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1. Introduction

In 1990 Dijkgraaf and Witten [4] introduced a method of constructing an
invariant of 3-manifolds using a finite gauge group G. For a closed oriented
3-manifold M, the Dijkgraaf-Witten invariant is given by the following for-
mula:

Z(M) = -i- Σ <T*«,
I G I YeHomCtfdOGO

Here γ is a continuous map from a closed 3-manifold M to the classifying
space BG of G, a is a cohomology class of H3(BG, U(l))> γ* is a map from //3

(5G, [/(I)) to H\M, U(ί)) induced from <y and [M] is the fundamental class of
M. However, in the case where M has a boundary, such a formulation can
not be done, because the fundamental class [M] is not defined for a manifold
with boundary. To extend the definition of Z(M) to a 3-manifold with boun-
dary, they reduced the topological action <y*α, [M]> to a lattice gauge theory.
Furthermore Dijkgraaf and Witten asserted that their construction for a 3-mani-
fold with boundary gives an example of a topological quantum field theory.

In this paper, we formulate an invariant of 3-manifolds possibly with boun-
dary introduced by Dijkgraaf and Witten using a triangulation and prove its
topological invariance in a rigorous way. Once given a finite group G and a
3-cocycle a.G2?(BG, U(l))y the Dijkgraaf-Witten invariant is defined combi-
natorially. Throughout this paper, our target manifolds are compact oriented
3-manifolds with boundary or without boundary.

By a colour of My we mean a map assigning an element of G to each oiient-
ed edge of a triangulated compact oriented 3-manifold M under some condition
(See §2, for more precise definition). We call a map obtained from a colour of
M by restricting it, to the oriented edges in dM a colour of 3M. For a colour
T of dM, by Col(M, T) we denote the set of all colours of M which are equal
to T, when restricted to dM. Having a colour φ of M we associate with
each 3-simplex σ of M a complex number W{σ> <p)^U(l) using α. We
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denote the number of vertices of M by a. Let σ1? •••, σn be all the 3-simplices
of M. For a colour τ of 3M, the Dijkgraaf-Witten invariant is given by the
following formula:

where

/1 if the orientation for σ, is compatible with that for Λf,

I —1 otherwise.

The invariant has the following two properties:

(1) For a closed oriented 3-manifold M we have Z(—M)=Z(M), where
—M is the closed oriented 3-manifold with the opposite orientation.

(2) For closed oriented 3-manifolds Mly M2 we have ^

Z(M1)Z(M2)y where MX$M2 is the connected sum of M1 and M2.
Turaev and Viro[ll] defined combinatorially an invariant of a 3-manifold

associated with quantum 6/-symbols. In order to prove the topological in-
variance of their invariant, they showed a relative version of a theorem of
Alexander [1] on equivalence of triangulations. We use the theorem showed by
Turaev and Viro in order to prove the topological invariance of the Dijkgraaf-
Witten invariant.

However, Turaev and Viro do not directly use this theorem for their proof
of the topological invariance of their invariant. They proved it by translating
thie invariant into an invariant of a simple 2-polyhedron X obtained from a dual
cell subdivision of a triangulated compact 3-manifold M. To carry out this,
they introduced 3-type moves on simple 2-ρolyhedra. These 3-type moves
were essentially considered by S. Matveev [6]. Since these 3-type moves are
natural with respect to orientations for X or M, we can also prove the topologi-
cal invariance of the Dijkgraaf-Witten invariant using this dual approach. From
these facts, we can compute the Dijkgraaf-Witten invariant using a singular
triangulation[ll]. We describe some examples for calculations on the
Dijkgraaf-Witten invariant using a singular triangulation.

Atiyah[2] defined mathematically an axiom for a topological quantum field
theory. We show that the construction of the Dijkgraaf-Witten invariant of a
3-manifold with boundary gives an example of the topological quantum field
theory. However, we have to modify slightly Dijkgraaf and Witten's definition
in order to satisfy the axiom for the topological quantum field theory. Finally by
means of Turaev and Viro's method, we construct a representation of isotopy
classes of orientation preserving homeomorphisms of an oriented closed surface.

This paper is organized in the following way. In section 2, we introduce
the definition of the Dijkgraaf-Witten invariant for 3-manifolds. In section
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3, we prove the topological invariance of the Dijkgraaf-Witten invariant. In
section 4, we explain a dual approach on the Dijkgraaf-Witten invariant and pre-
sent some examples for calculations on the Dijkgraaf-Witten invariant, in par-
ticular for the case of the lens space L(p, 1). Furthermore we construct a 2-
dimensional topological quantum field theory associated with the Dijkgraaf-
Witten invariant and a representation of the mapping class group of an oriented
closed surface.

ACKNOWLEDGEMENT: I am deeply indebted to Professor T. Kohno for
useful suggestions and advice. During the preparation of this article, Pro-
fessor I.Ishii furnished me with valuable information on Matveev's work, and
I would like to thank him. Thanks are also due to Professor M. Kato for help-
ful conversation and encouragement.

2. Definition of Dijkgraaf-Witten Invariant

First we describe our initial data which will be used to define an invariant
of triangulated compact oriented 3-manifolds. Let us recall group cohomo-
logies [3]. Let G be a finite group and V a multiplicative abelian group. We
denote the set of all maps

/: GX-XG-+V
n times

by Cn(G, V). In a natural way, the set On(G> V) has a structure of an abelian
gropu. We define a coboundary operator δ n : C\G, V)->Cn+1(G, V) by the
following formula:

where f^Cn(G, V) and xl9 •••, xn+1^G. The quotient group Ker δn/Im δ*"1 is
called the w-th cohomology group of G with coefficients in V, and denoted by
Hn(G, V). For any finite group G, we denote the classifying space of G by BG.
Here we use a semi-simplicial theoretical method [7] to construct BG, which is
introduced by Eilenberg and Zilber [5].

Now we take the unitary group U(ί)=RjZ as an abelian group V. Then
we define a map ψ: Hom(CΛ(5G, Z) , C/(1))->CW(G, 17(1)) by

where Cn(BGyZ) is the relative homoloyg group Hn{KnyKn^x\Z) of the semi-
simplicial complex K with ra-skeleton Kn defining the classifying space BG and
[£il "•' \gn] i s t n e »-call defined by gl9 •• , ^ r

n ^ G . Then we easily see that -ψ* is
a cohcain map and induces an isomorphism from the cohomology group
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H\BG, 17(1)) to Hn(G, 17(1)). By the map ψ, we often identify α([ft| -\gn])
with ifr(α)(&> -~,gn) and denote it by a(gl9 •••,£«).

Next we introduce the Dijkgraaf-Witten invariant. Let G be a finite group.
We fix a 3-cocycle a^7?(βG9 U(l)). Let M be a compact oriented triangulated
3-manifold. By a colour of M, we mean a map

φ\ {the oriented edges of M}-^>G

which satisfies the following two conditions:
(1) For any 'oriented' 2-simρlex F> we have φ(dF)=ί. Here the sym-

bol dF stands for the image of F under the boundary operator 8,
when we regard F as a generator of the chain group C2(M; Z). (See
Fig. 1)

(2) For any oriented edge E> we have <p(—E)=φ(E) *, where —E is the
oriented edge with the opposite orientation.

gh

If a map T: {the oriented edges of dM}-*G satisfies, again, the above con-
ditions (1) and (2), then we call T a colour of 3M. We denote the set of all col-
ours of M and ΘM by Col(M) and Col(3M), respectively. Furthermoer, given
τ eCol(8M), by Col(M, T) we denote the set of all colours of M which are equal
to T, when restricted to dM.

Now we give an order to the set of the vertices of My and then in each 3-
simplex σi9 we give an order to the vertices in the ascending order. Let us give
the orientation of each 3-simplex σ{ in the ascending order. Let φ be a colour
of M and σ & 3-simplex of M. If σ = | α o ^ ^ ^
=g> ψiζβiy azϊ)—h a n d φ((<k, a^)=k, then we put

The Dijkgraaf-Witten invariant is described as follows.

Theorem. Let G be a finite group. We fix a 3-cocycle a^Z?(BG, U(ί)).
Let M be a compact oriented triangulated Z-manifold. We denote the number of
vertices of M by a. Let σx, •••,<rrt be all the 3-simplices of M. Given
Col(9M), we define the Dijkgraaf-Witten invariant by
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orientation for σ{ is compatible with that for M,

— 1 otherwise.

Then ZM(τ) does not depend on the choice of triangulation of M and the choice of

order of vertices in M whenever we fix a triangulation of dM and τ.

REMARK. If a given 3-cocycle a is trivial, then ZM(τ)=—=-y#Col(M, T).

\G\
Thus if M is connected, ZM{τ) is equal to the number of representations of

πx(M) over G which are equal to T on πx(dM)y up to the factor :

ZM(j) = TTTΓJKP' 7Cι(M)-*G\p is a representation of πx(M) and poi% = τ } ,
\G\

where t* is the homomorphism of fundamental groups induced from the inclu-
sion ii

3. Proof of the Main Theorem

We divide a proof of the main theorem into two parts. First we show the
independence of the choice of order of vertices of M.

Lemma 3.1. The complex number ZM(τ) dose not depend on the choice
of order of vertices in M.

Proof. Given any 3-simplex σ=\a0a1a2a3\ of M and any colour φ of M,
it is sufficient to prove the following identity:

( ' }

for (ioy ih 4, 4 H ( 1 , 0, 2, 3), (0, 2,1, 3) and (0,1, 3, 2).
We consider (iOy ily 4, ί 3 )=(l, 0, 2, 3). We put g=φ(<a0, α^), h=φ(<au a£>)

and k=φ{<βz, έ%». We show that α([^ | A|ft])=α([^"1|^A|ft])"1- We take a 4-
cell [̂  I g~ι IAI Ar] in 5G. Then since

Q[g"ι\g\h\k\ =

and

[11*1*] = [rΊ*l**] = k-Ί^IA] = 0 in C3{BG,Z),

So we have that [g\h\k]=—[g-ι\gh\k] in C3(BG, Z). Thus it is proved that
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In the same manner, we can prove the equation (3.1) in other cases. This
completes the proof.

Next we show that ZM(τ) does not depend on the choice of triangulation
of M when we fix a triangulation of dM. We use a theorem showed by Turaev
and Viro [11] which is a relative version of a theorem of Alexander [1].

Theorem 3.1. (Turaev-Viro). Let P be a dimensionally homogeneous poly-
hedron and Q its subpolyhedron. Any two triangulation of P coinciding on Q can
be transformed one to another by a sequence of Alexander moves and transformations
inverse to Alexander moves, which do not change the triangulation of Q.

Here by an Alexander move, we mean a star subdivision of a traangulation
of a polyhedron.

Lemma 3.2. Let M be a compact oriented triangulated 3 -manifold. Then
for any τGCol(3M), the complex number ZM(τ) is invariant under the Alexander
move along an open 3-simplex.

Proof. Let T be a given triangulation of M and T' a triangulation of M
obtained from T by the Alexander move along an open 3-simplex σ = | ^ 1 ^ 3 1
of T. Let a be the number of vertices of T. Let vOy vl9 v2, v3, v5) " ,va be the
vertices of T and v4 the new vertex of T' added to T. We give an order to the
vertices of T such that

and to the vertices of T' such that



DlJKGRAAF-WlTTEN INVARIANT FOR 3-MANIFOLDS 681

We denote new 3-simρlices \v1v2v3v4\) \v0v2v3v4\,
by <τ0, σi, σ2 and σ3, respectively. For any <peCol(Γ, T) and any /GG, there is
a unique colour φt of 71' such that it is equal to φ on M— Intσ and φt{Kv3, # 4 »
=/.

Therefore, it is sufficient to prove that

(3.2) W(σ, <p) * = - ^ Σ Π W{σiy <pt)** for any <pGCol(Γ, r ) .
I Cjr I /e<? =o

Suppose that by a colour 9>E=CO1(JΓ, T), elements of G are assigned to ori-
ented edges of σ as in Fig. 2. Since S<r=—S0=S1=—S2=63) the following equa-
tion implies (3.2).

J α(Λ,ft, /Γ^teΛ, ft,/)*(& Aft, O " 1 ^ , A,ft/).

This equation follows from the 3-cocycle condition for a. This completes the
proof.

Lemma 3.3. Let M be a compact oriented triangulated 3-manifold. Then
for any τGCol(3M), the complex number ZM(τ) is invariant under the Alexander
move along an open 2-simplex which is not contained in dM.

Proof. Let T be a given triangulation of M and T' a triangulation of M
obtained from T by the Alexander move along an open 2-simplex F of T which
is not contained in dM. There are exactly two 3-simplices σ, σ' of T which has
F as a 2-face. Let a be the number of vertices of T. Let vOy vlf v2, v3y v4, v6)

" ,va be the vertices of T and v5 the new vertex of 7" added to T. We give
an order to the vertices of T such that

vo<v1<v2<v3<v4<v6< ••• <va ,

and to the vertices of T' such that

V0<VΊ<V2<V3<V4<V5<V6< ••• <Va .

We denote new 3-simplices \v0v2v3v5\, |*WW>I> l
and I v2v3v4v5 \ of Tf by σly σ2, σ3, σ4, σ5, and σ6, respectively.

For any φ^Col(T, r) and any m^G> there is a unique colour <pw of T'
such that it is equal to φ on M—Intσ U Intσ' and φm(ζy3, v5y)=m. Therefore
it is sufficient to prove that

(3.3) W[σ, φγ°W{σ', φγ<" = J - Σ Π W(a{, φm)* for any φ e Col(Γ, T) .
I Q\ i»e<y ί=i

Suppose that by a colour φGCol(jΓ,τ), elements of G are assigned to
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Fig. 3

oriented edges of σ and σ' as in Fig. 3. Since 8<r^=S(rf=—S1=S3=S3=—S4=S5=
—S6y the following equation implies (3.3).

cc(g,h,k)a{h,*,/) = 4 - s cc{g,h,km)a{gh,k,m)ΦU>l-λtn)
IGI £** a(gy hky m)a{hy kl, l~ιm)a{ky /, l~ιm)

By the 3-cocycle condition for ay we have

a(gy hy km)a(gh, k, m) # a(hk91, l~ιm)

a(g, hk, in) a(hy kl, l'ιm)a(k, h l"ιm)

= a(hy k, m)a(g, K k) ^ * ?ιm)

= a(g, h, k)a(h, ky I).

Therefore the equation (3.3) holds. This completes the proof.

Lemma 3.4. Let M be a compact oriented triangulated 3-manifold. Then
for any τ^CoKdM), the complex number ZM(τ) is invariant under the Alexander
move along an open l-simplex which is not contained in dM.

Proof. Let T be a given triangulation of M, and T' a triangulation of M
obtained from T by the Alexander move along an open l-simplex E of T which
is not contained in dM. Let t be the number of 3-simρlices of T which has E
as an edge. We denote these 3-simρlices by σly •••, σt. Here we suppose that
σi is adjacent to σ^i for each / {\<i<Lt-\-\)y where σo=σt and σt+ι—σv Let a
be the number of vertices of T. Let vOy vly •••, vty vt+2, ~-yva be the vertices of
T and vt+1 the new vertex of T added to T. We put σ~ \ vi-&iVt'vt+2\ f° r

i(ί <i<>f). We give an order to the vertices of T such that
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<vt<vt+2< ••• <va,
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Fig. 4

For each *(l<z<^/), we denote new 3-simplices l^-i^W^m! and
K - i ^ + i ^ + 2 l of T' by σ ί0 and σn, respectively. Let σ1? •••, σ,, σ/+1, •••, σn be
the 3-simplices of T. Then σ10, σn, •••, σ,0, σ^, σ/+1, •••, σn are all the 3-simplices
of T'. When we denote the set of all colours φGCol(T,τ) such that <p(ζvt,vt+£>)
=k by Col(Γ,τ; k) for each ϋGG, Col(Γ,τ) is the disjoint union IheGCol(Γ,τ; k)
In a similar way, when we denote the set of all colours yJr€=Col(T', r) such that
Ψ(<ytVt+i»=kly ψ(<vί+lyvt+2»=k2 by Col(T", τ;kly k2) for each kx and J 2 GG,
Col(Γ', T) is the disjoint union Jlhuh2eGCol(T\ τ ; Λx, &2). So the following equa-
tion implies this lemma.

(3.4)
n

. ft) ι=i

1

)'• Π
i = t+l

t

π π
\G\ *P15

We take any klyk2^G with k=kλk2 and fix them. Then for any \|rG
Co^ϊ1', τ; Λx, Λ2)> there is a unique colour ^(i/r)eCol(Γ, τ ; k) such that ?(Λ/T) is
equal to ψ on 71— IntZ? and %{->ir){(ytyvt+v>)=k. This map ξ is a bijection
from Col(Γ', τ ; ^ , Λ 2 ) t 0 Col(Γ, τ ; ^). Given a colour Λ/reCol(Γ'; T, ̂ , Λ2), we

+i, ^+2»=&2 Then we have Λ1T(<VO vi+2y)=gi+1*"gt^1hk1k2(i=0y —, ί—2)
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and -\]r«υt^1} vt+^)=hkιk2.

Thus we have

t

Π W{σm Λlr)W(<rih ψ) = a(gt.ly hy k^a{gt^2ygt^hy k?)~'a(gly

and

Π W(σi9 ξ(ψ)) = cc(gt-i, hy k)a(gt-2>gt-ih, £) tf(£i,£2—£*-A *)
ί = l

Now, using the 3-cocycle condition for a repeatedly, we have

Π W(σiOy +)*oW(<rn9 +)** = Π W(<rif ξW)a(Sιg2-gt-Aklyk2^ ^
ί = 1 ί = 1 a(hy kly k2)

By the colouring condition for ψ we have gig2" gt-i = l Since Si=Si0=Sii

(l<i<t) and W(σiy <yjr)=W(σiy ξ(ψ))> (t+l<i<n)y we obtain

\(jr\ * 1 . *

ΣI G I kvktf=G ψeCoKT'.T . kvk2 ) « =

Π
l

When we fix any ^ G G and make ft2

 r u n a u < o v e r Gy k=kxk2 runs all over

G. Thus the value

Σ Σ Π ^(σ, , f(ψ)) * Π ^(σ, , g(ψ))f'

is independent of ^x G G. Furthermore, we can see that this value is equal to

ΣΛecoKT.r w Π ί + i ^ σ ^ ^ Π ί . ί + i W T σ , ^ ) 1 ' . Therefore, the above identity

(3.4) holds. This completes the proof.

Proof of the main theorem. By Theorem 3.1, it is sufficient to prove that

the complex number ZM(τ) is not changed by the Alexander moves along sim-

plices not lying on dM. This has been proved in Lemmas 3.2, 3.3 and 3.4.

4. Discussions and Examples

4.1. Dual approach. Turaev and Viro [11] introduced an invariant of

3-manifolds associated with quantum 6/-symbols. This invariant is combin-

torially defined. They considered the dual cell subdivision of a triangulation

T of a 3-manifold M in order to prove its topological invarince.

The dual cell subdivision is constructed as follows. With each strictly
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increasing sequence A0(ZAxd ••• dAm of simplices of T one associates an m-
simplex | [-4J[^[i] [i4J |, where [A{] is the barycenter of A{ for each i (0<i<
m). For a simplex A of T we write for A* the union all simplices | [Ao] lyίj
[Am] I with A0=A. The cells {A*}Ai where A runs over all simplices of M, is
called the dual cell subdivision of T. Then

X= U A : edges of X•A*,

is a simple 2-ρolyhedron [11].

X

Fig. 5

Turaev and Viro introduced 3-type moves -C, JM and 2) on simple 2-poly-
hedra (See Fig. 5). Essentially these moves were considered by S. Matveev
[6]. It is seen that the dual picture of Alexander moves are transformed one
to another by a finite sequence of these 3-type moves. Turaev and Viro show-
ed the following theorem using a result of S. Matveev [6] in his study of special
spines of 3-manifolds.

Theorem(Turaev-Viro). Let M be a compact 3-manifold with triangulat-
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ed boundary. Then any two special spines of M can be transformed one to another

by a sequence of 3-type moves X±

i <M± and iS*.

So Turaev and Viro translated their state sum invariant into the 'dual'
language, and checked the invariance under 3-type moves. We can also carry
out a dual approach to prove the topological invariance of the Dijkgraaf-Witten
invariant since moves Xy 3A, and 3ί are natural with respect to orientations.

Let M be a triangulated compact oriented 3-manifold. We denote by X
the simple 2-polyhedron obtained from M by the dual cell subdivision as above.
For a colour φ^Col(M, T), we define a map

φ*: {the oriented 2-cells of X} -> G

as follows: For any 2-cell F of X there exists a unique edge E of M such that it
intersects transversely with F at only one point. For an oriented 2-cell F of
X, we choose the orientation for E such that it is compatible with the orientation
for F. Then we put φ*(F)=φ(E). We call ςp* a colour of X. For a colour
<p* of X we define a map

dφ*: {the oriented edges of dX}^G

as follows. For an oriented edge Γ of dX there is a unique 2-cell F of X such
that Γ is in the closure of F. When we choose the orientation for F such that
it is compatible with that for Γ, we put (βφ*)(Γ)=φ*(F). We can easily check
that dφ*—dψ* for any φ, -ψ eCol(M, T). SO we denote 9<p* by T * for a colour
9>GΞCol(M, T). We call r* a colour of dX. For a colour r* of dX by Col(X, r*)
we denote the set of all colours φ* of X such that 9<p* equals to T*. Since the
3-simplices σ of M are in one-to-one correspondence with vertices a of X— 9X,
we can use the notation W(a, φ*) for W(σ, φ). Let al7 -- ,an be the vertices of
X— dX. Then we define a complex number Zx(τ*) by the following formula:

Zx{τ*) = «

where w = \ / | G | , and %(-ϊ), X(dX) are the Euler characteristics for Xy dX
respectively. The Dijkgraaf-Witten invariant ZM(τ) is related to Zx(τ*) by
the following identity:

where e is the number of vertices of dM.
Then the invariance of ZM(τ) under the moves X± is derived from the

definition of orientations for 3-simplices of M and the condition for S{in the main
theorem. The invariance of ZM(τ) under the moves <fMr is derived from the
3-cocycle condition for a. The invariance of ZM(τ) under the moves Sir is de-
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rived from the factor in the main theorem.
\G\

4.2. Examples. In this subsection, we give some examples for calcula-
tions on the Dijkgraaf-Witten invariant. When M is a closed oriented 3-
manifold, we denote the Dijkgraaf-Witten invariant of M by Z(M). We use this
notation to the end of this paper. We begin with the following proposition.

Proposition 4.1. Let a be a 3-cocycle of the cochain group C\BG, U{Yj).
Let M be a closed oriented Z-manifold. Then the invariant Z(M) depends only
on the cohomology class of a.

Proof. Let T be a triangulation of M. For any β&C\BG, 17(1)), we
we put af=aδβ. Then we get

« '([* 1*1*]) = *{\M I * I *)W([* 1*1*]) = <[g I h I k])β(d[g IAI ft])

„ a(r»lhmβ([h\k])β([g\hk])
~ {ίgl l ] ) β([gh\km[g\h]) '

We give an order to the vertices of T in order to calculate Z(M). Let
0"i> * >0*Λ be all the 3-simplices of T. It is sufficient to prove that for any
colour φ e Col(M),

(4.1) Π W(σi9 <p)* = Π W'(σ§, φ)9' ,

where W(σi9 φ) and W\σi9 φ) are complex numbers with norm 1 given by a
and a' respectively.

For a 2-simplex F=\VQV{02\ {vQ<vι<v^ of ϊ1, we define W(F, φ) by

Once given each 2-simρlex F of T, there are exactly two 3-simplices σ, σ'
of T which have F as a 2-face, because M is a closed 3-manifold. We give an
orientation for F in the ascending order with respect to the vertices. If the
orientations for σ and σr are compatible with that for M, the orientations for
F induced from them for σ and σ' are not compatible. If the orientation for
σ is compatible with that for M but the orientation for σ1 is not, then the
orientations for F induced from them for σ and σ' are compatible.

Now for σ f = I vQvxv2vz \ (vo<vι<v2<v^), we put -F,.o= | vxv2vz \, Fn= \ v0v2v3 \,

and Fi3= I ϋô î 21 Then we have

'(σt, φ) = W(<r,

We define £,y(i=l, —, w,;=0, 1, 2, 3) as follows:
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_ ίl if the orientation for F{j is compatible with that induced from σt9
%i ( — 1 otherwise.

Then we have

Π W'(σif φ)* = Π W(σiy
i 1

i Π
y=o

Since we obtain Π?=i Πj=i W(Fiμ <p)εo = l from the above explanation, we have
the identity (4.1). This completes the proof.

The Dijkgraaf-Witten invariant has the following properties.

Proposition 4.2.
(1) Let M be a closed oriented 3-manifold. We denote by —M the closed

oriented 3-manifold with the opposite orientation. Then we have
Z{-M)=Z{M).

(2) Let M1 and M2 be closed oriented 3-manifolds. Then for the connected
sum M^Mz, we have

\G\

This proposition can be proved from the definition of the invariant by an
elementary method using 3-cocycle conditions, repeatedly. But since we prove
this proposition from a functorial viewpoint of the Dijkgraaf-Witten invariant,
we leave our proof to the end of the subsection 4.4.

Calculation^ of the Dijkgraaf-Witten invariant for some closed 3-manifolds
have been already described in their paper [4]. For example, we have

Z{S3) =

and

= — Σ a{g)h>k)a{h>k>g)a(k>g}h)
\G\ *.*.*** a{g>kih)a{higyk)a{kJhyg)

for any cohomology class [a]^H3(BG>
We calculate the Dijkgraaf-Witten invariant for the lens space L(p, 1) using

a singular triangulation [11]. Regarding the lens space L(p> 1) as a quotient
space of a 3-ball D3 (See [10]), we make a singular triangulation for L(p, 1) as in
Fig. 6. Then there is a unique colour φ of this singular triangulation of L(p, 1)
such that Φ(<yp-i,vp»=g,φ(<vp,vp+iy)=h and φ(<vp+ι,vp+£>)=I for any gy h
and / ^ G . If the 3-simplex \vp-ίvpvp+1vp+2\ determines an orientation for
L(p, 1), then we have
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Z(L(p, 1))

1 a(g, h, k)a(g,gh, k)-a{g,g>-2h, k)
\G\3 ί.ίJ a{g-\h,k)

a{g-\h,l)

a{g, h, l)a(g,gh,

where k=h~ιghl.

Fig. 6

Now we consider the case where G is the cyclic group Zm of order m. It is

well known that H\BG, J7(1))«Z«. The cohomology group H\BG, U(l))at

H\Gy U(ί)) is generated by the cohomology class of a denned as follows (See

[8]):

a: GxGxG^U(l), a(gι,g2>g3) = expfi^- 1 = ' =

where f,G {0, 1, •••, m—1} is a representative element for each i (i— 1, 2, 3).
In particular, in the case where G=Z2, we have

Z(L(p,l))= \\
ifp=2n+ί.
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with respect to the above α.
In the case where G=Zm and p— l=m, we have

Z(L(p, 1)) = -\ Σ exp( 2 7 Γ V '- l k){{m-k) 2 +k 2 +2k(m-k) cos( 2 7 Γ V / ~p ( ) { { ) ( ) ( ) } +
*=i w mm

with respect to the above α.
REMARK. Recently H. Marakami, Ohtsuki and Okada[9] introduced an

invariant of 3-manifolds derived from linking matrices of framed links. Let
M be a closed oriented 3-manifold obtained from the standard 3-sphere S3 by
Dehn surgery along a framed link L with w-components. Let q be a primitive
m-ύϊ (2/w-th, resp.) root of unity for an odd (even, resp.) positive integer m.
Then their invarinat is given by the following formula:

ZM(M; q ) = ( ϊ t i ί r u ) ' G m { q ) ' '"• ><&• q"A''
where Gm(q)=Σhezm9h2 (a Gaussian sum), 4̂ is the linking matrix of L, I is re-
garded as a column vector and *l is its transposed row vector.

They examine a relation between their invariant and the Dijkgraaf-Witten
invariant in the case where G is a cyclic group and M is closed. This relation
is given by the following identity: For a closed oriented 3-manifold M ob-
tained from S3 by Dehn surgery along a framed link with ra-components,

ί if HI is odd, Z(M)=^Zm2(M; q),

( if m is even, Z(M)=±Zm2/2(M; q)Z2(M; q^m^%

where Z(M) is calculated using the above \a\^.ΈP(Zmy U(ί)) and q is an m2-th
primitive root of unity.

4.3. The Topological Quantum Field Theory. The construction of
the Dijkgraaf-Witten invariant of a 3-manifold with boundary gives an example
of a 2-dimensional topological quantum field theoryβ]. We see this by means
of a Turaev and Viro's method. But we need to normalize the Dijkgraaf-Wit-
ten invariant in the following way. We denote the number of vertices of dM
by e, in the statement of the main theorem. Then we put

Z'M(τ) = weZM(τ), where w = V | G | .

The complex number Zf

M(r) does not depend on the choice of triangulation
of M whenever we fix a triangulation of dM and τGCol(3M).

For each triangulated closed oriented surface Σ, we define a finite dimen-
sional vector space 1̂ (2) to be the vector space freely generated over C by the
colours of 2. If Σ = Φ , then we put V(Σ)=C. For a cobordism W=(M; Si, Σ2)
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between triangulated closed oriented surfaces Σi and Σ2, where the orientation
for 2j is compatible to that induced from the orientation for M and the orienta-
tion for Σ2 is not, we have a C-linear map Φw: V(Σι)-->V(Σ2) defined by the for-
mula

Φw{τ)=

where T is s colour of Σi and TU/^GCol(3M) is the colour determining by T
and μ.

The following proposition is a consequence of the main theorem.

Proposition 4.3. For any cobordism W=(M; Σi, Σ2) between tήngulated

closed oriented surfaces Σi arid Σ2, the linear map Φw: V(Σ1)->V(Σ2) does Hot de-

pend on the extension of triangulatίons of Σi and Σ2 to M involved in the definition

of Φw-

By the definition of <Ey, composing cobordisms Wι=(M1; Σi, Σ2) and W2=

(M 2;Σ 2, Σ3), we have

Proposition 4.4. Φ ^ ^ ^ Φ ^ o φ ^ .

REMARK. If one uses ZM(τ) instead of Z'M(τ) in the definition of Φ^, we get
ΦW^OWΛ= IG14Φ^2oφF l, where b is the number of vertices of Σ2.

For any triangulated closed oriented surface Σ, we denote by id^ the iden-
tity cobordism. Then we put

From Proposition 4.4, we obtain the following lemma.

L e m m a 4.1. For any cobordism W between triangulated oriented closed

surfaces Σi and Σ 2 , the map Φw: F(Σi)-*F(Σ 2 ) induces a C-linear map Zw: H^t

-*H<Sll with the following properties :

(1) Let JΓ 1 =(Λf 1 ;Σi,Σ 2 ) and W2=(M2; Σ 2 > Σ3) be cobordisms between

triangulated oriented closed surfaces. Then we obtain that Zw%oWχ=

Zw2

oZwλ

(2) For any triangulated oriented closed surface Σ, we obtain that Zid =

The vector space i/ 2 does not depend on the choice of triangulation of an
oriented closed surface Σ in the following sense. We explain this in the same
manner as Turaev and Viro [11]. For any triangulation of Σ, there exists a tri-
angulation of Σ X [0, 1] coinciding on Σ X 0 and Σ X 1 with these given triangu-
lations. It determines an isomorphism between the H^s which are defined via
these triangulations of Σ by Lemma 4.1. By Proposition 4.4, this isomorphism
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does not depend on the choice of triangulation of Σx[0, 1], We will identify
the spaces i/ 2 defined via different triangulations of Σ by this isomorphism.

In this manner, we obtain a functor Z from the category such that objects
are closed oriented surfaces and morphisms are cobordisms between them to
the category such that objects are finite dimensional vector spaces over C and
morphisms are C-linear maps. This functor Z does not depend on the choice of
triangulation in the sense that there exists a canonical natural transformation.

Proposition 4.5. The functor Z satisfies the axiom for the 2-dimensional

topological quantum field theory.

Proof. It is easy to check the Multiplicativity axiom for Z by the defini-
tion of V(Σ). Thus from Lemma 4.1, we have only to check the Involutory
axiom for Z.

Let Σ* be the triangulated closed oriented surface with the opposite orien-
tation for Σ. Then clearly, F(Σ)=F(Σ*), by the definition of V{X). We
define a map φ\ Γ(Σ*)-^F(Σ)* by

(φ(v))(vf) = Σ Σ a*A*Z£xD>.i](/*U v)
HeClCS) veClCS)

for v=Σj»ecoi(s) aμμ^V(Σ) and α'=Σvecoi(s) ^ v G I^(Σ)where aμ is the complex
conjugation of #μ. From the fact that φJ.έ/s(ίJ)=0 if and only if φ.d^(v)=0,
where 0=Σ#μμ< for v=*Σ #μμ> it follows that the map φ induces a C-linear map
φ: #2*—>i/f, where H* is the dual space of ϋΓ2.

To show that φ is an isomorphism, we construct the inverse map for φ.
Since Φidl°Φid^=Φid > we have a direct sum decomposition: 7 ( Σ ) = I m Φ 2 ®
Ker Φ 2 . Under this decomposition, the natural projection p: F(Σ)-^i/s is the
first projection Im Φ ^ θ K e r Φ ^ - ^ I m Φid^H^. Since Im Φid^ is generated
by {Φ< l f 3 1(τ)|τeCol(S)},(ImΦW s)*βJEίi is generated by {τ*|τEΞCol(Σ)}, where
τ*(μ)=Z4x [ o,i](τU μ) for any ^eCol(S).

Putting

Σ aττ*)=[ Σ
ClCS) τeClC

this correspondence induces a well-defined map ψ: i ϊ f ^ ( I m Φid )*->/ί2*. Then

Φ and ψ satisfy that φoψ=id and ψoφ=id. Therefore, we obtain a canonical

isomorphism between H^* and i/*. This completes the proof.

4.4. Representations of Mapping Class Groups. In this section, we
consider the group T:—Homeo+(Σ)I~ consisting of isotopy classes of orienta-
tion preserving homeomorphisms on an oriented closed surface Σ. By means
of Tureav-Viro's method, we can construct a representation of Γ associated
with the Dijkgraaf-Witten invariant.
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Let 2 be a closed oriented surface and h: Σ—>Σ an orientation preserving
homeomorphism. We fix a triangulation of Σ. Then we define a C-linear
map h%: F(Σ)->F(Σ) by

ίxίotil(h(r)U μ)μ

for any τ^Col(Σ). Here h(τ) is a colour of Σ defined as follows: A triangula-
tion of Σo^ΣxO is induced from the given triangulation of Σ and the homeo-
morphism A. Then for each oriented edges E of Σo, we define h(τ)(E) by h(τ)(E)

Now we have the following lemma from the main theorem and the defini-
tion of A|.

Lemma 4.2. Let Σ be a triangulated closed surface. If h and g are piece-
wise linear orientation preserving homeomorphisms on Σ, then (Λ°£)ι=^ι°£ι.

Let Σ be a closed oriented surface and h an orientation preserving homeo-
morphism on Σ. For a triangulation T of Σ, we denote by T' the triangulation
of Σ induced from T and h. We define a C-linear isomorphism h*\ V(Σ; T)->
V(Σ; T) by h\τ)=h(τ) for any colour T<ΞCO1(Σ; T), where Col(Σ; T) and
V(Σ; T) stand for the set of colours and the vector space determined by the
triangulation T as in above, respectively. Considering the cobordism W=(Σ,X
[0, 1]; ΣxO, ΣX 1) such that triangulations of ΣxO and ΣX 1 are T and T re-
spectively, we have

h% = Φwofι*.

Since Z^xίθtll(τ\J μ)=Z/

ΊιXίθtll(h(τ) Uh(μ)) for any μ, τ^Col(Σ; T), the C-linear
isomorphism h* induces a C-linear map H^->H^. Thus /zf induces a C-linear
map h*: i/ s->//2. The map h* does not depend on the choice of triangula-
tion of Σ in the previous sense. The identity (h°g)t=ht°gt implies (hog):¥ =
A*0,?*. Furthermore, id*=idH^. Therefore h* is an isomorphism for any ori-
entation preserving homeomorphism h.

Lemma 4.3. If orientation preserving homeomorphisms h and g on an orien-
ted closed surface Σ are isotopic, then h^=gi} and therefore h*=g*.

Proof. Let H: ΣX [0, 1]->Σ be an isotopy between h and g. Then there
exists a homeotopy ίϊ: Σx[0, l]->Σx[0, 1] such that no=id?, and ήt<>h=Ht,
where H(x, t)=(Ht(x), t). In particular, II1oh=g. Since Hi is an orientation
preserving homeomorphism, we have Z^xi012(h(r) U μ)=Zixio,i](g(τ) U μ). This
completes the proof.

The above construction of the linear map h%: H^-^H^ enables us to obtain
a linear representation of Γ. More precisely we have the following proposition.
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Proposition 4.6. Let Σ be a closed oriented surface. We put Γ : =
Homeo+(Σ)I~. We define a map p:T-*GL(H?) by ρ(h)=h*, then p is a repre-
sentation of Γ.

Proposition 4.7. Let Σ be a closed oriented surface and f: Σ ^ Σ an orienta-
tion preserving homeomorphism. We define the mapping torus Σ/ by identifying a
point (x, 0) with a point (/(#), 1) of ΣX [0, 1], Then we have

Z&f) = Trace(U).

Proof. We fix a triangulation T of Σ. By T' we denote the triangulation
of Σ induced from T and/. We put PΓ1=(M1=ΣX [0, 1] φ, Σ X {0, 1}), where
triangulations of ΣxO and ΣX 1 are T and W2=(M2=Έ,χ [0, 1]; ΣX {0, 1}, φ),
where triangulations for Σ X 0 and Σ X 1 are T' and T respectively. Then we
can regard Σ/ as MX\J M2, and the linear map ZWl: C^H%®H% and ZW2; H%®
Hχ-*C as vectors in H%®H^ and ( / i | ® i i 2 ) * ^ i i 2 ( S ) i i | in a usual way respec-
tively. Since the functor Z satisfies the axiom for the topological quantum field
theory, we have

where < , > is the natural pairing.
Let ely •••, en be a basis for i/ 2 and £?, •••, ef the dual basis for H%. Then

we obtain Z ^ ^ Σ ί - i et®ei^Ht®Hτ and 4 2 = Σ
where/*(^)=Σy-i /y^ Therefore we have

Z(Σf) = <Σ βf® ,̂ lljrf&φ = Σ /„

This completes the proof.

In particular, for a closed oriented surface Σ, taking the identity map on Σ
as/in the statement of the above proposition, we get the following corollary.

Corollary. Let Σ be a closed oriented surface. Then we have Z(ΣX S1)=

dim i / s

REMARK. In the case of the Dijkgraaf-Witten invariant, since ϋ f s ^ I m Φid

and Φ< </s°Φ, </ s

:=Φ< ί/s for a triangulated closed oriented surface Σ, we have

dim ifs=rank Φid = Trace(Φidj).

Finally, we give a proof of the proposition 4.2.

Proof of the proposition 4.2. The first part of the proposition is immedi-
ately proved from the definition of the invariant. We show the second part of
the proposition. Since dimίί s 2=l form the above corollary, the vector space

is generated by a vector e in Hsz. We denote the dual basis of for e by e*.
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We regard Mx and M2 as (Λf,—IntDf) U £>? and (M 2 -IntZ>!) U-Dl, respectively,

where D\ and D\ are 3-balls. We put W1^(M1-lntDϊ; φ, dDl^S2), W2=

(M2-IntZ>|; dDl^S2, φ), W3=(D\; dDl^S2, φ) and WA={Dl; φ, dDl^S2).

Regarding the linear maps ZWχ, ZWi, Zw% and ZWi as vectors in HSt, H&,

Hfy and Hsz we write for Zψ^a^e, Zψ^a^*, ZW3=bje* and Zψ^btf, respec-

tively. We get S3 by identifying the boundaries of D\ and D\ in a natural way:

S^Di U £>i. Then we have

= <zWi, zWiy =

When we regard M1^M2 as (M 1 -Int f l ! )U(M 2 -Intθ ! ) , we have

Kaxe, α2e*>=α1α2. Since Z(S3)=——-, we obtain

I G I

\G\

This completes the proof.

References

[1] J.W. Alexander: The combinatorial theory of complexes, Ann. of Math. (2) 31
(1930), 294-322.

[2] M. Atiyah: Topological quantum field theories, Publ. Math. IHES 68 (1989),
175-186.

[3] K.S. Brown: Cohomology of groups, Graduate Texts in Mathematics vol. 78,
Berlin, Heidelberg, New York, Springer (1982).

[4] R. Dijkgraaf and E. Witten: Topological gauge theories and group cohomology,
Comm. Math. Phys. 129 (1990), 393-429.

[5] S. Eilenberg and J.A. Zilber: Semi-simplicial complexes and singular homology,
Ann. of Math. 51 (1950), 499-513.

[6] S.V. Matveev: Transformations of special spines and the Zeeman conjecture. Math.
USSR Izvestia 31 no.2 (1988), 423-434.

[7] J.P. May: Simplicial objects in algebraic topology, Van Nostrand Math. Studies
no.11 Princeton New Jersey, Tronto, London, Melbourne, Van Nostrand (1967).

[8] G. Moore and N. Seiberg: Classical and quantum conformal field theory, Comm.
Math Phys. 123 (1989), 177-254.

[9] H. Murakami, T. Ohtsuki and M. Okada: Invariants of three-manifolds derived
fom linking matrices of framed links, Osaka J. Math. 29 (1992).

[10] D. Rolfsen: Knots and links, Publish or Perish (1976).
[11] V.G. Turaev and O.Y. Viro: State sum invariants of 3-manifolds and quantum 6/-

symbols, LOMI prepeint.



696 M. WAKUI

[12] D. Yetter: Topological quantum field theories associated to finite groups and
crossed G-sets, Journal of Knot Theory and Its Ramifications, 1 (1992), 1-20.

Note-added in proof: After we finished writing the final version of this paper, we knew
that Yetter [12] have studied in the case where a 3-cocyclc a is trivial.

Department of Mathematics
Kyushu University 33
Fukuoka 812
Japan

Present address
Department of Mathematical Sciences
University of Tokyo
Hongo, Tokyo 113
Japan




