

Title	Equivariant cohomology theories on G-CW complexes
Author(s)	Matumoto, Takao
Citation	Osaka Journal of Mathematics. 1973, 10(1), p. 51-68
Version Type	VoR
URL	https://doi.org/10.18910/11621
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Matumoto, T.
Osaka J. Math.
10 (1973), 51-68

EQUIVARIANT COHOMOLOGY THEORIES ON G-CW COMPLEXES

TAKAO MATUMOTO*

(Received December 10, 1971)

Introduction

G.Bredon developed the equivariant (generalized) cohomology theories in [3], in which he had to restrict himself to the case of finite groups. One of the purposes of this note is to generalize his theory by replacing G -complexes with G -CW complexes. Then, for example, the followings are still true for the case in which G is an arbitrary topological group. The E_2 -term of the Atiyah-Hirzebruch spectral sequence associated to a G -cohomology theory (in this note we frequently use ' G ' instead of 'equivariant') is a classical G -cohomology theory, which is easy to calculate ($\S 1 \sim \S 4$). The G -obstruction theory works in a classical G -cohomology theory ($\S 5$). Moreover, for a G -cohomology theory we get a representation theorem of E.Brown ($\S 6$) and the Maunder's spectral sequence ($\S 7$).

As an application we study the equivariant K^* -theory in the last section ($\S 8$). The Atiyah-Hirzebruch spectral sequence for $K_G^*(X)$ collapses, if $\dim X/G \leq 2$ or X satisfies some other conditions. The E_2 -term depends only on the orbit type decomposition of the orbit space, if X is a regular $O(n)$ -manifold or the like. These facts enable us to calculate the equivariant K^* -group of Hirzebruch-Mayer $O(n)$ -manifolds and Jänich knot $O(n)$ -manifolds. Our spectral sequence for a differentiable G -manifold is similar to that of G.Segal which is defined by the equivariant nerve of his [13], but ours is easier to calculate the E_2 -term.

In this note G denotes a fixed topological group. Terminologies and notation follow those of [3], [9], [10] in general, though σ denotes a closed cell which is the closure of an (open) cell in the definition of a G -CW complex in [10]. And $G\sigma$ denotes the G -orbit of σ and H_σ the unique isotropy subgroup at any interior point of σ . $\S 0$ is exposed for reference to the properties of G -CW complexes.

The author wishes to thank Professors Shôrô Araki and Akio Hattori for their criticisms and encouragements.

* Supported in part by the Sakkokai Foundation.

0. Preliminaries about G -CW complexes

We summarize here the properties of G -CW complexes and G -CW complexes with base point (the base point in G -CW complex is always assumed to be a vertex which is left fixed by each element of G).

Proposition 0.1. (G -cellular approximation theorem) *Let $f: X \rightarrow Y$ be a G -map between G -CW complexes (with base point). Then f is (base point preserving) G -homotopic to a G -map, $f': X \rightarrow Y$ such that $f'(X^n) \subset Y^n$ for any n .*

This is Theorem 4.4 of [10]. Moreover, if f is G -cellular on a G -subcomplex A , then we may require $f' = f$ on A .

Proposition 0.2. (G -homotopy extension property) *Let $f_0: X \rightarrow Y$ be a given G -map of a G -CW complex X into an arbitrary G -space Y . Let $g_t: A \rightarrow Y$ be a G -homotopy of $g_0 = f_0|A$, where A is a G -subcomplex of X . Then, there is a G -homotopy $f_t: X \rightarrow Y$, such that $f_t|A = g_t$.*

This is (J) of [10].

For a pair of G -CW complexes (X, A) , collapsed A into a point, X/A forms a G -CW complex with a base point A/A (taken to be a disjoint point if $A = \emptyset$, in which case X^+ denotes X/\emptyset). Let $i: A \rightarrow X$ be the inclusion. Consider the mapping cone $C_i = X \cup CA = (X \times \{1\} \cup A \times I)/A \times \{0\}$ with the obvious G -action, trivial on I . Then, by the G -homotopy extension property, we can prove that the collapsing map, $X \cup CA \rightarrow X \cup CA/CA = X/A$ is a G -homotopy equivalence. Therefore, we get

Proposition 0.3. *Let (X, A) be a pair of G -CW complexes (with base point) and let $i: A \rightarrow X$ be the natural inclusion. Then, in the following cofiber sequence, the vertical maps are G -homotopy equivalences:*

$$\begin{array}{ccccccc} A & \xrightarrow{i} & X & \xrightarrow{j} & C_i & \xrightarrow{f} & C_f \\ & & \searrow & & \downarrow \simeq G & \downarrow \simeq G & \downarrow \simeq G \\ & & & & X/A & \rightarrow & SA \rightarrow SX \end{array}$$

Proposition 0.4. (Theorem of J.H.C.Whitehead) *Let $\varphi: (X, A) \rightarrow (Y, B)$ be a G -map between two pairs of G -CW complexes with base point. For each closed subgroup H which appears as an isotropy subgroup in X or Y , we assume that X^H, A^H, Y^H and B^H are arcwise connected, and the induced maps,*

$$\varphi_*: \pi_n(X^H, *) \rightarrow \pi_n(Y^H, *)$$

and

$$\varphi_*: \pi_n(A^H, *) \rightarrow \pi_n(B^H, *)$$

are bijective for $1 \leq n \leq \max(\dim X, \dim Y)$. Then, $\varphi: (X, A) \rightarrow (Y, B)$ is a G -

homotopy equivalence.

This is a special case of \Rightarrow Theorem 5.3 of [10].

Proposition 0.5. *Let G be a compact Lie group. Then any compact differentiable G -manifold has a G -finite G -CW complex structure.*

This comes from Proposition 4.4 of [9].

1. Definition of an equivariant cohomology theory on G -CW complexes

On the category of pairs of G -finite G -CW complexes and G -homotopy classes of G -maps, a *G -cohomology theory* is defined to be a sequence of contravariant functors $h_G^n(-\infty < n < \infty)$ into the category of abelian groups together with natural transformation $\delta^n: h_G^n(A, \phi) \rightarrow h_G^{n+1}(X, A)$ such that the following axioms are satisfied (we put $h_G^n(X) = h_G^n(X, \phi)$):

(1) The inclusion $(X, X \cap A) \rightarrow (X \cup A, A)$ induces an isomorphism,

$$h_G^n(X \cup A, A) \xrightarrow{\cong} h_G^n(X, X \cap A).$$

(2) If (X, A) is a pair of G -finite G -CW complexes, the sequence,

$$\cdots \rightarrow h_G^n(X, A) \rightarrow h_G^n(X) \rightarrow h_G^n(A) \xrightarrow{\delta^n} h_G^{n+1}(X, A) \rightarrow \cdots$$

is exact.

Standard argument can be used to prove the exactness of Mayer-Vietoris sequence and the long sequence of triples.

Lemma 1.1. *For a pair of G -finite G -CW complexes (X, A) , the collapsing map, $(X, A) \rightarrow (X/A, A/A)$, induces an isomorphism,*

$$h_G^n(X/A, A/A) \xrightarrow{\cong} h_G^n(X, A)$$

Proof. By the proposition 0.3 the collapsing map, $X \cup CA \rightarrow X \cup CA/CA = X/A$ is a G -homotopy equivalence. Moreover, $CA \rightarrow *$ is an G -homotopy equivalence, and $(X, A) \rightarrow (X \cup CA, CA)$ is an exision map. Hence, we get the commutative diagram (the homomorphisms are induced by the canonical G -maps),

$$\begin{array}{ccc} h_G^n(X \cup CA, *) & \xrightarrow{\cong} & h_G^n(X \cup CA, CA) \\ \cong \downarrow & \swarrow & \uparrow \cong \\ h_G^n(X/A, A/A) & \rightarrow & h_G^n(X, A) \end{array}$$

q.e.d.

\Rightarrow The footnote at p. 371 of [10] is inadequate. ' \Rightarrow $\pi_k(X, Y)$ vanishes' should read ' $\pi_k(X, Y, y)$ vanishes for every point y of Y ' and also ' $\phi_*: \pi_k(X) \rightarrow \pi_k(Y)$ is bijective or surjective' should read ' $\phi_*: \pi_k(X, x) \rightarrow \pi_k(Y, \phi(x))$ is bijective or surjective for every point x of X '. Then, the statements and proofs in [10] are true in the context except Theorem 5.2. In Theorem 5.2 we should add the assumption that each arcwise connected component of X or Y is n -simple for every $n \geq 1$.

For a G -CW complex with base point X , $SX = S \wedge X$ (with obvious G -action, trivial on the “circle factor” S) denotes the reduced suspension of X . A *reduced G -cohomology theory* on the category of G -finite G -CW complexes with base point and base point preserving G -homotopy classes of base point preserving G -maps is a sequence of contravariant functors $\tilde{h}_G^n(- \infty < n < \infty)$ into the category of abelian groups, together with natural transformations $\sigma^n: \tilde{h}_G^n(X) \rightarrow \tilde{h}_G^{n+1}(SX)$ satisfying the following axioms:

- (1)' σ^n is an isomorphism for each n and X .
- (2)' The short sequence,

$$\tilde{h}^n(X/A) \rightarrow \tilde{h}_G^n(X) \rightarrow \tilde{h}_G^n(A)$$

is exact.

REMARK 1.2. By Proposition 0.3 and Axioms (1)', (2)' we get the long exact sequence for $\tilde{h}_G^*(\cdot)$.

Let h_G^* be a G -cohomology theory. Define $\tilde{h}_G^*(X)$ by $h_G^*(X, *)$. Then h_G^* is a reduced G -cohomology theory by Lemma 1.1. Conversely let \tilde{h}_G^* be a reduced G -cohomology theory. Define $h_G^*(X, A)$ by $\tilde{h}_G^*(X/A)$. Then h_G^* is a G -cohomology theory by Remark 1.2. This is a canonical one-to-one correspondence. Afterwards we identify $h_G^n(X, A)$ and $\tilde{h}_G^n(X/A)$.

We enclose this section after giving some examples.

EXAMPLES 1.3. of G -COHOMOLOGY THEORIES:

- (i) $h_G^n(X) = H^n(X/G; \mathbb{Z})$.
- (ii) $h_G^n(X) = K_G^n(X)$ when G is a compact Lie group.
- (iii) $h_G^n(X) = h^n(X \times_G E_G)$ where E_G is a universal G -principal bundle and h^n a cohomology theory for spaces.

2. On classification of G -maps between G -cells of the same dimension up to G -homotopy classes

Let H be a closed subgroup of G . Suppose that \bar{X} is a space and $G/H \times \bar{X}$ is a G -space with the obvious G -action, trivial on \bar{X} . Let Y be a G -space and $f: G/H \times \bar{X} \rightarrow Y$ be a G -map. Since f is G -equivariant, we get, $f(H/H \times \bar{X}) \subset Y^H$ where Y^H is the H -pointwise fixed subspace of Y . Therefore, we may define a map, $\bar{f}: \bar{X} \rightarrow Y^H$, by $\bar{f}(x) = f(H/H \times x)$.

Lemma 2.1. *In the above situation, the correspondence, $f \mapsto \bar{f}$, yields an isomorphism of sets,*

$$G\text{-maps } (G/H \times \bar{X}, Y) \xrightarrow{\cong} \text{Maps } (\bar{X}, Y^H).$$

Moreover, the isomorphism induces another isomorphism,

$$[G/H \times \bar{X}; Y]_G \xrightarrow{\cong} [\bar{X}; Y^H]$$

where $[\cdot; \cdot]_G$ stands for the set of G -homotopy classes of G -maps.

Proof. Let $\tilde{f}: \bar{X} \rightarrow Y^H$ be a map. Define a map, $f: G/H \times \bar{X} \rightarrow Y$, by $f(gH/H \times x) = g \cdot \tilde{f}(x)$ for any $g \in G$, and any $x \in \bar{X}$. If $gH/H = g'H/H$, then $g' = g \cdot h$ for some $h \in H$, so that $g \cdot \tilde{f}(x) = g' \cdot \tilde{f}(x)$ (since $\tilde{f}(x)$ is fixed by H), which shows that this definition is valid. By this definition f is certainly G -equivariant, and conversely if we assume that a map $f: G/H \times \bar{X} \rightarrow Y$ is G -equivariant, we get $f(gH/H \times x) = g \cdot f(H/H \times x)$.

Therefore, the correspondence, $\tilde{f} \mapsto f$, is the converse to the correspondence, $f \mapsto \tilde{f}$. This proves the first isomorphism. The second isomorphism is induced, because the G -homotopy $f_t (0 \leq t \leq 1)$ and homotopy $\tilde{f}_t (0 \leq t \leq 1)$ correspond each other in the same way.

q.e.d.

Assume that \bar{X} has a distinguished closed subspace \bar{A} and Y has a base point y_0 (the base point is left fixed by G).

Lemma 2.1'. *The correspondence, $f \mapsto \tilde{f}$, yields an isomorphism,*

$$G\text{-maps } ((G/H \times \bar{X})/(G/H \times \bar{A}), Y/y_0)_0 \xrightarrow{\cong} \text{Map } (\bar{X}/\bar{A}, Y^H/y_0)_0.$$

Moreover, the isomorphism induces another isomorphism,

$$[(G/H \times \bar{X})/(G/H \times \bar{A}); Y/y_0]_{G,0} \xrightarrow{\cong} [\bar{X}/\bar{A}; Y^H/y_0]_0,$$

where $[\cdot, \cdot]_{G,0}$ stands for the set of base point preserving G -homotopy classes of base point preserving G -maps.

Proof. The correspondence $\tilde{f} \mapsto f$, is also defined in the same way as in Lemma 2.1.

q.e.d.

Therefore, we get

Corollary 2.2. *Let H and K be two closed subgroups of G and $n \geq 0$ be a fixed integer. Then, “the restriction” yields the following isomorphisms,*

- (i) $[G/H; G/K]_G \xrightarrow{\cong} \pi_0((G/K)^H)$,
- (ii) $[(G/H \times \Delta^n)/(G/H \times \partial \Delta^n); (G/K \times \Delta^n)/(G/K \times \partial \Delta^n)]_{G,0}$
 $\xrightarrow{\cong} \pi_n((G/K)^H \times \Delta^n) / ((G/K)^H \times \partial \Delta^n, *)$.

Here $\pi_0(\cdot)$ stands for the set of arcwise connected components and $*$ is the base point $((G/K)^H \times \partial \Delta^n) / ((G/K)^H \times \partial \Delta^n)$.

Now let Y be a space and $n \geq 1$ be an integer.

Lemma 2.3. *$Y \times \Delta^n / Y \times \partial \Delta^n$ is $(n-1)$ -connected, and there are natural isomorphisms,*

$$\pi_n' (Y \times \Delta^n / Y \times \partial \Delta^n, *) \xrightarrow{\cong} H_n (Y \times \Delta^n / Y \times \partial \Delta^n; \mathbf{Z}) \xrightarrow{\cong} H_0 (Y; \mathbf{Z})$$

Here $\pi_n'(\cdot) = \pi_n(\cdot)$ for $n \geq 2$ and $\pi_1'(\cdot)$ is the abelianized group of $\pi_1(\cdot)$ and $H_n(\cdot; \mathbb{Z})$ is the singular homology group.

Proof. By the definition, $Y \times \Delta^n / Y \times \partial \Delta^n$ is homeomorphic with the smash product $Y^+ \wedge \Delta^n / \partial \Delta^n$. Hence $Y \times \Delta^n / Y \times \partial \Delta^n$ is $(n-1)$ connected. If we use the Hurwitz theorem, the rest is easily proved.

q.e.d.

Let $\{Y_\lambda : \lambda \in \Lambda\}$ be the family of all the arcwise connected components of Y . Take an element $y_\lambda \in Y_\lambda$ for each λ . Then each element of $H_0(Y; \mathbb{Z})$ has $\sum n_\lambda \cdot y_\lambda$ ($n_\lambda = 0$ except the finite λ 's) as its representative. Also any map: $(\Delta^n, \partial \Delta^n) \rightarrow (Y \times \Delta^n / Y \times \partial \Delta^n, *)$ determines n_λ uniquely.

Now let H and K be closed subgroups of G . Recall that for any element $g \in N(H, K) = \{g \in G, Hg \subset gK\}$, $\hat{g} : G/H \rightarrow G/K$ is defined by $\hat{g}(aH) = agK$, and this correspondence, $g \mapsto \hat{g}$, induces an isomorphism,

$$N(H, K)/K = (G/K)^H \xrightarrow{\cong} G\text{-maps}(G/H, G/K).$$

Suppose that $\{g_\lambda \in G\}$ is the family of representatives of all arcwise connected components of $N(H, K)/K = (G/K)^H$. Then any base point preserving G -map,

$$f : (G/H \times \Delta^n) / (G/H \times \partial \Delta^n) \rightarrow (G/K \times \Delta^n) / (G/K \times \partial \Delta^n),$$

determines $n_\lambda(f)$ such that \bar{f} is equal to $\sum n_\lambda(f) \cdot g_\lambda$ in $\pi_n'(((G/K)^H \times \Delta^n) / ((G/K)^H \times \partial \Delta^n))$, $* \cong H_0((G/K)^H; \mathbb{Z})$.

Let L be another closed subgroup of G . Suppose that $g_\lambda \in N(H, K)$ and $g_\mu \in N(K, L)$, then we get

$$g_\lambda \cdot g_\mu \in N(H, L) \text{ (not } g_\mu \cdot g_\lambda!), \text{ and } (g_\lambda \cdot g_\mu)^\wedge = \hat{g}_\mu \circ \hat{g}_\lambda.$$

From this we get

Proposition 2.4. *Let H, K and L be closed subgroup of G . Suppose that $\{g_\lambda \in G\}$, $\{g_\mu \in G\}$ and $\{g_\nu \in G\}$ are the families of representatives of all arcwise connected components of $N(H, K)/K$, $N(K, L)/L$ and $N(H, L)/L$ respectively. Let $f : (G/H \times \Delta^n) / (G/H \times \partial \Delta^n) \rightarrow (G/K \times \Delta^n) / (G/K \times \partial \Delta^n)$ and $g : (G/K \times \Delta^n) / (G/K \times \partial \Delta^n) \rightarrow (G/L \times \Delta^n) / (G/L \times \partial \Delta^n)$, be base point preserving G -maps. Then,*

$$n_\nu(g \circ f) = \sum n_\mu(g) n_\lambda(f).$$

Here the summation is taken over the pairs (λ, μ) such that $g_\lambda \cdot g_\mu$ and g_ν are in the same arcwise connected component of $N(H, L)/L$.

3. Classical G -cohomology theory on G -CW complexes

We shall define a classical G -cohomology theory with coefficients in a (generic) G -coefficient system. In §4 the classical G -cohomology theory will be characterized as the G -cohomology theory which satisfies also the dimension

axiom.

DEFINITION 3.1. A (generic) *G-coefficient system* is a contravariant functor M_G of the category of the left coset spaces of G by closed subgroups, G/H , and G -homotopy classes of G -maps (equivariant with respect to left translation), $G/H \rightarrow G/K$, into the category of abelian groups.

REMARK. When G is a discrete group, any two distinct G -maps between G -coset spaces cannot be G -homotopic and hence this definition coincides with the generic equivariant coefficient system of Bredon in [3].

EXAMPLES 3.2. OF G -COEFFICIENT SYSTEMS:

- (i) $M_G = h_G^g$.
- (ii) $M_G = \mathbb{Z}$ with a trivial G -action.
- (iii) $M_G = \omega_n(Y)$ ($n \geq 2$), where Y is a G -space with a base point y_0 and $\omega_n(Y)(G/H) = \pi_n(Y^H, y_0) \cong [(G/H \times \Delta^n)(G/H \times \partial \Delta^n), Y/y_0]_{G,0}$.

Let M_G be a G -coefficient system. The n -dimensional G -cochain group of a pair of G -CW complexes (X, A) with coefficients in M_G , denoted by $C_G^n(X, A; M_G)$, is defined to be the group of all G -equivariant functions φ on the n -cells of (X, A) with $\varphi(\sigma) \in M_G(G/H_\sigma)$ and $M_G(\hat{g})\varphi(\sigma) = \varphi(g\sigma)$ for a right translation $\hat{g}: G/H_{g\sigma} \ni aH_{g\sigma} = agH_\sigma g^{-1} \mapsto agH_\sigma \in G/H_\sigma$. (If σ is an n -cell of A or a p -cell ($p \neq n$), then $\varphi(\sigma) = 0$.)

By the definition of the G -cochain group, $C_G^n(X, A; M_G)$ is canonically isomorphic with $C_G^n(X^n/X^{n-1} \cup A; M_G)$. Moreover, since $X^n/X^{n-1} \cup A = \bigvee(G\sigma/G\partial\sigma)$ where σ range over the representatives of all n -dimensional G -cells of (X, A) ,

$$C_G^n(X^n/X^{n-1} \cup A; M_G) = C_G^n(\bigvee(G\sigma/G\partial\sigma); M_G) = \prod C_G^n(G\sigma/G\partial\sigma; M_G).$$

Let $f: (X, A) \rightarrow (Y, B)$ be a G -cellular map between pairs of G -CW complexes. Then, for every n , f induces a G -map,

$$f^n: X^n/X^{n-1} \cup A \rightarrow Y^n/Y^{n-1} \cup B.$$

Suppose that σ and τ are representatives of all G - n -cells of (X, A) and (Y, B) respectively. Then we can define a G -map $f_{\sigma\tau}$ (between G -cells of the same dimension n) by $f_{\sigma\tau} = c \circ f^n \circ i$ in the following diagram:

$$\begin{array}{ccc} X^n/X^{n-1} \cup A & \xrightarrow{i} & G\sigma/G\partial\sigma = (G/H_\sigma \times \Delta^n)/(G/H_\sigma \times \partial\Delta^n) \\ \downarrow f^n & & \downarrow f_{\sigma\tau} \\ Y^n/Y^{n-1} \cup B & \xrightarrow{i} & G\tau/G\partial\tau = (G/H_\tau \times \Delta^n)/(G/H_\tau \times \partial\Delta^n) \end{array}$$

where i is the inclusion and c is the collapsing of the other factors.

Let $\{g_{\lambda(\sigma, \tau)} \in G\}$ be the family of representatives of all arcwise connected components of $(G/H_\tau)^{H_\sigma}$ as in §2.

Define $f^* = C_G^n(f; M_G) : C_G^n(Y, B; M_G) \rightarrow C_G^n(X, A; M_G)$ by

$$(f^* \varphi)(\sigma) = \sum_{\tau} \sum_{\lambda(\sigma, \tau)} n_{\lambda(\sigma, \tau)}(f_{\sigma\tau}) M_G(\hat{g}_{\lambda(\sigma, \tau)}) \varphi(\tau)$$

where τ ranges over the representatives of all G - n -cells of (Y, B) . The sum is finite because $n_{\lambda}(f_{\sigma\tau}) = 0$ except the finite λ 's.)

Proposition 3.3. *Let M_G be a G -coefficient system. Then, $C_G^n(\cdot; M_G)$ is a contravariant functor from the category of pairs of G -CW complexes and G -cellular maps into the category of abelian groups.*

Proof. If we fix the representatives, $(g \circ f)^* = f^* \circ g^*$ by Proposition 2.4. It is easily seen that f^* is determined independent of the representatives. Remark that f^* depends only on the G -homotopy class of the G -map f^n .

q.e.d.

Now recall that $X^n/X^{n-1} \cup A$ has the same G -homotopy type with $X^n \cup C(X^{n-1} \cup A)$ canonically. As a special case of Proposition 0.3, we have a Puppe sequence (the horizontal sequence),

$$\begin{array}{ccccc} & & S(X^{n-1}/X^{n-3} \cup A) & & \\ & \nearrow & \downarrow & & \\ X^{n-1}/X^{n-2} \cup A & \rightarrow & X^n/X^{n-2} \cup A & \rightarrow & X^n/X^{n-1} \cup A \xrightarrow{\partial} S(X^{n-1}/X^{n-2} \cup A) \\ \downarrow & & \nearrow & & \downarrow S(\partial) \\ X^n/X^{n-3} \cup A & & & & S S(X^{n-2}/X^{n-3} \cup A) \end{array}$$

Since both the vertical and oblique sequences are cofiberings, we get that $S(\partial) \circ \partial$ is G -homotopic to the trivial map. On the other hand we have a canonical isomorphism,

$$\sigma : C_G^{n-1}(X^{n-1}/X^{n-2} \cup A; M_G) \xrightarrow{\cong} C_G^n(S(X^{n-1}/X^{n-2} \cup A); M_G).$$

Define the coboundary homomorphism

$$\delta : C_G^{n-1}(X, A; M_G) \rightarrow C_G^n(X, A; M_G)$$

by $\delta = C_G^n(\partial) \circ \sigma$. Then, because $S(\partial) \circ \partial \simeq_G 0$, we get $\delta \circ \delta = 0$.

DEFINITION 3.4. The *classical G -cohomology theory* on a pair of G -CW complexes (X, A) with the coefficients in a G -coefficient system M_G , denoted by $H_G^*(X, A; M_G)$, is defined by $H_G^n(X, A; M_G) = H^n(C_G^*(X, A; M_G), \delta)$.

REMARK 3.5. Let σ and τ be n -cell and $(n-1)$ -cell of (X, A) . We write $[\sigma, g_{\lambda(\sigma, \tau)} \tau]$ for $n_{\lambda(\sigma, \tau)}(\partial_{\sigma\tau})$ where $\partial_{\sigma\tau} : G\sigma/G\partial\sigma \rightarrow S(G\tau/G\partial\tau)$. Then, we get the formula,

$$(\delta\varphi)(\sigma) = \sum_{\tau} \sum_{\lambda(\sigma, \tau)} [\sigma, g_{\lambda(\sigma, \tau)} \tau] M_G(\hat{g}_{\lambda(\sigma, \tau)}) \varphi(\tau)$$

where τ ranges over the representatives of all G -($n-1$)-cells and $g_{\lambda(\sigma, \tau)}$ ranges over the representatives of all arcwise connected components of $N(H_\sigma, H_\tau)/H_\tau$.

Theorem 3.6. *The classical G -cohomology theory $H_G^*(\cdot; M_G)$ is a G -cohomology theory in the sense of §1.*

Proof. We prove here only the G -homotopy axiom. The exision axiom and the exactness axiom is trivially satisfied. Let $f: (X, A) \rightarrow (Y, B)$ be a G -map between pairs of G -CW complexes. By a G -cellular approximation theorem we may assume that f is G -cellular. The induced map $f^*: C_G^n(Y, B; M_G) \rightarrow C_G^n(X, A; M)$ commutes with δ , in fact, $f^* \circ \delta = C_G^n(f) \circ C_G^n(\partial) \circ \sigma = C_G^n(\partial \circ f) \circ \sigma = C_G^n(S(f) \circ \partial) \circ \sigma = C_G^n(\partial) \circ C_G^n(f) \circ \sigma = C_G^n(\partial) \circ \sigma \circ C_G^{n-1}(f) = \delta \circ f^*$. This gives an induced map $f^*: H_G^*(Y, B; M_G) \rightarrow H_G^*(X, A; M_G)$. If f is G -homotopic to g , we may assume that not only f and g are G -cellular but G -homotopy $F: (X \times I, A \times I) \rightarrow (Y, B)$ with $F|X \times \{0\} = f$, $F|X \times \{1\} = g$ is also G -cellular. Then, F gives a homotopy connecting the chain maps, f^* and $g^*: C_G^*(Y, B; M_G) \rightarrow C_G^*(X, A; M_G)$ and hence $f^* = g^*: H_G^*(Y, B; M_G) \rightarrow H_G^*(X, A; M_G)$. Therefore, even if f is not a G -cellular map the induced map $f^*: H_G^*(Y, B; M_G) \rightarrow H_G^*(X, A; M_G)$ is well-defined and satisfies the G -homotopy axiom.

q.e.d.

4. Spectral sequence of Atiyah-Hirzebruch type

Suppose that (X, A) is a fixed pair of G -finite G -CW complexes. Put $H(p, q) = \Sigma h_G^n(X^{q-1}, X^{p-1} \cup A)$. Then, the collection of $H(p, q)$'s satisfies the axioms (S.P. 1)-(S.P. 5) of Cartan-Eilenberg [5, p.334] and hence induces a spectral sequence resulting to $h_G^*(X, A)$. The E_1 -term and the 1st differential of the spectral sequence are easily calculated as follows:

$$E_1^{p,q} = h_G^{p+q}(X^p, X^{p-1} \cup A)$$

$$d_1 = \delta: h_G^{p+q}(X^p, X^{p-1} \cup A) \rightarrow h_G^{p+q+1}(X^{p+1}, X^p \cup A)$$

where δ is the coboundary homomorphism.

Lemma 4.1.

(i) $h_G^{p+q}(X^p, X^{p-1} \cup A) = \hat{h}_G^{p+q}(X^p/X^{p-1} \cup A)$ is decomposed into the direct product $\prod \hat{h}_G^{p+q}(G\sigma/G\partial\sigma)$, where σ ranges over representatives of all p -dimensional G -cells of X/A .

(ii) And for each direct factor, there are isomorphisms, $\hat{h}_G^{p+q}(G\sigma/G\partial\sigma) = h_G^{p+q}(G\sigma, G\partial\sigma) \cong h_G^{p+q}(G/H_\sigma \times \Delta^p, G/H_\sigma \times \partial\Delta^p) \cong h_G^q(G/H_\sigma)$.

Proof of (i). Since $X^p/X^{p-1} \cup A = \vee(G\sigma/G\partial\sigma)$ is the one point union of finite $(G\sigma/G\partial\sigma)$'s we get the decomposition by the usual argument.

Proof of (ii). The 2nd isomorphism is induced by the G -characteristic map, $Gf_\sigma: (G/H_\sigma \times \Delta^p, G/H_\sigma \times \partial\Delta^p) \rightarrow (G\sigma, G\partial\sigma)$, which is a relative G -homeomorphism. Now we shall prove the last isomorphism. Put $H=H_\sigma$. Since the inclusion, $G/H \times (\partial\Delta^p - \Delta^{p-1}) \rightarrow G/H \times \Delta^p$, has a G -equivariant deformation retraction, we get the isomorphism,

$$h_G^{p+q}(G/H \times \Delta^p, G/H \times \partial\Delta^p) \xrightarrow{\cong} h_G^{p+q-1}(G/H \times \partial\Delta^p, G/H \times (\partial\Delta^p - \Delta^{p-1}))$$

in the exact sequence of a triple $(G/H \times \Delta^p, G/H \times \partial\Delta^p, G/H \times (\partial\Delta^p - \Delta^{p-1}))$. By the excision axiom, we get the isomorphism,

$$h_G^{p+q-1}(G/H \times \partial\Delta^p, G/H \times (\partial\Delta^p - \Delta^{p-1})) \xleftarrow{\cong} h_G^{p+q-1}(G/H \times \Delta^{p-1}, G/H \times \partial\Delta^{p-1}).$$

Combining the isomorphisms of these two types repeatedly, we get

$$\begin{aligned} h_G^{p+q}(G/H \times \Delta^p, G/H \times \partial\Delta^p) &\xleftarrow{\cong} h_G^{p+q-1}(G/H \times \Delta^{p-1}, G/H \times \partial\Delta^{p-1}) \\ &\dots \xleftarrow{\cong} h_G^q(G/H \times \Delta^0, G/H \times \partial\Delta^0) = h_G^q(G/H). \end{aligned}$$

q.e.d.

We shall consider the difference of taking another representative $g\sigma$ instead of σ , as a representative of a p -dimensional G -cell $G\sigma$. Put $H=H_\sigma$. Then $gHg^{-1} = H_{g\sigma}$. Since we may identify agH -orbit of σ with $agHg^{-1}$ -orbit of $g\sigma$ in $G\sigma$, a canonical right translation $\hat{g}: G/gHg^{-1} \ni agHg^{-1} \mapsto agH \in G/H$ induces a required isomorphism, $h_G^q(\hat{g}): h_G^q(G/H_\sigma) \rightarrow h_G^q(G/H_{g\sigma})$. This shows that $h_G^{p+q}(X^p, X^{p-1} \cup A) \cong C_G^p(X^p, X^{p-1} \cup A; h_G^q)$.

Theorem 4.2. *The $E_2^{*,*}$ -term of the Atiyah-Hirzebruch spectral sequence for a G -cohomology theory, h_G^* , on G -finite G -CW complexes, is a classical G -cohomology theory with coefficients in h_G^q .*

Proof. By the result above we can identify $E_1^{p,q} = h_G^{p+q}(X^p, X^{p-1} \cup A)$ with $C_G^p(X, A; h_G^q)$. And the coboundary homomorphisms are induced from ∂ in the Puppe sequence in both cases.

q.e.d.

Assume that the G -cohomology theory $h_G^n(\cdot)$ is defined also on (not G -finite) G -CW complexes, and satisfies the additivity axiom:

(3) The inclusions, $i_\alpha: X_\alpha \rightarrow \coprod X_\alpha$, induce an isomorphism,

$$\coprod h_G^n(i_\alpha): \coprod h_G^n(X_\alpha) \xrightarrow{\cong} h_G^n(\coprod X_\alpha)$$

Then, Lemma 4.1 and Theorem 4.2 are also valid for a pair of (not G -finite) G -CW complexes.

The classical G -cohomology theory is defined on G -CW complexes and satisfies the additivity axiom. Therefore, we get as usual

Theorem 4.3. *The classical G -cohomology theory is characterized to be*

the G -cohomology theory defined on G -CW complexes which satisfies also the additivity axiom and the dimension axiom.

Here we mean by dimension axiom,

$$(4) \quad h_G^n(G/H) = 0 \text{ for } n \neq 0 \text{ and all closed subgroup } H \text{ of } G.$$

The additivity axiom and the dimension axiom are as follows, for the reduced G -cohomology theory.

(3)' The inclusions, $i_a: X_a \rightarrow \vee X_a$, induce an isomorphism,

$$\prod \tilde{h}_G^n(i_a): \prod \tilde{h}_G^n(X_a) \xrightarrow{\cong} \tilde{h}_G^n(\vee X_a).$$

$$(4)' \quad \tilde{h}_G^n(G/H)^+ = 0 \text{ for } n \neq 0 \text{ and all } H.$$

5. G -obstruction theory

Let Y be a G -space with a base point. Then in the classical G -cohomology group $H_G^*(\cdot; \omega_n(Y))$, we can make a G -obstruction theory similar to that of Bredon [3].

Let $n \geq 1$ be a fixed integer and A be a G -subcomplex of a G -CW complex X . We shall assume, for simplicity, that the pointwise fixed subspace Y^H of Y by H is non-empty, arcwise connected and n -simple for each closed subgroup H of G which appears as an isotropy subgroup at a point of X .

Assume that we are given a G -map $\varphi: X^n \cup A \rightarrow Y$. Let σ be an $(n+1)$ -cell of X and let $f_\sigma: \partial\Delta^{n+1} \rightarrow X^n$ be the characteristic attaching map of σ and $H_\sigma = H$. Because the image of $\partial\Delta^{n+1}$ by $\varphi \circ f$ is pointwise fixed by H , we get a map: $\partial\Delta^{n+1} \rightarrow Y^H$. We define $c_\varphi(\sigma) \in \pi_n(Y^H, *) = \omega_n(Y)(G/H)$ to be the unique base point preserving homotopy class which is free homotopic to the above map ($\pi_n(Y^H, *) \cong [S^n; Y^H]$ because Y^H is n -simple). Since φ is a G -map, we get $c_\varphi(g\sigma) = g \cdot c_\varphi(\sigma) \in \pi_n(Y^{gHg^{-1}}, *) = \omega_n(Y)(G/gHg^{-1})$ and hence $c_\varphi \in C_G^{n+1}(X, A; \omega_n(Y))$.

Lemma 5.1. $\delta c_\varphi = 0 \in C_G^{n+2}(X, A; \omega_n(Y))$.

Proof. Let τ be an $(n+2)$ -cell of (X, A) and $i: (G\tau, G\partial\tau) \rightarrow (X, A)$ be the inclusion. Then $i^* \delta c_\varphi = \delta i^* c_\varphi$ and $i^* C_\varphi \in C_G^{n+1}(G\tau, G\partial\tau; \omega_n(Y))$. According to our definition of $C_G^{n+1}(\cdot; \omega_n(Y))$ on G -CW complexes, $C_G^{n+1}(G\tau, G\partial\tau; \omega_n(Y)) = 0$. Therefore, $i^* c_\varphi = 0$ and hence $i^* \delta c_\varphi = 0$, that is, $c_\varphi(\tau) = 0$ for any $(n+2)$ -cell τ of (X, A) .

q.e.d.

Now identifying the G -homotopy classes of G -maps: $G/H \times \partial\Delta^{n+1} \rightarrow Y$ and the homotopy classes of maps: $\partial\Delta^{n+1} \rightarrow Y^H$, we can reduce the proof of the following lemmas to the ordinary obstruction theory as Bredon did.

Lemma 5.2. $c_\varphi = 0$ if and only if φ is extendable equivariantly on $X^{n+1} \cup A$.

Lemma 5.3. Let $d \in C_G^n(X, A; \omega_n(Y))$. Then, there is a G -map $\theta: X^n \cup A \rightarrow Y$, coinciding with φ on $X^{n+1} \cup A$ such that $d_{\theta, \varphi} = d$.

Here the difference cochain $d_{\theta, \varphi}$ is defined to be the class which corresponds to $c_{\theta * \varphi}$ by the isomorphism, $C_G^n(X, A; \omega_n(Y)) \rightarrow C_G^{n+1}(X \times I, A \times I \cup X \times \partial I; \omega_n(Y))$. $\theta * \varphi$ is a G -map: $(X \times I)^n \cup A \times I \rightarrow Y$ which is φ on $X^n \times \{0\} \cup X^{n-1} \times I$ and θ on $X^n \times \{1\}$.

Combining these three lemmas, we get

Theorem 5.4. *Let $\varphi: X^n \cup A \rightarrow Y$ be a G -map. Then $\varphi|_{X^{n-1} \cup A}$ can be extended to G -map: $X^{n+1} \cup A \rightarrow Y$ if and only if the G -cohomology class of c_φ in $H_G^{n+1}(X, A; \omega_n(Y))$ vanishes.*

Also the argument of Bredon in ‘primary obstructions’ [3, II.5.2] is valid to this case. In particular, we get

Proposition 5.5. *Let $n \geq 1$ be a fixed integer and let Y be a G -space with base point such that Y^H is non-empty, arcwise connected and n -simple for every closed subgroup H of G . Suppose that $\omega_k(Y)$ vanishes for $k \neq n$, then a primary obstruction map,*

$$\sigma: [X; Y]_G \xrightarrow{\cong} H_G^n(X; \omega_n(Y))$$

is an isomorphism for any G -CW complex X .

Proposition 5.5.’ *Under the assumption above, a primary obstruction map,*

$$\sigma': [X, Y]_{G, 0} \xrightarrow{\cong} H_G^n(X; \omega_n(Y))$$

is an isomorphism for any G -CW complex X with base point.

6. Representation theorem of E. Brown

We shall prove the following representation theorem as an application of E.Brown’s abstract homotopy theory [4].

Theorem 6.1. *If a reduced G -cohomology group \tilde{h}_G^n on G -CW complexes with base point satisfies the additivity axiom, then \tilde{h}_G^n is representable, that is, there is a G -space Y_n with base point and a natural transformation $T: [\cdot; Y_n]_{G, 0} \rightarrow \tilde{h}_G^n(\cdot)$ such that T is an isomorphism for any G -CW complex with base point, where $[\cdot; \cdot]_{G, 0}$ stands for the set of base point preserving G -homotopy classes of base point preserving G -maps.*

Let \mathcal{C} be the category of G -CW complexes with base point such that the H -stationary subspace is arcwise connected for each H , and base point preserving G -homotopy classes of base point preserving G -maps. In \mathcal{C} there is a (not unique) sequential direct limit by approximating G -maps by G -cellular maps and making their telescope. Also we get a (not unique) ‘push out’ as a double mapping cylinder in \mathcal{C} . If we choose one representative for each class of conjugate closed subgroups, $\{(G/H \times \Delta^p)/(G/H \times \partial \Delta^p); H \text{ representative}, 0 < p < \infty\}$ is a

small subcategory of \mathcal{C} .

Let \mathcal{C}_0 be a minimal subcategory which contains $(G/H \times \Delta^p)/(G/H \times \partial\Delta^p)$'s ($0 < p < \infty$) and their 'push out'. Then \mathcal{C}_0 is a small, full subcategory of \mathcal{C} and also a subcategory of G -finite G -CW complexes with base point and we get

Proposition 6.2. *A pair $(\mathcal{C}, \mathcal{C}_0)$ is a homotopy category in the sense of E.Brown.*

Proof of Theorem 6.1. Since reduced G -cohomology theory has a Mayer-Vietoris exact sequence, \tilde{h}_G^n (restricted on \mathcal{C}) with the additivity axiom is a homotopy functor in the sense of E.Brown. Moreover, we get $\overline{\mathcal{C}}_0 = \mathcal{C}$ by an equivariant version of J.H.C.Whitehead's theorem. (See Proposition 0.4.). Therefore, by Theorem 2.8 of [4], we get a $Y'_n \in \mathcal{C}$ unique up to G -homotopy equivalence and a natural transformation $T: [\cdot; Y'_n]_{G,0} \rightarrow \tilde{h}_G^n(\cdot)$ such that T is an isomorphism for each $X \in \mathcal{C}$.

Define $Y_n = \Omega Y'_{n+1}$. For any G -CW complex X with base point, $SX \in \mathcal{C}$. Therefore, we get

$$\begin{array}{ccc} [X, Y_n]_{G,0} & & \tilde{h}_G^n(X) \\ \simeq \downarrow & & \downarrow \simeq \\ [SX, Y'_{n+1}]_{G,0} & \xrightarrow{\cong} & \tilde{h}_G^{n+1}(SX) \end{array}$$

q.e.d.

REMARK. Even when \tilde{h}_G^n is defined only on G -finite G -CW complexes, by the method of Adams [2], we get a reduced G -cohomology theory on G -CW complexes which satisfies the additivity axiom and coincides with \tilde{h}_G^n on G -finite G -CW complexes.

Let $Y'_{n+1} \in \mathcal{C}$ be a representing space of \tilde{h}_G^n in the category of \mathcal{C} . Then, the isomorphism: $h_G^{n+1}(X) \xrightarrow{\cong} h_G^{n+2}(SX)$ induces a G -map $h'_{n+1}: Y'_{n+1} \rightarrow \Omega Y'_{n+2}$ which is a weak G -homotopy equivalence, that is, $(h'_{n+1})_*: \pi_i(Y'_{n+1})^H \xrightarrow{\cong} \pi_i((\Omega Y'_{n+2})^H)$ for any i and any H . Hence, taking their loop spaces, we get also a weak G -homotopy equivalence, $h_n: Y_n \rightarrow \Omega Y_{n+1}$. Then, $\mathbf{Y} = \{Y_n, h_n; -\infty < n < \infty\}$ forms a weak Ω -spectrum for \tilde{h}_G^* . This fact is used in §7 to make a spectral sequence of C.Maunder.

7. Killing the elements of the G -homotopy groups and C.Maunder's spectral sequence

Let Y be a G -space with base point y_0 such that Y^H is arcwise connected for each closed subgroup H of G . An element in the n -th homotopy group $\pi_n(Y^H, y_0)$ of H -stationary subspace Y^H is called to be an element of G - n -homotopy groups of Y . An element $[f] \in \pi_n(Y^H, y_0)$ with $f: S^n = \Delta^n / \partial\Delta^n \rightarrow Y^H$ is killed by attaching a G -($n+1$)-cell represented by an $(n+1)$ -cell σ which has f as its charac-

teristic attaching map and H as its isotropy subgroup, that is, $H_\sigma = H$. If we fix n and kill all the elements of G - n -homotopy groups, we get a relative G -CW complex \tilde{Y} such that $\tilde{Y}^{-1} = Y$. Then, $i_*: \pi_n(Y^H, y_0) \rightarrow \pi_n(\tilde{Y}^H, y_0)$ is a zero map for any closed subgroup H , where $i: Y^H \rightarrow \tilde{Y}^H$. On the other hand, by the G -cellular approximation theorem we get $\pi_k(\tilde{Y}^H, Y^H, y_0)$ vanishes for $k < n$ and any H , that is, $i_*: \pi_k(Y^H, y_0) \rightarrow \pi_k(\tilde{Y}^H, y_0)$ is an isomorphism for $k < n$ and a surjection for $k = n$. Therefore, $\pi_k(\tilde{Y}^H, y_0)$ is canonically isomorphic with $\pi_k(Y^H, y_0)$ for $k < n$ and vanishes for $k = n$. By this reason we call \tilde{Y} a G -space obtained of Y by killing the elements of G - n -homotopy groups.

Let $Y(1, p)$ be a G -space obtained of Y by killing the elements of G -homotopy groups of dimensions $\geq (p+1)$ one after the other. Then, $Y(1, p)$ is uniquely determined up to G -homotopy types rel. Y by the usual argument on (relative) G -CW complexes. For $p \leq q$, $Y(p, q)$ denotes the mapping track of $i(p, q): Y(1, q) \rightarrow Y(1, p-1)$. Moreover, let $Y^{(r)}(p, q)$ denote the mapping track of $i^{(r)}(p, q): Y(r, q) \rightarrow Y(r, p-1)$ for $r < p \leq q$. Then, it is easily seen that the natural G -map: $Y^{(r)}(p, q) \rightarrow Y(p, q)$ has a G -homotopy inverse. Therefore, by taking mapping tracks repeatedly, we get a following G -fibering sequence of G -spaces. (The G -spaces are determined up to G -homotopy types.)

$$\Omega Y(r, t) \rightarrow \Omega Y(r, s) \xrightarrow{\delta} Y(s+1, t) \rightarrow Y(r, t) \rightarrow Y(r, s), \quad r \leq s < t.$$

Here, that $X \rightarrow Y \rightarrow Z$ is a G -fibering stands for that $X^H \rightarrow Y^H \rightarrow Z^H$ is a fibering for any H . In particular, $\pi_k(Y(p, q)^H, y_0)$ is isomorphic with $\pi_k(Y^H, y_0)$ for $p \leq k \leq q$ and vanishes otherwise.

In §6 we have obtained a weak Ω -spectrum for a G -cohomology theory \tilde{h}_G^* . Let X be a G -finite G -CW complex and put $\tilde{H}(p, q) = \sum_n [S(X^+); Y'_{n+1}(p+2, q)]_{G, 0}$. Then, by the G -fibering sequence above, we get a spectral sequence resulting to $\tilde{h}_G^*(X) = \sum_n [S(X^+); Y'_{n+1}]_{G, 0}$. The E_2 -term, $\tilde{E}_2^{p, q} = [S(X^+); Y'_{p+q+1}(p+1, p+1)]_{G, 0}$ is isomorphic with $H_G^{p+1}(S(X^+); \pi_{p+1}(Y'_{p+q+1})) = H_G^p(X; h_G^q)$ by Proposition 5.5'. Moreover, since $[S((X^{p+1})^+); Y'_{p+q+1}(1, p+1)]_{G, 0} \cong [S(X^+); Y'_{p+q+1}(1, p+1)]_{G, 0}$ and $[S(X^p/X^{p-1}); Y'_{p+q+1}]_{G, 0} \cong [S(X^p/X^{p-1}); Y'_{p+q+1}(1, p+1)]_{G, 0}$, the Maunder's argument using exact couples [11] is also valid in this case. Hence, we get

Theorem 7.1 *Let h_G^* be G -cohomology theory. Then, the spectral sequence above is isomorphic with the Atiyah-Hirzebruch spectral sequence except the E_1 -term for any G -finite G -CW complex X .*

Proposition 7.2. *The r -th differential $\bar{d}_r: \tilde{E}_r^{p, q} \rightarrow \tilde{E}_r^{p+r, q-r+1}$ in the Maunder's spectral sequence is induced from the 'higher cohomology operation' determined by the G -homotopy class of*

$$\begin{aligned} \delta_r &= \delta \circ h'_{p+q+1}: Y'_{p+q+1}(p+1, (p+r-1)) \xrightarrow{h'_{p+q+1}} \Omega Y'_{p+q+2}(p+2, p+r) \\ &\xrightarrow{\delta} Y'_{p+q+2}(p+r+1, p+r+1). \end{aligned}$$

Remark that $[\delta_r] \in H_G^{p+r+1}(Y'_{p+q+1}(p+1, p+r-1), \omega_{p+q+1}(Y'_{p+q+2}))$.

Corollary 7.3. $E_r^{p,q} = \bar{E}_r^{p,q}$ ($r \geq 2$) together with the differentials d_r are G -homotopy type invariant.

This is also proved from Theorem 4.2 and comparison of spectral sequences.

8. Applications to the equivariant K^* -theory

In this section G denotes a compact Lie group. We shall applicate our results to K_G^* -theory.

Theorem 8.1. *Let X be a G -finite G -CW complex. There exists a spectral sequence $E_r^{p,q}$ ($r \geq 1, -\infty < p, q < \infty$) with*

$$E_1^{p,q} \cong C_G^p(X, K_G^q)$$

d_1 being the coboundary homomorphism.

$$\begin{aligned} E_2^{p,q} &\cong H_G^p(X, K_G^q), \\ E_\infty^{p,q} &\cong G_p K_G^{p+q}(X) = K_G^{p+q}(X)/K_G^{p+q}(X) \end{aligned}$$

where $K_{G,p}^n(X) = \text{Kernel}(K_G^n(X) \rightarrow K_G^n(X^{p-1}))$. The G -coefficient system, $K_G^q(G/H)$ is isomorphic with $K_G(G/H)$ for q even and vanishes for q odd (See [13]).

This is a special case of Theorem 4.2.

A. Collapsing theorems

If r is even, the r -th differential is a zero map, because d_r is a map of $E_r^{p,q}$ into $E_r^{p+r, q-r+1}$ where one of the domain or the image vanishes. Therefore, we get

Theorem 8.2. *If one of the following conditions is satisfied, then the above spectral sequence collapses :*

- (i) $H_G^p(X; K_G)$ vanishes for every odd p .
- (ii) $H_G^p(X; K_G)$ vanishes for every $p \geq 3$.

For the reduced K_G^* -theory, we get

Theorem 8.2'. *If X has a base point, then the spectral sequence,*

$$\tilde{H}_G^p(X; K_G^q) \Rightarrow \tilde{K}_G^{p+q}(X)$$

collapses if:

- (i) $\tilde{H}_G^p(X; K_G)$ vanishes for every odd p or for every even p , or
- (ii) $\tilde{H}_G^p(X; K_G)$ vanishes except $p=r, r+1, r+2$ for some r .

B. On E_2 -term

We consider the classical G -cohomology theory with coefficients in K_G .

$K_G(G/H)$ is canonically isomorphic with $R(H)$, where $R(H)$ is the Grothendieck group of the isomorphic classes of complex representations of H .

Remark that $K_G(\hat{g})$; $K_G(G/G) \rightarrow K_G(G/G)$ is an identity isomorphism for any $g \in G$, because any inner automorphism of G induces an identity isomorphism on $R(G)$. Therefore, if we assume that the restriction maps $i^*: R(G) \rightarrow R(H)$ is surjective, then $K_G(\hat{g}) = K_G(\hat{g}'): K_G(G/H) \rightarrow K_G(G/H')$ for any elements g, g' of $N(H', H)$. Hence, by Remark 3.5 we shall get

Proposition 8.3. *Let X be a G -finite G -CW complex whose isotropy subgroups satisfy the condition:*

(*) *the restriction map: $R(G) \rightarrow R(H)$ is a surjection for any closed subgroup H which appears as an isotropy subgroup at a point of X .*

Then, $H_G^p(X; K_G)$ can be calculated by considering only the orbit type decomposition of the orbit space.

Proof. As we remark above, by the condition (*), $K_G(\hat{g}): K_G(G/H) \rightarrow K_G(G/H')$ is independent of the choice of $g \in N(H', H)$ for any isotropy subgroups H, H' . So, we may write this map by $K_G(H \rightarrow H')$.

Then, we get the formula:

$$(\delta\varphi)(\sigma) = \sum_{\tau} \sum_{\lambda(\sigma, \tau)} [\sigma, g_{\lambda(\sigma, \tau)} \tau] K_G(H_{\sigma} \leftarrow H_{\tau}) \varphi(\tau).$$

On the other hand, it is easy to see that

$$\sum_{\lambda(\sigma, \tau)} [\sigma, g_{\lambda(\sigma, \tau)} \tau] = [\sigma/G, \tau/G] \in Z$$

where σ/G and τ/G are the induced cells on X/G .

q.e.d.

REMARK 8.4. We call an $O(n)$ -manifold to be a regular $O(n)$ -manifold if each isotropy subgroup is conjugate to $O(k)$ ($k \leq n$). Then any regular $O(n)$ -manifold satisfies the condition (*) above, because the restriction map $\rho_n: R(O(n)) \rightarrow R(O(n-1))$ is a surjection. This fact is easily checked by the classical representation theory as in [14], but we refer the reader to [12].

C. A conclusion

Combining these results with Proposition 0.5, we get

Proposition 8.5. *For a compact regular $O(n)$ manifold X , if $\dim X/G \leq 2$, then, $K_G^0(X)/K_{G,2}^0(X)$, $K_{G,2}^0(X)$ and $K_G^1(X)$ depend only on the orbit type decomposition of the orbit space.*

D. Examples

Now we shall calculate $K_G^*(X)$ for some regular $O(n)$ -manifolds.

(i) *Hirzebruch-Mayer $O(n)$ -manifold $W^{2n-1}(d)$ for $n \geq 2$* [7]: The orbit

space is a 2-disk D^2 the orbit type of whose interior is $(O(n-2))$ and the boundary $(O(n-1))$.

Define a presheaf \mathfrak{F} on the orbit space D^2 by $\Gamma(U, \mathfrak{F}) = \Gamma(U, U \times R(O(n-2)))$ if $U \subset \text{Int } D^2$ and by $\Gamma(U, \mathfrak{F}) = \Gamma(U, U \times R(O(n-1)))$ if $U \cap \partial D^2 \neq \emptyset$. Then, by Proposition 8.3, $H_G^*(W^{2n-1}(d); K_G) \cong H^*(D^2, \mathfrak{F})$. Remark that \mathfrak{F} forms a sheaf. Define \mathfrak{G} and \mathfrak{H} by $\mathfrak{G} = \text{constant sheaf } \text{Ker } \rho_{n-1}$ on ∂D^2 which is considered to be a sheaf over D^2 and $\mathfrak{H} = \text{constant sheaf } R(O(n-2))$ on whole D^2 . Then, since $\rho_{n-1}: R(O(n-1)) \rightarrow R(O(n-2))$ is surjective, we get an exact sequence of sheaves,

$$0 \rightarrow \mathfrak{G} \rightarrow \mathfrak{F} \rightarrow \mathfrak{H} \rightarrow 0.$$

The following notation is simpler and reasonable to denote this exact sequence.

$$\begin{array}{c} S^1 \\ \cap : 0 \rightarrow \begin{cases} \text{Ker } \rho_{n-1} \\ 0 \end{cases} \rightarrow \begin{cases} R(O(n-1)) \\ R(O(n-2)) \end{cases} \rightarrow \begin{cases} R(O(n-2)) \\ R(O(n-2)) \end{cases} \rightarrow 0 \\ D^2 \end{array}$$

From the associated long exact sequence, we get

$$H_G^0 \cong R(O(n-1)), H_G^1 \cong \text{Ker } \rho_{n-1} \text{ and } H_G^2 \cong \text{Coker } \rho_{n-1} = 0.$$

Therefore,

$$K_G^0 \cong R(O(n-1)) \text{ and } K_G^1 \cong \text{Ker } \rho_{n-1}.$$

(ii) *Jänich knot $O(n)$ -manifold for $n \geq 3$* [8]: Let $S^1 \subset S^3$ be a knot. The orbit space is a 4-disk D^4 where the orbit type of each difference domain of $D^4 \supset S^3 \supset S^1$ is $(O(n-2)), (O(n-1)), (O(n))$ respectively.

As in (i), we consider the following exact sequence of sheaves.

$$\begin{array}{c} S^1 \\ \cap : 0 \rightarrow \begin{cases} \text{Ker } \rho_n \\ 0 \end{cases} \rightarrow \mathfrak{F}' = \begin{cases} R(O(n)) \\ R(O(n-1)) \\ R(O(n-2)) \end{cases} \rightarrow \begin{cases} R(O(n-1)) \\ R(O(n-1)) \\ R(O(n-2)) \end{cases} \rightarrow 0 \\ S^3 \\ \cap \\ D^4 \end{array}$$

Then, $H_G^* = H_G^*(X; K) \cong H^*(D^4; \mathfrak{F}')$ is calculated as follows:

$$H_G^0 \cong R(O(n)), H_G^1 \cong \text{Ker } \rho_n, H_G^2 = 0, H_G^3 \cong \text{Ker } \rho_{n-1} \text{ and } H_G^4 = 0.$$

In particular, if we consider that the $O(n)$ -manifold has a base point, then $\tilde{H}_G^0 = 0$ and \tilde{H}_G^* satisfies the condition (ii) of Theorem 8.2'. Therefore, we get

$$\tilde{K}_G^0 = 0, \text{ that is, } K_G^0 \cong R(O(n))$$

and

$$0 \rightarrow \text{Ker } \rho_{n-1} \rightarrow K_G^1 \rightarrow \text{Ker } \rho_n \rightarrow 0$$

is exact.

KYOTO UNIVERSITY

References

- [1] M. Atiyah and F. Hirzebruch: *Vector bundles and homogeneous spaces*, Proc. Sympos. Pure Math. 3 (1961), 7–38.
- [2] J.F. Adams: *A variant of E.H. Brown's representability theorem*, Topology 10 (1971), 185–198.
- [3] G. Bredon: Equivariant Cohomology Theories, Lecture Notes in Math. 34, Springer-Verlag, 1967.
- [4] E. Brown: *Abstract homotopy theory*, Trans. Amer. Math. Soc. 119 (1965), 79–85.
- [5] H. Cartan and S. Eilenberg: Homological Algebra, Princeton Univ. Press, 1956.
- [6] S. Eilenberg and N. Steenrod: Foundations of Algebraic Topology, Princeton Univ. Press, 1952.
- [7] R. Hirzebruch and K. Mayer: $O(n)$ -Mannigfaltigkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Math. 57, Springer-Verlag, 1968.
- [8] K. Jänich: *Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G -Mannigfaltigkeiten ohne Rand*, Topology 5 (1966), 301–320.
- [9] T. Matumoto: *Equivariant K-theory and Fredholm operators*, J. Fac. Sci. Univ. Tokyo Sect. I. 18 (1971), 109–125.
- [10] ———: *On G -CW complexes and a theorem of J.H.C. Whitehead*, J. Fac. Sci. Univ. Tokyo Sect. I. 18 (1971) 363–374.
- [11] C. Maunier: *The spectral sequence of an extraordinary cohomology theory*, Proc. Cambridge Philos. Soc. 59 (1963), 567–574.
- [12] H. Minami: *The representation rings of orthogonal groups*, Osaka J. Math. 8 (1971), 243–250.
- [13] G. Segal (and M. Atiyah): Equivariant K-theory, Lecture Note, Warwick, 1965.
- [14] H. Weyl: The Classical Groups, Princeton Univ. Press, 1946.