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1. Introduction

For each integer ≥ 0, we denote by Hol (2 CP ) the space consisting of all
holomorphic maps 2 → CP of degree . The corresponding space of continuous
maps is denoted by Map (2 CP ). We also denote by Hol∗( 2 CP ) (resp. 2CP )
the subspace of Hol (2 CP ) (resp. Map (2 CP )) consisting of all maps ∈
Hol ( 2 CP ) which preserve the base-points. The space of holomorphicmaps are of
interest both from a classical and modern point of view (e.g.[1], [3], [6]). It is an
elementary and fundamental fact that Hol (2 CP ) and Hol∗( 2 CP ) are connected
spaces. If = 1, the fundamental groups of these spaces areZ/2 and Z, repec-
tively ([7], [12]); if ≥ 2, these spaces are simply connected and 2(− 1)-connected,
respectively. The following more general result was obtained by G. Segal:

Theorem 1.1 ([12]). If

{
: Hol ( 2 CP )→ Map ( 2 CP )

˜ : Hol∗( 2 CP )→ 2CP

are inclusion maps, and ˜ are homotopy equivalences up to dimension( ) =
(2 − 1) .

REMARK. The map : → is said to bea homotopy equivalence up to di-
mension if ∗ : π ( )→ π ( ) is bijective when < and surjective when = .

The principal motivation of this paper derives from the workof Segal ([12]), in
which he describes the homotopy types of Hol (2 CP ) and Hol∗( 2 CP ) from the
point of view of the infinite dimensional Morse theoretical principle by using a tech-
nique of scanning maps ([8], [9], [12]). Now the homotopy types of Hol∗( 2 CP )
were studied well by several authors ([3], [9], [10]). So in this paper we shall study
the homotopy types of Hol (2 CP ). We identify 2 = C ∪∞ and consider the eval-

uation fibration sequence Hol∗( 2 CP )→ Hol ( 2 CP )→ CP where the map
is given by ( ) = (∞) for ∈ Hol ( 2 CP ).
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In this situation, we define the spacẽHol ( 2 CP ) by

H̃ol ( 2 CP ) = {( ) ∈ Hol ( 2 CP )× 2 +1 : ( ) = ( )}

where : 2 +1→ CP denotes the Hopf fibering with fibre1.
There is the commutative diagram

H̃ol ( 2 CP )
˜−−−−→ 2 +1

y
y

Hol ( 2 CP ) −−−−→ CP

where vertical maps are fibrations. Recall the following result.

Theorem 1.2 ([14]). Let ≥ 1 be an integer and letH̃ol
∗

denote the universal
covering ofHol∗( 2 2).
(i) H̃ol ( 2 2) is a universal covering ofHol ( 2 2).
(ii) There is a homotopy equivalencẽHol ( 2 2) ≃ H̃ol

∗ × 3.
(iii) So, if ≥ 2, there is an isomorphism

π (Hol ( 2 2)) ∼= π (Hol∗)⊕ π ( 3).
In particular, if 2≤ < , there is an isomorphism

π (Hol ( 2 2)) ∼= π +2( 2)⊕ π ( 3).

We would like to investigate the corresponding results for the case ≥ 2. In fact,
the main purpose of this paper is to investigate whether a similar result holds or not.
Our results are as follows:

Theorem 1.3. Let ≥ 2 and ≥ 1 be integers.
(i) H̃ol ( 2 CP ) is the 2-connective covering ofHol ( 2 CP ).
(ii) There is a fibration sequence(up to homotopy)

Hol∗( 2 CP )
˜→ H̃ol ( 2 CP ) ˜→ 2 +1(∗)

Moreover, the fibration (∗) has a section if and only if ≡ 1 (mod 2)or ≡ ≡ 0
(mod 2).

Corollary 1.4. Let ≥ 1 and ≥ 2 be integers such that ≡ 1 (mod 2) or
≡ ≡ 0 (mod 2).

(i) If ≥ 3, there is an isomorphism
π (Hol ( 2 CP ))∼= π (Hol∗( 2 CP ))⊕ π ( 2 +1).

(ii) In particular, if 3 ≤ < , there is an isomorphism
π (Hol ( 2 CP ))∼= π +2( 2 +1)⊕ π ( 2 +1).
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We shall also see that the fibration (∗) does not have a section if≡ 0 (mod 2)
and ≡ 1 (mod 2). However, we can prove the weaker version as follows.

Proposition 1.5. Let ≥ 2 and ≥ 1 be integers and let be an abelian
group. Then there are isomorphisms of graded abelian groupsand graded rings:

{
∗(H̃ol ( 2 CP ) )∼= ∗(Hol∗( 2 CP ) )⊗ ∗( 2 +1 )
∗(H̃ol ( 2 CP ) )∼= ∗(Hol∗( 2 CP ) )⊗ ∗( 2 +1 )

Finally, we shall study the case = 1 carefully. In this case, we can deter-
mine the homotopy types of Hol1( 2 CP ) andH̃ol1( 2 CP ) explicitly. Let be the
( × )-identity matrix and ⊂ be the center of given by ={α : α ∈
C |α| = 1}.

For each pair of integers ( ) with 1≤ ≤ , let denote the complex
Stiefel manifold of orthogonal -frames inC defined by = / − . Simi-
larly, let be the complex projective Stiefel manifold of orthogonal -frames in
C defined by = /( × − ) ∼= /C∗.

Theorem 1.6. If ≥ 2, there are homotopy euivalences
{
φ1 : +1 2

≃→ Hol1( 2 CP )

φ̃1 : +1 2
≃→ H̃ol1( 2 CP )

Corollary 1.7. There are homotopy equivalences

{
H̃ol1( 2 CP2) ≃ 3

H̃ol1( 2 CP3) ≃ 5 × 7

This paper is organized as follows. In Section 2, we shall show the existence of
the fundamental fibration (∗) and prove Theorem 1.3. In Section 3, we shall compute
the (co-)homology ofH̃ol ( 2 CP ) and prove Proposition 1.5. In Section 4, we shall
investigate the homogenous space structures ofH̃ol ( 2 CP ) and Hol ( 2 CP ) for
the case = 1.

2. The fundamental fibration

First, in this section, we shall prove the following result.

Proposition 2.1. If ≥ 2, there are fibration sequences




(∗) Hol∗( 2 CP )
˜→ H̃ol ( 2 CP )

˜→ 2 +1

(†) H̃ol ( 2 CP )→ Hol ( 2 CP )
ι′→ (Z 2)
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Proof. Consider the commutative diagram

1 =−−−−→ 1

y
y

H̃ol ( 2 CP )
˜−−−−→ 2 +1

y
y

Hol ( 2 CP ) −−−−→ CP ι−−−−→ (Z 2) = 1

where the mapι : CP → 1 represents the generator of the homotopy set
[CP (Z 2)] ∼= 2(CP Z) = Z.

If we consider the Serre spectral sequence of the evaluationfibration 2 2 +1 ≃
2CP → Map ( 2 CP )

′

→ CP , it is easy to see that the induced homomor-

phism ( ′)∗ : Z = 2(CP Z)
∼=→ 2(Map ( 2 CP ) Z) is bijective. Hence there

is a map ι′ : Hol ( 2 CP ) → (Z 2) such that ι′ represents the generator of
[Hol ( 2 CP ) (Z 2)] ∼= 2(Hol ( 2 CP ) Z) = Z with ι ◦ = ι′. Then it fol-
lows from [5, (2.1)] that there is a homotopy commutative diagram

∗ −−−−→ 1 =−−−−→ 1

y
y

y

Hol∗( 2 CP )
˜−−−−→ H̃ol ( 2 CP )

˜−−−−→ 2 +1

=

y
y

y

Hol∗( 2 CP ) −−−−→ Hol ( 2 CP ) −−−−→ CP
y ι′

y ι

y

∗ −−−−→ (Z 2)
=−−−−→ (Z 2)

where all horizontal and vertical sequences are fibration sequences. Hence we have the
desired fibration sequences (∗) and (†) .

Corollary 2.2. If ≥ 2, the spaceH̃ol ( 2 CP ) is a 2-connective covering of
Hol ( 2 CP ).

Proof. This follows from the diagram chasing of the above diagram.

For a connected space , let Map( ) (resp. Map∗( )) denote the space
consisting of all (resp. basepoint preserving) continuousmaps : → with
compact-open topology. For ∈ Map( ), let Map ( ) and Map∗ ( ) be
the path-component of Map( ) or Map∗( ) containing the element . Let us
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consider the evaluation fibration : Map( )→ with fibre Map∗ ( ), which
is given by ( ) = (0) for ∈ Map( ) ( 0 ∈ is a fixed base point).

First, we recall the following two well-known results.

Lemma 2.3 ([13]). Let ∂ : π ( ) → π −1(Map∗ ( )) be the boundary oper-
ator of the evaluation fibration. If we identifyπ −1(Map∗ ( )) ∼= π −1+ ( ), ∂ is
identified with the operator∂′ : π ( ) → π −1+ ( ), which is defined by the White-
head product∂′(α) = [α ] for α ∈ π ( ).

Proposition 2.4 ([2]). Let ≥ 2 be an integer and let : 2 → CP be the
inclusion map of the bottom cell2 in CP . Then the following equality holds in
π2 +2(CP ) =Z/2 · ◦ η2 +1.

[ ] =

{
0 if ≡ 1 (mod 2)

◦ η2 +1 6= 0 if ≡ 0 (mod 2)

whereη2 ∈ π3( 2) ∼= Z denotes the Hopf map and we takeη = −2η2 ∈ π +1( ) =
Z/2 · η for ≥ 3.

Proposition 2.5. Let ≥ 2 and ≥ 1 be integers.
(i) If ≡ 1 (mod 2) or ≡ ≡ 0 (mod 2), there is a map : 2 +1 →
H̃ol ( 2 CP ) which is a section of(∗) with ˜ ◦ = ι2 +1, whereι ∈ π ( ) denotes
the identity map of .
(ii) Moreover, if ≡ 0 (mod 2)and ≡ 1 (mod 2),there exists no section of(∗) .

Proof. (i) It is sufficient to show that the induced homomorphism

˜ ∗ : π2 +1(H̃ol ( 2 CP ))→ π2 +1( 2 +1) = Z · ι2 +1

is surjective only when ≡ 1 (mod 2) or ≡ ≡ 0 (mod 2). Consider the homotopy
exact sequence

π2 +1(H̃ol ( 2 CP ))
˜ ∗−−−−→ π2 +1( 2 +1) ∂−−−−→ π2 (Hol∗( 2 CP ))

( )∗

y∼= ˜
∗

y∼=

π2 +1(CP ) ∂′

−−−−→ π2 +2(CP )∼= π2 ( 2CP )

First, assume ≡ 1 (mod 2). It follows from Lemma 2.3 that the boundary homomor-
phism ∂′ is given by∂′( ) = [ ]. Becauseπ2 +1(CP ) = Z · and [ ] = 0 (by
Proposition 2.4),∂′ is trivial. Hence ˜∗ is surjective.

Next, assume ≡ ≡ 0 (mod 2). Then, because the order of [ ] is two,
[ ] = 0. Hence ∂′( · ) = [ ] = 0 and ∂′ is trivial. So ˜ ∗ is also

surjective.
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(ii) Finally, we assume ≡ 0 (mod 2) and that ≡ 1 (mod 2). Then using
Proposition 2.4 as above, we can easily see that ˜∗ is not surjective.

Corollary 2.6. If = 1 and ≥ 2, there is a fibration sequence(up to homo-
topy),

2 −1→ H̃ol1( 2 CP )→ 2 +1(∗∗)

In particular, (∗∗) has a section if and only if ≡ 1 (mod 2).

Proof. Since Hol∗1( 2 CP ) ≃ 2 −1 ([3]), the assertion easily follows from the
fibration sequence (∗) and Proposition 2.5.

Now we can give the proofs of Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. The assertions (i), (ii) follow from Proposition 2.1,
Corollary 2.2 and Proposition 2.5.

Proof of Corollary 1.4. This also easily follows from Theorem 1.1, Proposi-
tion 2.1, Corollary 2.2 and Proposition 2.5.

3. Homology of H̃old (S2 CPn)

In this section, we shall prove Proposition 1.5. Recall the following result.

Lemma 3.1 ([4]). (i) ∗( 2 2 +1 Z/2)∼= ⊗ ≥1Z/2[ 2 −1] =
Z/2[ 2 −1 4 −1 8 −1 . . .], where has degree withβ( 2 +1 −1) = ( 2 −1)2 for
≥ 1.

(ii) If ≥ 3 is an odd prime integer,

∗( 2 2 +1 Z/ ) ∼= [ 2 −1] ⊗ (⊗ ≥1 [ 2 −1] ⊗ Z/ [ 2 −2]),
where has degree withβ( 2 −1) = 2 −2 for ≥ 1.

Proof of Proposition 1.5. Since the proof is similar, we onlyshow the existence
of the first isomorphism. It follows from the universal coeffcient theorem that it sufi-
ices to show that there is an isomorphism

∗(H̃ol ( 2 CP ) )∼= ∗(H̃ol
∗
( 2 CP ) )⊗ ∗( 2 +1 )(‡)

for = Q or Z/ ( : any prime integer).
Because the proof of the case =Q is easier, we shall show (‡) for = Z/ ( :

any prime). Consider the Serre spectral sequence of the fibration (∗) ,

2 = ( 2 +1 )⊗ (Hol∗( 2 CP ) )⇒ + (H̃ol ( 2 CP ) )
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Since 2CP ≃ 2 2 +1, it follows from Theorem 1.1 that there is an isomorphism

(Hol∗( 2 CP ) )∼= ( 2 2 +1 ) for any < (2 − 1)

Hence, if ≥ 2, 2
∗ 2 = 0 by Lemma 3.1. If = 1, it follows from Hol∗1( 2 CP +1) ≃

2 −1 ([3]) that 2
∗ 2 = 0. Because 2

∗ 2 = 0 for any ≥ 1, 2
∗∗ = ∞

∗∗ and the
assertion (‡) follows.

4. The homogenous space structure

For each pair of integers ( ) with 1≤ ≤ and an integer ≥ 1, let
Hol (CP CP ) denote the space consisting of all holomorphic maps :CP → CP
of degree . Now we shall study the case = 1 carefully.

Let 1≤ ≤ be integers and consider the right+1-action onCP induced by
matrix multiplication.

Define the mapφ′ : +1→ Hol1(CP CP ) by

φ′ ( )([ 0 : 1 : · · · : ]) = [ 0 : 1 : · · · : : 0 : 0 : · · · : 0 : 0]

for ([ 0 : 1 : · · · : ] ) ∈ CP × +1.
Since two subgroups − ⊂ +1× − ⊂ +1 are fixed by this map, the map

φ′ induces the maps

{
φ′′ : +1 +1 = +1/ − → Hol1(CP CP )

φ : +1 +1 = +1/( × − )→ Hol1(CP CP )

such that the diagram

+1
φ′

−−−−→ Hol1(CP CP )
y =

y

+1 +1 = +1/ −

φ′′

−−−−→ Hol1(CP CP )
y =

y

+1 +1 = +1/( +1× − )
φ−−−−→ Hol1(CP CP )

is commutative, where the left vertical maps are natural projections.
Now, we identify 2 = CP1 and consider the case = 1. Recall the fibration

(†) : H̃ol1( 2 CP ) → Hol1( 2 CP ) ι′→ (Z 2). Since ι′ ◦ φ′′1 is contained in
[ +1 2 (Z 2)] ∼= 2( +1 2 Z) = 0, ι′ ◦ φ′′1 is null-homotopic. Hence there is a
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lifting φ̃1 : +1 2→ H̃ol1( 2 CP ) such that ◦ φ̃1 = φ′′1 (up to homotopy),

+1 2
=−−−−→ +1 2

φ̃1

y φ′′

1

y

H̃ol1( 2 CP ) −−−−→ Hol1( 2 CP ) ι′−−−−→ (Z 2)

REMARK. Because 2( +1 2 Z) 6= 0, there is no lifting ofφ1 to the space
H̃ol1( 2 CP ).

Lemma 4.1. The diagram

+1 2
˜φ1−−−−→ H̃ol1( 2 CP )

1

y ˜

y

+1/
β1−−−−→
∼=

2 +1

is commutative up to homotopy, where 1 and β1 denote the natural projection and
natural homeomorphism, respectively.

Proof. Using ◦ ˜ = ◦ and the direct computation, we have◦ β1 ◦ 1 =
◦ ˜ ◦ φ̃1 (up to homotopy). Moreover, because the sequence

{∗} = [ +1 2
1] → [ +1 2

2 +1]
( )∗→ [ +1 2 CP ]

is exact as a pointed set, ( )∗ is injective. Hence,β1◦ 1 = ˜ ◦ φ̃1 (up to homotopy).

Proof of Theorm 1.6. We assume that≥ 2 and we shall show that the two
mapsφ1 and φ̃1 are homotopy equivalences.

First, consider the map̃φ1 . It follows from Lemma 4.1 that there is a homotopy
commutative diagram

/ −1
β2−−−−→
∼=

2 −1

2

y
y

+1 2 = +1/ −1
φ̃1−−−−→ H̃ol1( 2 CP )

1

y ˜

y

+1/
β1−−−−→
∼=

2 +1
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where vertical sequences are fibrations, and2, β2 denote natural projection and natu-
ral homeomorphism, respectively. Then it follows from the homotopy exact sequences
of the fibrations thatφ̃1 is a homotopy equivalence.

Next, we shall show thatφ1 is a homotopy equivalence. Similarly as above, there
is a homotopy commutative diagram

2
β−−−−→
∼=

1

y
y

+1 2 = +1/ −1
φ̃1−−−−→
≃

H̃ol1( 2 CP )
y

y

+1 2 = +1/( 2 × −1)
φ1−−−−→ Hol1( 2 CP )

where vertical sequences are fibrations andβ is a homeomorphism. Henceφ1 is also
a homotopy equivalence.

Proof of Corollary 1.7. Since 3 2 ≃ 3 and 4 2 ≃ 5 × 7, the assertion
easily follows.

REMARK. In a subsequent paper, we would like to study the mapφ and inves-
tigate the homotopy type of Hol1(CP CP ) explicitly for the case 2≤ ≤ . In fact,
we shall prove thatφ is a homotopy equivalence for any 1≤ ≤ in [11].
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