
Title Equivariant cohomology theories on G-CW
complexes

Author(s) Matumoto, Takao

Citation Osaka Journal of Mathematics. 1973, 10(1), p.
51-68

Version Type VoR

URL https://doi.org/10.18910/11621

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Matumoto, T.
Osaka J. Math.
10 (1973), 51-68

EQUIVARIANT COHOMOLOGY THEORIES
ON G-CW COMPLEXES

TAKAO MATUMOTO*

(Received December 10, 1971)

Introduction

G.Bredon developed the equivariant (generalized) cohomology theories

in [3], in which he had to restrict himself to the case of finite groups. One of
the purposes of this note is to generalize his theory by replacing G-complexes
with G-CW complexes. Then, for example, the followings are still true for the
case in which G is an arbitrary topological group. The E"2-term of the Atiyah-
Hirzebruch spectral sequence associated to a G-cohomology theroy (in this note
we frequently use 'G-' instead of 'equivariant') is a classical G-cohomology
theory, which is easy to calculate (§1^§4). The G-obstruction theory works
in a classical G-cohomology theory (§5). Moreover, for a G-cohomology theory

we get a representation theorem of E.Brown (§6) and the Maunder's spectral
sequence (§7).

As an application we study the equivariant j?£*-theory in the last sestion (§8).
The Atiyah-Hirzebruch spectral sequence for K$(X) collapses, if dim X/G<^2

or X satisfies some other conditions. The Z?2-term depends only on the orbit
type decomposition of the orbit space, if X is a regular O(w)-manifold or the like.
These facts enable us to calculate the equivariant K*-group of Hirzebruch-Mayer
O(w)-manifolds and Janich knot O(w)-manifolds. Our spectral sequence for a
differentiable G-manifold is similar to that of G.Segal which is defined by the
equivariant nerve of his [13], but ours is easier to calculate the E^-term.

In this note G denotes a fixed topological group. Terminologies and nota-
tion follow those of [3], [9], [10] in general, though σ denotes a closed cell which
is the closure of an (open) cell in the definition of a G-CW complex in [10].
And Gσ denotes the G-orbit of σ and Hσ the unique isotropy subgroup at any
interior point of σ. §0 is exposed for reference to the properties of G-CW

complexes.

The author wishes to thank Professors Shόrό Araki and Akio Hattori for
their criticisms and encouragements.

*} Supported in part by the Sakkokai Foundation.
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0. Preliminaries about 6?-CW complexes

We summarize here the properties of G-CW complexes and G-CW comple-

xes with base point (the base point in G-CW complex is always assumed to be a

vertex which is left fixed by each element of G).

Proposition 0.1. (G-cellular approximation theorem) Let f: X-+Y be a
G-map between G-CW complexes (with base point). Then f is (base point preserving)

G-homotopίc to a G-map ,/': X-^Y such thatf'(X")c: Yn for any n.

This is Theorem 4.4 of [10]. Moreover, if/ is G-cellular on a G-subcomplex

Ay then we may require /'=/ on A.

Proposition 0.2. (G-homotopy extension property) Let /0: X-*Y be a
given G-map of a G-CW complex X into an arbitrary G-space Y. Letgt: A-*Y

be a G-homotopy of g0=fQ\A, where A is a G-subcomplex of X. Then, there is

a G-homotopy ft: X-*Y, such thatft\A=gt.

This is (J) of [10].

For a pair of G-CW complexes (X, A), collapsed A into a point, X/A forms
a G-CW complex with a base point A/ A (taken to be a disjoint point if A=φ,
in which case X+ denotes X/φ). Let i: A^>X be the inclusion. Consider
the mapping cone Cf=X\jCA=(Xx {1} (jAxI)/Ax {0} with the obvious G-
action, trivial on /. Then, by the G-homotopy extension property, we can prove

that the collapsing map, X (J CA-+X U CA/CA=X/A is a G-homotopy equival-

ence. Therefore, we get

Proposition 0.3. Let (X, A) be a pair of G-CW complexes (with base point)
and let i: A-+X be the natural inclusion. Then, in the following cofibering
sequence, the vertical maps are G-homotopy equivalences:

\
XIA-+SA-+SX

Proposition 0.4. (Theorem of J.H.C.Whitehead) Let φ: (X,A)->( Y, E)
be a G-map between two pairs of G-CW complexes with base point. For each
closed subgroup H which appears as an isotropy subgroup in X or Y, we assume
that XH , AH ' , YH and BH are arcwise connected, and the induced maps,

and
φ*: πn(AH, *)-*πn(BH, *)

are bίjective for l^n^ max (dim X, dim Y). Then, φ: (X, A)-+(Y, B) is a G-
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homotopy equivalence.
This is a special case of *5 Theorem 5.3 of [10].

Proposition 0.5. Let G be a compact Lie group. Then any compact dif-
ferentiable G-manifold has a G-finite G-CW complex structure.

This comes from Proposition 4.4 of [9].

1. Definition of an equi variant cohomology theory on G-CW
complexes

On the category of pairs of G-finite G-CW complexes and G-homotopy
classes of G-maps, a G-cohomology theory is defined to be a sequence of contrava-
riant functors hG(— oo<#<oo) into the category of abelian groups together

with natural transformation 8n: hG(Ay φ)-*hG

+l(X, A) such that the following
axioms are satisfied (we put hG(X)=hG(X, Φ))

(1) The inclusion (X, X Π A)^>(X \J A, A) induces an isomorphism,

(2) If (X, A) is a pair of G-finite G-CW complexes, the sequence,

... - hn

c(X, A) - h%X) - H&A) 1" h?\X, A) -> ...

is exact.
Standard argument can be used to prove the exactness of Mayer- Vietoris

sequence and the long sequence of triples.

Lemma 1.1. For a pair of G-finite G-CW complexes (XyA)y the collapsing
map, (X, A)-*(X/A, A /A), induces an isomorphism,

h*G(X/A, A/ A) hl(X, A)

Proof. By the proposition 0.3 the collapsing map, X \JCA-*X \JCA/CA
=X/A is a G-homotopy equivalence. Moreover, CA-+* is an G-homotopy equ-
ivalence, and (X, A)-+(X U CA, CA) is an exision map. Hence, we get the
commutative diagram (the homomorphisms are induced by the canonical G-

maps),

hn

G(X U CA, *) 5 hn

G (X U CA, CA)

-i / I-
hn

G(X/A,A/A) - hn

G(X,A)
q.e.cl.

*> The footnote at p. 371 of [10] is inadequate. ' *> πk (X, Y) vainshes' should read ' 'πk(X,Yty)
vanishes for every point y of Y" and also l(p*\ *) τtk(X}-^^ ^*(Y) is bijective or surjective' should
read UΦ* : Kk(X, x)~*πk( Y, <P(*)) is bijective or surjective for every point x ofX". Then, the state-
ments and proofs in [10] are true in the context except Theorem 5.2. In Theorem 5.2 we should
add the assumption that each arcwise connected component of X or Y is w-simple for every n>\.
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For a G-CW complex with base point X, SX= S Λ X (with obvious G-action,
trivial on the "circle factor" S) denotes the reduced suspension of X. A reduced
G-cohomology theory on the category of G-finite G-CW complexes with base
point and base point preserving G-homotopy classes of base point preserving G-
maps is a sequence of contravariant functors hc(— °o<ra<°°) into the category
of abelian groups, together with natural transformations σn: hG(X)-^h£+\SX)
satisfying the following axioms:

(1)' σn is an isomorphism for each n and X.
(2)' The short sequence,

hn(X/A) -* hl(X} - &(A)
is exact.

REMARK 1.2. By Proposition 0.3 and Axioms (1)', (2)' we get the long
exact sequence for Ag( ).

Let h% be a G-cohomology theory. Define J%(X) by h%(X, *). Then Ag
is a reduced G-cohomology theory by Lemma 1.1. Conversely let Ag be a re-
duced G-cohomology theory. Define h%(X, A) by hί(X/A). Then }fc is a G-
cohomology theory by Remark 1.2. This is a canonical one-to-one corres-
pondence. Afterwards we identify h^X, A) and hG(X/A).

We enclose this section after giving some examples.

EXAMPLES 1.3. of G-COHOMOLOGY THEORIES:
(i) hn

G(X)=H"(XIG Z).
(ii) hc(X)=Kc(X) when G is a compact Lie group.
(iii) h'G(X)=hn(XχGEG) where EG is a universal G-principal bundle and hn a
cohomology theory for spaces.

2. On classification of G-maps between G-cells of the same dimen-
sion up to 6r-homotopy classes

Let H be a closed subgroup of G. Suppose that X is a space and G/Hχ X
is a G-space with the obvious G-action, trivial on X. Let Y be a G-space and
/: G/Hx X^ Y be a G-map. Since/ is G-equivariant, we get, f(H/Hχ X)dYH

where YH is the ίf-pointwise fixed subspace of Y. Therefore, we may define
a map,/: X^YH, by f(x)=f(H/Hχx).

Lemma 2.1. In the above situation, the correspondence, /ι—»/, yields an
isomorphism of sets,

G-maps (G/HxX, Y) ̂  Maps (X, YH).

Moreover, the isomorphism induces another isomorphism,
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where [ ; ]G stands for the set of G-homotopy classes of G-maps.

Proof. Let/: X-*YH be a map. Define a map, /: G/HχX-+Y, by
f(gH/Hxx)=g f(x) for any £<ΞG, and any *e-Y. If gH\H=g'H\H, then £'

=£ λ for some h^H, so that g f(χ)= g' f(x) (since /(#) is fixed by #), which
shows that this definition is valid. By this definition /is certainly G-equivariant,

and conversely if we assume that a map/: G/HχX-*Yis G-equivariant, we get

f(gHIHxx)=g f(HIHxx).
Therefore, the correspondence, f\— >/, is the converse to the correspondence,

/i-*/. This proves the first isomorphism. The second isomorphism is induced,

because the G-homotopy ft(Q<Z,t^l) and homotopy /^(O^t^l) correspond
each other in the same way.

q.e.d.
Assume that X has a distinguished closed subspace A and Y has a base

point y0 (the base point is left fixed by G).

Lemma 2.1'. The correspondence, /ι— »/, yields an isomorphism,

G-maps ((G/HχX)l(G/HxΆ), Y/y0\ 5 Map (X/A, YH/y0)Q.

Moreover, the isomorphism induces another isomorphism,

[(GIHχX)l(GIHxA); Y/%]G,05 [*/Λ; Y*/y0]0>

where [ , ]G 0 stands for the set of base point preserving G-homotopy classes of base

point preserving G-maps.

Proof. The correspondence /t— »/, is also defined in the same way as in
Lemma 2.1.

q.e.d.
Therefore, we get

Corollary 2.2. Let H and K be two closed subgroups of G and n^O be
a fixed integer. Then, ((the restriction" yields the following isomorphisms,

(i)
(ii) [(G/H x Δ")/(G/# x 9Δ") (G/K x Δ")I(GIK x 3Δ")]G>0

5 πn((GIK)» X Δ")I((GIK)H X 9Δ", *).

Here τr0( ) stands for the set ofarcwise connected components and * is the base point

((GIK)» x dΔ.")/(GIK)H x 9Δ").

Now let Y be a space and n^\ be an integer.

Lemma 2.3. Y X Δ"/ Y X 9Δ" is (n — 1 ̂ connected, and there are natural iso-

morphisms,

πn'(Y X Δ"/y X 9Δ", *) * #Λ(Y x Δ"/7x 9Δ"; Z)
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Here τrn'( )=πn( ) for n^2 and 7r/(-) is the abelίanized group of π^ ) and
Hn( Z) is the singular homology group.

Proof. By the definition, Y X ΔΛ/ Y X 3ΔΛ is homeomorphic with the smash

product Y+ Λ Δ"/3ΔΛ. Hence Y X Δw/ Y X 3Δ" is (n - 1 Connected. If we use the

Hurwicz theorem, the rest is easily proved.
q.e.d.

Let {Yλ: λeΛ} be the family of all the arcwise connected components of
Y. Take an element yλ^ Yλ for each λ. Then each element of H0(Y; Z) has

Σflλ >yλ(Wλ=0 except the finite λ'ί) as its representative. Alsoanymap: (ΔΛ,3ΔΛ)

->(F X Δn/y X 3ΔΛ, *) determines nλ uniquely.
Now let H and K be closed subgroups of G. Recall that for any element

g£ΞN(H, K)={g(ΞG, HgdgK},g: G/tf^G/ί: is defined by g(aH)=agK, and

this correspondence, g^>g, induces an isomorphism,

N(H, K)/K = (G/K)H 5 G-maps (G///, G/K).

Suppose that {gλ^G} is the family of representatives of all arcwise con-
nected components of N(H, K)/K=(G/K)H. Then any base point preserving
G-map,

/: (G/H x Δ")/(G/# x 3Δ") -> (G/K x ^/(G/K x 3ΔM),

determines nκ(f) such that /is equal to Σnλ(/) ^λ in πn'(((G/K)H x Δ")/((G/K)H

Let L be another closed subgroup of G. Suppose that gλ^N(Hy K) and
gμ.^N(K, L), then we get

gx gμ,^N(H, L) (not£V£λ!), and (g^g^ = g^gλ .

From this we get

Proposition 2A. Let H, K and L be closed subgroup of G. Suppose that
{gx^G}, {gμ^G} and {g^G} are the families of representatives of all arcwise

connected components of N(H, K)/K, N(K, L)/L and N(H, L)/L respectively. Let

f: (G///)xΔΛ)/(G///x3ΔΛ)->(G/^xΔrt)/(G/^x3ΔM) and g: (G/K
X 3Δ")^(G/L X ΔΛ)/(G/L X 3ΔΛ), be base point preserving G-maps. Then,

Here the summation is taken over the pairs (\, μ) such that g\ gμ and g^ are in the
same arcwise connected component of N(H, L)/L.

3. Classical 6r-cohomology theory on G-CW complexes

We shall define a classical G-cohomology theory with coefficients in a

(generic) G-coefficient system. In §4 the classical G-cohomology theory will
be characterized as the G-cohomology theory which satisfies also the dimension
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axiom.

DEFINITION 3.1. A (generic) G-coefficient system is a contravariant functor
MG of the category of the left coset spaces of G by closed subgroups, G/H, and
G-homotopy classes of G-maps (equivariant with respect to left translation), G/H
-*G/K, into the category of abelian groups.

REMARK. When G is a discrete group, any two distinct G-maps between

G-coset spaces cannot be G-homotopic and hence this definition coincides with

the generic equivariant coefficient system of Bredon in [3],

EXAMPLES 3.2. OF G-COEFFICIENT SYSTEMS:
(i) MG=hξ.
(ii) MG=Z with a trivial G-action.
(iii) MG=ωn(Y)(n^2)t where Y is a G-space with a base point y0 and
ωn(Y)(G/H)=πn(Y«, yβ)s*[(GIH X Δ")(G/tf X 9Δ"), Y/;y0]G,0.

Let MG be a G-coeίficient system. The n-dimensional G-cochain group
of a pair of G-CW complexes (X, A) with coefficients in MG, denoted by

CG(X, A ;MG), is defined to be the group of all G-equivariant functions φ on the
//-cells of (X, A) with φ(σ)^MG(G/Hσ) and MG(g)φ(σ)=φ(gσ) for a right

translation g: GIHg<r^aHgσ=ag(Hσ)g'l^agHσ^ G/#σ. (If σ is an Λ-cell of A

or a/>-cell (/>=£»), then φ(σ)=Q.)
By the definition of the G-cochain group, Cc(X, A MG) is canonically

isomorphic with C%(X*IX*-l\jA; MG). Moreover, since Xn/Xn-1\jA=
V(Gσ/G9σ) where σ range over the representatives of all w-dimensional G-cells

of(X,A),

; MG) = Cg( V(G(7/G9σ); MG) = ΠCS(Gσ/Gθσ; MG).

Let /: (X, A)-*( Y, B) be a G-cellular map between pairs of G-CW com-

plexes. Then, for every n, / induces a G-map,

Suppose that σ and r are representatives of all G-w-cells of (X, A) and

( F, 5) respectively. Then we can define a G-map /OT (between G-cells of the
same dimension x) by fστ= c of"o i in the following diagram:

c
Xn\Xn-^ U A = V(Gσ/G8σ) ί± Gσ/G9σ = (GIHσ x Δn)l(GIHσ x 8ΔΛ)

_ V(Gτ/G9τ) ̂  Gτ/G9τ = (G/^τ x Δ")l(G/Hr x
/

where / is the inclusion and £ is the collapsing of the other factors.
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Let {gxccr^^G} be the family of representatives of all arcwise connected

components of (G/Hr)
H^ as in §2.

Define/*=CS(/; MG): CG(Y, B y MG)^CG(X, A MG) by

(f*φ)(σ) = Σ Σ %cσ,,)(/o-τ)MG(^λCσ,τχτ)
T λ(σ,τ)

where r ranges over the representatives of all G-w-cells of (Y, B). The sum is

finite because nλ(fστ)=0 except the finite λ's.)

Proposition 3.3. Let MG be a G-coefficient system. Then, CG( MG) is a
contravariant functor from the category of pairs of G-CW complexes and G-cellular

maps into the category of abelian groups.

Proof. If we fix the representatives, (gof)*=f*og* by Proposition 2.4.
It is easily seen that /* is determined independent of the representatives.
Remark that /* depends only on the G-homotopy class of the G-map fn.

q.e.d.
Now recall that Xn/Xn~l\jA has the same G-homotopy type with

Xn U C(Xn~1 U A) canonically. As a special case of Proposition 0.3, we have

a Puppe sequence (the horizontal sequence),

\JA -» X"IXn

* 9/
χ«lχ»-3 u A S S(Xu-tIX -t U A)

Since both the vertical and oblique sequences are cofiberings, we get that 5(9)°
3 is G-homotopic to the trivial map. On the other hand we have a canonical

isomorphism,

<r: CS-^X -ΊX—UA , Mc) " C%S(X~ΊX*-'\jA)', MG).

Define the coboundary homomorphism

δ: CG-\X, A-, MG) - CZ(X, A-, MG)

by δ=C%(d)oσ. Then , because S(d)oQ—G0, we get δoδ=0.

DEFINITION 3.4. The classical G-cohomology theory on a pair of G-CW
complexes (X, A) with the coefficients in a G-coefficient system MG, denoted by
H%X, A MG), is denned by H%X, A MG)=H"(CG(X, A MG), 8).

REMARK 3.5. Let σ and T be w-cell and (n— l)-cell of (X, A). We write
[o-, 3W.τ>τ] for nκv^βn) where dn: GσlGdσ^S(Gr/Gdr). Then, we get the
formula,
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(8φ)(<r) =

where r ranges over the representatives of all G-(n— l)-cells and^λ((T τ) ranges over

the representatives of all arcwise connected components of N(Hσ, /ίτ)/Hτ.

Theorem 3.6. The classical G-cohomology theory HG( MG) is a G-cohomo-

logy theory in the sense of § 1.

Proof. We prove here only the G-homotopy axiom. The exision axiom

and the exactness axiom is trivially satisfied. Let/: (X, A)-*(Y, B) be a G-map

between pairs of G-CW complexes. By a G-cellular approximation theorem we

may assume that / is G-cellular. The induced map /*: CG(Y, B] MG)-^>
C£(X,A\M) commutes with δ, in fact, /*o8=CS(/)oCS(9)oσ=C£(9o/)oσ=

CS(5(/)o(9)oσ -Q(9)oCS(/)oσ=CS(9)oσoCΓ1(/)-δo/*. This gives an in-

duced map /* : HG( Y, B MG)^H%(X, A MG). If /is G-homotopic to g, we may

assume that not only / and g are G-cellular but G-homotopy F : (X X /, A x /) ->

( Y, B) with F I X X {0} =/, F \ X X {1} =g is also G-cellular. Then, F gives a ho-

motopy connecting the chain maps, /* and g*: C$(Y, B] MG)-*C$(X, A\ MG)

and hence f*=g* : H%( Y, B MG)-^H$(Xy A MG). Therefore, even if/ is not a
G-cellular map the induced map /*: H%(Y, B] MG)-*H%(X, A', MG) is well-

defined and satisfies the G-homotopy axiom.
q.e.d.

4. Spectral sequence of Atiyah-Hirzebruch type

Suppose that (X, A) is a fixed pair of G-finite G-CW complexes. Put

H(p, q)=^hn

G(Xq-\ Xp-l\jA). Then, the collection of H(p, q)'s satisfies the

axioms (S.P. 1)-(S.P. 5) of Cartan-Eilenberg [5. p. 334] and hence induces a

spectral sequence resulting to h$(X, A). The E^-term and the 1st differential

of the spectral sequence are easily calculated as follows :

d,= S: hG+
q(Xp, Xp~l (JA)

where δ is the coboundary homomorphism.

Lemma 4.1.
(i) hG

+Q(Xp, Xp-1\jA)=ϊ£+*(XPIXp-1\jA) is decomposed into the direct

product ϊ[hG

+<I(GσlGdσ), where σ ranges over representatives of all p-dίmensional

G-cellsofX/A.
(ii) And for each direct factor, there are isomorphisms, hG

+<I(Gσ/Gdσ)=

hG

+«(Gσ, Gdσ)

Proof of (i). Since Xp/Xp~l (JA= V(Gσ/G9σ) is the one point union of

finite (Gσ/G9σ)'s we get the decomposition by the usual argument.
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Proof of (ii). The 2nd isomorphism is induced by the G-characteristic map,

Gfσ: (G/HσχΔp, G/HσχdΔp)-^(Gσ, G9σ), which is a relative G-homeomor-
phism. Now we shall prove the last isomorphism. Put H=Hσ. Since the

inclusion, GIHx(dΔp — Δp~l)-*G/HχΔp, has a G-equivariant deformation re-

traction, we get the isomorphism,

h£+«(G/HxΔp, G/HχdΔp)^hp+«-\G/HχdΔp, GIHx(dΔp-Δp~1))

in the exact sequence of a triple (G/HχΔp, G/Hχ9Δp, G/Hχ(QΔp-Δp-1)).

By the exision axiom, we get the isomorphism,

Combining the isomorphisms of these two types repeatedly, we get

h£+«(G/Hx Δp, G/Hx dΔp) £ hg+q~l(GIHχΔp-\ G/Hx 9Δ*'1)

.•• ̂  hg(G/Hx Δ°, G\H X 9Δ°) = h^G/H) .
q.e.d.

We shall consider the difference of taking another representative gσ instead

of σ, as a representative of a ̂ -dimensional G-cell Gσ. Put H=Hσ. Then gHg~l

=Hgσ. Since we may identify agH-orbit of σ with agHg~l-orbit of gσ in Gσ,

a canonical right translation g: G/gHg~ί^agHg~1\-^agH^G/H induces a required

isomorphism, hg(g) : h^G/HJ-^h^G/H^). This shows that hp

3

+q(Xp

y Xp~l U A)

Theorem 4.2. The Eξ'^-term of the Atίyah-Hirzebruch spectral sequence

for a G-cohomology theory, h$, on G- finite G-CW complexes, is a classical G-

cohomology theory with coefficients in hg.

Proof. By the result above we can identify E{'g=hζ+g(Xp, Xp~l\jA) with
CQ(X, A\ ho). And the coboundary homomorphisms are induced from 9 in

the Puppe sequence in both cases.
q.e.d.

Assume that the G-cohomology theory A£( ) is defined also on (not G-finite)
G-CW complexes, and satisfies the additivity axiom:

(3) The inclusions, iΛ: X^-^^X^ induce an isomorphism,

Then, Lemma 4.1 and Theorem 4.2 are also valid for a pair of (not G-finite)
G-CW complexes.

The classical G-cohomology theory is defined on G-CW complexes and
satisfies the additivity axiom. Therefore, we get as usual

Theorem 4.3. The classical G-cohomology theory is characterized to be
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the G-cohomology theory defined on G-CW complexes which satisfies also the addi-
tivίty axiom and the dimension axiom.

Here we mean by dimension axiom,
(4) h%(G/H)=Q for ra^O and all closed subgroup H of G.
The aditivity axiom and the dimension axiom are as follows, for the reduced

G-cohomology theory.
(3)' The inclusions, iΛ: X#-^>\/Xa, induce an isomorphism,

XJ hn

G(MXΛ) .

(4)' hl(G/H)+)=0 for n^O and all H.

5. (^-obstruction theory

Let Y be a G-space with a base point. Then in the classical G-cohomology

group H$( ; ωn(Y))> we can make a G-obstruction theory similar to that of
Bredon [3].

Let n^>l be a fixed integer and A be a G-subcomplex of a G-CW complex
X. We shall assume, for simplicity, that the pointwise fixed subspace YH of Y
by H is non-empty, arcwise connected and w-simple for each closed subgroup H
of G which appears as an isotropy subgroup at a point of X.

Assume that we are given a G-map φ: Xn U A-* Y. Let σ be an (n-\- l)-cell
of X and let/σ: QΔn+1-*Xn be the characteristic attaching map of σ and Hσ=H.
Because the image of 3ΔΛ+1 by <£>°/is pointwise fixed by H, we get a map: 8ΔΛ+1

->YH. We define cφ(σ)<=πn(YH, *)=ωn(Y)(G/#) to be the unique base
point preserving homotopy class which is free homotopic to the above map
(πn( Y

H, *) ̂  [Sn YH] because YH is w-simple). Since φ is a G-map, we get cφ(gσ)
\X, A; ωn(Y)).

Lemma 5.1. δ^-0 eQ+2(^ A\ ωn(Y)).

Proof. Let r be an (n+2)-cell of (X, A) and i: (Gr, G3τ)->(Z, A) be the

inclusion. Then i*Scφ=δi*cφ and ̂ C^eQ+^Gr, G9τ; ωn(Y)). According to
our definition of C5+1( ; ωn(Y)) on G-CW complexes, Q+1(Gτ, G3τ;

=0. Therefore, ί%r=0 and hence ί*δ^=0, that is, ̂ (τ)=0 for any

T of (Z, ^).
q.e.d.

Now identifying the G-homotpy classes of G-maps: G/HxdΔn+l-*Y and
the homotopy classes of maps: 3Δn+1->yH, we can reduce the proof of the
following lemmas to the ordinary obstruction theory as Bredon did.

Lemma 5.2. ^=0 if and only if φ is extendable equίvariantly on Xn+1 \JA.

Lemma 5.3. Let d<= C^(X, A ωn( Y)). Then, there is a G-map θ : Xn U A
-*Y, coinciding with φ on Xn+1 \JA such that dθt<p=d.



62 T. MATUMOTO

Here the difference cochain dθ>φ is defined to be the class which corresponds to

CM by the isomorphism, C£(X,A\ ωn(Y))-*C£+1(XxI, AχI(jXχdI; ωn(Y)).

θ*φ is a G-map: (XχI)n(jAχI-*Y which is φ on Xnx {0} ]jXn'lxI and θ

onX"x{l}.

Combining these three lemmas, we get

Theorem 5.4. Let φ : X" U A-+ Y be a G-map. Then φ \ Xn~l U A can be

extended to G-map: Xn+1 (JA^Y if and only if the G-cohomology class of cφ in

H^\X, A; ωrt(Y)) vanishes.

Also the argument of Bredon in 'primary obstructions' [3, II. 5.2] is valid

to this case. In particular, we get

Proposition 5.5. Let n^l be a fixed integer and let Y be a G-space with

base point such that YH is non-empty, arcwise connected and n-simplefor every closed
subgroup H of G. Suppose that ωk( Y) vanishes for kφn, then a primary obstruc-
tion map,

is an isomorphism for any G-CW complex X.

Proposition 5.5/ Under the assumption above, a primary obstruction map,

is an isomorphism for any G-CW complex X with base point.

6. Representation theorem of E. Brown

We shall prove the following representation theorem as an application of
E.Brown's abstract homotopy theory [4].

Theorem 6.1. If a reduced G-cohomology group h£ on G-CW complexes

with base point satisfies the addίtivity axiom, then ho is representable, that is, there

is a G-space Yn with base point and a natural transformation T: [ Y^\G,O~^^G(')
such that T is an isomorphism for any G-CW complex with base point, where [ ]G>0

stands for the set of base point preserving G-homotopy classes of base point preserv-
ing G-maps.

Let C be the category of G-CW complexes with base point such that the

//-stationary subspace is arcwise connected for each H, and base point preserving

G-homotopy classes of base point preserving G-maps. In C there is a (not
unique) sequential direct limit by approximating G-maps by G-cellular maps and

making their telescope. Also we get a (not unique) 'push out' as a double map-

ping cylinder in G. If we choose one representative for each class of conjugate
closed subgroups, {(G/HχΔp)/(G/HχdΔp)] H representative, 0</><oo} is a
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small subcategory of C.

Let C0 be a minimal subcategory which contains (G/HχΔp)l(G/HxdΔp)'s
(0<^><oo) and their 'push out'. Then C0 is a small, full subcategory of C and
also a subcategory of G-finite G-CW complexes with base point and we get

Proposition 6.2. A pair (C, C0) is a homotopy category in the sense of
E.Brown.

Proof of Theorem 6.1. Since reduced G-cohomology theory has a Mayer-
Vietoris exact sequence, he (restricted on C) with the additivity axiom is a
homotopy functor in the sense of E.Brown. Moreover, we get C0= C by an
equivariant version of J.H.C.Whitehead's theorem. (See Proposition O.4.).
Therefore, by Theorem 2.8 of [4], we get a Y'nξΞC unique up to G-homotopy

equivalence and a natural transformation T: [ ^]G,O~^AG(*) sucn tnat T *s

an isomorphism for each X^C.
Define Yn=ΩYή+1. For any G-CW complex X with base point, SX<=C.

Therefore, we get

[X,

"
[SX,

q.e.d.

REMARK. Even when he *s defined only on G-finite G-CW complexes,
by the method of Adams [2], we get a reduced G-cohomology theory on G-CW

complexes which satisfies the additivity axiom and coincides with //£ on G-finite
G-CW complexes.

Let Yή+ι^C be a representing space of h"c in tne category of C. Then, the

isomorphism: h£+1(X) 5 h£+2(SX) induces a G-map hή+1: Yή+1: ->ΩY;+2 which

is a weak G-homotopy equivalence, that is, (hή+1)*: τrt (y£+1)
H) ̂  7rt ((Ωy^+2)

H)
for any / and any H. Hence, taking their loop spaces, we get also a weak
G-homotpy equivalence, hn: YH-*ΩYΛ+l. Then, Y={Yny hn\ — oo<n<cχ)}

forms a weak Ω-spectrum for HG This fact is used in §7 to make a spectral se-

quence of C. Maunder.

7. Killing the elements of the G-homotopy groups and C.Maunder's
spectral sequence

Let Y be a G-space with base point y0 such that YH is arcwise connected for

each closed subgroup H of G. An element in the n-th homotopy group πn( YH,y0)
of ίf-stationary subspace YH is called to be an element of G-n-homotopy groups

of Y. An element \f\tΞπn(YH, y0) with/: S*=Δ*ldΔ*-+YH is killed by atta-
ching a G-(w+l)-cell represented by an (w+l)-cell σ which has / as its charac-
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teristic attaching map and H as its isotropy subgroup, that is, Hσ=H. If we fix

n and kill all the elements of G-ra-homotopy groups, we get a relative G-CW

complex Y"such that Ϋ~1= Y. Then, i*: πn(YH, y^-*πn(ΫH, y0) is a zero map

for any closed subgroup Hy where i\ YH^>ΫH. On the other hand, by the G-

cellular approximation theorem we get πk(ΫH, YH,y0) vanishes for k<n and any

H, that is, i*: πk( Y
H

y y0)-*πk( ΫH,y0) is an isomorphism for k<n and a surjection
for k=n. Therefore, πk(ΫH,y^ is canonically isomorphic with πk(YH, y0) for
k<n and vanishes for k=n. By this reason we call Fa G-space obtained of Y

by killing the elements of G-n-homotopy groups.
Let F(l, p) be a G-space obtained of Y by killing the elements of G-homo-

topy groups of dimensions ^> (/>+!) one after the other. Then, Y(l,p) is uniquely
determined up to G-homotopy types rel. Y by the usual argument on (relative)

G-CW complexes. For p^qy Y(p, q) denotes the mapping track of i(p, q):

F(l, q)-*Y(l, p—l). Moreover, let Ycn(p, q) denote the mapping track of

Pn(P> #): γ(r>q)-*Y(r> p—l) for r<p<,q. Then, it is easily seen that the
natural G-map: Y^r\p, q)-*Y(p> q) has a G-homotopy inverse. Therefore, by
taking mapping tracks repeatedly, we get a following G-fibering sequence of G-

spaces. (The G-spaces are determined up to G-homotopy types.)

ΩF(r, t) -> ΩY(r, s) -> Y(s+l, f) -> Y(r, t) -+ Y(r, s), r^s<t.

Here, that X-> Y-*Z is a G-fibering stands for that XH-+ YH-*ZH is a fibering

for any H. In particular, πk( Y(p> q)H, yQ) is isomorphic with πk( Y
H, y0) for

p^k^q and vanishes otherwise.

In §6 we have obtained a weak Ω-spectrum for a G-cohomology theory h^.

Let^Γbe aG-finiteG-CW complex and putH(p, q)=^[S(X+)] Yή+1(p+2,q)]Gf0.

Then, by the G-fibering sequence above, we get a spectral sequence resulting to

h£(X)= Z[S(X+) y;+1]G,0. ΎheE,-tsrm,Eϊ =[S(X+); F;+.+1(/>+l,^+l)k.
is isomorphic with H£+\S(X+) πp+l(Y'p+g+1))=Hg(X;hg) by Proposition 5.5'.

Moreover, since [S((X"+lγ) Y'p+9+1(l, p+l)]G 0^[5(^+);-y;+ί+1(l, p+l)]G,0

and [S(X>IX'->); Y'p+^0,^[S(X"IX^); y;+ί+1(l,/>+l)]c>β, the Maunder'β
argument using exact couples [11] is also valid in this case. Hence, we get

Theorem 7.1 Let h$ be G-cohomology theory. Then, the spectral se-

quence above is isomorphic with the Atiyah-Hirzebruch spectral sequence except the

E^-termfor any G-finίte G-CW complex X.

Proposition 7.2. Ther-th differentialdr E^q^E^r'g~r+ίin the Maunder's
spectral sequence is induced from the lhigher cohomology operation9 determined by the
G-homotopy class of
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Remark that [δr]ϊΞH*+r+1(Y'p+g+l(p+l, p+r-l), ωp+q+1(Y;+q+2)) .

Corollary 7.3. Ep

r'
q=Ep

r'
q(r^2) together with the differentials dr are G-

homotopy type invariant.

This is also proved from Theorem 4.2 and comparison of spectral sequences.

8. Applications to the equivariant A^-theory

In this section G denotes a compact Lie group. We shall applicate our

results to ̂

Theorem 8.1. Let X be a G-finίte G-CW complex. There exists a spectral
sequence E$'g(r^l, — oo<^ q<oo) with

Eί'«^C£(X, KG)

d^ being the coboundary homomorphism.

, Kg) ,

where Kn

Gtp(X)= Kernel (Kn

G(X)-^Kn

G(Xp-1)). The G-coefficίent system, K£(G/H)

is ίsomorphic with KG(GIH) for q even and vanishes for q odd (See [13]).

This is a special case of Theorem 4.2.

A. Collapsing theorems

If r is even, the r-th differential is a zero map, because dr is a map of Ep

r'
q

into E%+r'g~r+1 where one of the domain or the image vanishes. Therefore, we

get

Theorem 8.2. If one of the following conditions is satisfied, then the above

spectral sequence collapses :
(i) H£(X\ KG) vanishes for every odd p.

(ii) Hζ(X KG) vanishes for eve

For the reduced K%-theory, we get

Theorem 8.2'. If X has a base point, then the spectral sequence,

collapses if:

(i) ffG(X\ KG) vanishes for every odd p or for every even p, or

(ii) Rζ(X\ KG) vanishes except p=r, r-\-\, r+2 for some r.

B. On E2-term
We consider the classical (7-cohomology theory with coefficients in KG.
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KG(G/H) is canonically isomorphic with R(H), where R(H) is the Grothendieck

group of the isomorphic classes of complex representations of H.

Remark that KG(g)\ KG(G/G)->KG(G/G) is an identity isomorphism for

any g^G, because any inner automorphism of G induces an identity isomor-

phism on R(G). Therefore, if we assume that the restriction maps ί*: R(G)->

R(H) is surjective, then KG(g)=KG(g'): KG(GIH}-^KG(GIH'} for any elements

g,g' of N(H', H). Hence, by Remark 3.5 we shall get

Proposition 8.3. Let X be a G-finite G-CW complex whose ίsotropy sub-

groups satisfy the condition :

(*) the restriction map: R(G)-^R(H) is a surjection for any closed subgroup

H which appears as an ίsotropy subgroup at a point of X.

Then, HG(X: KG) can be calculated by considering only the orbit type decomposition
of the orbit space.

Proof. As we remark above, by the condition (*), KG(g): KG(G/H)->

KG(G/H') is independent of the choice of g^N(H', H) for any isotropy sub-

groups H, H'. So, we may write this map by KG(H^Hr).

Then, we get the formula :

(Sφ)(a) = Σ Σ [σ, g^.^K^H^H^T) .
T λCσ .Ό

On the other hand, it is easy to see that

Σ [o-,ΛG,.τ>τ] = [σ/G,τ/G]€=Z
λCσ,τ)

where σ/G and τ/G are the induced cells on XjG.
q.e.d.

REMARK 8.4. We call an O(w)-manifold to be a regular O(w)-manifold if each

isotropy subgroup is conjugate to O(k) (k^ri). Then any regular O(τz)-manifold

satisfies the condition (*) above, because the restriction map ρn: R(O(ri))-+

R(O(n—l)) is a surjection. This fact is easily checked by the classical represen-

tation theory as in [14], but we refer the reader to [12].

C. A conclusion

Combining these results with Proposition 0.5, we get

Proposition 8.5. For a compact regular O(ri) manifold X, if dim X/G<^2,

then, KQ

G(X)IK*Gj2(X), K°Gf2(X) and K*G(X) depend only on the orbit type decompo-

sition of the orbit space.

D. Examples

Now we shall calculate K$(X) for some regular O(/z)-manifolds.

(i) Hίrzebruch-Mayer O(n)-manifold Wzn~\d) for n^2 [7]: The orbit
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space is a 2-disk D2 the orbit type of whose interior is (O(n—2)) and the boundary

Define a presheaf g on the orbit space D2by Γ(Z7, g)=Γ(£7, UχR(O(n-2)))
if Z7c Int Z>2 and by Γ(t7, g)=Γ(C7, J7xl?(O(«— 1)) if Z7Π 9D2^φ. Then, by
Proposition 8.3, H%(W2n-\d}\ KG)^H*(D\ g). Remark that § forms a sheaf.
Define © and ξ> by ©—constant sheaf Ker pΛ-1 on ΘD2 which is considered to be
a sheaf over D2 and $?= constant sheaf R(O(n — 2)) on whole D2. Then, since
pn_λ: R(O(n—l))^R(O(n—2)) is surjective, we get an exact sequence of sheaves,

0 - © -> g -> £ -> 0 .

The following notation is simpler and reasonable to denote this exact sequence.

Sl /Kerp^ mθ(«-l)) (R(O(n-2))
Π : 0 - » - - -0
D2 \0 \Λ(O(n-2)) \Λ(O(n— 2))

From the associated long exact sequence, we get

H°G^R(O(n-l)), H^-Ker ?„_, and

Therefore,

-1 and ̂

(ii) Jάnichknot O(n)-manifold for «^3 [8]: Let S'cS3 be a knot. The
orbit space is a 4-disk Z)4 where the orbit type of each difference domain of D4Z)

1 is (O(n-2)), (O(n-l)), (O(»)) respectively.
As in (i), we consider the following exact sequence of sheaves.

0

*(0(n-2))

g') is calculated as follows:

'„_! and HG=(

In particular, if we consider that the O(n)-manifold has a base point, then #£=0
and ff% satisfies the condition (ii) of Theorem 8.2'. Therefore, we get

K°c = 0, that is, K£sχR(0(n))

and

0 -* Ker pn_, ̂ Kl^ Ker Pn - 0

is exact.
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