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1. Introduction

In the present work we study an error estimate in the operator norm of exponen-
tial product approximation for propagators of parabolic evolution equations. The ob-
tained result applies to Schrodinger operators —A + V(t,z) with a certain class of
time dependent singular potentials. One of typical examples is a positive Coulomb po-
tential like V(¢,z) = ¢/|z — g(t)|, ¢ > 0, which has a singularity moving with time
t.

Let X be a Hilbert space and let || || denote the operator norm of bounded oper-
ators acting on X. We are now given positve self-adjoint operators A, B(t) > ¢ >0, ¢
being in a compact interval [0,7]. We note that the assumption of positivity is not es-
sential. In the discussion below, we have only to assume that these operators are semi-
bounded uniformly in ¢. If the domain of B(t) fulfills the inclusion relation

(1.1) D(A*) C D(B(t))

for some o, 0 < a < 1, independent of ¢, then the sum C(t) = A+ B(t) also becomes
a positive self-adjoint operator with domain D(C(t)) = D(A) independent of t. If,
in addition, B(t) satisfies a suitable continuity condition (see assumption (A) below),
then C(t) generates the propagator U(t,s), 0 < s <t < T, to the evolution equation

o U(t,s) = -C(t)U(t,s), U(s,s)=1d,
where Id is the identity operator. As is easily seen, U(t,s) : X — X is a contraction
operator.

We now consider the exponential product approximation for the propagator U(t, 0).
Let

O0=tg<t1 <...<ty—1 <ty=t, tj=jr, T=t/N,
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for t, 0 <t < T, fixed. Then we define the following operators:

K;(7) = exp(~7A/2) exp(~7B(t;-1)) exp(—TA/2),
(].2) FJ‘(T)=KJ'(T)K]‘_1(T)X~~'XK2(T)K1(T),
Fy_j(r) = KN(T)KN_1(T) X -+ X Kjya(1)Kj 41 ()

for 1 < j < N. By definition, these operators are all contraction. It is known ([2]) that
U(t,0) is approximated by the product formula

(1.3) U(t,0) = s — lim Fy(r)

in the strong topology. If B(t) = B is time independent, then the product formula
above

(14)  exp(~tC) =5 - lim [exp(—tA/2N)exp(~tB) exp(—tA/2N)NV

with C = A+ B is called the Trotter-Kato product formula ([1, 3, 5]). For this formu-
la (1.4), the error bound O(N~'/?log N) in the operator norm has been established
by Rogava [4] under the assumption that C = A + B is self-adjoit with domain
D(C) = D(A) C D(B). We here extend this result to the time dependent produc-
t formula (1.3) and prove the improved error bound O(N ~!log N) under the slightly
restrictive assumption (1.1). It should be noted that the result obtained by [4] includes
the case @ = 1. However the method developed there does not seem to apply to the
time dependent case directly.

We shall formulate the obtained result more precisely. Let A > ¢ and B(t) > c,
¢ > 0, be as above. We make the following assumption for these operators.
(A) There exists a, 0 < a < 1, independent of ¢, t € [0,T), such that : D(A*) C

D(B(t)), B(t)A™ : X — X is uniformly bounded and

IA~(B(t) - B(s))A™*|| < dlt —s|, d>0.

Throughout the entire discussion, the constant a is used with the meaning ascribed in
the above assumption (A). The main theorem is fomulated as follows.

Theorem 1.1. Let the notations be as above. Assume that assumption (A) is ful-
filled. Then

lU(t,0) — Fx(7)]| = O(N~!log N), N = oo,
uniformly int, 0 <t <T.

As stated above, the theorem immediately extends to the case that A and B(t)
are semi-bounded. We here discuss the application to the Schrodinger operators —A +
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V(t,z) acting on L?(R?). For example, we consider the positive Coulomb potential
V(t,z) = |z — g(t)|~!, which has a singularity moving with time ¢. If g(t) : [0,00) —
R3 is of C'-class, then it follows from the Hardy inequality that assumption (A) is
fulfilled with @ = 1/2. As is easily seen from the Sobolev imbedding theorem, the
theorem also applies to a certain class of potentials with |z — g(¢t)|™?, 0 < p < 3/2,
as a local singularity.

In the final section (section 7), we further make two comments on the main the-
orem. First the same error bound as above is shown to remain true for the different
product formula

U (£,0) = Gn(r) x --- x G1(7)|| = O(N ' log N)

with Gj(1) = exp(—7A)exp(—7B(tj—1)). The second comment is concerned with
the case that A(t) is also time dependent in the sum C(t) = A(t) + B(t). If the do-
main D(A(t)) is independent of ¢ and if A(t) satisfies a continuity condition similar
to assumption (A), the method in the present work extends to such a case without any
essential change.

2. Propagators of evolution equations

We here summarize several basic properties of the propagator generated by
C(t) = A+ B(t). We first discuss the existence of such a propagator. Throughout
the section, we again assume that 0 < s < ¢t < T. By assumption (A), C(t)A~! and
C(t)~'A are uniformly bounded and also it follows that

@l [CWPC®)™ - Ce) OV = Ot —sl), p=1-a>0.

According to [6], this guarantees the existence of propagator U(t,s) to the evolution
equations

8 U(t,s) = -C)U(t,s), U(s,s)=1Id,
o:U(t,s) =U(t,s)C(s), U(t,t)=1Id.

We now mention some important properties of the propagator U(t,s), which are re-
quired to prove the main theorem.

Lemma 2.1. Let 0 <y < 1. Then the propagator U(t,s) has the following prop-
erties:
1) (Ut 5)A7]| = O((t - s)™), [ATU(t,s)]| = O((¢ - 5)~).
@ AU (t,8) 47 = 0(1), ||ATU(t,5) A7) = O(1).
() 47Ut )Al = O((t - )"1),  |AU(t, 5)4~7]| = O((t - 8)"1).

Proof. The lemma is verified in almost the same way as in [6] (Proposition 3.1).
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We give only a sketch for a proof. We also prove only the first relations in the state-
ments (1), (2) and (3). The second ones can be obtained in a similar way.
(1) By interpolation, it is enough to show the statement for the case v = 1. Let

Co(t) =Ct)Id+n~tC@t)™, n>1,

be the Yosida approximation of C(t). Then C,(t) is bounded for each n and it satis-
fies

22 G (Ca(®)™! = Cu(s)™)Cu(s) = O(It = 5]), p=1-a,

uniformly in n. We denote by U, (t, s) the propagator generated by C,(t). It is known
that U, (t, s) is strongly convergent to U(t,s) as n — oo. As is easily seen, Up,(t,s)
satisfies the relation

2.3) Un(t,s) = exp(—(t — 8)Cr(s))
/ Un(t,7)(Cr(s) — Cn(r)) exp(—(r — s)Cpn(s)) dr,

and hence, if we set V,,(t,s) = U,(t,s)Cyr(s), then it follows that

Va(t, s) = exp(—(t — 5)Cn(s))Cn(s) + / Va(t,r) Ry (1, s) dr,

where

R,(t,s) = Cn(t)_l(cn(s) — Cn(t))Cn(s) exp(—(t — s)Cn(s))
= (Cn(t)—l - Cvn(s)—l)c'n('s)2 exp(_(t - S)Cn(s))'

By (2.2), we have
IRn (2, 8)Il = O((t —8)™%), s<t<T,

uniformly in n and hence ||R, (¢, s)|| is integrable as a function of ¢ uniformly in n.
If we further set

Wa(t,s) = Va(t,s) —exp(—(t — 5)Cr(8))Cr(s),
then we have
¢
2.4) Wa(t,s) = En(t,s) +/ Wa(t,r)R,(r, s) dr,
where

E.(t,s) = / exp(—(t — r)Cpn(r))Crn(r)Ry(r, s) dr.
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By (2.2) again, ||C.(t)?R,(t,s)|| = O((t— s)~) and hence E,(t,s) obeys the bound

En(t, s)|| = / O((t =)~ )O((r — s)~*)dr = O((t - s)]-—2a)’

which implies that || E,(t,s)|| is also integrable as a function of ¢, t € s, T]. Thus the
integral equation (2.4) can be solved by iteration and the solution W, (t,s) satisfies
W (t,s)|| = O((t — 5)}~2%), so that

IVa(t, )| = [[Un(t, 5)Cu(s)l| = O((t = 8) ™)
uniformly in n. As previously stated, Up(t,s) strongly converges to U(t,s). Since
Cr(s) also converges strongly to C(s) on the dense set D(C(s)) = D(A), we have
that
Un(t,s)Cn(s) = U(t,5)C(s), t#s,

strongly in X. This proves (1).

(2) By interpolation again, it suffices to prove the relation for the case v = 1.
We use the same argument as in the proof of (1). We set

Va(t, 8) = Ca(t) ' Un(t, 5)Cn(s).

Then it follows from (2.3) that
t
Vi(t, s) = Cp(t)"1C,(s) exp(—(t — s)Crn(s)) + / Vn(t,r)Rn(r, s)dr

with the same kernel operator R,(t,s) as above. Thus we obtain that V,(t,s) is
bounded uniformly in ¢, s and n, and hence

IC®)~'U(t, s)C(s)ll = O(1).

The proof of (2) is complete.
(3) By interpolation, this follows from (1) and (2) at once. O

3. Strategy of proof of Theorem 1.1 ; three key lemmas

For brevity, we prove the main theorem for the case ¢ = 1. Our aim is to evaluate
the norm of difference U(1,0) — Fn(7) with 7 = 1/N. Let o € C§°([0,00)) be a
smooth cut-off function such that 0 < 9 < 1 and

wo(A)=1 for 0<A<1, @o(A)=0 for X>2.
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We introduce the auxiliary operators
Ce(t) = A+ Bc(t), Be(t) = po(eA)B(t)po(eA)

for 0 < € < 1 small enough and we denote by U,(t,s), 0 < s <t < 1, the propagator
generated by C.(t). As is easily seen, this propagator has the same properties as in
Lemma 2.1. We further use the notations K, ;(7), F. ;(7) and F. x_;() which are
defined in the same way as in (1.2) with B(t) replaced by B.(t). With these notations,
the difference in question is decomposed into the sum of three operators

U(1,0) = Fn(7) = Ieq + Leo(7) + Ie3(7),

where I.; = U(1,0) — Uc(1,0) and
Ieo(m) = Uc(1,0) = Fn(7), Ie3(7) = Fen(7) — Fn(7).
Roughly speaking, the three difference operators are shown to obey the bounds
el = O(e),  [es(7)ll = Ofe)

uniformly in 7 and

[Ze2(7)ll = € 'O(N2(log N)?) + O(N71).
Thus we now choose € as e = N~!log N, so that

IU(1,0) — En(7)|l = O(N " log N).

This gives the desired error bound. The proof of the main theorem is reduced to prov-
ing the following three key lemmas. Throughout the discussion below, 7 and € are

fixed as

T=1/N, e=N"'logN.

Lemma 3.1. || ;|| =O(N~1logN).
Lemma 3.2. ||I5(7)|| = O(N~'log N).
Lemma 3.3. || 3(7)|| = O(N~!logN).

4. Proof of Lemma 3.1

For notational brevity, we write g and ¢, for po(eA) and @, (eA), respectively,
where oo (A) =1 — po(A).
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Lemma 4.1.

(U (2, 8) — exp(=(t = 5)A))pooll = (t —5)"*O(e),
llvoo (U (¢, 5) — exp(—(t — 5)A))|| = (t — 5)"*OCe),
(Uc(t, ) — exp(=(t - 8)A))pooll = (t — 5)7*O(e),
oo (Ue(t, 5) — exp(—(t — s)A))|| = (¢t — 5)7*O(e),

where all the order estimates are uniform in 0 < s <t<1

Proof. ~We prove only the first relation. The same argument applies to the other
relations. For brevity, we prove this for the case s = 0. Then the difference under
consideration is written in the integral form

(U(t,0) — exp(—tA))poo = — /Ot U(t, s)B(s) exp(—sA)poo ds.
By definition,
l| exp(—54)pool| < e7*/¢
and by Lemma 2.1,
WU, 8)B(s)|| < [[U(E, 5)A%|| x [|A7*B(s)|| = O((t — 5)™%).

Hence the norm of the integrand is bounded by O((t — s)~*)e~*/¢. This yields the
desired bound t~*O(e). O

Proof of Lemma 3.1. We again write I ; in the integral form
1
Lt =U(L,0) = U.(1,0) = [ U.(1,8)(B(s) = Bs)U(5,0) s
0

The difference B(s) — B¢(s) in the integrand is represented as
B(s) — Be(s) = @oo B(5) + 0 B(5)Poo-
By Lemma 4.1,
1Ue(1,8)pooll < €77/ 4 (1= 5)7%0(e),  llpaolU(s,0)|| < €7*/ + s7%O(e)
and by Lemma 2.1,
U1, 8)p0B(s)l| = O((1 —5)™%), [IB(s)U(s,0)|| = O(s™%).

If we take account of these estimates, the desired bound O(¢) = O(N~!log N) can
be easily obtained after a simple computation. ([
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5. Proof of Lemma 3.2

The proof of Lemma 3.2 is done through a series of lemmas.

Lemma 5.1. Let 0 <~ <1 and let r € [0,1]. Then
|A” exp(=sB(r))A77|| = O(1), 0<s<,
is uniformly bounded.

Proof. By interpolation, it suffices to prove the lemma for the case v = 1. For
brevity, we consider only the case r = 0. Set B = B(0) and B, = @oB(0)yo. Since
BA™! is bounded by assumption (A), we have

sl|AB.A7Y| = O(s)||Apoll = €710(s) = O(1/log N) = o(1), N — co.
This yields
[Aexp(—sB)AH| < Y (k) 's*|[AB.AT* = 0(1)
k=0

and the proof is complete. O

We now define

We (1) = Uc(tj, tj—1) = K j(r), 1<j<N.

Lemma 5.2. Let W, ;(1) be as above and let oo < 0 < 1. Then:
(D) AT W ()l = O(7), W i(T) A2 = O(7).
@ AW, (N AT|| = O(r1 =), JATW;(T)A7|| = O(r1 7).
(B)  [ATW;(n)All =0Q), ||[AW.;(r)A™=|| = O(1).

Proof.  We prove only the first relations in the statements (1), (2) and (3). A
similar argument applies to the second ones. We also consider only the case j = 1
and use again the notations B = B(0) and B. = B,(0).

(1) We write W, 1(7) as the sum W, 1(7) = V,1(1) + V. 2(7), where

‘/e,l (T) = Ue(T7 O) - exp(—TA), ‘/6,2(7-) = eXP(—TA) - Ke,l (T)
These two operators can be further rewritten as

Vei(r) = — /OT Uc(r,s)B.(s) exp(—sA)ds,
Ve,2(7) = exp(—7A/2)(I1d — exp(—7B)) exp(—TA/2).
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By assumption (A), it follows from Lemma 2.1 that
IA7*Ve, 1 (7)I] + |A™*Ve2(7)]| = O(7)

and hence (1) is proved.
(2) We have again by assumption (A) and Lemma 2.1 that

14 Vea ()47 = 01) [ 570 ds = 0(~)
and also it follows that
|A=7Ve2(T) A7 || = O(7) || exp(~TA/2)A%|| = O(7'77),
because ||A77(Id — exp(—7B))|| = O(7). Thus (2) is proved.
(3) The proof uses partial integration. First it is easy to see that V, 2(7) obeys

the bound ||A~*V, 2(7)A|| = O(1). Next we consider the operator V, (7). We further
decompose this operator as

ATVe1(T)A = Qe (T) + Qe 2(7),
where
Qea(r)=A"¢ /T Uc(t,s)B.(d/ds) exp(—sA) ds,
0

Qea(r) =A% /OT Uc(7,5)(Be — Bc(s))Aexp(—sA) ds.

By partial integration, it follows from Lemma 2.1 that
Qe (M)l =0(1) + / O((1 = 5)°71)|| A% exp(—s4)|| ds = O(1).
0

On the other hand, Q. 2(7) is evaluated as

1Qea(Dll =0(1) [ slldt= exp(=s.t)lds = 0(1) [ 57 ds = O(r'~)
0 0
by use of assumption (A). This completes the proof of (3). O

We now decompose W, ;(7) into the sum W ;;(7) + W, j2(7), where

We (1) = Uc(tj, tj—1) — exp(—7Ce(tj-1)),
Ws,jZ(T) = exp(_TCe(tj—l)) - Ke,j(T)
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with Ce(tj_l) =A+ Be(tj_l).

Lemma 5.3. Let W, ;;1(7) and W, jo(7) be defined as above. Then:
M AW ja(r) A7 = O(r?).
) [JATIW j2(1)A7Y| = e71O(r3).

Proof. =~ We prove the lemma only for the case j = 1.
(1) Let C. = A+ B. with B, = B(0). Then

We11(1) = Ue(7,0) — exp(—7Cl).
This is written in the integral form

Wi (7) = — /0 " U.(r,5)(B.(s) - B.) exp(—sC.) ds.

Thus (1) follows from assumption (A) and Lemma 2.1 at once.
(2) The proof repeatedly uses the following commutator relation

[exp(—tY), Z] = /0 ' exp(=sY)[2, Y] exp((t — 5)Y) ds
without further references. Set
K (t) = K.1(t) = exp(~tA/2) exp(—tB,) exp(—tA/2).
We calculate K (t) = (d/dt)K.(t) as
K((t) = —C.K.(t) + Re(t),
where R.(t) = R.1(t) + R.2(t) and

Rex(t) = [B., exp(~tA/2)] exp(~tB.) exp(~tA/2),
Rea(t) = exp(~tA/2)[A/2,exp(~tB,)] exp(—tA/2).

We evaluate the norm of these two remainder operators. We further calculate the com-
mutator appearing in the operator R, ;(t) as

[B.,exp(—tA/2)] = /0 exp(—sA/2)[A/2, B.] exp(—(t — 5)A/2) ds

t[A/2, B.]exp(~tA/2) + Re3(t),

I

where

R 3(t) = /0 [exp(—sA/2),[A/2, B]]exp(—(t — s)A/2) ds.
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Since the double commutator satisfies
A7 [A, [4, BJJA7H| = O(7),
we see by Lemma 5.1 that R, 3(t) obeys the bound
AT Res (AT = 7 O(t?).
Thus R, ;(t) takes the form
Re1(t) = t{A/2, BJK(t) + € TAO,(t*)A,

where O,(t”) denotes the class of bounded operators with bound O(t¥) as t — 0. A
similar argument applies to the other remainder operator R, »(t). If we make use of
the estimate

A7} [Be, [4, BJJAT! || = O(e™),
then we obtain
Rea(t) = t[Be, A/2] K (t) + € T AO, (t*) A
in the same way as above. Thus
Kl(t) = —C.K.(t) + e T A0, (t))A
and hence the buhamel principle, together with Lemma 5.1, yields that
1A We12(r) A~ = A (exp(~7C.) — Kea (1) A7 = €10(%).
The proof of (2) is now complete. O
Lemma 54. Let 0 < o < 1. Then there exists M = M, > 0 such that
A7 Fer (DIl < M(kT)™7,  |Fon—r(1)A%|| < M((N = k)7)~°
for1<k<N-1
Proof. We prove only the first inequality. A similar argument applies to the sec-
ond one. By interpolation, it suffices to prove this for the case 0 > a. The inequality

is verified by induction on k. The case k = 1 is obvious. Assume that

lA° Fer ()l < M(k7)™°
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for the case 1 < k < m — 1. Then we have by interpolation that
(5.1) | A% Fe i (7)| < M (kr)~*

for k as above, where § = a/o < 1. We now prove the case k = m < N. To prove
this, we consider the difference

Ue(tmao) - Fe,m(T) = Z Xe,jm(T)a

m
j=1

where
Xm'm("') = Ue(tm’tj)We,J'(T)Fe,j—l(T)

with Fo(7) = Id. Since ||A°U,(tm,0)|| < c(mT)~? for some c > 0, we have

47 Fem ()] < e(m7)™7 + D J|A” X jm (7).

j=1
As is easily seen from Lemma 2.1,
147 Xe1m (Tl < |A7Ue(m, 1)l < c(mr) ™
with another ¢ > 0. By induction, it follows from Lemma 5.2 that
147 Xe,mm (T)|| = o(D|A” Fem—1(7)|| = Mo(1)(mT)™7, 7 —0.

By Lemma 5.2 and (5.1), we have

m~1 m—1
DA X jm (DIl = O(1) Y NIA Uetm, t3)ll X |A*Fe i1 ()|
j=2 j=2
m—1
= O(r' == )M° Yy (m~5) (G -1
Jj=2

- M&o(,,_l—oz—-a’)ml—a—a < cM‘s(m‘r)_”.

Since § = a/o < 1 strictly, we can choose M > 1 so large that the inequality in
question holds true in the case k = m also. Thus the proof is complete. O

Lemma 5.5. There exists M > 0 such that

|AF k(T < M(kT) " log N, ||, n—k(T)All < M((N — k)7) " log N



EXPONENTIAL PrODUCT FORMULAS 763
for 1<k<N-L
Proof. 'We again verify only the first inequality. It is enough to prove this for

k> 1 large enough. Let X, jx(7), 1 < j <k, be as in the proof of Lemma 5.4. Then
we have

k
AF () = AUc(t,0) = Y AXc ji(7).

=1

It is easy to see that
AU (tx, )| + |AX e 1k ()| = O((kT)™H).
By Lemmas 5.2 and 5.4, we obtain
IAX ek (T)l| = O(|A* Fe 1 (7)|| = O((kT)~%) < O((kT)™1).

By Lemmas 5.2 and 5.4 again, the sum is evaluated as

k—1 k—1
[AX ik (DIl = O(7) Y NAU(tk, )] X 1A% Fe,ja (1)l
Jj=2 j=2
k—1
=0(r™) ) (k=5 G-1°
Jj=2
= O((kT)™*)logk < M(k7)"!log N
for some M > 0. This proves the lemma. O

We are now in a position to prove the second key lemma in question.
Proof of Lemma 3.2. Recall that ty = 1. Let X ;n(7), 1 < j < N, be again

as in the proof of Lemma 5.4. Then we can write the difference operator I, 5(7) in
question as

N
Ip(r) = Uc(tn,0) = Fon(r) = Y Xein(T).
Jj=1

By Lemmas 5.2 and 5.4, we have

[ Xean ()l < Uetn, t1) A X [IA™*Wen (1)l = O(1) = O(N ™),
X NN (DI S NWen (T)A™|| % [|A*Fen-1 ()] = O(1) = O(N 7).
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To evaluate the other operators, we now write X, ;n(7), 2<j < N —1, as
Xejn(T) =Ye;in(T) + Zejn(7),

where

Yoin(m) = Uc(tn, t)We j1(T) Fe j—1(7),
Zein(T) = Uc(tn, t;)We jo(T)Fe j—1(T).

By Lemmas 2.1, 5.3 and 5.4,

N-1 N-1
3 om0l = 0(222) (N = )= — 1)~ = OV ).
Jj=2 j=2

On the other hand, by Lemmas 2.1, 5.3 and 5.5,

N-1 N-1
3 1Zein ()l = €10(1) Iog N 3 (N = )71 — 1)
7j=2 7j=2
= ¢ 'O(N~2(log N)?).
Thus the proof of the lemma is now complete. O

6. Proof of Lemma 3.3

In this section we prove the last key lemma (Lemma 3.3). This lemma is also
proved through sereval lemmas.

Lemma 6.1. Let r € [0,1]. Then one has:

ll(exp(—7B(r)) — exp(=7Be(r)))A™*|| = O(7),
|A™% (exp(—=7B(r)) — exp(—7Be(r)))|l = O(7)

and hence

(K (1) = Ke i (1)) AT + [|A7%(K;(7) — Ke ()]l = O(7)

Proof. The lemma is easy to prove. We shall prove the first relation. We write
this difference in the integral form

/T exp(—sB(r))(B(r) — B(r)) exp(—(7 — 8)B.(r)) A~ % ds.

0
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Since (Be(r)— B(r))A~* is uniformly bounded by assumption (A), the desired bound
follows from Lemma 5.1 at once. The second relation can be also proved in a similar
way and the third one is obvious by definition. O

Lemma 6.2. The difference K. j(1) — K;j(1), 1 < j < N, takes the form
Kej(1) = Kj(1) = 0o 0p(T) A% + A% 0p(T) o0 + A0, (72) A%,
where O,(1") again denotes the class of bounded operators with bound O(t1").

Proof.  For brevity, we prove the lemma only for the case j = 1 and write again
B and B, for B(0) and B,(0), respectively. Then the difference under consideration
is represented as

K. 1(1) — K1(1) = exp(—7A/2)(exp(—7Be) — exp(—7B)) exp(—7A/2)

and this is further rewritten in the integral form

3
Ko1(r) = Ki(1) = ) exp(—TA/2)T () exp(-TA/2),

=1

where
Faar) = [ expl-sB)owBenexp(~(r = 5)B)ds,
Loar) = [ expl=sB)paBgn exp(~(r — 5)B)ds,
Ces(r) = /OT exp(—3$B¢) Qoo BYoo €xp(— (7 — 8)B) ds.
We analyze each operator above. If we decompose exp(—sB) as
exp(—sB) = exp(—sB.) + (exp(—sB) — exp(—sB.)),
then Lemmas 5.1 and 6.1 enable us to obtain that
By exp(—sB) = 0,(s°) A% 4+ e~ *0,(5)A* = O,(s°) A,

because e *s<1for0<s<7= l/N.‘ Since A=%[B., o] is bounded uniformly in
¢, it follows from Lemma 5.1 that

[‘poo,exp(_SBE)] = [exp("SBe)ﬂoO]
= /0 exp(—0 Be¢)[Be, wo] exp(—(s — 0)B.) do = A%O,(s).
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A similar argument shows that [exp(—sBe), po] = Op(s)A. Thus we have
exp(—8B¢)Poo = PooO0p(8°) + A%Op(s)
and hence
Lo (r) = PoaOp (1) A% + 4°0,(r2) A°.
By Lemma 5.1 again, we obtain
exp(—=sB.)poB = A*0,(5°), exp(—sBe)pooB = A%*0p(s°)
and also we have
[exp(~sB) — exp(~sB.), po] = Op(s)A°
by Lemma 6.1. This implies that [exp(—sB), po] = Op(s)A* and hence we have
Poo €Xp(—sB) = exp(—5B)poo + [exp(—5B), po] = 0,(5°)peo + Op(s)A°.
Thus it follows that
Le2(1) = A%0p(T)poo + A*Op(7%) A*.

A similar argument applies to I'c 3(7) and this operator is shown to take the same for-
m as I'c 2(7). The proof of the lemma is now complete. [

Lemma 6.3.

llpoo Fe i (7)1 = O(e™*7/<) + eO((kT) ™),
[ FeN—k(T)pooll = O(e”N=RT/) 4+ eO(((N ~ k)T) ™)

for2<k<N-2

Proof. We prove only the first relation. Since

k
Moo (Ue(te, 0) = Fer ()l < D llpooXe e (I,

i=1

we obtain from Lemma 5.2 that the left side obeys

6.1) llpoo (Ue(tr, 0) — Fe k(T
k-1
= 0(7) Y ll@ocUe(tr, ;)| X [[AF. j_1(7)]|
i=2

+ O(T) (U (tr, t1) A%|| + A% Fe g1 (7)1)-
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It follows from Lemma 4.1 that
loooUe(ti, )|l = O(e™*=7/¢) + eO(((k - §)T)™*)

and hence we have by Lemma 5.4 that the sum on the right side of (6.1) is estimated
as

k—1
O =) Y (5 = )~ (e™*=D7/e 4 ¢((k — j)T) %)
j=2
! k—1
=0(r'=*) {Z + } (G — D)7 *= 4 eO((or)' 72*)
]‘=2 j:l+1

— O(Tl—a)(kl—ae—kr/2e + k—a(l _ e—‘r/e)—l) + 60((1{:7_)1—201)‘

with [ =[(k —1)/2], [ ] being the Gauss notation. This shows that the sum obeys the
bound €O ((k7)~*). We can easily see that the second and third terms on the right
side of (6.1) also obey the same bound as above. In particular, the bound on the third
term follows again from Lemma 5.4. Thus the proof is complete. (]

Lemma 6.4. Let 0 < o < 1. Then there exists M = M, > 0 such that
A7 Fi()ll < M(k7)™7,  ||En—k()A%|| < M((N - k)T)™°
for l<k<N-1
Lemma 6.5.

oo Fie ()| = O(e™*7/€) + eO((kT) ™),
| En—k(T)pooll = O(e=N=HT/€) 4+ €O(((N - k)T)™®)

for 2<k< N -2
If we define W;(7) as
Wj(r) =U(tj,tj-1) — Kj(r), 1<j<N,

then it can be shown in exactly the same way as in the proof of Lemma 5.2 that this
operator has the same properties as W, ;(7). This enables us to prove these two lem-
mas in almost the same way as in the proof of Lemmas 5.4 and 6.3. We skip the
proof of the lemmas.

We are now in a position to prove the third key lemma.
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Proof of Lemma 3.3. We write the difference I 3(7) as
N
Is(r) = Fon(r) = Fn(r) = ) Gen(7),
j=1

where
Gein(T) = Fon—j(T) (K () — K;(1))Fj_1(7).
By Lemmas 5.4, 6.1 and 6.4,

NG AN (T + [|Gean (7)]] = O(7) = O(N ),
IGe. NN (DI + IGe, (N=1)n ()]l = O(N )

and also we obtain by Lemma 5.4 and Lemmas 6.2 ~ 6.5 that

N-2
es (D)l = O =) 3 (j — 1)~ (N=9)7/e
j=3
N-2
+€0 1-2a ZJ_I)Q _j)—a
j=3

N-2
+O(r*72) Y " TN = )T+ O ).

i=3

We estimate these three sums on the right side. The first and second sums obey the

bound O(e) and the third one obeys the bound O(N~1). This completes the proof.
|

7. Concluding remarks

We conclude the paper by making two comments on the main theorem.
(1) The same error bound as in Theorem 1.1 remains true for other kinds of
product formulas. For example, we can prove that

U(t,0) — GN(T)GN-1(T) X -+ X G2(T)G1(7)|| = O(N "' log N)
uniformly in 0 < ¢ < T, where
G;(1) = exp(—7A)exp(—7B(t;_1)), t;=j7, T=1t/N.
For brevity, we again prove this for ¢ = 1. Set

En(T) = GN(T)GN=-1(T) X - -+ X Go(T)G1(T), T=1/N.
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Let K;(7) be as in (1.2). Then we use Theorem 1.1 to obtain that

En(T) = exp(—TA/2)[KN(T) X -+ x K5(7)] exp(—TA/2) exp(—7B)
= exp(—TA/2)U(1,t;) exp(—TA/2) exp(—TB) + O,(N~'log N)

with B = B(tg) = B(0) again. Next we calculate the commutator
[exp(—-7A/2),U(1,t1)] =/ exp(—sA/2)[U(1,t1), A/2]exp(—(7 — 5) A/2) ds.
0

By Lemma 2.1, [U(1,t;), A] is uniformly bounded, so that
lfexp(—74/2),U(L, t)]ll = O(r) = O(N ).
This implies that
En(t) = U(1,t1) exp(—TA) exp(—7B) + O,(N ' log N).
It is easily seen from assumption (A) that
exp(—7A) exp(—7B) = exp(—TA) + A*Op(7) = K1 (1) + A%O, (7).

Hence we have

En(1) =U(1,0) + Op,(N~'log N)

by Lemma 2.1 and Theorem 1.1 again. Thus the desired error bound is obtained.
Similarly we can show that

lU(¢t,0) — Gn(T)GN-1(T) X - -+ x G2(T)G1(T)|| = O(N ' log N),
where G;(7) = exp(—7B(t;j_1)) exp(—TA).
(2) The main theorem also extends to the case in which C(t) takes the form
C(t) = A(t)+ B(t) for time dependent self-adjoint operator A(t) > ¢ > 0 with domain

D(A(t)) = D(A), A = A(0), independent of ¢t. Suppose that B(t) fulfills assumption
(A) with A above. In other words, B(t) is assumed to satisfy

1A=*(B(t) — B(s))A™*|| = O(|t — s|)

for some a, 0 < a < 1. If, in addition, we assume that A(t)A(s)~! is uniformly
bounded and

1A7%(A(t) — A(s))A™%|| = O(Jt - s])
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for the same « as above, then we can show that

lU(¢,0) — Pn(T)Pn—1(T) X - -+ X Po(T)Py(7)|| = O(N "' log N)

with P;(1) = exp(—TA(tj-1)) exp(—7B(t;_1)). To prove this, we use

Ce(t) = A(t) + Be(t), Be(t) = po(eA(t)) B(t)po(A(2)),

as an auxiliary operator. The argumet requires slight natural modifications but does not
undergo any essential change. The details will be discussed elsewhere.

(11
(21
(3]
(41
(51
[6]
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