment of a new meta-scheduler suitable for service-oriented Grid application was treated.
For this purpose, the author has proposed a new meta-scheduling architecture (MSSA:
Meta-Scheduling Services Architecture) and MSSA toolkit for facilitating the develop-
ment of Grid application utilizing WSRF-based services deployed over multiple comput-
ing resources. The MSSA provides a transparent meta-scheduler interface to WSRF-based

services developed by application developers. The transparency of the meta-scheduler

5.2. FUTURE DIRECTIONS 89

interface allows the use of client program as-is for accessing the target WSRF-based ser-
vices via this scheduling architecture. The MSSA also has the following two advantages:
scalable hierarchical scheduling structure, and flexibility of a scheduling policy. In order
to realize transparent meta-scheduler interface, the author has leveraged the factory pat-
tern utilized in WSRF-based service, and proposed a mechanism of meta-factory service
implementing scheduling process behind this factory pattern. For the implementation of
the meta-factory service, the author has defined a common factory interface, MSSAFac-
toryInterface. With this interface, the application developer can develop the transparent
meta-scheduler that has the same interface as the factory service of the WSRF-based ser-
vice. It also allows the administrator to switch the scheduling policy in a plug-in manner.
Evaluation and discussion showed how the development work for a scalable and fault-
tolerant Grid application composed of WSRF-based services was facilitated with Opal OP
toolkit and MSSA toolkit through the review of a prototype system of drug-docking simu-
lation. Also, the measurement result of the system developed based on the proposed MSSA
indicates that such system can select a WSRF-based service from multiple WSRF-based

service with small overhead of 60 msec, and perform up to 12 transactions per second.

5.2 Future Directions

In this study, the author proposed Opal OP and MSSA for solutions of technical issues
clarified in Chapter 2. The total development procedure of a service-oriented Grid appli-
cation from an existing program was facilitated with the proposed Opal OP and MSSA.
Opal OP has been already utilized in several research communities, and highly evaluated
as a flexible method for facilitating the development of a WSRF-based service from an
existing program. However, MSSA has not been tested and evaluated in realistic develop-
ments. Therefore, the author would like to actively promote the use of MSSA through the
research communities which has already introduced Opal OP. The author hopes that the
achievement of the dissertation contributes to the enhancement and advancement of com-
putational science with service-oriented Grid. Four directions toward the promotion of this

study are considered below.

1. Supporting Application Specific Implementation for a WSRF-based Service Utiliz-
ing Opal OP

In order to further facilitate the development of a WSRF-based service, the proposed Opal
OP should support the preparation of application specific implementation for a WSRF-

90 CHAPTER 5. CONCLUSION

based service realized by Opal OP. The current Opal OP allows the application developer
to extend the WSRF-based service generated by Opal OP by adding his/her application
specific implementation, whereas the conventional wrapping methods provide the fixed
implementation of a wrapping service. However, the Opal OP does not provide any way to
develop application specific implementation itself because the application specific imple-
mentation such as intermediate data exchange and synchronization between multiple Grid
services is dependent on the individual implementation of the program. For the purpose
of facilitating the development of a WSRF-based service, a way to facilitate the develop-
ment of the application specific implementation, such as a common library extracted from

various use cases of Opal OP, is required.

2. Supporting Construction of Grid Environment

Asreviewed in section 3.5.2, the application developer has difficulties and spends long time
to construct a Grid environment for his/her Grid application (i.e., the work mentioned as the
third stage of developing a Grid application). For example, he/she needs to install Globus
Toolkit and his/her WSRF-based service on each of remote resources. For facilitating the
total works of developing a Grid application, this construction work should be taken into

account as a future issue.

3. Extension of Resource Property in Opal OP

As described in Chapter 3, the author has implemented a resource property to expose
the job status as the resource property defined in the WSRF standard. Currently this re-
source property is available only from the client program so that it checks the job status
including job termination and aborting. For more sophisticated integration and federation
among multiple WSRF-based services (e.g., autonomous coordination among interdepen-
dent WSRF-based services), the resource property should be utilized and shared by not
only the client program but also multiple WSRF-based services composing a Grid appli-
cation. The WSREF standard prescribes a standard method, WS-Notification, for asyn-
chronous communication between WSRF-based services which is triggered by the change
in resource property. For the purpose of realizing more sophisticated integration among
WSRF-based services built with Opal OP, the implementation of resource property con-

forming to WS-Notification is required.

5.2. FUTURE DIRECTIONS 91

4. Implementation and Verification of Scheduling Policies

In this study, the author has developed a round-robin scheduling policy implementation,
SimpleRoundRobinScheduler, as a prototype. However, to further discuss the availability
and usefulness of the proposed meta-scheduling architecture from practical aspects, the
author considers that more complicated scheduling policies, such as performance-intensive
policy and data-intensive policy which requires more complicated interaction among meta-
factory services as meta-schedulers, must be implemented and verified to be practically

deployed on the proposed MSSA.

Acknowledgments

I would like to thank Professor Shinji Shimojo of the Cybermedia Center at Osaka Uni-
versity for his overall and primary supervision, countless suggestions, and constructive
comments on my research activities and on writing this dissertation.

I am heartily grateful to Professors Shojiro Nishio, Toru Fujiwara, Fumio Kishino,
Norihisa Komoda, Kiyoshi Kogure, and Norihiro Hagita of the Department of Multime-
dia Engineering in the Graduate School of Information Science and Technology at Osaka
University for their support and numerous suggestions for revising this dissertation.

I would also like to express my gratitude to Specially Appointed Associate Professor
Susumu Date of the Department of Bioinformatic Engineering in the Graduate School of
Information Science and Technology at Osaka University for his advice to the dissertation.
His expertise and insightful comments have been most beneficial.

My sincere appreciation also goes to the faculty members of Shimojo Laboratory; As-
sociate Professor Ken-ichi Baba, Assistant Professor Toyokazu Akiyama, Specially Ap-
pointed Instructors Eisaku Sakane and Shingo Okamura, Educational Affairs Office Em-
ployee Kazunori Nozaki, and Specially Appointed Researcher Yoshimasa Ishi for their
sincere advice and support. Also, Dr. Kaname Harumoto of the Graduate School of En-
gineering at Osaka University, Dr. Yuuichi Teranishi of the Department of Multimedia
Engineering, Dr. Seiichi Kato of Hyogo University of Health Sciences, and Dr. Susumu
Takeuchi of the Department of Multimedia Engineering gave me invaluable encourage-
ment and constructive comments on my research. I would also like to thank the colleagues
of the Shimojo Laboratory.

I am also heartily grateful to Dr. Sriram Krishnan, Dr. Wilfred Li, Mr. Marshall
Levesque, Ms. Ellen Tsai, Dr. Peter Arzberger of the University of California San Diego,
Professor Haruki Nakamura, Dr. Yasushige Yonezawa, Dr. Reiko Yamashita of The Insti-
tute for Protein Research at Osaka University and Dr. Kazuto Nakata of NEC Soft, Ltd. for
technical supports. I would also like to express my gratitude to Dr. Bu-Sung (Francis) Lee
of the School of Computer Engineering at Nanyang Technological University in Singapore

for his careful proofreading of this dissertation and invaluable advice.

93

o4 ACKNOWLEDGMENTS

Finally I would like to show my deepest gratitude to my family members, to my mother
Hiromi and father Shunichi, who raised me with courteous parental ship and emotional

support; to my older sister Keiko, and to my younger brother Michihiro.

Bibliography

[1]

[4]

[5]

[6]

[7]

[8]

[9]

R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and D. A. Pat-
terson, “The interaction of parallel and sequential workloads on a network of worksta-
tions,” in Proceedings of ACM SIGMETRICS’95/PERFORMANCE’95 Joint Interna-

tional Conference on Measurement and Modeling of Computer Systems, pp. 267-278,
May 1995.

M. K. Gobbert, “Configuration and performance of a Beowulf cluster for large-scale

scientific simulations,” Computing in Science and Engineering, vol. 7, no. 2, pp. 14—
26, March 2005.

T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V.
Packer, “BEOWULF: A parallel workstation for scientific computation,” in Proceed-

ings of the 24th International Conference on Parallel Processing, vol. 1, pp. 11-14,
August 1995.

T. Sterling, D. J. Becker, J. Salmon, and D. F. Savarese, How to Build a Beowulf. MIT
Press, May 1999.

T. L. Sterling, Beowulf Cluster Computing With Linux. MIT Press, October 2001.

R. R. Scheller, “Moore’s law: Past, present and future,” IEEE Spectrum, vol. 34,
no. 6, pp. 52-59, June 1997.

G. Gilder, TELECOSM: How Infinite Bandwidth will Revolutionize Our World. Free
Press, September 2000.

J. E. White, “A high-level framework for network-based resource sharing.” http:
//tools.ietf.org/rfc/rfc707.txt.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable parallel programming
with the message-passing interface. MIT Press, October 1994.

95

96

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Vinoski, “CORBA: Integrating diverse applications within distributed heteroge-
neous environments,” Communications Magazine, IEEE, vol. 35, no. 2, pp. 46-55,
February 1997.

R. Marvie and P. Merle, “CORBA component model: Discussion and use with
OpenCCM,” in Technical Report, LIFL, June 2001.

M. Horstmann and M. Kirtland, “DCOM architecture.” http://msdn2.

microsoft.com/en-us/library/ms809311.aspx.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the Grid: An
open Grid services architecture for distributed systems integration.” http://www.

globus.org/research/papers/ogsa.pdf, June 2002.

I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” High

Performance Computing Applications, vol. 11, no. 2, pp. 115-128, Summer 1997.
“The Globus Alliance.” http://www.globus.org/.

L. Foster, “Globus Toolkit version 4: Software for service-oriented systems,” in Pro-
ceedings of the IFIP International Conference on Network and Parallel Computing,
NPC 2005, pp. 2—13, November 2005.

K. Czajkowski, D. F. Ferguson, 1. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke, and W. Vambenepe, “The WS-Resource Framework.” http://www.
globus.org/wsrf/specs/ws—-wsrf.pdf, March 2004.

Political Multi-Agent Simulation with Grid Computing, vol. 17 of RCSS Discussion
Paper Series, Kansai University, August 2004.

H. Stockinger, F. Donno, E. Laure, S. Muzaftar, P. Kunszt, G. Andronico, and P. Mil-
lar, “Grid data management in action: Experience in running and supporting data

management services in the EU DataGrid project,” in Proceedings of Computing in
High Energy Physics (CHEP 2003), March 2003.

“The Particle Pyhsics Data Grid (PPDG) home page.” http://www.ppdg.net.

I. Zaslavsky and A. Memon, “GEON: Assembling maps on demand from hetero-
geneous Grid sources,” in Proceedings of the 2004 ESRI User Conference, August
2004.

BIBLIOGRAPHY 97

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

“GEON: Geoscience network.” http://www.geogrid.org.
“BIRN: Biomedical informatics research network.” http://www.nbirn.net.

A. W. Lina, L. Dai, K. Ung, S. Peltier, and M. H. Ellisman, “The telescience project:
Applications to middleware interaction components,” in Proceedings of the 18th
IEEE International Symposium on Computer-Based Medical Systems, pp. 543-548,
June 2005.

S. Date, Y. Mizuno-Matumoto, Y. Kadobayashi, and S. Shimojo, “An MEG data anal-
ysis system using Grid technology,” Transactions of Information Processing Society
of Japan, vol. 42, no. 12, pp. 2952-2962, December 2001.

K. Ichikawa, S. Date, T. Kaishima, and S. Shimojo, “A framework supporting the
development of Grid portal for analysis based on ROI,” Methods of Information in
Medicine, vol. 44, no. 2, pp. 265-269, June 2005.

J. Alameda, M. Christie, G. Fox, J. Futrelle, D. Gannon, M. Hategan, G. Kan-
daswamy, G. von Laszewski, M. A. Nacar, M. Pierce, E. Roberts, C. Severance, and
M. Thomas, “The open Grid computing environments collaboration: Portlets and ser-

vices for science gateways,” Concurrency and Computation: Practice & Experience,

vol. 19, no. 6, pp. 921-942, April 2007.

M. Pierce and G. Fox, “Making scientific applications as Web services,” Computing

in Science & Engineering, vol. 6, no. 1, pp. 93-96, January 2004.

J. Novotny and O. W. M. Russell, “GridSphere: A portal framework for building

collaborations,” Journal of Concurrency and Computation: Practice and Experience,

vol. 16, no. 5, pp. 503-513, April 2004.

I. Kelley, J. Novotny, M. Russell, and O. Wehrens, “Jetspeed evaluation.” http://

www.gridsphere.org/gridsphere/docs/ jetspeed—-eval.pdf, June
2002.

B. Sotomayor, “The Globus Toolkit 4 programmer’s tutorial.” http://gdp.
globus.org/gt4—tutorial/, November 2005.

O. Tatebe, N. Sonoda, and S. Sekiguchi, “Gfarm v2: Design and implementation of
global virtual file system,” IPSJ SIG Notes, vol. 2004, no. 81, pp. 145-150, July 2004.

98

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. R. Soltis, T. M. Ruwart, and M. T. O " Keefe, “The global file system,” in Proceed-
ings of the 5th NASA Goddard Conference on Mass Storage Systems and Technolo-
gies, pp. 319-342, September 1996.

K. Czajkowski, 1. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke, “A resource management architecture for metacomputing systems,” in

Proceedings of the 4th Workshop on Job Scheduling Strategies for Parallel Process-
ing, LNCS 1459, pp. 62-82, Springer-Verlag, March 1998.

I. Foster and N. Karonis, “A Grid-enabled MPI: Message passing in heterogeneous
distributed computing systems,” in Proceedings of Supercomputing Conference 98,
pp- 4646, ACM Press, November 1998.

T. Kudoh, Y. Ishikawa, and M. Matsuda, “Evaluation of MPI implementations on
Grid-connected clusters using an emulated wan environment,” in Proceedings of
the third IEEE/ACM International Symposium on Cluster Computing and the Grid,
pp- 10-17, May 2003.

K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova,
“Overview of GridRPC: A remote procedure call API for Grid computing,” GRID
COMPUTING - GRID 2002, LNCS 2536, pp. 274-278, November 2002.

Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka, “Ninf-G: A ref-
erence implementation of RPC-based programming middleware for Grid computing,”

Journal of Grid Computing, vol. 1, no. 1, pp. 41-51, June 2003.

J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, “Condor-G: A compu-
tation management agent for multi-institutional Grids,” Cluster Computing, vol. 5,
no. 3, pp. 237-246, July 2002.

X. Wei, Z. Ding, S. Yuan, C. Hou, and H. Li, “CSF4: A WSRF compliant meta-
scheduler,” in Proceedings of 2rd Workshop on Grid Computing and Applications
(GCA2006), pp. 61-67, June 2006.

E. Huedo, R. S. Montero, and I. M. Llorente, “A modular meta-scheduling architec-
ture for interfacing with pre-WS and WS Grid resource management services,” Fu-
ture Generation Computing Systems The International Journal of Grid Computing:

Theory, Methods and Applications, vol. 23, no. 2, pp. 252-261, February 2007.

BIBLIOGRAPHY 99

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

S. Krishnan, B. Stearn, K. Bhatia, K. K. Baldridge, W. Li, and P. Arzberger, “Opal:
Simple Web services wrappers for scientific applications,” in Proceedings of IEEE
International Conference on Web Services (ICWS’06), pp. 823—-832, September 2006.

P. Kacsuk, T. Kiss, A. Goyeneche, T. Delaitre, Z. Farkas, and T. Boczko, “High-
level Grid application environment to use legacy codes as OGSA Grid services,” in
Proceedings of 5th IEEE/ACM International Workshop on Grid Computing, pp. 428—
435, November 2004.

V. Sanjeepan, A. M. Matsunaga, L. Zhu, H. Lam, and J. A. B. Fortes, “A service-
oriented, scalable approach to Grid-enabling of legacy scientific applications,” in Pro-
ceedings of The 2005 IEEE International Conference on Web Services (ICWS 2005),
pp- 553-560, July 2005.

G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru, and D. Gannon, “Build-
ing Web services for scientific Grid applications,” IBM Journal of Research and De-
velopment, vol. 50, no. 2/3, pp. 249-260, March 2006.

H. Nakamura, S. Date, H. Matsuda, and S. Shimojo, “A challenge towards next-
generation research infrastructure for advanced life science,” New Generation Com-

puting, vol. 22, no. 2, February 2004.

“OASIS Web Services Notification (WSN).” http://www.oasisopen.org/
committees/tc_home.php?wg_abbrev=wsn, October 2006.

T. J. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, “DOCK 4.0: Search strate-
gies for automated molecular docking of flexible molecule databases,” Journal of
Computer-Aided Molecular Design, vol. 15, no. 5, pp. 411-428, May 2001.

E. Hatcher and S. Loughran, Java Development with Ant. Manning Pubns Co, August
2002.

T. Sakuma, H. Kashiwagi, T. Takada, and H. Nakamura, “Ab initio MO study of the
chlorophyll dimer in the photosynthetic reaction center. i. a theoretical treatment of

the electrostatic field created by the surrounding proteins,” International Journal of
Quantum Chemistry, vol. 61, pp. 137-151, December 1997.

Y. Fukunishi, Y. Mikami, and H. Nakamura, “The filling potential method: A method
for estimating the free energy surface for protein-ligand docking,” Journal of Physical
Chemistry B., vol. 107, pp. 13201-13210, November 2003.

100

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

“MPI-2: Extentions to the Message-Passing Interface.” http://www.
mpiforum.org/, July 1997.

A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjel-
lum, and M. Snir, “MPI-2: Extending the message passing interface,” in Proceedings
of Euro-Par ’96 Parallel Processing, LNCS 1123, pp. 128-135, August 1996.

W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press, November 1999.

D. Stamdley, H. Toh, and H. Nakamura, “Detecting local structural similarity in
proteins by maximizing the number of equivalent residues,” PROTEINS: Structure,

Function, and Bioinformatics, vol. 57, no. 2, pp. 381-391, November 2004.

Gamma, Erich, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, January 1995.

W. Gentzsch, “Sun Grid Engine: Towards creating a compute power Grid,” in Pro-
ceedings of Ith IEEE International Symposium on Cluster Computing and the Grid
Workshop, pp. 35-36, May 2001.

R. L. Henderson, “Job scheduling under the portable batch system,” in Proceedings
of the Workshop on Job Scheduling Strategies for Parallel Processing, pp. 279-294,
April 1995.

P. Troger, H. Rajic, A. Haas, and P. Domagalski, “Standardization of an API for dis-
tributed resource management systems,” in Proceedings of the 7th IEEE International
Symposium on Cluster Computing and the Grid 2007 (CCGrid 2007), pp. 619-626,
May 2007.

“WSTest 1.0 - Web Services Performance in Java and .NET.” http://java.sun.

com/performance/reference/codesamples/, July 2004.

