|

) <

The University of Osaka
Institutional Knowledge Archive

Title On Dijkgraaf-Witten invariant for 3-manifolds

Author(s) |[Wakui, Michihisa

Osaka Journal of Mathematics. 1992, 29(4), p.

Citation 675-696

Version Type|VoR

URL https://doi.org/10.18910/11650

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Wakui, M.
Osaka J. Math.
29 (1992), 675-696

ON DI JKGRAAF-WITTEN INVARIANT
FOR 3-MANIFOLDS

Micuigisa WAKUI

(Received September 17, 1991)

1. Introduction

In 1990 Dijkgraaf and Witten [4] introduced a method of constructing an
invariant of 3-manifolds using a finite gauge group G. For a closed oriented
3-manifold M, the Dijkgraaf-Witten invariant is given by the following for-
mula:

_ 1 *
AM) = 1G| veHomcEw,cm,e) e, IMD -

Here v is a continuous map from a closed 3-manifold M to the classifying
space BG of G, a is a cohomology class of H¥BG, U(1)), v* is a map from H?*
(BG, U(1)) to H¥(M, U(1)) induced from v and [M] is the fundamental class of
M. However, in the case where M has a boundary, such a formulation can
not be done, because the fundamental class [M] is not defined for a manifold
with boundary. To extend the definition of Z(M) to a 3-manifold with boun-
dary, they reduced the topological action {y*ea, [M]> to a lattice gauge theory.
Furthermore Dijkgraaf and Witten asserted that their construction for a 3-mani-
fold with boundary gives an example of a topological quantum field theory.

In this paper, we formulate an invariant of 3-manifolds possibly with boun-
dary introduced by Dijkgraaf and Witten using a triangulation and prove its
topological invariance in a rigorous way. Once given a finite group G and a
3-cocycle a€Z%BG, U(1)), the Dijkgraaf-Witten invariant is defined combi-
natorially. Throughout this paper, our target manifolds are compact oriented
3-manifolds with boundary or without boundary.

By a colour of M, we mean a map assigning an element of G to each o1ient-
ed edge of a triangulated compact oriented 3-manifold M under some condition
(See §2, for more precise definition). We call a map obtained from a colour of
M by restricting it, to the oriented edges in M a colour of M. For a colour
7 of 0M, by Col(M, 7) we denote the set of all colours of M which are equal
to 7, when restricted to 8M. Having a colour @ of M we associate with
each 3-simplex o of M a complex number W(o,p)EU(l) using a. We
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denote the number of vertices of M by a. Let oy, **+, o, be all the 3-simplices
of M. For a colour 7 of 0M, the Dijkgraaf-Witten invariant is given by the
following formula:

I W(o;, @)%,

|G|* eecolcr,m i=i

Zy(r) =

where

6 — {1 if the orientation for o; is compatible with that for M,
' —1 otherwise.

The invariant has the following two properties:
(1) For a closed oriented 3-manifold M we have Z(—M)=Z(M), where
—M is the closed oriented 3-manifold with the opposite orientation.
(2) For closed oriented 3-manifolds M), M, we have I—CIHZ(MI#MZ)=
Z(M,)Z(M,), where M,8M, is the connected sum of M, and M,.

Turaev and Viro[11] defined combinatorially an invariant of a 3-manifold
associated with quantum 6j-symbols. In order to prove the topological in-
variance of their invariant, they showed a relative version of a theorem of
Alexander [1] on equivalence of triangulations. We use the theorem showed by
Turaev and Viro in order to prove the topological invariance of the Dijkgraaf-
Witten invariant.

However, Turaev and Viro do not directly use this theorem for their proof
of the topological invariance of their invariant. They proved it by translating
thie invariant into an invariant of a simple 2-polyhedron X obtained from a dual
cell subdivision of a triangulated compact 3-manifold M. To carry out this,
they introduced 3-type moves on simple 2-polyhedra. These 3-type moves
were essentially considered by S. Matveev [6]. Since these 3-type moves are
natural with respect to orientations for X or M, we can also prove the topologi-
cal invariance of the Dijkgraaf-Witten invariant using this dual approach. From
these facts, we can compute the Dijkgraaf-Witten invariant using a singular
triangulation[11]. We describe some examples for calculations on the
Dijkgraaf-Witten invariant using a singular triangulation.

Atiyah[2] defined mathematically an axiom for a topological quantum field
theory. We show that the construction of the Dijkgraaf-Witten invariant of a
3-manifold with boundary gives an example of the topological quantum field
theory. However, we have to modify slightly Dijkgraaf and Witten’s definition
in order to satisfy the axiom for the topological quantum field theory. Finally by
means of Turaev and Viro’s method, we construct a representation of isotopy
classes of orientation preserving homeomorphisms of an oriented closed surface.

This paper is organized in the following way. In section 2, we introduce
the definition of the Dijkgraaf-Witten invariant for 3-manifolds. In section
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3, we prove the topological invariance of the Dijkgraaf-Witten invariant. In
section 4, we explain a dual approach on the Dijkgraaf-Witten invariant and pre-
sent some examples for calculations on the Dijkgraaf-Witten invariant, in par-
ticular for the case of the lens space L(p, 1). Furthermore we construct a 2-
dimensional topological quantum field theory associated with the Dijkgraaf-
Witten invariant and a representation of the mapping class group of an oriented
closed surface.

ACKNOWLEDGEMENT: I am deeply indebted to Professor T. Kohno for
useful suggestions and advice. During the preparation of this article, Pro-
fessor I.Ishii furnished me with valuable information on Matveev’s work, and
I would like to thank him. Thanks are also due to Professor M. Kato for help-
ful conversation and encouragement.

2. Definition of Dijkgraaf-Witten Invariant

First we describe our initial data which will be used to define an invariant
of triangulated compact oriented 3-manifolds. Let us recall group cohomo-
logies [3]. Let G be a finite group and V' a multiplicative abelian group. We
denote the set of all maps

[ GX XG>V
n times
by C*G, V). In a natural way, the set C"(G, V) has a structure of an abelian

gropu. We define a coboundary operator &8": C*(G, V)—>C"*(G, V) by the
following formula:

(aﬂf) (xl’ °t%y xn+1)

n . L
:f(xz’ ., xn+l) il;];f(xl’ ey XXy, ot xn+l)(_l)lf(xla e, x”)(—l)n+ i

where feC*G, V) and %y, +*+, ,.;EG. The quotient group Ker §"/Im 8! is
called the #n-th cohomology group of G with coefficients in V, and denoted by
H"(G, V). For any finite group G, we denote the classifying space of G by BG.
Here we use a semi-simplicial theoretical method [7] to construct BG, which is
introduced by Eilenberg and Zilber [5].

Now we take the unitary group U(1)=R/Z as an abelian group V. Then
we define a map : Hom(C,(BG, Z), U(1))—C"(G, U(1)) by

"I"(a)(gl’ ""gn) = a([gll |gn]) ’

where C,(BG, Z) is the relative homoloyg group H,(K,, K,-;; Z) of the semi-
simplicial complex K with n-skeleton K, defining the classifying space BG and
[g1]+++| 4] is the m-call defined by gy, ++,2,EG. Then we easily see that «Jr is
a cohcain map and induces an isomorphism from the cohomology group



678 M. Wakur

H"(BG, U(1)) to H*(G, U(1)). By the map +J, we often identify a([g,|-*|g,])
with () (g, ***» 84) and denote it by a(gy, «*+, £,)-

Next we introduce the Dijkgraaf-Witten invariant. Let G be a finite group.
We fix a 3-cocycle a€Z%BG, U(1)). Let M be a compact oriented triangulated
3-manifold. By a colour of M, we mean a map

@: {the oriented edges of M} — G

which satisfies the following two conditions:
(1) For any ‘oriented’ 2-simplex F, we have @(0F)=1. Here the sym-
bol OF stands for the image of F under the boundary operator 0,
when we regard F as a generator of the chain group Cy(M; Z). (See
Fig. 1)
(2) For any oriented edge E, we have @o(—E)=e(E)™}, where —F is the
oriented edge with the opposite orientation.

F gh

AY

g
Fig. 1

If a map 7: {the oriented edges of 0M} —G satisfies, again, the above con-
ditions (1) and (2), then we call 7 a colour of 9M. We denote the set of all col-
ours of M and 0M by Col(M) and Col(dM), respectively. Furthermoer, given
7& Col(dM), by Col(M, r) we denote the set of all colours of M which are equal
to =, when restricted to 6.

Now we give an order to the set of the vertices of M, and then in each 3-
simplex o;, we give an order to the vertices in the ascending order. Let us give
the orientation of each 3-simplex o; in the ascending order. Let @ be a colour
of M and o a 3-simplex of M. If o=|amaa;| (ay<a;<a,<a;) and @({ay, ap)
=g, p({ay, a)=h and p(<ay, ap>)=k, then we put

We, @) = a(lg|hlk])EU() .
The Dijkgraaf-Witten invariant is described as follows.

Theorem. Let G be a finite group. We fix a 3-cocycle a=Z*BG, U(1)).
Let M be a compact oriented triangulated 3-manifold. We denote the number of
vertices of M by a. Let oy, +,0, be all the 3-simplices of M. Given €
Col(0 M), we define the Dijkgraaf-Witten invariant by
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Zy) = 3 T W, o)

|G| 4 peColc,m i=1
where

6 — {1 if the orientation for o, is compatible with that for M,
i |—1 otherwise.

Then Zy(t) does not depend on the choice of triangulation of M and the choice of
order of vertices in M whenever we fix a triangulation of 0M and .

Remark. If a given 3-cocycle « is trivial, then ZM(T)=|?1|7#COI(M’ T).

Thus if M is connected, Zy(7) is equal to the number of representations of

my(M) over G which are equal to = on 7,(dM), up to the factor l—é—l .

—1—#{p: my(M)—G | p is a representation of 7y(M) and poiy = 7},

Ziy(T) = el

where Zy is the homomorphism of fundamental groups induced from the inclu-
sion : 9M < M.

3. Proof of the Main Theorem

We divide a proof of the main theorem into two parts. First we show the
independence of the choice of order of vertices of M.

Lemma 3.1. The complex number Zy(t) dose not depend on the choice
of order of vertices in M.

Proof. Given any 3-simplex o= |aaa,a5] of M and any colour @ of M,
it is sufficient to prove the following identity:

a([p(Kao, ap) | p(Kay, @) | p(Kas, asd])
= a([(p(<d,-o, ai1>) I ¢(<all’ as’z>) | (p(<a'-z, aia>)])_l
fOl‘ (io, ib 7:2’ 13)2(1) 0) 2, 3)) (O, 2: 1, 3) and (O’ 1) 31 2')-
We consider (3, 7y, 2, 2)=(1, 0, 2, 3). We put g=@({ay, @), h=p(ay, @)
and k=@({a;, @>). We show that a([g|k|k])=a([g™| gk|k])"'. We take a 4-
cell [g]| g7 | k| k] in BG. Then since

0[g | glhlk] = [glhl k][] k| k]+[g7 | gh| k]—[g~| g | RR]+[g7* | g1 A]

and

(3.1)

[11h|k] = [g7'| gl hk] = [g7| gl k] = 0 in Cy(BG, Z),
[g7'1iglh|k] = 0in C(BG, Z) .

So we have that [g|h|k]=—[g™*| gh|k] in C(BG, Z). Thus it is proved that
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a([glhlk])=a(lg™"| gh|R])~"
In the same manner, we can prove the equation (3.1) in other cases. This
completes the proof.

Next we show that Z(7) does not depend on the choice of triangulation
of M when we fix a triangulation of 3M. We use a theorem showed by Turaev
and Viro [11] which is a relative version of a theorem of Alexander [1].

Theorem 3.1. (Turaev-Viro). Let P be a dimensionally homogeneous poly-
hedron and Q its subpolyhedron. Any two triangulation of P coinciding on Q can
be transformed one to another by a sequence of Alexander moves and transformations
inverse to Alexander moves, which do not change the triangulation of Q.

Here by an Alexander move, we mean a star subdivision of a traangulation
of a polyhedron.

Lemma 3.2. Let M be a compact oriented triangulated 3-manifold. Then
for any v Col(0M), the complex number Zy(7) is invariant under the Alexander
move along an open 3-simplex.

Proof. Let T be a given triangulation of M and 7" a triangulation of M
obtained from T by the Alexander move along an open 3-simplex o= |vyv,0,7;|
of T. Let a be the number of vertices of T. Let v,, v;, v,, 3, ¥s, +++, v, be the
vertices of T and v, the new vertex of 7" added to T. We give an order to the
vertices of T such that

'Ua<'vl<vz<'va<7)5< e <, ,
and to the vertices of 7" such that

V<N << U<y <Us< *** <U,.

U3

Uy

Vo

h

Uy

Fig. 2
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We denote new 3-simplices |v,2,0504|, |v50,0574], |vv19504| and |vgv,0,2,] of TV
by &y, o1, o2 and o, respectively. For any ¢ €Col(T, 7) and any /EG, there is
a unique colour @, of T" such that it is equal to @ on M—Inte and @,(<vs, v,>)
=l

Therefore, it is sufficient to prove that

(3.2) W(e, @) = -l—al— 124 II W(a;, @)% for any o= Col(T, 7) .

Suppose that by a colour @ €Col(T, 7), elements of G are assigned to ori-
ented edges of o as in Fig. 2. Since §,=—&=§&=—§&,=&;, the following equa-
tion implies (3.2).

a(g, by k) = = S a(h, k, 1) a(gh, k, Dx(g, bk, 1) g, b, Bl

IGI
This equation follows from the 3-cocycle condition for @. This completes the
proof.

Lemma 3.3. Let M be a compact oriented triangulated 3-manifold. Then
for any T+ Col(dM), the complex number Zy(t) is invariant under the Alexander
move along an open 2-simplex which is not contained in 0M.

Proof. Let T be a given triangulation of M and 7" a triangulation of M
obtained from T by the Alexander move along an open 2-simplex F of T which
is not contained in @M. There are exactly two 3-simplices o, ¢’ of T which has
F as a 2-face. Let a be the number of vertices of T. Let v, v,, U5, Vs, ¥y, Vs,

-, v, be the vertices of T and v; the new vertex of 7" added to T. We give
an order to the vertices of T such that

V<<V, <Y<y <%<< -+ <Y,
and to the vertices of T such that
V<Y <U<U<U <V *** <Y, .

We denote new 3-simplices | 9,2,0305|, |v5012305], |060122%5], | 0122005], | 01950425]
and |v,0,0,05] of T' by oy, a5, 073, 74, 075, and o, respectively.

For any ¢ =Col(T, 7) and any m&G, there is a unique colour ¢, of 7
such that it is equal to @ on M—Intes U Inte’ and @,,({?;, v5))=m. Therefore
it is sufficient to prove that

(3.3) W(e, )Wo', @)t = _l 11 W(o,, @)t for any @& Col(T, 7).

Suppose that by a colour @ ECol(T, 7), elements of G are assigned to
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Yo

vy

Fig. 3

oriented edges of o and ¢’ as in Fig. 3. Since §,=&,,=—=86=E=—§&,=§&=
—&, the following equation implies (3.3).

1 a(g, k, km)a(gh, k, m)a(hl, 1, 1"'m)
b, R)a(hy by 1) — ,
(& b Rl ks 1) = o B Tk, myah, B, myall, |, 1m)

By the 3-cocycle condition for e, we have

alg, b, km)a(gh, k, m)_ a(hk, 1, I"'m)
a(g, hk, m) a(h, kl, I7'm)a(k, I, I'm)

alh, k, 1)
alh, k, 11-'m)
= a(g, b, Ra(h, b, D).

= o(h, k, m)a(g, h, k)

Therefore the equation (3.3) holds. This completes the proof.

Lemma 3.4. Let M be a compact oriented triangulated 3-manifold. Then
for any 1€ Col(0M), the complex number Z,(t) is invariant under the Alexander
move along an open 1-simplex which is not contained in 9M.

Proof. Let T be a given triangulation of M, and 7" a triangulation of M
obtained from T by the Alexander move along an open 1-simplex E of T which
is not contained in 9M. Let ¢ be the number of 3-simplices of T which has E
as an edge. We denote these 3-simplices by o, -+, ;. Here we suppose that
o; is adjacent to o, for each 7 (1<i<¢+1), where oy=0, and o,1,=0,. Let a
be the number of vertices of T. Let vy, vy, ***, V4, Usya, ***, ¥, be the vertices of
T and v,,, the new vertex of 7" added to . We put o;= | 9;-19;9,9,4,| for each
1(1<i<t). We give an order to the vertices of T" such that
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Dyl << o0 <<V << o0 <Yy,
and to the vertices of T" such that

U< <<+ <Y<V <V = <Y -

v;

Fig. 4

For each #(1<i/<t), we denote new 3-simplices |v;.,9;9,0;4;| and
| 0;-10;91410142| Of T' by o and oy, respectively. Let oy, +++, 0y, 0411, ***, 05 DE
the 3-simplices of T". Then oy, oy, ***, G40, 11y T411, ***, 0 are all the 3-simplices
of T'. When we denote the set of all colours @ &Col(T,r) such that @({v;,vs+2>)
=k by Col(T,; k) for each k&G, Col(T,7) is the disjoint union [T;ecCol(T,; k).
In a similar way, when we denote the set of all colours «»&Col(T", 7) such that
V(v VD) =k, Y(Vp41, Ver)=k, by Col(T", 7; ky, k,) for each k; and k,EG,
Col(T", 7) is the disjoint union II;, s,ec Col(T", 7; ky, k;). So the following equa-
tion implies this lemma.

k€@ ¢ECoIC(T,T , k) .E W(a',, ¢) i:=1r—'!-1 W(a',, (p) '
= —1— b by I W(G'io; \11')!‘°W(0';1» "I/‘)E“.___lil W(a'i) 1]")ei .

| G| #1kze yecorcr e ko) =1

(34

We take any k;, k,&G with k=kk, and fix them. Then for any rE
Col(T", 5 ky, k), there is a unique colour E(dr) € Col(T, 7; k) such that £(xr) is
equal to 4 on T—IntE and &(yr)({vy, v40)=Fk. This map £ is a bijection
from Col(T", 7; ky, k;) to Col(T, 7; k). Given a colour & Col(T'; 7, ky, k), we
put &(Kv;, 0;40)=gi(=0, 1, -+, t—2), Y(<yy, v0)=h, Y(oy, v,4)=Fk; and
V({Vst1y Verp)=k,. Then we have Ur({v;, v;420) =gi410"* g-1IR 1Ry (=0, +++, 1—2)
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and <oy, Ve40) =hkik,.

Thus we have

',I;Il W(ei0, ¥)W (o, V) = a(gi-1, b, R)Q(G4-2, 8111, 1)+ (g, & 8-l Ry)
a(gs-1, hky, kz)a(gt—z» gi-1hk,, kz)"'a(gn &2 8i-1hky, kz)

and
'I=Il W(es, E(¥r)) = a(gs-1, by K)U( 812, Z1-1hty k) (g1, Lo+ 81-10, B) -
Now, using the 3-cocycle condition for a repeatedly, we have

] %o , oo T . \ U182 8i-ahy Ry, Ry)
1 Wl w)eWlom e = L W 8O ety

By the colouring condition for 4» we have g,g,-*-g,-;=1. Since §=¢&;,,=¢,
(1<i<t) and Wy, ¥)=W(o;, E(Wr)), (t+1<i<n), we obtain

— X P f[ W(e;, ) W(ay, '\]")!"“El W(a;, )"

|G| k1k2S¢ yecora”yr , by by i=1

= 16T ni S Wow E)% IT Way, E3) -
|G| #k2S8 yecora’,r | by =1 i+l

1 ¢ 3
t
When we fix any k£, EG and make %, run all over G, k=kk, runs all over
G. Thus the value

> I W(as, E(v))" TI Wla, E(¥))%
kEG ",Eco](zﬂ,f : ,,1,1,2) i=1 i=t+1
is independent of k,&G. Furthermore, we can see that this value is equal to
Shecorr,r: i i1 Wioy, @)% Tliats1 W(o;,@)%. Therefore, the above identity
(3.4) holds. This completes the proof.

Proof of the main theorem. By Theorem 3.1, it is sufficient to prove that
the complex number Z,/(7) is not changed by the Alexander moves along sim-
plices not lying on 8M. This has been proved in Lemmas 3.2, 3.3 and 3.4.

4. Discussions and Examples

4.1. Dual approach. Turaev and Viro [11] introduced an invariant of
3-manifolds associated with quantum 6j-symbols. This invariant is combin-
torially defined. They considered the dual cell subdivision of a triangulation
T of a 3-manifold M in order to prove its topological invarince.

The dual cell subdivision is constructed as follows. With each strictly
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increasing sequence A,CA,C -+ C4,, of simplices of T' one associates an m-
simplex |[4,][A4,]:+-[4,]|, where [A4,] is the barycenter of 4, for each 7 (0<i<
m). For a simplex 4 of T we write for A* the union all simplices |[4,][4,]*
[4,]] with Ay=A. The cells {4*},, where A runs over all simplices of M, is
called the dual cell subdivision of 7. Then

X= UA:edgesof XA* ’

is a simple 2-polyhedron [11].

V-V

Fig.

Turaev and Viro introduced 3-type moves £, M and B on simple 2-poly-
hedra (See Fig. 5). Essentially these moves were considered by S. Matveev
[6]. It is seen that the dual picture of Alexander moves are transformed one
to another by a finite sequence of these 3-type moves. Turaev and Viro show-
ed the following theorem using a result of S. Matveev [6] in his study of special
spines of 3-manifolds.

Theorem(Turaev-Viro). Let M be a compact 3-manifold with triangulat-
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ed boundary. Then any two special spines of M can be transformed ome to another
by a sequence of 3-type moves L*, M+ and B=*.

So Turaev and Viro translated their state sum invariant into the ‘dual’
language, and checked the invariance under 3-type moves. We can also carry
out a dual approach to prove the topological invariance of the Dijkgraaf-Witten
invariant since moves ., M and B are natural with respect to orientations.

Let M be a triangulated compact oriented 3-manifold. We denote by X
the simple 2-polyhedron obtained from M by the dual cell subdivision as above.
For a colour ¢ €Col(M, 1), we define a map

@*: {the oriented 2-cells of X} > G

as follows: For any 2-cell F of X there exists a unique edge E of M such that it
intersects transversely with F at only one point. For an oriented 2-cell F of
X, we choose the orientation for E such that it is compatible with the orientation
for F. Then we put @*(F)=¢(E). We call ¢* a colour of X. For a colour
@* of X we define a map

dp*: {the oriented edges of 0X}—G

as follows. For an oriented edge I'" of 8.X there is a unique 2-cell F of X such
that T is in the closure of F. When we choose the orientation for F such that
it is compatible with that for T', we put (8p*)(T")=@*(F). We can easily check
that 8p*=0+* for any @, Y»&Col(M, 7). So we denote 9p* by 7* for a colour
@ECol(M, 7). We call 7* a colour of 3X. For a colour 7* of X by Col(X, 7*)
we denote the set of all colours @* of X such that 0p* equals to 7*. Since the
3-simplices o of M are in one-to-one correspondence with vertices @ of X—a.X,
we can use the notation W(a, ¢*) for W(o, @). Let a,, -+, a, be the vertices of
X—0X. Then we define a complex number Z,(7*) by the following formula:

Zy(¥) = @ axrxen > 1I W(a,, @*)%
$*€Col(X,T%) i=1 v ’
where w=+/|G|, and X(X), X(0X) are the Euler characteristics for X, 8X
respectively. The Dijkgraaf-Witten invariant Z,(7) is related to Zx(v*) by
the following identity:

Zx(t*) = w'Zy(7),

where e is the number of vertices of 0M.

Then the invariance of Zy(7) under the moves .L* is derived from the
definition of orientations for 3-simplices of J/ and the condition for &; in the main
theorem. The invariance of Z,(7) under the moves H* is derived from the
3-cocycle condition for . The invariance of Z,(7) under the moves B* is de-
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rived from the factor % in the main theorem.

|G

4.2. Examples. In this subsection, we give some examples for calcula-
tions on the Dijkgraaf-Witten invariant. When M is a closed oriented 3-
manifold, we denote the Dijkgraaf-Witten invariant of M by Z(M). We use this
notation to the end of this paper. We begin with the following proposition.

Proposition 4.1. Let a be a 3-cocycle of the cochain group C*BG, U(1)).
Let M be a closed oriented 3-manifold. Then the invariant Z(M) depends only
on the cohomology class of a.

Proof. Let T be a triangulation of M. For any B€C¥BG, U(1)), we
we put a’=adB. Then we get

a'([glh|k]) = a(lg| k| k)3B([g| k|K]) = a((g| k| k)B(B[2| kI k])

o tata BEIEDBE BE])
S PV PIL]

We give an order to the vertices of T in order to calculate Z(M). Let
oy, ***, o, be all the 3-simplices of 7. It is sufficient to prove that for any
colour @ € Col(M),

(41) I Wo, o) = 1L W(ay, 9)%,

where W(o;, @) and W'(c;, @) are complex numbers with norm 1 given by o
and o’ respectively.

For a 2-simplex F=|v09,| (v,<v,;<<v,) of T, we define W(F, ) by
B([@(Kvo, v) | p(<2y, v2)])

Once given each 2-simplex F of T, there are exactly two 3-simplices o, o’
of T which have F as a 2-face, because M is a closed 3-manifold. We give an
orientation for F in the ascending order with respect to the vertices. If the
orientations for ¢ and ¢’ are compatible with that for M, the orientations for
F induced from them for ¢ and ¢’ are not compatible. If the orientation for
o is compatible with that for M but the orientation for &’ is not, then the
orientations for F induced from them for ¢ and o’ are compatible.

Now for o;= | ,010,0;| (Vo <, <0,<v3), We put Fyp=|v0,03|, Fy=|v0,0s],
F,=|vy0,03| and Fy=|9,0,9,|. Then we have

W(F i0> fP) W(F i2 ¢’) .
W(F il ¢’) W(F i3 <P)

W(oy @) = W(o, )

We define &;,(i=1, -+, n, j=0, 1, 2, 3) as follows:
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P {1 if the orientation for F;; is compatible with that induced from o,
#|—1 otherwise.

Then we have
’.]j; W’(o-i’ ¢)e‘ = ‘Ij; W(o-,-, ¢)ei jl;Ic W(Fij’ ¢)e,. .

Since we obtain []7.: IT3.1 W(F; i» @)%=1 from the above explanation, we have
the identity (4.1). This completes the proof.

The Dijkgraaf-Witten invariant has the following properties.

Proposition 4.2.
(1) Let M be a closed oriented 3-manifold. We denote by —M the closed
oriented 3-manifold with the opposite orientation. Then we have

Z(—M)=Z(M).
(2) Let M, and M, be closed oriented 3-manifolds. Then for the connected
sum M, §M,, we have
1
‘l—G“IZ(Ml #M,) = Z(My)Z(M,)

This proposition can be proved from the definition of the invariant by an
elementary method using 3-cocycle conditions, repeatedly. But since we prove
this proposition from a functorial viewpoint of the Dijkgraaf-Witten invariant,
we leave our proof to the end of the subsection 4.4.

Calculations of the Dijkgraaf-Witten invariant for some closed 3-manifolds
have been already described in their paper [4]. For example, we have

Z(S%) = I_éT Z(S?x SY) = 1

and

Z(Slx Slx Sl) — L E a(g’ h’ k)a(h’ k’ g)a(k’ i’ h)
' | [gthi”.h,;k]i(:h,g]:l Ol(g, k) h)O((h, 8 k)a(k: )g)

for any cohomology class [a]e H*BG, U(1)).

We calculate the Dijkgraaf-Witten invariant for the lens space L(p, 1) using
a singular triangulation [11]. Regarding the lens space L(p, 1) as a quotient
space of a 3-ball D? (See [10]), we make a singular triangulation for L(p, 1) as in
Fig. 6. Then there is a unique colour @ of this singular triangulation of L(p, 1)
such that @(<v,-,, v,0)=g, @({v), v,40)=h and @(Kv,y, v,4a>)=1 for any g, h
and /€G. If the 3-simplex |v,_,9,0,.,9,+,| determines an orientation for
L(p, 1), then we have



D1kGRAAF-WITTEN INVARIANT FOR 3-MANIFOLDS 689

Z(L(p, 1))
_ 1 > a(g, h, k)a(g, gh, k)---a(g, g 7%h, k)
|G|? ehice a(g™, b k)

a(g™ k1)
a(g’ h, l)a(g7 gh’ l)'"a(g: gp—zh’ 1) ’

where k=h""ghl.

Up+2

vp+3

Fig. 6

Now we consider the case where G is the cyclic group Z,, of order m. It is
well known that H¥BG, U(1))=Z,. The cohomology group H3BG, U(1))=<
H3(G, U(1)) is generated by the cohomology class of « defined as follows (See

[8D:
2mN 1 et 2 E)

mz

a: GXGxG—=U(1), a(g, g, £s) = exp(

where g;€ {0, 1, ---, m—1} is a representative element for each z (i=1, 2, 3).
In particular, in the case where G=Z,, we have

Lip(—1yy ifp=2m,
Z(L(p, 1) = {}

1 if p=2n-+1.
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with respect to the above a.
In the case where G=Z,, and p— 1=m, we have

210, 0) = 55 8 expTY L (R4 2h(m— ) cos(PTY Ly 4 1
k=1 m m m
with respect to the above a.

REMARK. Recently H. Marakami, Ohtsuki and Okada[9] introduced an
invariant of 3-manifolds derived from linking matrices of framed links. Let
M be a closed oriented 3-manifold obtained from the standard 3-sphere S® by
Dehn surgery along a framed link L with n#-components. Let ¢ be a primitive
m-th (2m-th, resp.) root of unity for an odd (even, resp.) positive integer m.
Then their invarinat is given by the following formula:

. ) — Gm(q) (4) B-n flAl
Zn(M; q) = (m) |Gulg) ™" CEZ.L),, e,
where G(9)=4ez,q" (a Gaussian sum), 4 is the linking matrix of L, [ is re-
garded as a column vector and ¢/ is its transposed row vector.

They examine a relation between their invariant and the Dijkgraaf-Witten
invariant in the case where G is a cyclic group and M is closed. This relation
is given by the following identity: For a closed oriented 3-manifold M ob-
tained from S® by Dehn surgery along a framed link with #-components,

if m is odd, Z(M)=—"-Z,M; g),
if m is even, Z(M)=%Zm’/z( M; q)Z(M; q(-mzm)’

where Z(M) is calculated using the above [a]€H¥Z,,, U(1)) and ¢ is an m?-th
primitive root of unity.

4.3. The Topological Quantum Field Theory. The construction of
the Dijkgraaf-Witten invarijant of a 3-manifold with boundary gives an example
of a 2-dimensional topological quantum field theory[2]. We see this by means
of a Turaev and Viro’s method. But we need to normalize the Dijkgraaf-Wit-
ten invariant in the following way. We denote the number of vertices of M
by e, in the statement of the main theorem. Then we put

Zi(t) = w'Zy(r), where w =V |G]|.

The complex number Zj(7) does not depend on the choice of triangulation
of M whenever we fix a triangulation of M and & Col(dM).

For each triangulated closed oriented surface 3, we define a finite dimen-
sional vector space V(Z) to be the vector space freely generated over C by the
colours of 3. If Z=4¢, then we put V(Z)=C. For a cobordism W=(M; 3, 3,)



Di1jkGRAAF-WITTEN INVARIANT FOR 3-MANIFOLDS 691

between triangulated closed oriented surfaces 3; and 3, where the orientation
for 3, is compatible to that induced from the orientation for M and the orienta-
tion for 3, is not, we have a C-linear map ®y: V(Z,)—V(3,) defined by the for-
mula

Dy (1) = e g}l( o Zu(tU w)p

where 7 is s colour of 3, and 7U uECol(dM) is the colour determining by T
and p.
The following proposition is a consequence of the main theorem.

Proposition 4.3. For any cobordism W=(M,; 3,,3.,) between tringulated
closed oriented surfaces =, and 3,, the linear map Dy : V(Z)—>V(Z,) does not de-
pend on the extension of triangulations of 3, and =, to M involved in the definition

of ®y.

By the definition of @y, composing cobordisms Wy=(M,; =, 5,) and W,=
(M,; =, Z3), we have

Proposition 4.4. Dy,.;,= Dy, Dy,.

REMARK. If one uses Zy(7) instead of Zj(7) in the definition of @y, we get
Dy, = | G | '@y, oDy, where b is the number of vertices of =,.

For any triangulated closed oriented surface 3, we denote by ids the iden-
tity cobordism. Then we put

Hs = V(Z)/Ker @y, .
From Proposition 4.4, we obtain the following lemma.

Lemma 4.1. For any cobordism W between triangulated oriented closed
surfaces 2, and =,, the map Dy : V(Z,)—>V(Z,) induces a C-linear map Zy : Hs,
—Hs, with the following properties :

(1) Let Wy=(M,;2,,%,) and W,=(M,; =,,3;) be cobordisms between

triangulated oriented closed surfaces. Then we obtain that Zy,.n =
Zy,o Ly,

(2) For any triangulated oriented closed surface 3., we obtain that Z, =

idy,.

The vector space Hs does not depend on the choice of triangulation of an
oriented closed surface 3, in the following sense. We explain this in the same
manner as Turaev and Viro [11]. For any triangulation of 3, there exists a tri-
angulation of 3% [0, 1] coinciding on % X0 and 33X 1 with these given triangu-
lations. It determines an isomorphism between the Hy’s which are defined via
these triangulations of 3 by Lemma 4.1. By Proposition 4.4, this isomorphism
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does not depend on the choice of triangulation of 3x[0,1]. We will identify
the spaces Hy defined via different triangulations of =, by this isomorphism.

In this manner, we obtain a functor Z from the category such that objects
are closed oriented surfaces and morphisms are cobordisms between them to
the category such that objects are finite dimensional vector spaces over C and
morphisms are C-linear maps. This functor Z does not depend on the choice of
triangulation in the sense that there exists a canonical natural transformation.

Proposition 4.5. The functor Z satisfies the axiom for the 2-dimensional
topological quantum field theory.

Proof. It is easy to check the Multiplicativity axiom for Z by the defini-
tion of V(Z). Thus from Lemma 4.1, we have only to check the Involutory
axiom for Z.

Let 3* be the triangulated closed oriented surface with the opposite orien-
tation for 3. Then clearly, V(Z)=V(Z*), by the definition of V(Z). We
define a map @: V(=*)—>V(Z)* by

no__ ’
@O)@)=, 5 3 ahZison(mU)
for v=>uecors) awpEV(Z) and v'=iecors) by € V(Z)where a is the complex
conjugation of au.. From the fact that ®@;,5(9)=0 if and only if ®;,,(v)=0,
where 9=>aupu for v=32] aup, it follows that the map ¢ induces a C-linear map
@: Hss—H%, where H% is the dual space of Hs.

To show that @ is an isomorphism, we construct the inverse map for .
Since @;;,0®;4,=®;4;, We have a direct sum decomposition: V(Z)=Im ®5®
Ker @s. Under this decomposition, the natural projection p: V(3)—Hsy is the
first projection Im &;; BKer @,y —>Im @, =H;. Since Im &,  is generated
by {®@;s5(7)| 7€ Col(Z)}, (Im @, )*==HY is generated by {r*|r& Col(Z)}, where
T*(w)=Z35x10,1(7 U p) for any p & Col(Z).

Putting

(3 am)=[ 3 anl,
TE€Co1(2) TECOI(2)
this correspondence induces a well-defined map vr: H¥=<(Im ®;,,)*—>H3.. Then

@ and  satisfy that @oyr=id and Jyop=id. Therefore, we obtain a canonical
isomorphism between Hs« and H%. This completes the proof.

4.4. Representations of Mapping Class Groups. In this section, we
consider the group I':=Homeo"(Z)/~ consisting of isotopy classes of orienta-
tion preserving homeomorphisms on an oriented closed surface X. By means
of Tureav-Viro’s method, we can construct a representation of I' associated
with the Dijkgraaf-Witten invariant.
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Let = be a closed oriented surface and %: S—3, an orientation preserving
homeomorphism. We fix a triangulation of =. Then we define a C-linear
map ky: V(2)—V(Z) by

hy(7) = “E(‘%@) Zsxna(R(T)U p)p

for any 7€ Col(Z). Here A(7) is a colour of = defined as follows: A triangula-
tion of %,=73,% 0 is induced from the given triangulation of 3 and the homeo-
morphism 4. Then for each oriented edges E of =, we define A(7)(E) by A(7)(E)
=7(h~(E)).

Now we have the following lemma from the main theorem and the defini-
tion of A4,.

Lemma 4.2. Let = be a triangulated closed surface. If k and g are piece-
wise linear orientation preserving homeomorphisms on =, then (ho g)y=hyo g;.

Let = be a closed oriented surface and / an orientation preserving homeo-
morphism on 3. For a triangulation 7" of =, we denote by 7" the triangulation
of 3 induced from T and 2. We define a C-linear isomorphism &*: V(=; T')—
V(=; T") by h¥r)=h(r) for any colour r&Col(Z; T'), where Col(Z; T') and
V(Z; T) stand for the set of colours and the vector space determined by the
triangulation T as in above, respectively. Considering the cobordism W=(Z X
[0, 1]; =% 0, =X 1) such that triangulations of X0 and %X 1 are 7" and T re-
spectively, we have

h‘ = @Woh' .

Since Z%x10,11(7 U w)=2Z%x10,11(k(7) U A()) for any p, r€Col(=Z; T'), the C-linear
isomorphism A* induces a C-linear map Hs—Hs. Thus A induces a C-linear
map hy: Hs—Hs. The map 4, does not depend on the choice of triangula-
tion of 3 in the previous sense. The identity (kog)y=hyo g3 implies (hog)y=
hyogy. Furthermore, id*:id,,z. Therefore 4y is an isomorphism for any ori-
entation preserving homeomorphism 4.

Lemma 4.3. If orientation preserving homeomorphisms h and g on an orien-
ted closed surface 3. are isotopic, then hy=g,, and therefore hy—=gy.

Proof. Let H: 3 X [0, 1]=3 be an isotopy between % and g.  Then there
exists a homeotopy H: =X [0, 1]->=x[0, 1] such that Hy=ids and H,oh=H,,
where ﬁ(x, t):(Ht(x), t). In particular, H,thg. Since H, is an orientation
preserving homeomorphism, we have Z5 g0 11(A(7) U u)=Z%x10,1(g(7) U ). This
completes the proof.

The above construction of the linear map Ay : Hs;—Hj enables us to obtain
a linear representation of I'.  More precisely we have the following proposition.
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Proposition 4.6. Let 3 be a closed oriented surface. We put T :=
Homeo*(Z)|~. We define a map p: T'—>GL(Hs) by p(h)=hy, then p is a repre-
sentation of T".

Proposition 4.7. Let =, be a closed oriented surface and f: S—3, an orienta-
tion preserving homeomorphism. We define the mapping torus 3, by identifying a
point (x, 0) with a point (f(x), 1) of Zx[0,1]. Then we have

Z(3s) = Trace(fy) .

Proof. We fix a triangulation T of 5. By 7" we denote the triangulation
of ¥ induced from T and f. We put W,=(M,=3X[0, 1]; ¢, =x {0, 1}), where
triangulations of %X 0 and XX 1 are T and W,=(M,=3X[0, 1]; =% {0, 1}, ¢),
where triangulations for X0 and X1 are T and T respectively. Then we
can regard 3, as MU M,, and the linear map Zy,: C>Hi®H; and Zy,: H¥®
Hs—>C as vectors in HEQH; and (H¥@H;s)*=H;QH% in a usual way respec-
tively. Since the functor Z satisfies the axiom for the topological quantum field
theory, we have

2(3s) = Zwy Zwyp »

where <, > is the natural pairing.

Let ¢, +-+, e, be a basis for Hs and e¥, -+, eX the dual basis for H¥. 'Then
we obtain Zy =3, efQe,EHEQH: and Zy, =311 ;.1 f;;6,Qef €EH;QHE,
where fx(e;)=2>37-1 f;;¢; Therefore we have

Z(Z)) = <3 et ®e;, 33 fuyei®@ef> = 3} fu = Trace(fy) .

This completes the proof.

In particular, for a closed oriented surface 3, taking the identity map on %
as f in the statement of the above proposition, we get the following corollary.

Corollary. Let 3, be a closed oriented surface. Then we have Z(Z X S')=
dim Hs.

ReMARK. In the case of the Dijkgraaf-Witten invariant, since Hy=<Im &®;,
and @y 0®@; =Py, for a triangulated closed oriented surface =, we have
dim Hy=rank ®;; = Trace(D;s,).

Finally, we give a proof of the proposition 4.2.

Proof of the proposition 4.2. The first part of the proposition is immedi-
ately proved from the definition of the invariant. We show the second part of
the proposition. Since dim Hsgz=1 form the above corollary, the vector space
Hgz is generated by a vector e in Hgz. We denote the dual basis of for e by e*.
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We regard M, and M, as (M;—IntD})U D} and (M,—IntD3)U D3}, respectively,
where D} and Dj are 3-balls. We put W=(M,—IntDj; ¢, 0Di=S?, W,=
(M,—1IntD3; 8D3=<S?, ¢), Wy=(D3; 0Di==S?, ¢) and W,=(D3; ¢, 0D3==S?).

Regarding the linear maps Zy,, Zy,, Zy, and Zy, as vectors in Hs,, H %2,
H%: and Hg> we write for Zy, =ae, Zy, =ae*, Zy,=be* and Zy =be, respec-
tively. We get S® by identifying the boundaries of D} and D3 in a natural way:
S:=D3U Di. Then we have

Z(M,) = <ZW,, Zw,> = Lae, be™> = a)by,
Z(My) = <Zy,, Zyy = <be, ae*> = ab,
Z(S%) = <ZW4’ ZW3> = <bye, be*> = bb, .

When we regard M,$#M, as (M,—IntD}) U (M,—IntD3), we have Z(M,§M,)=
{ase, a,e*>=a,a,. Since Z(S3)=TC1TI, we obtain
1
I—G—IZ(MlﬂMz) = Z(M)Z(M,) .

This completes the proof.
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