

| Title        | 高温高密度レーザープラズマ中の原子過程に関する理<br>論的研究 |
|--------------|----------------------------------|
| Author(s)    | 河村, 徹                            |
| Citation     | 大阪大学, 1999, 博士論文                 |
| Version Type | VoR                              |
| URL          | https://doi.org/10.11501/3155391 |
| rights       |                                  |
| Note         |                                  |

## Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

| 修正表                |                                                                                                                                                 |                                                                                                                                      |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| ページ番号              | 誤(紙媒体版)                                                                                                                                         | 正 (PDF 版)                                                                                                                            |  |
| pp.5 8 行目          | $\text{Ly-}\beta(1s^2-1s4p)$                                                                                                                    | $Ly-\beta(1s-3p)$                                                                                                                    |  |
| pp.17              | $B(q_{z,i}) = q_{z,i}^{1/2} (q_{z,i} + 1)^{5/2}$                                                                                                | $B(q_{z,i}) = q_{z,i}^{1/2} (q_{z,i} + 1)^{5/2}$                                                                                     |  |
| 式 (2.18)           | $/(q_{z,i}^2 + 13.4)$                                                                                                                           | $/(q_{z,i}^2 + 13.4)^{1/2}$                                                                                                          |  |
| pp.18 2.2.8 節 6 行目 | · · · 断面積 σ <sub>bf</sub> は、次のように · · ·                                                                                                         | 断面積 σ <sub>bf</sub> は、H 様近似では次のように                                                                                                   |  |
| pp.18 式 (2.23)     | $(64\pi^4/3\sqrt{3})(e^4m_{\rm e}q_{z,i}^4/h^6cn^5\nu^3)$                                                                                       | $(64\pi^4/3\sqrt{3})(e^{10}m_{\rm e}q_{z,i}^4/h^6cn^5\nu^3)$                                                                         |  |
| pp.19 4 及び 11 行目   | Planck の熱放射分布関数を用いる.                                                                                                                            | Planck の熱放射分布関数を用いることがある.                                                                                                            |  |
| pp.21 3 行目最後       | 導出している.                                                                                                                                         | … している.また、誘導放出の計算では                                                                                                                  |  |
| に文章追加              |                                                                                                                                                 | Population を LTE として仮定している.                                                                                                          |  |
| pp.22 式 (2.43)     | $j_{ m fb} d u = rac{64\pi^{1/2}}{3\sqrt{3}}rac{e^4 h}{m_e^2 c^3} \cdot \cdot \cdot \cdot \cdot$                                              | $j_{ m fb}  d u = rac{64\pi^{1/2}}{3\sqrt{3}} rac{Z^4 e^4 h}{m_e^2 c^3} \cdot \cdot \cdot \cdot \cdot$                             |  |
| pp.23 式 (2.47)     | $j_{ m bb} = h  u A(j  ightarrow i) N_{z,j} \phi( u) \cdots$                                                                                    | $j_{\mathrm{bb}} = h\nu_{ij}A(j \to i)N_{z,j}\phi(\nu)\cdots$                                                                        |  |
| pp.23 式 (2.48)     | $\kappa_{\rm bb} = h\nu B(i \to j) N_{z,i} \phi(\nu) \cdots$                                                                                    | $ \kappa_{\rm bb} = h\nu_{ij}B(i \to j)N_{z,i}\phi(\nu)\cdots $                                                                      |  |
| pp.27 🗵 3.1-(a)    | $He-\alpha(1s^2-1s3p)$                                                                                                                          | $\text{He-}\alpha(1s^2-1s2p)$                                                                                                        |  |
| pp.41 文献番号 [9]     | H.M.Griem:···                                                                                                                                   | H.R.Griem:···                                                                                                                        |  |
| pp.45              | $V_l(r) = V_{\rm sp} + \frac{(l+1/2)}{2r^2}$                                                                                                    | $V_l(r) = V_{\rm sp} + \frac{(l+1/2)^2}{2r^2}$ $(l \neq 0)$                                                                          |  |
| 式 (4.8)            |                                                                                                                                                 | $V_{\rm sp}$ $(l=0)$                                                                                                                 |  |
| pp.47 式 (4.14)     | $\lambda_{\mathrm{d}}(\mathrm{Debye} \mathbb{E})$                                                                                               | $\lambda_{\mathrm{de}}$ (電子 Debye 長)                                                                                                 |  |
| pp.58 文献番号 [19]    | H.M.Griem:···                                                                                                                                   | H.R.Griem:···                                                                                                                        |  |
| pp.61 最下行          | およそ 10 <sup>14</sup> sec                                                                                                                        | およそ 10 <sup>-14</sup> sec                                                                                                            |  |
| pp.62 式 (5.3)      | $\cdots - \frac{1}{\pi} \operatorname{Tr} \int_0^\infty d\epsilon Q(\epsilon) D$                                                                | $\cdots - \frac{1}{\pi} \operatorname{Re} \operatorname{Tr} \int_0^\infty d\epsilon Q(\epsilon) D$                                   |  |
|                    | $rac{\psi}{\psi^2 + (\Delta  u - \Delta  u_{	ext{Stark}}(\epsilon))^2} \ldots$                                                                 | $\left[\psi + i(\Delta\nu - \Delta\nu_{\rm Stark}(\epsilon))\right]^{-1}\cdots$                                                      |  |
| pp.62 27 行目        | Bruce らによって                                                                                                                                     | Tarter によって                                                                                                                          |  |
| pp.62 式 (5.4) 左辺   | $\langle k D k\rangle\cdots$                                                                                                                    | $\langle k' D k\rangle\cdots$                                                                                                        |  |
| pp.62 式 (5.4) 右辺   | $\cdots \langle k nlm\rangle\langle k nlm\rangle$                                                                                               | $\cdots \langle k' nlm \rangle \langle k nlm \rangle$                                                                                |  |
| pp.63 式 (5.8) 左辺   | $\psi_k(m) = \cdots$                                                                                                                            | $\psi_{k'k}(m) = \cdots$                                                                                                             |  |
| pp.63 式 (5.8) 右辺   | $\cdots = \sum_{l} \langle k   n l m \rangle \langle k   n l m \rangle \cdots$                                                                  | $\cdots = \sum_{l} \langle k'   nlm \rangle \langle k   nlm \rangle \cdots$                                                          |  |
| pp.63 11,15 行目     | 半値全幅                                                                                                                                            | 半値半幅                                                                                                                                 |  |
| pp.65 式 (5.11)     | $\cdots - \frac{1}{\pi} \operatorname{Tr} \int_0^{\epsilon_c} d\epsilon Q(\epsilon) D$                                                          | $\cdots - \frac{1}{\pi} \operatorname{Re} \operatorname{Tr} \int_0^{\epsilon_c} d\epsilon Q(\epsilon) D$                             |  |
|                    | $\frac{\psi^{3}U}{\psi^{2}+(\Delta u-\Delta u_{ m Stark}(\epsilon))^{2}}\dots$                                                                  | $[\psi + i(\Delta \nu - \Delta \nu_{\text{Stark}}(\epsilon))]^{-1} \cdots$                                                           |  |
| pp.73 12 行目        | 表れる                                                                                                                                             | 現れる                                                                                                                                  |  |
| pp.78 式 (A.6) の下の行 | 式中、 $	au_i$ は、量子状態 $(n\kappa m)$ を表し、 $\cdots$                                                                                                  | 式中、 $	au_i$ は、位置座標 $\mathbf{r}_i$ と                                                                                                  |  |
|                    |                                                                                                                                                 | スピン座標 $\sigma_i$ をあわせた座標を表し、                                                                                                         |  |
| pp.81 最下行          | 持っとも                                                                                                                                            | もっとも                                                                                                                                 |  |
| pp.92 24 行目        | 一方、 $C = K = Ze^2/Dk_BT$                                                                                                                        | 一方、 $C = K = Ze^2/\lambda_{\rm d}k_{\rm B}T$                                                                                         |  |
| pp.93 式 (G.15)     | $ \cdots 3(z^* + 1) \frac{ze^2}{\lambda_{\mathbf{d}}k_{\mathbf{B}}T} $ $ = \frac{3z^*}{4\pi\lambda_{\mathbf{d}}^3 n_{\mathbf{e}}(\infty,\mu)} $ | $\cdots 3(z^*+1)\frac{Ze^2}{\lambda_{\rm d}k_{\rm B}T}$                                                                              |  |
|                    | $=rac{3z}{4\pi\lambda_d^3n_{ m e}(\infty,\mu)}$                                                                                                | $=rac{3Z}{4\pi\lambda_{ m d}^3 n_{ m e}(\infty,\mu)}$                                                                               |  |
| pp.93 9 行目         | 但し、 $a_{\mathrm{i}}=(3z^*/4\pi n_{\mathrm{e}}(\infty,\mu))^{1/3}$                                                                               | $=\frac{3Z}{4\pi\lambda_{\mathrm{d}}^{3}n_{\mathrm{e}}(\infty,\mu)}$ 但し、 $a_{\mathrm{i}}=(3Z/4\pi n_{\mathrm{e}}(\infty,\mu))^{1/3}$ |  |
| pp.93 式 (G.18)     | $J = J' \cdot (k_{\rm B}T) = \frac{3ze^2}{2a_{\rm i}} \cdots$                                                                                   | $J = J' \cdot (k_{\mathrm{B}}T) = \frac{3Ze^2}{2a_i} \cdot \cdot \cdot$                                                              |  |
| pp.94 5 行目         | $J \rightarrow 3ze^2/2a_i$                                                                                                                      | $J  ightarrow 3Ze^2/2a_{ m i}$                                                                                                       |  |
| pp.98 10 行目        | 平均値な                                                                                                                                            | 平均的な                                                                                                                                 |  |
| pp.99 式 (H.33)     | $\phi(\omega) = -\frac{1}{\pi} \operatorname{Tr} D \frac{\psi'}{(\omega - \omega_{ij})^2 + {\psi'}^2} \cdots$                                   | $\phi(\omega) = -\frac{1}{\pi} \operatorname{Re} \operatorname{Tr} D \left[ \psi' + i(\omega - \omega_{ij}) \right]^{-1} \cdots$     |  |
| pp.99 式 (H.34)     | $\phi(\nu) = -\frac{1}{\pi} \operatorname{Tr} D \frac{\psi}{(\nu - \nu_{ij})^2 + \psi^2} \cdots$                                                | $\phi(\nu) = -\frac{1}{\pi} \operatorname{Re} \operatorname{Tr} D \left[ \psi + i(\nu - \nu_{ij}) \right]^{-1} \cdots$               |  |