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0. Introduction

Hyperbolic complex manifolds have been studied extengiekiring the last 30
years (see, for example, [10], [11]). However, it is still emportant problem in hy-
perbolic geometry to understand the algebro-geometric theddifferential-geometric
meanings of hyperbolicity. The use of jet bundles has becarmewerful tool to attack
this problem. For example, Green and Griffiths ([5]) exptgiran approach to estab-
lish Bloch's Theorem on the algebraic degeneracy of hol@maor maps into abelian
varieties by constructing negatively curved pseudonetoic jet bundles and by apply-
ing Ahlfors’ Lemma. Siu and Yeung ([22]) succeeded in cargybut this approach by
generalizing the notion of strictly negative curvature. Bmrer, a Second Main The-
orem for divisors in abelian varieties was claimed in ([2BY)t properly proved only
recently by Noguchi, Winkelmann and Yamanoi ([18]), whooatgeneralized the claim
to the case of semi-tori.

Demailly ([2]) presented a new construction of projectie¢sjand pseudo-metrics
on them which realizes directly the approach to Bloch’s theo given in [5]. These
projective jets are closer to the geometry of holomorphicves than the usual jets,
since the action of the group of reparametrizations of geofmsurves, which is geo-
metrically redundant, is divided out. Using these pseuddoseon projective jets, De-
mailly and El Goul ([3], see also McQuillan ([13])) were able show that a (very)
generic surfaceX in P® of degreed > 21 is Kobayashi hyperbolic. As a corollary one
obtains that the complement of a (very) generic curvé®inof degreed > 21 is hy-
perbolic and hyperbolically embedded, a result first probgdSiu and Yeung ([20])
for much higher degree, using jet bundles and value digtabuheory. In both papers
this quasi-projective case is treated by proving hypeciigliof a branched cover over
the compactification.

However, it is desirable to have also a direct approach td wéh quasiprojec-
tive varieties, since one can hope to get easier proofs aed better results So
one should also consider the case of logarithmic jet bundeguchi generalized the
Green-Griffiths jet bundles to the logarithmic case in [1&$ a first in this regard,
and used it to prove the logarithmic version of Bloch’s tlorwith an approach that

1Actually, El Goul told the first named author that, using tksults of this paper, he succeeded to
drop the degree in [3] from 21 to 15.
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started in [14] independently from and earlier than that oéeh-Griffiths ([5]).

The main purpose of the present paper is to generalize Dgimaibnstruction of
projective jet bundles and strictly negatively curved mhkeuetrics on them to the log-
arithmic case. In Sections 1 to 3, we establish this logamithgeneralization of De-
mailly’s construction explicitly via coordinates, just &oguchi’s generalization of the
jets used by Green-Griffiths. These explicit coordinatesukh be very useful for fur-
ther applications. We also have another, more intrinsic veagbtain the same gener-
alization in [4], which is much shorter, but does not give rclioates right away. In
Section 4 we prove the Ahlfors Lemma and the Big Picard Theofer logarithmic
projective jet bundles.

In Section 5, we use our method to give a metric proof of Lar@@mjecture for
semi-abelian varieties and of a Big Picard analogue of &, rtiost relevant previous
works for the latter are by Noguchi ([15]) and by Lu ([12]). &liirst result is due
to Siu and Yeung ([21]) and Noguchi ([17]), who used valudritigtion theory while
we use negatively curved jet metrics. However, a commonetfignt, due to Siu and
Yeung ([21]), is to construct a special jet differential fat naturally lives on the jet
space constructed by Demailly) from theta functions on aeliai variety, the exis-
tence of which on a semi-abelian variety we cite from Nogu(hi’]). Hence, the
main importance of this section is the method of proof. Int,face have to overcome
some small technical difficulties to make our method workliis tcase: For example,
we have to introduce d-operator for sections over logarithmic projective jet tias,
and we have to deal with the case of a divisor which can haveevsingularities than
normal crossing, and with the precise relations betweendifferent logarithmic struc-
tures (the one coming from the boundary divisor of a semliabevariety, the other
coming from its union with an arbitrary reduced algebraicistir). In this way, Sec-
tion 5 can also serve as a complement to Sections 1 to 4.

We would like to thank J.P. Demailly and J. Noguchi for mangcdssions on this
subject. We also would like to thank the JSPS, the SFB, the ,OR6& MSRI and the
universities of @Gttingen, of Waterloo and of Osaka for their support during prepa-
ration of this work. Finally we would like to thank the referéor his proposals, which
led to a substantial improvement of this article.

1. Log-directed jet bundles

1.1. Logarithmic jet bundles In this subsection we recall some basic setup
and results of Noguchi in [16]. For the proofs we refer to thisicle. Furthermore,
in Sections 1 to 3 we denote open subsets of a manifoldohyin order to distin-
guish them from open neighborhoods of a given point, usualth fixed coordinates
centered at this point, which we denote by

Let X be a complex manifold. Let € X. We consider germg : (C, 0) — (X, x)
of holomorphic curves through. Two such germs are considered to be equivalent if
they have the same Taylor expansions of orklén some (and hence, any) local co-
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ordinate aroundr. Denote the equivalence class ¢f by ji.(f). We defineJ, X, =
UeHOIf  (C,0) — (X, x)} and [y X = Uyex i X,. Let 7 : X — X be the natu-
ral projection. Then/, X carries the structure of a holomorphic fiber bundle o¥erit

is called thek-jet bundleover X. If no confusion arises, we will denote the sheaf of
sections ofJ, X also by J, X. There exist, fork > [, canonical projection maps

(1.1) i kX = X5 k() = a(f),

and J1 X is canonically isomorphic to the holomorphic tangent bantllX over X. If
F : X — Y is a holomorphic map to another complex manifdid then it induces a
holomorphic map

(1.2) Fo: kX = LY, jil(f) = jk(Fo f)

over F.

Let QX be the holomorphic cotangent bundle ov€r Take a holomorphic sec-
tion w € HY(O,QX) for some open subse® C X. For ji(f) € JiX|lo we put
f*w = Z(t)dt. Then the derivativesd( Z/dt/)(0), 0 < j < k — 1 are well defined,
independently of the representatiyefor j.(f). Hence, we have a well defined map-
ping

dj
(L3) 51 IXlo — C ju(f) > (—Z(O))
dt 0<j<k—1

which is holomorphic. If, moreoverp?!,... »" with » = dimX are holomorphic 1-
forms on O such thatw! A --- A @" does not vanish anywhere, then we have a bi-
holomorphic map

(1.4) @ ....8") x 7 K Xlo — (C)' x 0

which we call thetrivialization associated withw?,... »". More generally, ifw is a
section overO in the sheaf of meromorphic 1-forms, then the mapdéfined as in
equation (1.3) induces a meromorphic vector valued functio

(1.5) & kX|o — Ck.

Let X be a complex manifold with a normal crossing divisbr This means that
around any pointc of X, there exist local coordinates, ..., z, centered atc such
that D is defined byzizo ...z = 0 in some neighborhood of and for somel < n.
We note that/ depends onx, which is implicitly assumed. The paiX( D) will be
called alog-manifold Let X = X \ D.

Following litaka ([7]), we define the logarithmic cotangesfteafQX = Q(X,log D)
as the locally free subsheaf of the sheaf of meromorphicrihdoon X, whose restric-
tion to X is QX (where we identify vector bundles and their sheaves of es}iand
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whose localization at any point € D is given by

1 n
_ dz;
(1.6) QX, =) Ox,—+ > Ox.dz,
— Zi -
i=1 j=l+1
where the local coordinates, ..., z, aroundx is chosen as before. Its dual, the log-

arithmic tangent sheal X = T'(X, —logD), is a locally free subsheaf of the holo-
morphic tangent bundlg X over X. Its restriction toX is identical to7TX, and its
localization at anyx € D is given by

l
(1.7) TX, = Zomz,-% +Y Ox i

i=1 LojEn

Given log-manifolds X’, D’) and (X, D), a holomorphic mapF : X’ — X such that
F~'D c D’ will be called alog-morphismfrom (X’, D) to (X, D). If no confusion
arises, we will simply writeF : X’ — X for the log-morphismF : (X', D) — (X, D).
It induces (see [7]) vector bundle morphisms,

(1.8) F*:QX - FIQX' - QX' andF, : TX — F'TX - TX,

where we have again identified locally free sheaves and véctodles.

Let s € H(O, J,X) be a holomorphic section over an open subSet X. We
say thats is alogarithmic k-jet field if the mapdios|o : O’ — C* is holomorphic for
all w e H°(0’, 2X) for all open subset®)’ of O and where the map 7s defined as
in equation (1.5). The set of logarithmicjet fields over open subsets af defines a
subsheaf of the sheaf, X, which we denote by/,X. By a) of the following propo-
sition, J; X is the sheaf of sections of a holomorphic fiber bundle a¥erwhich we
denote again by/; X, and which we call thdogarithmic k-jet bundleof (X, D).

Proposition 1.1 (see [16]). a) J:X is the sheaf of sections of a holomorphic
fiber bundle overX. (However, it is only a subsheaf and not a subbundle/of.)
b) We have a canonical identification @ X)|x with J,X.
c) Let O C X be an open set and be any meromorphic function o® such that
the support of its diviso(6) is contained inD. Let d'log# be thel-th component of
the map® : J;X|o — Ck, where® = dlogé (seeequation (1.3)and (1.5)). Then the
differentials 4 logé, [ = 1, ..., k, define holomorphic functions o#; X|o. Moreover,
outside the support of), we have(d’ log9)(ji(f)) = {(d' log(® o f))/dt'}(0).
d) There exists, fok > I, a canonical projection mapr,; : JiX — J;X, which
extends the mam; ;|;,x) : it X — J;X (seeequation (1.1))and J;X is canonically
isomorphic toT X.
e) A log-morphismF : X’ — X induces a canonical magy : J;X' — J;X, which
extends the magy|, x : /X' — JirX (seeequation (1.2)).
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Finally, we want to express the local triviality af X explicitly in terms of
coordinates. Letzs,...,z, be coordinates in an open s&t C X in which D =
{z122...77 = 0}. Let 0! = dz1/z1,..., 0" =dz/z, o =dzs, ..., 0" = dz,. Then
we have a biholomorphic map (see equations (1.4) and (1.5))

(1.9) @ ....a") x 7 Tk X|ly — (C*)" x U.
Let s € HO(U, JX) be given bys(x) = (Z(x); x) in this trivialization with

where thez;(x) are holomorphic functions oV and the indicesj correspond to the
orders of derivatives. Then the samgconsidered as an element 8°(U, J,X) and
trivialized by w! = dzl, ...,o" =dz, (see equation (1.4)) is given byx) = (Z(x);x)

with Z = (Z1)i=1,...nij=1.. ks Where
. zi-(Zi+gi(Zt,....Z ) i<l
(1.10) zi=1" (2] + 2 ! j-1) .
Z, i>l+1
Here, theg; are polynomials in the variablez!, ...,Z" , Wwith constant coefficients

and without constant terms (in particulgi = 0), WhICh are obtained by expressmg
first the different componentzl of ((dz;/z;)") o s(x) in terms of the componentZl
of dz; o s(x) by using the cham rule, and then by expressing leeln terms of the
Z; by inverting this system of polynomial equations. This ifi@s equation (1.13) in
[16], where, fori <, only the leading ternz; Z; is given. This also exhibits the sheaf
inclusion J, X |y C JiX|y explicitly in terms of coordinates. By abuse of notation,
we also consider thij.’s as the holomorphic functions defined onX|y given by
equation (1.9), so thaZ},..., Z};z,...,z, form a holomorphic coordinate system
on 7kX|U-

We remark that a trivialization of . X|y is also obtained if we replace the special
w’'s used in equation (1.9) by any', ..., " € HO(U, QX) with

a(x)

(1.11) WA A = ——L i A Adzy,
2132 ... 21

wherea(x) is a nowhere vanishing holomorphic function 6h

1.2. Log-directed jet bundles We first follow Demailly ([2]). LetX be a com-
plex manifold together with a holomorphic subbundte c T7X. The pair §, V) is
called adirected manifold If (X, V) and (, W) are two such manifolds, then a holo-
morphic mapF : X — Y which satisfiesF,(V) c W is called adirected morphism

Let (X, V) be a directed manifold. The subsétV of J;,X is defined to be the
set of k-jets ji(f) € JiX for which there exists a representatiye: (C, 0) — (X, x)



190 G.-E. XTHLOFF AND S. S.-Y. Wy

such thatf’(r) € Vy( for all ¢ in a neighborhood of 0. We will show in the next
subsection that/, V is a fiber bundle oveX, which we call thedirected k-jet bundle
JV oof (X,V). If F:(X,V)— (¥Y,W) is a directed morphism, then equation (1.2)
induces a holomorphic map

(1.12) Fe: IV — IW 5 jkl(f) = je(Fo f)

over F, since the restriction of} : Jy X — J,Y to J;V maps toJyW as (Fo f)(t) =
Fu(f'(1)) € Wropy I /() € V.-

We now generalize Demailly’s directektjet bundles to the logarithmic context.
We define alog-directed manifoldto be the triple X, D, V), where , D) is a log-
manifold together with a subbundlé of TX. A log-directed morphisnbetween log-
directed manifolds X, D', V') and (X, D,V) is a log-morphismF : (X, D) —
(X, D) such thatF, (V) c V.

Let (X, D, V) be a log-directed manifold and s& = V|x. By Proposition 1.1
we can canonically identify f; X)|x with J,X. Hence, the directed-jet bundle J;,V
of (X, V) can be considered as a subset of the logarithtrjiet bundle J; X over X.
We define thelog-directed k-jet bundle J;V of (X, D, V) to be the topological clo-
sure .V C JyX of J,V in I, X. If F:(X,D,V)— (X,D,V) is a log-directed
morphism, it induces a map

(113) Fi . 7/(‘// — 7kV

over F which is holomorphic. It is the restriction of the canonicafp F; : /X —
JiX' (see Proposition 1.1) td,V’ and is also an extension of the map|x : iV’ —
JiV (see equation (1.12)) ta,V’.

1.3. Structure of log-directed jet bundles In this subsection, we study the lo-
cal structure ofJ,V C JiX over X. In particular, we show thafl,V c J;X is a
submanifold of J; X which itself is a locally trivial bundle. This justifies theame of
log-directedk-jet bundle forJ,;V introduced in the previous subsection.

First, we consider the directed manifol®,(V). For any pointxg € X, there is a
coordinate systemz{, ..., z,), centered atyyg, on a neighborhood/ of xo such that
the fibersV, for x € U can be defined by linear equations

3
(1.14) vx:ig:;ng,a—a ‘ Ei:lgm-aim(mm fori:r+1,...,n}.

We fix xo, U and these coordinates from now on. If we trivialiZ& = J1X by w! =
dzi,...,o" =dz, over U as in equation (1.4), we obtain

(1.15) Vx:{(z},...,zg) ‘ Zi= > aim(x)Zy fori:r+1,...,n}.

1<m<r
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If we trivialize J, X by the same forms, we obtain more generally:

Proposition 1.2. a) Let P/ be the polynomials in the variablezj. with coeffi-
cients depending holomorphically on obtained by formally differentiating the equa-
tions

0= an(fFO) 40

1<m<r

h — 1 times with respect te, using the fact thale.(jk(f)) = fl.(j)(t) in our trivializa-
tion. Then we have

(V) =Z))i=tmjmrn | Zy = PR, Zs o 285 2y g, e

(1.16) e Z) 2 Zyforh=1, .k, i=r+1..., n).
b) JV C JiX is a submanifold, and the canonical projection
K:U—=C'; (21 .h20) = @10y 20)
induces a bundle isomorphism
K JiV|g = K YJC).

Proof for a). Letji(f) € JiV. By definition, there exists a representatifesuch
that f'(r) € Vg for all ¢ in a neighborhood of @ C, namely

£0= 3 an(fO) 0.

1<m<r

Now it follows from the chain rule thaji(f) satisfies equations of the form, = P},
h=1 ...k, i=r+1 ..., n, given in equation (1.16).

Conversely IetZ’Ji €eC,i=1...,n, j=1,...,k be given satisfying the equations
Z,=P,,h=1,...k, i=r+1,...,n of equation (1.16). Fox € X fixed, define, for
i=1,...,r, holomorphic functions

k .
Zl
[iiC—=>C;t— zi(x)+ E —Ivt".
v!
v=1

Now we integrate the system of differential equations

F@= " am(fA@), - L)) i=r+1,.. 0,

1<m<r
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to obtain a germf : (C,0) — (X, x) with z;(f) = fi, i = 1,...,n. We see by con-
struction (asf'(t) € Vy,) that

Proof for b). If one replaces successively in thg all the Z;'. with i > r+1 and
J = h—1 by their expressions in terms of th€ with i <r via equation (1.16), we
get from a) that/,V|y is the graph of these new functiod®, i =r+1,...,n, h =
1,...,k in the variableszy, ..., z, ande., i=1...,r; h=1,...,k. These are in
turn coordinates foik ~1(J,C"). O

Let now (X, D,V) be a log-directed manifold. Letg € X and letzy, ..., z,
be a coordinate system centeredxgton a neighborhood’/ of xo where D is de-
fined by z1z2...z; = O for somel < n. If we trivialize TX = J,X over U by
ot = dz1/z1, ..., 0" =dz/zy, o = dzsa, ..., 0" = dz, as in equations (1.9) and
(1.10), we obtain

(1.17) V= {(zi, 2| Z5= ) aim(x)Zy fori € B
meA
for all x € U, where, after permutings, ..., z; respectivelyz;+1, ..., z,, we haveA =

{1,...,a,l+1,...,[+b}and B ={1,...,n}\ A with a +b =r = rankV. We fix this
setup for the rest of this section.
First, we generalize the projectioki to log-directed manifolds:

Proposition 1.3. With E = {z1...z, = 0}, the log-directed projection
K : (Y’ D’ V)'U - (CI" EvTC’) 1 (Zl’ ey Zn) — (Zlv oo Zas Z+1y ooy Z[+b)

has bijective differential magk.,), for all x € U.

Proof. We trivialize TC" by the formsw® = dzi/z1, ..., 0% = dza/za, &t =
dzise, ..., 0" = dz,. We claim thatK, is given by the projection map

(1.18) K.). : (TX), — (TC"),; (Z3,...,2Z0) = (Z3,.... 75,2, ..., Z'™)

in these coordinates. In fact, by analytic continuation uffises to prove equation
(1.18) forx € X = X\ D. Let (Z},...,2Z}) € (TX), = (TX), be a vector in the
logarithmic coordinate system. If we retrivializ& X). respectively {C")x () with the
formsdz; (i =1,...,n respectivelyi € A) instead, then the given vector is expressed
by 123, ..., 225,z ..., Z}) (see equations (1.9) and (1.10)). Furthermore, in the
latter trivialization, the mapK,), is just the projection to the components given by

So equation (1.18) follows. Hence, the assertion follovesnfrequation (1.17). O
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If we trivialize JX over U by o' = dzi/z1,...,0' = dz/z,
,w" = dz, as in equations (1.9) and (1.10), we obtain the followingeext

dZ1+1, e
sion of Proposition 1.2.

Proposition 1.4. Let the setup be as above.
a) There are polynomialgQ) in the variablesZ’j'. with coefficients which are holo-

morphic functions orU such that

(1.19) 2N 7
b) J:V C J:X is a submanifold and the projection mag defined inProposition

L Zy)forh=1,...,k, i€ B}

1.3 induces a bundle isomorphism
Ki: T Ve = K YT (C"\ E)).

By using the coordinate system,(..,z,) on U, the map

Proof for a).
Y:C"— C% (W, ..., wy) — (" ..., e™ wier, oo, wy) = (22, .05 Z0)

induces a locally biholomorphic mag : W=4(U) — U\ D. Let V = w-}V) C
T(¥~1(U)) and let Wj‘ i=1...,n, j=1,...,k be the components of the first part

of the trivialization map

(dws, ..., dw,) x 7 1 J(¥HU)) = (CN)" x W),

Lemma 1.5. On J(¥~1(V)), we have
Wi=ZioW i=1...,n j=1,... k.

Proof of Lemma 1.5. Letj(f) € J (¥~ 1(U)) and let f = (fi...., f)
(C,0) - W L(U) represent it. We putf*dw; = dfi(t) = C:(t)dt. Then we have

Wi(ik(f)) = (87 Ci(r)/dt/ }|:=0. On the other hand,
(Vo f)e' = dfi(t) = Ci(t)dt

independently of, and hence,

i=1c. .
Ziowi(n = "0 | = witio.
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Since V c T(¥ 1(V)) is the inverse image of c T(U \ D), we have
(1.20) V, = {(Wll, ) ‘ Wi = Za,-m oW(w)- Wi fori e B] ,
meA

for w e W~1(U). Using Proposition 1.2, we get that

G WL W L W) forh =1, ..k, i=r+1,...,n},

where the P/ are the polynomials in the variabIeWJ’I with coefficients depending
holomorphically onw € W~(U) obtained by formally differentiating

(1.21) F@)= D" am o W(f) - f,(1)

1<m<r

h — 1 times. The important point is now that the coefficient fiows factor through
W by holomorphic functions which are still holomorphic fol al e U:

Main Lemma 1.6. The coefficients of the polynomialy factor through ¥ by
holomorphic functions which are defined on all @f Namely,

i 1 n 1 n 1 r
Po(w, Wi, ..., W[, o W, W W W)
— i 1 n 1 n 1 r
= QG Wi, o W W, W W W)

for x = W(w) € U \ D, where theQ!, are polynomials in the variable®, with coef-
ficients which are holomorphic in on all of U.

Proof of the Main Lemma. Iix: U — C is holomorphic, we have:

Saowrmn =3 (2 ow) ey L, o 1)
ot = 9z, ot
[ a 9 ",/ B 9
=Y (-0 w) o) e+ > (-0 %) oy 30
1 n
=y (337“ - w) ORI GORAEDS (387“ o w) F@) - 100
u=1 H u=i+1 H

l n
=Y (w3 o9 ) GO 0+ 2 (552 %) G- 100
n

u=1 w=l+1 s

Now the assertion follows by induction dnas the coefficients of the polynomial
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are obtained by formally differentiating the equation iruation (1.21)42—1 times and
that the functionss;,, are holomorphic on all olJ. O

Finally we patch together these results and obtain the psb&froposition 1.4 (a):
Using Lemma 1.5, the Main Lemma and the local isomorphigms we see that this
assertion holds for alk € U \ D, with equationsz; = Q}(W(¥~(x)),... Wi..)) =
Q;;(x,...Z’j'. ...) which are independent of the choice of the local isomorphis=1.
Moreover, their coefficient functions are still holomorpliin U. SinceJ,V is defined
as the closure of/,V in J,X, the structure of the equatioris, = Q! implies the
assertion for allx € U.

Proof for Proposition 1.4 b). It is verbatim that of Propimsit1.2 b). U

1.4. Regular jets Let (X, V) be a directed manifold. The subs&tVsn c J, v
of singular k-jetsis defined to be the subset afjets ji,(f) € JiV of germs f :
(C,0) — (X, x) such thatf’(0) = 0. Its complement/, V"9 = J,V \ J,VS"9 defines
the regular k-jets

Let now (X, D, V) be a log-directed manifold. Defing,Vs"9 c J,V to be the
closure JyVsind c J,V of JVS"9 in J,V and setJ, V™= 7,V \ J,Vsin9,

Proposition 1.7. a) J;VS"9 ¢ J,V is a smooth submanifold of codimension
r = rankV. In terms of the local coordinates of,V C J;X (seeProposition 1.4),
this submanifold is given by the equations

Zi=0,i € A.

b) The bundle isomorphisnk; given in Proposition 1.4 byespects the singular and
regular jets.

Proof for a). Using equations (1.9), (1.10) and (1.17), we #wat J, V"9 in
JV is given locally by the equationgi = 0,i € A. So the assertion follows.

Proof for b). This follows directly from the proof of Proptisn 1.4 b). U

2. Log-Demailly-Semple jet bundles

A natural notion of higher order contact structures wasomhiiced on a firm set-
ting by Demailly ([2]) in the holomorphic category for theudly of complex hyper-
bolic geometry. These structures realize natural “quétispaces of directed jet bun-
dles. Demailly called them Semple Jet bundles after Senja])( who constructed
and worked with these bundles ovef. In this section, we generalize these bundles to
the logarithmic case and prove some important propertiks, functoriality and local
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triviality. Their connection with log-directed jet bundlevill be discussed in Section 3.

2.1. Definition of log-Demailly-Semple jet bundles We begin with a log-
directed manifoldXo = (Xo, Do, Vo). We inductively define X, Dy, V) as follows.
Let X, = P(V;_1) with its natural projectionr; to X; 1. Set Dy = m, *(Dy_1) and
X = Xi \ Dyi. Let Og (—1) be the tautological subbundle af *V,_1 C ‘T X;_1,
and set

@1 Vi = (@) (05, (-1)-

Equivalently, V, c TX, is defined, for every pointx( [v]) € X, = P(V_1) associated
with a vectorv e (V;_1), for x € X;_1, by

(Vk)(x,[v]) = {é S (TX/{)(X![U]) . (ﬂk)*f € CU}, Cv C (Vk,j_)x C (TXk—l)x-

Since @), : TX; — n,jlka,l has maximal rank everywhere as it is a bundle pro-
jection, we see thaV, is a subbundle off X; giving a log-directed structure fok,
and also form;, thus completing our inductive definition.

We setP,V =X;, P,V =X, PtX=P,TX and P,.X = P,TX. Let

7T_,'_k:7Tj+10-~-07Tk_107Tk:PkV—) P,V

for j < k. We also put P V), = (mox)"*(x) and (V). = Vil(p,y), for x € X.
Note that kerf). = Tp,v,5, ,v by definition. This gives the following short exact
sequence of vector bundles ovBgV:

- (m)
(2.2) 0—> T5,y/p,,v — Vi —> Op,(-1) — 0.

Furthermore, we have the Euler exact sequence for projgativbundles (applied to
the bundleP(V;_1) = Py_1V = X;_1)

(23) 0—) OFkV RN nk_lkal ® OFLV(:L) —> TFkV/Fk—lv —> 0
The composition of vector bundle morphisms oV

— ) N
OFAV(_]-) N ﬂ[le—l (1)~ (re-1)

7 0F,_y(=1)
yields an effective divisol', corresponding to a section of
(2.4) Op,y(1) @ 7, *05,_y(=1) = O(T%).

There is a canonical divisor oR;V given by

FkVSing: U JTI;(L(F/) - Fkv.
2=<j<k
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Finally, we set
PV=FVA PV and Op, (1= (Op,y (—Dip,ye) \ PiV,
where the lastP;V denotes the zero section.
2.2. Properties of log-Demailly-Semple jet bundles

Proposition 2.1. Let F: (X, D', V')— (X, D, V) be a log-directed morphism.

a) For all £ > 0 there exist log-directed meromorphic mafleg-directed morphisms
outside the locus of indetermingcy

Fe: PV, D, V,) - — (PV, Dy, Vi)
which commute with the projections, more specifically forGak [ < k — 1 one has

ko Fy=Fom),.
These maps in turn induce meromorphic maps
(F)s - OFk+1V’(_1)' > Oﬁkﬂv(_l)
(holomorphic whereF; is) which also commute with the projections.
b) If the differential mapF, : V' — F~1(V) is injective over a pointg € X, then
there exists a neighborhootl of xg in X' over which the maps; are log-directed
morphisms and the induced maps
Fi: PV — FY(P.V)

are holomorphic embeddings and the induced maps betweerblindles

(Fi)s : Op (1) = F (05, (-1))
over these embeddings are injective.
c¢) If the differential mapF, : V' — F~L(V) is bijective in a pointxo € X, then
there exists a neighborhootl of xg in X' over which the maps; are log-directed

morphisms and the induced maps

Fi: PV — FY(PV)
(Fo)« : Op, v (-1) > FHO5p,_y(-1))

are all bundle isomorphisms ovér.
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Combining Proposition 2.1 with Proposition 1.3 yields tr@ldwing, which we will
use in the next section to study,V by studying K—*(P;(C" \ E)):

Proposition 2.2. Let (X, D, V) be a log-directed manifold. There exists a neigh-
borhood U of xo in X and a log-directed projection

K . (Y’ D’V)lU - (Cr7 E,TC’) 1 (le L szn) — (le o Zay Z+1y v v - le+b)7

with £ ={z1...2, =0} and a + b =r = rankV, which induces

(Ki)« : O,y (=Dl — Kﬁl(OFM(cr\E)(—l)),
Ky PyV|y — K7Y(P(C"\ E))

as bundle isomorphisms. O

Proof for a). We proceed by induction dn The casek = 0 holds by assump-
tion. Assume the cask— 1 holds. If (F;_1). :V;_l — Vy_1, define

F, = P((kal)*) . ?kV’ — ka.

Then by definition of D} = (7;) D}, , and Dy = n;'D; ;1 the mapF; is a log-
meromorphic morphism which commutes with projections. (&t), : TPV —
TPV be the log-differential map defined as in equation (1.8) ¥ (V). With
w e Pr 1V andv € (V,_,)w, then

()« ((Fi)«&) = (mmr 0 Fi)i§ = (Fr—1 0 1)+
= (Fk—l)*(nli_l)*é € (Fk—l)*cv = C((Fk—l)*v),

hence, €x).& € (Vi)(Faw).(Fe1).0), SO Fx is a log-directed meromorphic morphism.
The second part of the assertion is clear.

Proof for b and ¢). ). : (V) — (V)r() remains injective (respectively bijec-
tive) for all x in a neighborhoodJ(xp). By the bundle structures it suffices to prove
that for all x € U(xo), the mapsF; : (PyV'), — (PxV)r) are holomorphic em-
beddings (respectively biholomorphic maps) and the maR3. (¢ (V) = (Vi)rw)
are injective (respectively bijective) bundle maps oveznth We prove this by induc-
tion on k. The casek = 0 holds by assumption. Assume the cdse 1 holds. By
projectivizing the injective (respectively bijective) fle map ¢;—1). and by a), we
get thatFy : (PrV'), — (PxV)r( is an injective (respectively bijective) log-directed
morphism. Furthermore, sincg,_; : (Py_1V’), — (ﬁk_w)m) is a holomorphic em-
bedding (resp biholomorphic) and sincEk(l)*V;( C Vk'kal(FHV') is a holomorphic
subbundle (respectively the same bundle) the mgjis an embedding (respectively bi-
holomorphic). It remains to show tha¥y(), is again injective (respectively bijective).
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Let £ € (V}), for w € P, V' such that £),£ = 0. Then
0= (nk)*(Fk)*é = (kal)*(nlé)*%--

Since the map K—1). is injective we geté € Kker(r).. But the subbundle
ker(me). C V;( C TPV’ can be canonically identified with the relative tangent tend
T5,v//7,,v» Which is a subbundle of P,V'. Since we have shown thd, is a holo-
morphic embedding, K). is injective on " P;V’),,, which containst. As (F).& =0
this forcesé = 0. So ;). is injective on V;()w. Moreover, if the assumption in c)
holds, then rank/] = rankV’ = rankV = rankV;, and so ). is bijective. Ul

Corollary 2.3. We haveF,((P;,V')s"9 c P,VS"9, Moreover, if F, : V' —
F~1(V) is injective at a pointxg € X', then there is a neighborhood af over which
(P, V") is isomorphic toF, (P, Vsn9).

Proof. By the definition of the singular locus and Propositb1 a) it suffices
to show F;(T"}) C T (respectiverijl(FA,) =TI") for 2 < j < k. Moreover, since the
I andI'; are divisors without vertical components, it suffices toverthe assertions
where all mapsF;, i < j are holomorphic. The first assertion follows immediately
from the definitions ofl*; andI'; and the equation

(2.5) (ri-1)s © (Fi-1)x = (Fi-2)s 0 (71]_)x
The second follows from this equation and the injectivity(&6f_»).. U

Corollary 2.4. Let (X, D, V) be a log-directed manifold. I¥ ¢ W c TX are
holomorphic subbundles, then we have natural inclusionsutimanifolds

PV C PW C PiX
and the associated maps over these inclusions of the lindldsin
Op,v(—1) € Op,w(=1) C Op,x(-1)
are line bundle restrictions.

Proof. We apply Proposition 2.1 to the log-directed morphis: (X, D, V) —
(X,D,W), wherei : X — X is the identity map and induces the bundle inclu-
sioni, : V — W. By Proposition 2.1 a) and b) we obtain a log-directed manphi
ir . PrV — P W which locally over X is, moreover, a holomorphic embedding
ir : PyV — i"Y(P,W) = P, W. Hence,i, : P,V — P, W is a holomorphic embedding.
The other statements follow in a similar way. ]
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3. Log-directed jet differentials

3.1. Demailly-Semple jet bundles and jet differentials In this subsection we
recall parts of some basic results of the work [2] of Demadly his construction of
the Demailly-Semple jet bundles, which we generalize toltigarithmic setting in the
next subsections.

Let (X, V) be a directed manifold. Without loss of generality we assum=
rankV > 2 in Section 3, for the situation is trivial otherwise. Let

k
Gy = ch(r)eg: t— o) = Za,-ti , a1 €C* aq;€C, i > 2}
i=1

be thegroup of reparametrizationsElements¢ € G, act on J,V as holomorphic au-
tomorphisms by

¢ IV = LV j(f) = Jik(f o).

In particular,C* acts onJ;V.

Every nonconstant gernf : (C,0) — X tangent toV lifts to a unique germ
fig : (C,0) — PV tangent toV,. This fi;; can be defined inductively to be the pro-
jectivization of f[Ll] :(C,0) > Vi_1. As such we also have a germ

f[/k—l] . (C, O) g Opkv(—l).

This construction is actually a special case of our conitmdn Proposition 2.1, since
P,C =C. We get, moreover:

Proposition 3.1. Let F : (X', V') — (X, V) be a directed morphism. Lef :
(C,0) - X’ be a germ tangent td/’ such that the germF o f : (C,0) - X is
nonconstant. Then there exists a neighborh@ddf 0 € C such that for allr € U,
t # 0, and for all k > 0, the mapF, : PV’ — P,V (seeProposition 2.1)is a
morphism aroundfj(¢), and we have or:

(3.1) (F o g = Fr o (fu)-

Proof. Since the gern¥ o f : (C,0) — X is nonconstant, we can find a neigh-
borhoodU of 0 € C such that £ o f)(t) #0 for all t € U, ¢ # 0. From the equation
(F o f)(t) = (mox)s o (F o flyy(r), we get that [ o f),(r) # 0 for all k > 0. We
now proceed by induction oh. The casek = 0 is trivial. Assume the case— 1. This
means that for alk € U, r # 0, the mapF,_1 : P, 1V’ — P,V is a morphism at
fie—1(t), and we have o:

(F o k=11 = Fr—1(fix-11)-
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Taking the derivative, we obtain

(F o fie—1y(t) = (Fi—)s (fix-11) ().

Now the left hand side is nonzero for# 0, so the right hand side is nonzero, too,
and we just can projectivize and obtain the assertions fgr0. Finally equation (3.1)
still holds fort = 0 by analytic continuation. Ul

The bundle of directed invariant jet differentials of ordérand degreen, denoted
by E;,.V*, is defined as follows: Its sheaf of sectio6gE; ,,V*) over X consists of
holomorphic functions or/,V|o which satisfy

3.2) Ojk(f o #)) = ¢'(0)" Q(jk(f)) V.j(f) € V™o and ¢ € Gy

as O varies over the open subsets &f We remark that equation (3.2) implies that
the functionsQ, restricted to the fibers of,V, are polynomials of weighted degree
m with respect to theC*-action, so that our definition coincides with the usual one.

Theorem 3.2 (Demailly ([2])). Let (X, V) be a directed manifold.
a) The maps

G 2 S V' = Opy (=19, ji(f) = fi_1y(0),
o . Jereg — Pereg’ J(f) — f[k](o)

are well defined, holomorphic and surjective.
b) If ¢ € G, is a reparametrization, one has

(fo ¢)Ek71](0) = f[/k—]_](o) -¢'(0),
(f 2 D) (0) = fiu(0)-

c) The quotient/; V'™®9/G, of J,V'™9 by G, has the structure of a locally trivial fiber
bundle overX, and the map

O(k/Gk . Jereg/Gk — PV

is a holomorphic embedding which identifiégsV'"®9/ G, with P, V9,
d) The direct image sheaf

(nO.k)*OPkV(m) -l O(Ek.m V*)

can be identified with the shedl(E; ,,V*).

Corollary 3.3. 1) The groupGy = {t — ¢(t) = Zleaiti , a1 =1} acts transi-
tively on the fibers of.
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2) The mapsy; and o are holomorphic submersions.

Proof for 1). By Theorem 3.2 b) and c), the groGh acts transitively on the
fibers of a;. So for any two pointsp and g of a fixed fiber ofa; we find ¢ € G,
such thatp(p) = g. Again by b) we havep’(0) = 1, so¢ € GY.

Proof for 2). It suffices to prove the statement fgy, since by the action of
C* = G¢/G{ on J,V'™ and Theorem 3.2 b), it also follows far;,.” The assertion
is equivalent with the existence of local sections éqrthrough every pointj.(f) €
J V'es,
Let ji(f) € JrV™9 be given, and letwy = a(ji(f)). Since f/(0) # 0, we get that
Jie—1(0) Z 0. Then by Corollary 5.12 in Demailly's paper [2] and its pfave find a
neighborhoodU (wg) € P,V'™9 and a holomorphic family of germsf{), w € U(wyp),
such that {,)(0) =w and f,,, = f. After possibly shrinkingU(wo), we may assume
that f,(0) #Z O for all w € U(wp). Thusw + ji(f,) defines a local holomorphic
sections : U(wo) — L V™ w — ji(fu) With s(ak(k(f))) = s(wo) = ji(fuo) = Jjk(f)-

]
3.2. Local trivializations
Proposition 3.4. Let z, ...,z be the standard coordinates &, leta < r, let
T
E={z1...2,=0and P=(1,...,1,0,...,0)e C".
a) The trivialization of J;(C"\ E) by the formsw! = dzy1/z1, ..., 0" =dz,/zq, @™t =
dzg+1, - .., o =dz,, induce an isomorphism
(3.3) J(C"\E) - J(C")p x C"

which respects regular and singular jets and commytagside E) with G;.
b) For the log-manifold(C", E) there exists a line bundle isomorphism

(34) Op,c\p)(—1) = Opcr (=1)p x C
which respects regular and singular jets and such that treg@m

(3.5) Ji(C"\ E)Y®cr g ——— J(C)" x (C"\ E)

\L&k \L(&A)PXid

Op, 0\~ NenE —— Opcn(~1)p° x (C"\ E)

commutes.
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Proof for a). The composition
(JkC)p = J(C"\ E)p < T((C"\ E) — (C")’

is an isomorphism, where the last morphism is given by thé fastor of the trivial-
ization map in equation (1.9). We compose the isomorphisragofation (1.9) with the
inverse of the above to obtain the isomorphism

T(C \E) = J(C)p x C';

This isomorphism respects regular and singular jets, stheesubset of the singular
jets is given in every fiber byZ; =0, i =1,...,r} by Proposition 1.7.

Let us understand this isomorphism, restrictedCto, £, in a more geometric way.
As in the proof of Proposition 1.4, let

V:C - C'; (wg,...,w,)— (™, ..., €%, wert, ..., wr) = (21, ..., 2),
and Ieth’f, i=1...,r; j=1,...,k be the components of the first part of
(dwn, ...,dw,) x 71 J(C") = (C) x C'.
Then we claim that the above isomorphism, restricteto, E, is given by
J(C"\ E) = J(Cp x C"\ E; ji(f) = (k(¥(¥ o f—who £(0), £(0)),

where subtraction means subtractionGh. Note thatw ! is only defined up to addi-
tion of summands 2im, m € Z for the firsta components, but the germr o f —
w16 £(0) is well defined. In fact, by Lemma 1.5 the above isomonphis given by
trivial shift with respect to the coordinate‘s’j’:, but this is, by the definition of these
coordinates, just subtraction of the value of the germ rfor 0. It follows that the
above isomorphism commutes with the action @f. In fact, reparametrization does
not depend on the coordinates and so it commutes Wwitand w—. Furthermore, it
commutes with subtraction of constants@i. This proves a).

Proof for b). We use the following strategy: Using some nssalf Demailly’s
paper [2] we first define the isomorphism of equation (3.4)@n\ E similarly to
our geometric way above. With this isomorphism it is easy ¢oify the diagram of
equation (3.5). We then extend the isomorphism over the tmmgnt of a divisor in
P(C"\ E) which does not contain any entire fiber ov@f. For this, we introduce an
explicit local coordinate chart iP,(C" \ E) the complement of which is such a divi-
sor. In order to extend over the remaining codimension twoudowe use the fact that



204 G.-E. XTHLOFF AND S. S.-Y. Wy

our objects are defined inductively by projectivizing vecbundles, and that for vec-
tor bundle maps, the Riemann Extension Theorem holds. This i& not the shortest
possible (see Lemma 5.10, which gives a shorter and intripgdof of this extension
over the divisorE), but it explains well the geometric contents of the isonhism in
equation (3.4) via explicit local coordinates (see alsodltary 3.7), which is useful
for applications.

By Corollary 5.12 of [2], for all pointsw € P(C" \ E), there exists a germ
f:(C,0) — C"\ E such thatfj;(0) = w and f[’k_ll(O) Z 0. We claim that by com-
posing this germ with the map — ar +t2, a € C, the vectorf[’k_l](O) can be made
equal to an arbitrary vector in the complex lid&p cr)(—1) over w. This follows
from Theorem 3.2 b) fom 7 0. Since the image of the gerrfj) does not change,
we get, after an easy computation, thgit_;(0) = 0 for @ = 0. So every vector of
Op.cr\r)(—1) is obtained this way.

As above, the map

Op,cn\e)(—1) = (Op,c\g)(—1))p x (C"\ E);
Jle—1(0) = W@ tof—wto F(O)—1(0); £(0))

is a well defined isomorphism, its inverse being given by ttedl defined map

(Opcn\e)(—1))p x C"\ E = Opcr\p)(—1);
(fleey(0). p) = W~ o f+ W H(p))y_y(0).

Now, by Proposition 5.11 of [2], the singular locus Of, -\ r)(—1) can be character-
ized by fj;_;; = 0 along with the multiplicities off;;, j =0, ...,k — 1, which remain
invariant under changes of coordinates or additions byteoits So this isomorphism
respects the regular and singular jet loci. So we can restrio the regular loci. If
now ji(f) € Ji(C"\E)™9, then this is mapped tol(¥ "o f =W to f(0)),_45(0), f(0))
by both compositions of the maps in the diagram in equatioB)(3o this diagram
commutes.

We now carry out the above strategy via the following lemmat f;{eg =Vi\
P V|p, e, Where thePV denotes the zero section of.. Then we have a canonical
identification

Op (1) = V.2

We now introducer coordinate charts on_/,ief'l in the same way as Demailly did for
P, V'™ in equations (4.9) and (5.7) and Theorem 6.8 of [2].
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Lemma 3.5. Let ((Zj.),-zl _____ rij=L..k: (z1, ..., zr)) be the coordinates of ;(C\ E),
and let

k
Ay, = (ﬂ{Z; = 0}) NUKC\E)\{Z]=0}).
j=2

Then the map

(3.6) i : Acrlene = Vietlone

extends overE to a map which is biholomorphic onto its imagg(Ax. ), such that
this image contains the complement of a divisorVip_, which is nowhere dense in
(Vi_1), for all x € C". More precisely

Clam S(k). Vi1 — P;_1(C"\ E) is a vector bundle of rank over a ¢ — 1)-
stage tower o ~1-bundles, and we can introduce inhomogenous coordinatehese
bundles corresponding to the coordinates, (.., z,) of C", in which the mapa; of
equation (3.6) is given by

-1 r—1
zy  Z Z Z
Zi,..., Zi s (Z{)Z""’(ZQ)Z PN
1 -1 1
Zk—l Zl';—l Zl% ZI)< Z;L . (Z]_ z )
, LA ] - ’ R ] - ’ 1 LR I S .
(Z&)k—l (Zi)k_l (Z;_)k_l (Z&)k—l

Proof of Lemma 3.5. It suffices to prove&3( We prove this by induction. The
statement S(1) is trivial. Assume by induction that-S{) holds. Then the correspond-
ing inhomogenous coordinates #_1(C” \ E) are given by

a.7) Z_} zt z3 z5t
. 7z )\ @ @)
1 1 1 1

r—1
ZI%—l Zk—l . (Zl z )
. s — o | yoees Zr .
(zpkt ()t

In order to find coordinates over this affine chart, we proceetivo steps:
The first step is to find the coordinates of the logarithmiogg&am bundle

TPk_l(C" \ E) b ?k_l(C" \ E)

over our affine chart. Note that, in the coordinates of equa{B.7), the divisorE;_; =
n()f,}fl(E) is given by({z1...z, = 0} and, hence, is independent of any of the fiber
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coordinatesZ’, or of their quotientsZ’ /(Z)/. So the coordinates &f P, 1(C"\ E) are
given by those of equation (3.7) and their differentialsgept forz, ..., z,, where the
log-differentials are needed.

The second step is to restrict this coordinate system to tibusdle V,_; C
TP_1(C" \ E). By the definition of this subbundle in equation (2.1) (sésoaDe-
mailly’s equation (5.7) in [2]) we choose the differenti@the » — 1 coordinate func-
tions of equation (3.7) which describe the fibers of the map; : P,_1(C" \ E) —
Py_>(C" \ E) and of an extra component which corresponds to how we hawsech
the inhomogenous coordinates: These are the (nonlog<greiffialsd(Z;_,/(Z;)*71),
i =1,...,r plus the extra component, corresponding to the log- (in easer) or
nonlog- (in case: < r) differential of z., which is Z] (see equations (1.3) and (1.9)).

It remains to express these coordinates without the diffekeas in Claim ).
It suffices to do this outside, since these expressions then extend aleby the
identity theorem. We have for i <r — 1:

d Z;;71 — dZ/icfl _ Z/ifl . (k _ 1)dZ§I.
(Zi)k*l (Zg)k—l (Zi)k—l Zi

By equations (1.3) and (1.9) we get

d dk72 f*wt)

dZ; 1 (ik(f)) = <EW e

k=1 fx i
= (Gt ) | o 2,

=0 dtk=1 dt =0

As we only work on the submanifold\; ., we have ji(z, o f) = ao(x) + az(x)t. We
now again use equations (1.3) and (1.9), and distinguishcases:

If a <r, then

0z = (550 ) | o= (Gaw) | =0
If a=r, then
iy e (4 fn N (4 el
dZ}(ji(f)) = (Em> =0 (EW) =0
B ai(x) 2 _ Sfrdz, ? _ 2
S <ao(x)> o <m sz) = ) GOD-
So we have

zZi Zi 0 ta<r
= +(k—=1)- .
d <(Zi)kl) (Zy)1 (k=1) { Ziia=r

These coordinates can be expressed in those of clatha®( vice versa. L]
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Now we use Lemma 3.5 to extend the diagram in equation (3, thus, the
isomorphism of equation (3.4): The diagram becomes

Agrlone — (Ar)p x (C"\ E)
l&k (@) pxid
Vicilene — (Vic)p x (C"\ E)

where the two vertical arrows are now biholomorphic ontoirtimages. By Lemma
3.5 these isomorphisms extend to isomorphisms @ferSo the isomorphism of equa-
tion (3.4) extends oveE outside a horizontal divisor which is nowhere dense in all
fibers, giving an isomorphism outside an analytic set of medision at least two.

We finally prove, by induction ovek, that these isomorphisms extend to

V/(_l — (Vk—l)P x C’

| |

Pi_1V ——=>(Pr—1V)p x C”

which induce the desired isomorphisms of equation (3.4)e thse S(1) is trivial
(there is nothing to extend any more in this case). Assumenbiyction that S(— 1)
is true. Then by projectivizing we have an isomorphistp_,V — (P_1V)p x C',
and over this we have an isomorphisiii_; — (Vi_1)» x C" up to a subvariety of
codimension two. Now this isomorphism extends, since fartarebundle maps, the
Riemann Extension Theorem holds. (For any paini P,_,V, take a dual basis of
V-1 aroundw. Then the extension of the maps, in both directions, is reduo ex-
tension of holomorphic functions once we compose these mdtpsthe dual vectors.)
The fact that the extended maps are still inverses to eadr é@hows from the Iden-
tity Theorem. This ends the proof of Proposition 3.4. U

Important Remark 1. The local isomorphisms of equations (3.3) and (3.4) are
fiber bundle isomorphisms. But they amet induced by (directed) morphisms. As a
result, these local isomorphisms have a priori no fundiityjeand every compatibility
which one needs has to be proved explicitly, which we prodeedo.

Proposition 3.6. Let (X, D, V) be a log-directed manifold. Lety € X and let
U and the log-directed projection

K: (Y’ D’V)|U - (Cr’ E,Tcl) ; (Zla ey Zn) - (Zl’ e Zas Zy+1s -0 - 7Z[+b)7

with £ ={z;...2, =0} anda +b =r = rankV, be as inProposition 2.2Without loss
!

n—I

i —_——
of generality, letP =(1,...,1,0,...,0) e U.
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a) The isomorphisms dProposition 3.4, Proposition 1.d4nd Proposition 2.2induce
isomorphisms

TiVlg = Ve x U
and
Op,v(=Dly = Opv(—1)p x U

respecting regular and singular jets such that the first isgphism commuteoutside
D) with the action ofG, and such that the diagrams

(3.8) K YJ(C\E)ly ——— (K Y(AKC))p x U

S

TViy JVp x U

and

39) K Opcnp(-Dlv ——— (K Opc (-))r x U

N N\

OFkV(_l)|U Opyv(=1)p x U

commute.
b) Moreover, outside the divisoP, they induce the following cubic diagram
(3.10)

K=Y(T(C"\ EY*9)|yp\p — (K~1(JkC")9)p x (U \ D)

N

@k 7/( Vreg|U\D JkV;)eg X (U \ D)
(@) p xid
~ K YOpc (1)) o
K HOp,cn e (=19 vp — . (K7 Ore( x)()Ug)\PD) (@) p xid
\ . \

Op,v(=1*v\p

Opkv(—l)r;g X (U \ D)

c) By combining with the canonical line bundle projections wet the same iso-
morphisms and diagrams wit®,(C" \ E), P,V and « instead of Op,c\ g)(—1),
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Op,y(—1) and &.

Proof for a). Wedefine the isomorphisms/V|y, — JiVp x U respectively
Op,v(=Dly = Opyv(=1)p x U by the other three arrows of the respective diagrams.
In this way we obtain trivializations which, by definition,ake the diagrams commu-
tative. By Proposition 3.4, Proposition 1.7, Propositiod &and Corollary 2.3, the reg-
ular and singular loci are preserved. The first isomorphismmrautes with the action
of Gy. In fact, by Proposition 3.4 a) this is true for the upper liolethe diagram in
equation (3.8). Furthermore, the isomorphigf in the vertical arrows is, outsid®,
just given by K (jx(f)) = jx(K o f), and this trivially commutes with the action ¢f;.

Proof for b). The back side of this cubic diagram (the sidehwite K1) is just
the pull back the diagram in equation (3.5). The upper andidher sides of the cu-
bic diagram are the restrictions of the diagrams in equati@8) respectively (3.9) to
the regular locus ovet/ \ D. The left hand side respectively the right hand side of
the cubic diagram commute by the functoriality of the map Be slso the equations
(1.12) and (3.1). It is an easy exercise to see that then tre fide of the cubic di-
agram commutes also and, furthermore, that the whole diag@mmutes.

Proof for ¢). This is clear from the diagrams. Ul

Important Remark 2. For all local isomorphisms given by the horizontal left-
to-right arrows in the above diagrams, our Important Rendagdso applies. However,
the local isomorphisms induced by are functorial.

Corollary 3.7. a) The fiber bundles?,V, Op,,(—1) and V, and their regular
and singular jet loci are all locally trivialized oveX in a way which is compatible,
through the mapsy; respectivelyd,, with the trivialization ofJ,V by using local log-
arithmic coordinates.

b) LetU c X and K be like inProposition 2.2Let A,; C J(C"\ E),i=1,...,r,
be like inLemma 3.5 and let By ; = A;; N {Z] = 1}. Then there exist coordinate
charts

K~(Ay;) — V-1 (respectivelyk (A, ;) — Op,y(-1));
(29 rtimnp 225 (@ 7)) =

7} zt z3 zyt
7 @ @)

.71 r—
Zl:l-fl lecfl Zl:<L Zk ! zr '(Zl z )
NE—17" " I\ f— ’ NE—1°°"" " "Ne—1" 1 s in
(Zl)k 1 (Zl)k 1 (Zl)k 1 (Zl)k 1’71
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which coverV,r(e_g1 (respectivelyOz, ,(—1)®9), and r coordinate charts

K™Y(Byi) — Pir1V;

((Z3 .. 25N, (2 25 Y (2 2 Y e 20)

which coverP_, V"9,

Proof. a) is contained in Proposition 3.6. The existencehef ¢oordinate charts
in b) follows from Proposition 3.6 and Lemma 3.5. These chaxver the locus of
regular jets by Theorem 3.2, a) outside Thus by our local trivializations which are
compatible with the charts and with the locus of regular,j¢fese charts cover the
locus of regular jets everywhere. ]

Remark. The coordinates can also be obtained directly without Len@1b.

3.3. Log-directed jets and log-Demailly-Semple jets This subsection extends
Theorem 3.2 a), b) and c) to the log-directed case.

Proposition 3.8. Let (X, D, V) be a log-directed manifold.
a) The mapsa, and o, of Theorem 3.2 a)extend to holomorphic and surjective
maps

ay - 7ereQ — Oﬁkv(—l)re’g s

(0775 :7ereg - Fkvreg.

b) The action of¢p € G, extends to an automorphism dfV leaving J,V"™9 and
J . VSN9 invariant and

Grop=a-¢'(0), xod=a.

c) The quotient/,V'9/G; has the structure of a locally trivial fiber bundle ovaf,
and the map

/Gy P T VG — PV
is a holomorphic embedding which identifiggV"®9/G, with P, V9,
Proof for a). By Theorem 3.2, the mayp is defined outsideD:

(3.11) o78 :7kvreg|Y\D — Oﬁkv(_l)reg|Y\D-
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Let x € D. By Proposition 3.6 b), there exists a neighborhd@ddf x with

(312) 7ereg|U\D —— JkV}Eeg X (U \ D)

l&k l(&k)PXid

Opy (=1)*\p —— Opv(-1)3° x (U \ D)

Here the horizontal arrows are isomorphisms, which, by &sijpn 3.6 a), extend as
isomorphisms ovelU, and ¢;)p x id is clearly extendable t&/ to a surjective holo-
morphic map on the right hand side. & IS also extendable to a surjective holo-
morphic map overU on the left hand side. Since € D is arbitrary, and since by
equation (3.11) the extension af Ts unique if it exists, we obtain a well defined sur-
jective holomorphic map

(313) ay - 7k Ve Oﬁkv(—l)reg.

By combining with the canonical line bundle projections wet ¢n the same way a
surjective holomorphic map

(3.14) o 2 Ji V9 — Pvred
which extends the corresponding map of Theorem 3.2 fromX \ D to X.

Proof for b). If ¢ € G, is a reparametrization, one has Epgvreg|g\D by Theo-
rem 3.2

(3.15) dro¢=a;-¢'(0), axod=ay,

where in the first equation the multiplicatian “¢’(0) denotes the multiplication with
scalars in the line bundl®5, (—1)*9%, ,. By Proposition 3.6 a), we have the dia-
gram

(3.16) 7kV|U\D—>JkVP x (U \ D)

l¢ llﬁpx"d

JiVignp —= JiVe x (U \ D).

By a similar argument as in a), the mapextends to a holomorphic automorphism
on J,V. From this diagram, it also follows that mapsJ, V"9 onto itself, since all
the arrows of this diagram preserve regular and singular (@ten overD by Propo-
sition 1.7). Finally, equation (3.15) extends framV 9z, , to J, V™9 by the Identity
Theorem.
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Proof for ¢). By b), the quotieni;V'®9/G, is well defined (as set). By the dia-
grams of equations (3.15) and (3.16), we obtain from ProjposB.6 c):

(3.17) TV Gilonp — (V™Y Gr)p x (U \ D)
lak/Gk i(ak/Gk)p xid

PV p ——— B Vp9x (U\ D)

By Demailly ([2]), the vertical arrows in this diagram areiisorphisms. By a similar
argument as in a), one obtains a holomorphic isomorphism

(318) ak/Gk . 7ereg/Gk — ?kV'eg

over X. Equation (3.17) shows that this isomorphism malle¥"®9/G, into a holo-
morphic fiber bundle ovek. O

3.4. Characterization of log-directed jet differentials In this subsection we
generalize Theorem 3.2 d). More precisely we prove:

Proposition 3.9. A holomorphic(respectively meromorphidunction Q on J;V|o
for some connected open subggtc X which satisfies

(3.19) QUik(f o #)) = ¢'(0Y" Q(jk(f)) V.jx(f) € V™ and V¢ € G

over some open subset 6f of O \ D defines a holomorphi¢respectively meromor-
phic) section ofOp,,(m) over O, and vice versa.

Proof. LetQ:JiV|o — C be a meromorphic function which satisfies
(3.20) Qogp=¢'(0)"Q V¢ € Gy

over O'. Since J,V'™Y, is connected, equation (3.20) holds ower by the Identity
Theorem. Sincey,” and o, were obtained oveD by trivial extensions in the diagrams
of Proposition 3.6, the results of Corollary 3.3 extend atser D. In particular, Gy
of Corollary 3.3 acts transitively on the fibers @f. Since the functionQ is invari-
ant under the action of7; by equation (3.20), there exists a Zariski-densely defined
function O : Op,v(=1)*9p — C such thatQ = Q o &. Again by Corollary 3.3,
&, has local holomorphic sections everywhere. @ois a meromorphic function on
Op,v(=1)®9 0. By equation (3.20), this function is:-linear with respect to thec*-
action and so corresponds to a meromorphic sectiaf Oz, (m)"o. In order to
extend this section to the singular locus, we have to redorgangent of Demailly
(I2]): In a neighborhoodW of any pointwy € P;V|p\p we can find a holomor-
phic family of germsf, such that {,);q(0) = w and (f, fk_l](O) Z 0. Then we get
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s) = O(f1s -+ FINON(fu)ye_a)™ ON W N PV ]o\p. Now the right hand side ex-
tends to a section 005,y (m)|o\p, SO the left hand side does, too. Sds a mero-
morphic section 00z, y (m)|5, yreasp,v), - The complement of the latter set is of codi-
mension two in?kVJo, sos extends to a section @z, (m)lo-

Conversely letQ be anm-linear meromorphic function o0z, ,(—1)lo corre-
sponding to a meromorphic section %, (m)|o. Then Q := Qod; is a meromorphic
function on J, V™9 ,. By the Riemann Extension Theorem, it extends to a meromor-
phic function onJ,V|,. It satisfies equation (3.20) o, V"9, since O corresponds
to a section ofOz,, (m)|o and since the fibers af;"are invariant under the action of
G¢. Hence, it satisfies equation (3.20) ow@rby the Identity Theorem.

Finally we remark that if we start with a holomorphic rathbat a meromorphic
function (respectively, section) in the arguments above, would obtain a holomor-
phic section (respectively, function) as a result. ]

4. Log-directed jet metrics

4.1. The case of 1-jets This case was already treated in the second named au-
thor’s thesis. We recall the basic results after some difirst

For a line bundleL over a complex varietyX, let E; be the union of the base
locus

Bs|L|:={x € X: s(x)=0 for all s € H°(X, L)},
of L and the restricted exceptional locus
{x € X\Bs|L| : dim, ¢, (¢.(x)) > 0}
of the rational map
oL =[s1:... i8] X o> PL

where {s1, ..., s,} is a basis ofH°(X, L). We will call E; the basic locusof L. De-
fine the stable basic locusf L to be

SL = m EmL~

m>0

A standard argument (worked out in details in the appendirows that for any line
bundle H on a normal varietyX, we have

BsimL — H| C S,

for some sufficiently largen. Let Xoq be the smooth part ok. Let L* be the dual
bundle of L. Recall that a continuous function: L* — [0, co] such that

(4.1) g(cv) = lel*g(v)



214 G.-E. XTHLOFF AND S. S.-Y. Wy

for all c € C andv € L* is called asingular metricon L*. By equation (4.1), the
set g~1(0)U g~%(o0) consists of the zero section @ and the inverse image ih* of

a closed subseE, of X. For our purpose, we will always assume that the open set
U = Xeg\ X, is dense inX and thatg is twice differentiable onL*|,. Thendd®logg

is a real (11) form outside the zero section df*|y invariant under theC* action
given by equation (4.1) and is thus the pull back of a reall{form on U denoted

by
Ric(g) = ©41 = ©,1(L),

which is known as the curvature form gf By convention,g is called apseudometric
if g7}(c0) =0 and g is called ametric if also X, = @.

Let now (X, D) be a log-manifold, and set agaixi = X \ D. A Kahler metricw
on X gives a metric on7’ X which in turn gives a metrig,, on Op y(=1)|px- If g,
extends to a metric o3 x(—1), then we can use it to dominate a scalar multiple
of any pseudometic oW x(—1) by appealing to the compactness Xf This is the
basic strategy used to obtain the following result (Prapmsil of [12]). We remark
that Noguchi ([14]) had already similar results in the casés compact under the as-
sumption thatOp, x(m) is spanned by global sections everywhere @p x(m) for m
large enough.

Proposition 4.1. Assume(X, D) is a log-manifold and thatX is projective. Let
71 P1X — X be the natural projection, lIeE be a subvariety ofP1X and leto :
Z — E C P1X be the normalization oE. Let L, = 0705 (1), Z = 0~ }(P1X) and
L, = L,|z. Then there is a pseudometricon L* = o~1(Op,x(—1)) with X, C Sz,
such thatRic(g) is the pullback of a Ehler metricw on X, specifically

Ric(g) = (m100)'w,
such that this Khler metricw dominatesg, in the sense that

(4.2) 07 8.)(€) = 8(8)

for all & € L} outsideS; and o~*(Sing(E)).

By the usual definition of holomorphic sectional curvatune see that equation
(4.2) says precisely thag, as a “length” function onX in the tangent directions de-
fined by 8, has holomorphic sectional curvature bounded from above-byandg is
nonvanishing outsidez .

Hence, the usual Ahlfors’ Lemma applies to show thatfif: A — X is any
holomorphic map from the unit disk c C whose lifting fj1; has image ing but not
completely ino(Sz ) U Sing(E), then f must satisfy the distance decreasing property.

From this, the following result is derived by elementary tamgnts in [12] (see
also Noguchi ([14], [15])), which we quote.
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Theorem 4.2. With the same setup as Proposition 4.1we let A* = A\ {0} be
the punctured unit disk and séf = Op x(1)lz.
(a) (Distance decreasing propeityf f : A — X is a holomorphic map whose lift
fiy has values ing but not entirely inSz, U Sing(8), then f*g < p (wherep is the
Poincae metric onA).
(b) (Degeneracy of Holomorphic Curydf f : C — X is holomorphic such thaffj
has values in, then fi1)(C) C Sz, U Sing(E).
(c) (Big Picard Theoremlf f : A* — X is holomorphic such thafj;; has values in
E but not entirely inSz, USing(E), then f extends to a holomorphic map: A — X.

4.2. The general case We call a pseudometrié on Op,v(—1) a k-jet pseudo-
metric on (X, V), and defineB; = Soﬂv(l), the stable basic locus @5, (1).

Theorem 4.3. With the notations as iTheorem 4.2assume tha{X, D, V) is a
log-directed manifold and thakX is projective.
a) If By # PV, then there exists a k-jet pseudometticon (X, V) with £, € By
such thatz has curvature bounded from above byl in the sense thaRic(h) = 7w
is the pullback of a Ehler metricw on P,_1V such thatg, dominatesh. In particu-
lar, we have

(@41, [E]3) = (Ric(h), |&]%) > h((m)«£) for & € Vi

b) If f:C— X\ D is holomorphic withf.(TC) C V, then f;(C) C B.

c) If f:A* — X\ D is holomorphic withf,(TA*) C V, then

Either f extends to a holomorphic map: A — X or fiy(A*) C By.

Moreover, letY ¢ P,V be any subvariety. We defir@.(Y) = S(’);k\,(l)ly- If f lifts to a
map with values in¥, thenb) and c) hold with B, (Y) U Sing(Y) instead of B;.

Proof. Apply Proposition 4.1 and Theorem 4.2 to the log-rfudai (P,_1V,
Dy_1) and the subvarietyg = P,V (or E = Y C P,V). Note that, sinceV, C
T(Py_1V) is a holomorphic subbundleP,V, = P,V is a submanifold inPy(P;_1V)

and Op,v(—1) = Op,(p,_,1)(—1)lpv by Proposition 2.4. O

5. Logarithmic Bloch’s and Lang’s Conjecture

In this section we apply our method to the special case of -sdmlian vari-
eties where our Ahlfors-Schwarz Lemma (Theorem 4.3) givésgarithmic version of
Bloch’s Theorem and our big Picard Theorem vyields a big Bicarsion of Bloch’s
Theorem. By using the Wronskian associated to the thetaifumof an effective divi-
sor in a semi-abelian variety ([21], [17]), we affirm furth@sre a logarithmic version
of Lang’s Conjecture and a big Picard analogue of it, all viatna geometry on log-
arithmic Demailly-Semple jets.
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5.1. Statement of the results We first recall the definition and some basic facts
on semi-abelian varieties (see [17], [8], [9]) needed tdestaur results.

A quasiprojective varietyG is called a semi-abelian variety if it is a commutative
group which admits an exact sequence of groups

0> (CY" - G- A—0,

where A is an abelian variety of dimensiom.
Taking the pushforward of@*)‘ ¢ G with the natural embeddingC()¢ c (PY)Y,
we obtain a smooth completion

E = (Pl)e X(c*)l’ G

of G with boundary divisorS, which has only normal crossing singularities. We de-
note the natural action off on G on the right as addition. It follows that the expo-
nential map from the Lie algebr@” is a group homomorphism and, hence, it is also
the universal covering map af = C"/A, where A = I[11(G) is a discrete subgroup of
C" andn=m+¢.

Following litaka ([9]), we have the following trivializain of the logarithmic tan-
gent and cotangent bundles 6f Let z1,...,z, be the standard coordinates GF.
Sincedzs, ..., dz, are invariant under the group action of translation@h they de-
scend to forms orG. There they extend to logarithmic forms @halong S, which are
elements ofH°(G, QG). These logarithmic 1-forms are everywhere linearly iretep
dent onG. Thus, they globally trivialize the vector bundfeG. Finally, we note that
these logarithmic forms are invariant under the group actib G on G, and, hence,
the associated trivialization G over G is also invariant.

We now state the main theorems of this section. With the alswtap, letf :

I' — G be a holomorphic map, wheré is eitherC or the punctured disk\*. Denote
by X(f) the Zariski closure off(I') in G and let X(f) = X(f) N G. Furthermore,
let D C G be a reduced algebraic divisor i@, which we regard as a union of 1-
codimensional algebraic subvarieties @f We note that an algebraic subvariety Gf
which is also a subgroup is necessarily a semi-abeliantyasie well, see [9].

Theorem 5.1. (a) Let f : C — G be a holomorphic curve. TheX(f) is a
translate of an algebraic subgroup af.
(b) Let f:C — (G \ D) be a holomorphic curve. Thek(f) N D =@.

Corollary 5.2. If D has nonempty intersection with any translate of an algebrai
subgroup ofG (of positive dimensignthen G \ D is Brody hyperbolic.
In particular, this holds ifG = A is an abelian variety and is ample. U

Theorem 5.1 (a) is a logarithmic version of Bloch’s Theordimst proved by Noguchi
([15]), (b) is a logarithmic version of Lang’'s ConjectureotB Theorem 5.1 and Corol-
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lary 5.2 were obtained by Noguchi ([17]), and were, in the logarithmic case, first
proved by Siu-Yeung ([21]).

Theorem 5.3. (&) Let f : A* — G be a holomorphic map. Then either it ex-
tends to a holomorphic map : A — G, or there exists a maximal algebraic subgroup
G’ of G of positive dimension such that(f) is foliated by translates o&’.

(b) Let f: A* — (G \ D) be holomorphic. Then one of the following holds
() f extends tof : A - G.
(i) X(f)nD=4@.
(iii) There is an algebraic subgroug” Cc G’ of positive dimension such that
X(f) N D is foliated by translates of”.
(c) Let now f: A* — (A \ D), whereG is the special case of an abelian variety
Then one of the following holds
() f extends tof : A — A.
(ii) There exists an algebraic subgrodp’ C G’ of positive dimension such that
D is foliated by translates o&".

Corollary 5.4. If G = A is an abelian variety and is ample, thenf : A* —
A\ D extends to a holomorphic map: A — A.

We remark that Theorem 5.3 and Corollary 5.4 are big Picapg ffheorems. Aside
from (a), which can be found in Noguchi ([15]), these are, to knowledge, new to
the literature.

Proof of Corollary 5.4. Corollary 5.4 follows from Theorem35(c) and the fact
that an ample divisoD in an abelian varietyA cannot be foliated by translates of
an algebraic subgroup” of A of positive dimension. For assume it were. There
g~X(D), where D is a divisor inA/A” andq : A — A/A” is the quotient map. But
then O(D) = ¢~*O(D) is trivial along A”, since A” is a fiber of the magy. This is a
contradiction. ]

RemARk. The last part of Corollary 5.2 follows from Corollary 5.4 &dlows.
The C\ A is biholomorphic toA*. So we can conclude from Corollary 5.4 that any
entire curvef : C — A extends to a holomorphic map : P! — A. Hence, f must
be constant, since all coordinate 1-forms armust pull back to the zero form oR!
as P! has no nontrivial 1-forms.

However, Corollary 5.4 does not follow from Corollary 5.2. would if A \ D
were hyperbolically embedded iA. This would be the case, for example, Iif were
hyperbolic (see for example [11]). But even a very amplesdiviin A is not hyper-
bolic in general. To see this, choose any translatef an algebraic subvariety which
is of codimension at least 3 id. Then there always exists an irreducible ample di-



218 G.-E. XTHLOFF AND S. S.-Y. Wy

visor in A which contains7T, as can be deduced by applying the Bertini’'s Theorem
7.19 in [7]. Note that a hyperbolic open subgétin a projective varietyV need not
be hyperbolically embedded in general, as one can easiljogddowing up a point

of V\ V.

Remark. Let G = (C*)" C P*, n > 4. Let D be a generic hyperplane ' and
H be another hyperplane witt N H # 9 and HNDNG =¢@. ThenH N (G \ D)
is equal toP"~! minus at most: + 2 hyperplanes, which contains nontrivial images
of C and hence, admits maps from A* which do not extend taA. This is because
the complement of: + 2 hyperplanes irP"~! contains nontrivial diagonals for > 4,
which are nonhyperbolic. So we get examplesfofor Theorems 5.1 (b) and 5.3 (b)
(i) with nontrivial X(f).

RemArRk. Let A be an abelian varietyD c A a divisor andf; : A - A\ D a
holomorphic map. LeX(f1) be the Zariski closure of1(A) C A. Let E be an elliptic
curve andg : C — E be the universal cover. Then

1
fz)= (fl(Z),q oexp<2>> “A* 5> Ax E
does not extend.

This easy construction provides examples which are reteteaifheorem 5.3:

(1) It makes Theorem 5.3 (b) (iii) and (c) (ii) sharp.

(2) Choosef; in such a way thaX(f1) is not a translate of an algebraic subgroup in
A. Then we have an example for (a) whex¢f) is not itself a translate of an alge-
braic subgroup ofdA x E.

5.2. Some results on semi-abelian varietiesWe first summarize some elemen-
tary properties of semi-abelian varieties.

Lemma 5.5. (a) The quotient of a semi-abelian variefy by an algebraic sub-
group G’ is again a semi-abelian variety, and the quotient mapG — G /G’ is an
algebraic morphism.

(b) If X C G is an algebraic variety foliated by translates 6f, then

X/G' c G/G'

is again an algebraic variety.
(c) If X is an algebraic subvariety ofi, and 4 : X — P! is a rational function, then
the closed subgroup

G={aeG:X=(X+a)}N{a €G:h(x)=h(x+a)for all x € X}
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is again an algebraic subvariety.

Proof. Lemma 5.5 should be well known, but since we do not krowrecise
reference we indicate a proof. From the fact that conneclgebeaic subgroups of a
semi-abelian variety are again semi-abelian, it is easyeéotBat one can consider quo-
tients of G by G’ by taking the quotient on the abelian and tf@)¢ factors sepa-
rately. Now the quotient of the abelian factor by an algebmaibgroup is abelian by
isogeny, and the quotient ofCf)’ by a connected algebraic subgroup is likewise a
product of C*, see [9]. Hence, we obtain &)’ bundle over an abelian variety for
some!, which projectivizes to &' bundle over a projective variety, and, therefore,
must be projective. From this the entire Lemma 5.5 follows. ]

Lemma 5.6. Let A be an abelian variety and> c A a reduced algebraic di-
visor. Let A’ be an algebraic subgroup ol and 7 a translate of A’ in A. Assume
TND=¢. ThenD is foliated by translates ofi’.

Proof. Without loss of generality we may assume thats irreducible. Letq :
A — A/A’ denote the quotient map. Singeis a proper mapg(D) is a projective
subvariety inA/A’. Since D is irreducible andT N D = @, ¢(D) is an irreducible
divisor. SoD = ¢ X(¢(D)) C A is also an irreducible divisor containing as ¢ is
smooth. This forced = D. O

Remark. Lemma 5.6 is false for semi-abelian varieties. For we mde 1@ =
(C T={(z1,22)€G:21=1}, D={(z1,22) € G : (1 — )z2 = 1}.

5.3. Jet bundles on semi-abelian varieties To simplify notation, we work ex-
clusively with a semi-abelian variet¢ and its associated log-manifold; (S) defined
as before. We remark, however, that many of the definitiors r@sults hold for an
arbitrary log-manifold.

Recall from Subsections 1.2 and 2.1 tigtV denotes the logarithmik-jet bundle
of (G, S,V) and thatP;G denotes the logarithmic jet bundle ofi(S) = (G, S, TG).
Note that the log-directed morphisin: (G, S, V) — (G, S, TG) induces a canonical
realization of P,V as a submanifold oP,G asV is a subbundle off G over G.

Let D C G be a reduced algebraic divisor. Then, by Hironaka ([6])rehexist a
log-manifold (', E) and a log-morphisnp : (Y, E) — (G, S) with
1) p"MSUD)=E,

2) p:pXG\ D)— G\ D is biholomorphic.
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Given a subbundlé’ of TG, we have the following commutative diagram:

(Pi1)- (ife1)-

(5.1) Opy(-1) —2 5 0p4(-1) < 5 Op ) (-1)
Py “ P.G o > P(V)

Y.E) ——— (G.5) ~———— (G.5.V)

Here, iy realizes P,V as a submanifold ofP,G by Proposition 2.1. Outside
7o (D) C PG, the mapspyy (and hencepy_q;,) are isomorphisms. All other maps
are holomorphic. We define

Zariski —

Zi = pyg (PeV \ 71 (D)) C PiY.

Deriniion 5.7. - A meromorphic section of Op (m) is said to have at most
log-poles alongD if it pulls back, via the map fy—1))«|z, = (Pi-1l7,)+ to @ holo-
morphic sectiof of O ,(m)|7, .

Suppose that a meromorphic sectiorof Op (m) over an open subsdl C G is
defined by a meromorphic functio@ on J,G|y satisfying equation (3.2), see Propo-
sition 3.9. Suppose more precisely thatis given by a polynomial in the differentials
up to orderk — 1 of sections ofQG|, as well as the differentials up to ordér— 1

of dlog#, where6 is a meromorphic function o/ nonvanishing and holomorphic
on Uyg = U \ {D U S}. Then, after composing witlp given above, these differentials,
and so also the polynomial in them, become holomorphic fanston JY|,-y) by
Proposition 1.1 (c). Furthermore, the resulting polyndnsiél satisfies equation (3.2)
on p~1(U). Hence, by Proposition 3.9, we obtain a holomorphic sactibOp, y (m)|y
that matches with the pullback afon an open set of,. Therefore,s|y is meromor-
phic with at most log-poles alon@. If such a description is possible on a neighbor-
hood U of each point inG, thens is meromorphic with at most log-poles alory.
We will consider examples of such anin Subsection 5.5.

2with this we mean that, after pulling back the sectionver the part ofZ, where the meromor-
phic map(p-1))« is holomorphic, it extends to a holomorphic section(®, , (m)l, -
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Lemma 5.8. Let (G, S, V) be as above.
(1) There exist injective maps

Fk.,./v - F[(PkV) and OFMV(_:L) — OF,(PkV)(_l)

which are given outsideS by fi+) — (fia)y and by fi.,_y = (fia)y_y) respec-
tively, and which realizeP,V C P;(PV) and Op,, (1) C Oppy)(—1), respec-
tively, as submanifolds.

(2) Furthermore, letl’ be a curve andf : I' — X be a holomorphic map which is
tangent toV. As before, letX,(f) C P,V be the Zariski closure of the image of the
k-th lit fig : T — P,V of the mapf. We denoter, /(S) again by S and 74 (G) N
X(f) by Xi(f). We recall that by Hironaka there exists a log-morphism

W (Xe(f), §) = (PyV,S) such that
@ W(Xi(f) = Xulf)-

(b) w-1(s) =S5.
(c) W is biholomorphic outsideIf‘1<Sing(7k( f))).

We setX,(f) = XTk(f)\S‘. With this setup, we have the following commutative diagram

Wi

(5.2) Pi(Xe(f)) Pi(PV)

Xin(f) € Pia(V)

l |

X)) —=Xf) < PuV)

where ¥;; may be meromorphic, all other maps in the diagram are holghier and
the following holds

(X () € Y (Pi(Xi( 1))

(3) Lets, + be meromorphic sections of the bundlgs , (m) with at most log-poles
along D, and assume is not the zero section. TheR - d(s/t) can be considered as
a meromorphic section of the bundtez  ,(2m + 1) with at most log-poles alond.

Proof for (1). This follows directly from Corollary 2.4 andrdposition 2.1 ap-
plied to the subbundle inclusioli; C T P,_1V. The presentation of the maps outside

S follows from Proposition 3.1.

Proof for (2). ¥ : Pi(Xi(f)) — Pi(P.V) is a proper rational map. Hence,
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W (Pi(X(f)) is an algebraic subset containin@fyx(I) = (fiu)m(T). Therefore,
we also have (X.(f)) < Yy (Pi(Xe(f))-

Proof for (3). s/t is a rational function onP,V. Hence, d(s/t) is a ratio-
nal section ofOz,p,y)(1), Which lifts back, via the inclusion ma@s,  ,(-1) —
Op,(pv)(—1), to a rational section 005, (1). Hence,r? - d(s/t) is a rational sec-
tion of O3, y(2m +1). To prove that? - d(s/t) again is a meromorphic section with
at most log-poles alon@, we pull back the sections, r and¢?-d(s/t) to Z; by the
map (-1)«- Then by definition the sectionsands become holomorphic sections on
Z,. It suffices to show that the rational sectioh- d(s/¢) also is holomorphic orZy.

It suffices to prove this locally oZ;. Given any pointw € Z; C P;Y there exists an
open neighborhood/ of w in P;Y such that the holomorphic sectionsand ¢ over
Zy N U extend to holomorphic sections of the bund®s, ,(m) over U, and that this
bundle is trivial overU. After choosing such a trivialization, one has, by the paidu
rule for the holomorphic functions and¢,

tz-dG):tds—sdt,

the latter being a holomorphic section 6\ (1) L]

Next, we want to prove thaP,G, and evenP,V, are trivial overG for certain
subbundlesV ¢ TG, which we will call special. Letzy, ..., z, be any linear coordi-
nates of the universal cov&@®” — G. We have observed th&tG = C" x G, where the
trivialization is given bydzs, ...dz,.

DerINITION 5.9. V is said to be special i¥¥ = C” x G in this trivialization.
From now on, all subbundle¥ ¢ TG we use are assumed to be special.
Lemma 5.10. (a) The map
(53)  Onv(=1) > Onv(-Dlo x Gi fr_y(0) > ((f — £©O_1y(0), £(0))
gives an isomorphisn®pv(—1) — Op (—1)lc, and this isomorphism is invariant
under the action ofG.
(b) This isomorphism can be extended tdGainvariant isomorphism
Vi 0 Op,y(—1) = (Opy(-1) x G
respecting the fibers of the line bundles.

(c) By combining with the canonical line bundle projections ve¢ the same isomor-
phisms withP,V and P,V instead ofOpy(—1) and O3,y (—1).
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Proof. (a) is immediate, and (c) follows immediately fron). (o prove (b), we
use that by Corollary 3.7 (a) the trivialization of (a) exderlocally, so by the Identity
Theorem it extends globally. The invariance under the actibG of this trivialization
extends fromG to G by continuity.

We would like, however, also to indicate a direct proof. Itolstained by proving
the following more precise statement by induction oker

Ciam S(k). There exist trivialization mapg,, induced canonically by the trivi-
alization of V by dzi, ..., dz,, such that

_ Vi _
Vi V)ox G
(+)x T J (m)oxidg
— Wy_q _
PiaV ——=(P-1V)o x G

commutes and the upper line projectivizes to

PV SN (PV)o x G
(++) Im (i )oxidg
Py_1V g (P-1V)o x G
where ¥, extends the isomorphism in equation (5.3) irGainvariant way.
Now S(1) is clear from the trivialization
Vv —— C' xG,
since we are given that’ is special. Assuming, by induction, thatk$(s true. Then

we get (++).1 by projectivizing (+)+1. It remains to show (%):. By (++) we get
induced trivializations of the logarithmic tangent burglle

T(PV) — 2 1((BV)o) x TG T(PV)0) x C x G

l(ﬂk)x

T(Pe-1V)

l ((71)0)« x (id5)«

Gk—l * —_—
B I (PaV)o) x TG ——= T(PaV)o) x € x G

where the isomorphisms on the right hand side are obtainewiviglizing TG by the
formsdz, ..., dz,. We want to show it we restrict the isomorphism in the uppee li
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of this diagram fromT (P, V) to V,, we also get a trivialization oV, over G. Then
we can denote this trivialization by.1 and the rest follows easily. The key point of
the proof is now that by equation (2.1), namely

Vi(G) = () 1O,y (-1)) C T(PV),

the subbundle/, c T P,V is defined in an intrinsic way which is compatible with the
isomorphisms of the diagram above. O

Lemma 5.11. LetY be a complex manifoldZ c ¥ a complex submanifold and
denote byi : (Z,TZ) — (Y,TY) the directed inclusion map. Let : A — Y be
holomorphic withdg(0) # 0, where A denotes again the unit disk i@. Assume that
gr1(0) is in the image of th§composel morphism

(5.4) Pz, ilpy > PY
for all [ > 0. Theng(A) C Z.

Proof. By Proposition 2.1 a) and b) the map in equation (5s4pimorphism.
Let U c Y be a neighborhood 0§(0) and F : U — C be a holomorphic function
with F|zny = 0. It suffices to showF o g = 0. There exist a small disk\, and a
map h; : Ac = Z with ip((h);(0)) = gn(0) and by Corollary 2.3 we may assume
dh;(0) #Z 0. By Proposition 3.1 we havg; (k) = (i o h)p; and hence, i(e i) (0) =
gr(0) andd(i o 1;)(0) 7 0. Hence, we can reparametrize #; in a way that it has the
same Taylor expansion as up to order/. We assume that this has been done, and
note thath,; still maps a neighborhood of the origin . Hence,

at’

9/ 9/
(—.Fog>(0)2<MFoiohl>(0):0 for j <I.
Since!l is arbitrary, we getF o g = 0. ]

5.4. The Main Lemma The following Main Lemma is the key step in proving
Theorem 5.1 and Theorem 5.3. In the cdse= C, it is a generalization of a lemma
contained in [17], and folG = A, it generalizes a lemma in [21].

Main Lemma 5.12. With the same setup as that fdheorem 5.1 ¢r Theorem
5.3), let V ¢ TG be a special subbundle. Assume that ' — G \ D is tangent
to V and, in the casd” = A* that f does not extend t\ as a map toG. Let,
for k > 0, Xx(f) denote the Zariski closure of(T") in PyV. Let, fork,m > 1, ®
be meromorphic section of the line bundi&s (m) with at most log-poles along.
Then there exists an algebraic subgroGp c G, of positive dimension, which leaves
Xi(f) and, fork > 1, also Olx,(,, invariant.
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Remark. The same is true for finitely many different sectiofs

The rest of this subsection will be devoted to the proof of Mein Lemma. It suffices
to consider the case > 1. In fact, to prove the case= 0 we apply the Main Lemma
for k=1 and for® being the zero section i3 , (1). Since the mapr; : P1V — X

is equivariant under the action @i’ and mapsX(f) surjectively Xo(f), the subgroup
G’ also leavesXy(f) invariant. So for the rest of the proof of the Main Lemma we
assumek > 1.

We fix u € T' to be any point for whichdf(u) 7 0. Then all fie+(u), I > 0,
are regular jets. Leky € HO(P1V, O3 (1)) be a global section, which is invari-
ant under the action of5, and which is nonvanishing afjy(«). It exists because
df(u) 70 andOz (1) =0Op1,(1) x G (see Lemma 5.10). Choose an infinite sequence
{no, n1, ny, ns, ...} of natural numbers such that the following two conditionsdho

2k +1) — 1)|n; for 1 = 0,
n; > 2(}11_1 + 1) for/ > 1.

For exampley; = 2/(2(k + 1) — 1)m, wherem = deg® will work. Let
Oo=0 (5" ")

and, for/ > 1, define inductively:

or=a(SE) - (657
0

Then, by Lemma 5.8 (3)®; is @ meromorphic section @5, (7;) with at most log-
poles alongD (here S0 = S0 © (7T0.k+[_1)*).
By Lemma 5.10 we may identify?,V as PV, x G. Then we have:

OFkH(V) (_l)|7k+1(f) c OFHI(V)(_l) - OPHI VO(_ 1)
X (f) C Pra(V) = PuVox G —> PuVo

|

Xi(f) C Pi(V) P Vo x G ——> PVo

f |

I ———X(f) C G = G—0
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where Oe G \ D and p; is projection to the first factor. Define, fér> 0O:

_ ®;
W, = {a eG: (f +a)[k+/](u) S Xk+[(f) andF
0

O

i@ Sg'

, iZO,...,l}.
(f +a@)esiy ()

Lemma 5.13. With the hypothesis and the setup as in the Main LemwWia=
Nizo W, is an algebraic subvariety of; and dimg W > 1.

Proof of Lemma 5.13. W, is an algebraic subvariety off as the group action
of G on itself is algebraic. Hencely is also algebraic. Let; > I and mysp, k4 -
Pk+[1V — Pk+[2V. If (f +a)[k+,1](u) (S Xk+11(f)a then

(f + @) st (1) = Tpaty ety © (f + @) i) () € Tty sty Xty () = Xt ()

Hence,W,, [ > 0, is a decreasing sequence of algebraic subvarietie&.060 the
proof of Lemma 5.13 is complete if we show:

dimgW, > 1forl > 0.

By the beginning of part iii) of the proof of Theorem 6.8 of Daifty in [2],
the rational map, obtained by a basis of holomorphic sestioh the line bundle
Op,vo(2(k +1) — 1), is @ morphism on the subsét.,;(V)y° of regular jets inP, Vo
and separates all points there. Denote Iyy+-1) the linear system obtained by the
pull backs of these sections by the mapsee the last diagram). Then we have

(L))" CEDD PV, O5,,v ().

Therefore, the sections df°(P .V, O3,,,v(n1)) still separate points in the subset of
regular jets of each fiber of the map;V — G. Let a map®; : PV — PV be
defined by a basis of these sections. Then the fiber of the dnatfrough a regular
jet € € Py V is necessarily of the fornié +a, a € R}, whereR C G is algebraic.

To the basis of holomorphic sections which define the ndap we now add
some extra sections which we allow in addition to have lopgalong the divisor

nj—n;

D, namely the section®; - sy’ ', i =0,...,l. So we get a map
&)[ . FMV — PN’+I+1.

This map will in general only separate the subset of regdts pf those fibers of the
map o+ : PrwV — G which are not over the divisob. But the fibers of the map
®; 1 PryyV — PM**L through a regular je§ € Py V \ g, (D) must still be of the
form {& +a, a € R}, where R C R C G is an algebraic subset. So, Lemma 5.13 is
proved if we show thatd, : X;+(f) — PV**1 has positive dimensional fiber through

& = firen(u).
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For proving this, we want to use our Ahlfors Lemma 4.3. Bustbhnly applies
for holomorphic sections. We first extend the diagram in &@qoa(5.1) to

Plk+l] —

Zi+(f) C PiwY — PG o Pra(V) D) X (f)

— _ Pl —
Z(f) C Py —>PG D

Pi(V)
(G, S,V)

Y.E) > (G.,s) D

D Xi(f)

where

is

ki —
CcC Z, C P,Y,
iski

— Zar
Zi(f) = pup(Xe(f) \ 7o £(D))

_ I 1 Zar
Zin(f) = P[7¢+1] (Xt () \ 7To__k+1(D))

i _ —
C Zi+1 C PraY.

By functoriality of the jet bundles and Definition 5.7, thectens which defined,
pull back to holomorphic sections to span a linear system

Liet € HY(Zew(£). Op,y(m))-

The elements of .+, define the pull back ofb; to me (which we denote again by
d)).
So we can apply our Ahlfors Lemma 4.3 to the map

Py 1 Ziw(f) — PN

to conclude thatfi(u) € Biwi(Zi+i(f)), Where = p~to f and, without loss of gen-
erality, u ¢ SingX+,. For otherwise, the mag would be constant or (in the case of
' = A*) at least extendable, which would imply thithas this property, or the image
of }‘[kﬂ] would be contained in Sirg.;(f), which is impossible, sinc&+;(f) is the
proper transform of the Zariski closure of the image fyf.;. Hence,®; : Ziu(f) —
PN**1 has positive dimensional fiber througf.; (). Since fixu) & mg i, (S U D),
the mappyy; is an isomorphism aroungic.;(0). Hence,®; : X (f) — P¥*** also
has positive dimensional fiber. This ends the proof of Lemmis.5 U

Let us now continue with the proof of the Main Lemma. Withousdoof gen-
erality we may assume thafy(x) ¢ Sing(X«(f)). Then there exists a neighborhood
U = U(0) C G such that, for alla € U, we have { + a)ig(u) ¢ SingX«(f)). By
Lemma 5.8 (2), we get

((f + @) () € Pi(Xi(f)) € Pi(Pe(V))
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fora e WNU and alll > 0, where we have omitted to write the map This is
justified by the fact that aroundf(+ a)y(«), for a € U, the variety X,(f) is smooth,
and soV is an isomorphism there. Applying Lemma 5.11, we get that &) (") C
X«(f). Hence,

(f +@)(I') C Xk(f)

for a € W N U. But this means

(M) € Xi(f) N (Xi(f) +a).

Since X, (f) was the Zariski closure of (T'), we get

Xi(f) = Xi(f) *+a

for all a €e WNU. We next want to show:

Lemma 5.14.

®
deg®
So " lxup

is invariant under the action of alhk e WNU

Proof of Lemma 5.14. Let € WNU be fixed. In order to simplify notation, we
denote byF(;, i € Np, the following rational function ol V:

O, O,
Fi(y) = () — = (v +a).
So So

Set F = F). It suffices to show that, for all € No, we have

i

0 (F o f[k])(u) =0.

(5.5) o

For then, by analytic continuation applied i : A — PV, we will have F o
fig(T) =0, so thatF = 0 on X,(f) as required by Lemma 5.14.

By abuse of notation, we have identifigglo (7o x+—1)+ With sg. Since these sec-
tions are maps fronO5,, (1) respectivelyOs (1), this means we have

(5.6) 50(fien (1)) * fess—1y (1) = s0(Sfi (1) - £(2) -

Recall that the sectiosg is nonvanishing atfj;;(«), and thatf’(x) # 0. So, after pos-
sibly shrinking A, we may reparametriz¢ such that

(5.7) So(f[k+/] (t)) : f[/k+171](t) = So(f[l] (t)) -f)=1.
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For the rest of this proof we fix the parameten such a way that equation (5.7) is
satisfied. We claim that for anye Ny we have:

i

3
(5.8) w(F o fua)(t) = Fgy o fuwn () -

We prove this by induction over € Ny. The case S(0) is clear by definition. As-
sume that Sf, i <[ is true. Then we have

l -1
8—(FOflkl)(f) =0 <a (Fof[k])) (t)

at! ar \ arl1

0
= —(Fy-1 o fier-13)(t)
ot

= (dFu-0)((fier1-1)(0)) * Firer—1y(0)
(d Fa—o)((fiks1-1)@)) * flrr—13(1)
so((fpern)(®)) + fliar—13(1)
(d Fu-)((fis)@)) - fewr—1(0)
so((fies)(®)) + flrwr—13(1)
= D () = FoUa®):

N

Here, we regard the differentials as linear maps@p@-1), more specifically, sections
of O(1). To see the second equality from below, recall that thetiee d Fj;_1y of
Op, (o (vy(1) naturally restricts to a section @5, (1). This proves equation (5.8).
But from equation (5.8), equation (5.5) follows immedigteThis is because, by the
definition of W, Fj) o fy+ij(u) =0 for all i € No. O

Now the proof of the Main Lemma is immediate. Let us define

~ e :
W=13a¢e€G: X (f)=X(f) +a, —dego 1S invariant under: ¢ .
So

W is clearly a group, which is algebraic by Lemma 5.5. It is obifige dimension,
since WNU) Cc W and dinpg(WNU) > 1. This finishes the proof of the Main Lemma
5.12.

5.5. Proof of Theorems 5.1 and 5.3

Proof of Theorems 5.1 (a) and 5.3 (a). We apply the Main Lemm2 & the
special case wheré = 0 andV = TG. Then Theorem 5.3 (a) is immediate. Theo-
rem 5.1 (a) is obtained by dividing out by the biggest algiebsabgroup ofG under
which X(f) is invariant. [

In order to prove the remaining parts of Theorems 5.1 and Wwe8first have to
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choose the sectio® appropriately. We do this in the same way as Siu-Yeung ([21])
or Noguchi ([17]).

By Noguchi ([17], Lemma 2.1), there exists a theta function D C G. This
means the following. Letr : C" — G be the universal covering with a ‘semi-lattice’
I1;(G). There exists an entire functioh: C* — C such that

®)=xn*D.
Moreover, for anyy € I11(G), there is an affine linear functioh, in x with
(5.9) O(x +y) = eHWo(x), x € C".

But the proof which Noguchi gives actually yields more. ddes G as a C*)‘-
principal fiber bundle over an abelian variety, and denote the projection map by
p:.:G — A Letwr : C" — A be the universal covering. Then the fibered prod-
ucts of = with G respectivelyG over A are C*)¢ x C™ respectively P1)¢ x C™. Let

7 1 C" — (C*)* x C™ be the universal covering. Then Noguchi's proof yields that
there exists a holomorphic functioh : (C*)! x C™ — C which extends to a mero-
morphic function on P1)¢ x C™ such thatd =6 o 7 is a theta function forD c G as
above. More precisely, ifuf, ..., w,) is a multiplicative coordinate system o€¥)*
andU c C™ is a small neighborhood of a point i@™, then§|(c*),‘xy can be written
as

(5.10) Zall i (y)w1 S,

finite

where the coefficients;, ;(y) are holomorphic functions otv. As (P}’ x C™ is the
universal covering space af, 6 gives a multivalued defining function foP on G
locally given by equation (5.10). It follows that, whenean algebraic expression in
6 descends taG, it extends toG to a meromorphic object, and, hence, to a rational
object.

Let u: I — T" be the universal cover, and l¢t: I' — C" be any lift of the map
fow:T"— G\ D. Then we can choose a linear coordinate system. (., z,) of C"
such that in these coordinateg,is expressed as

7(1) = (fl(z)v RN fll'(z)v O’ N 0)
with holomorphic functionsfi(z), ..., f.(z), for which the functions

17 flv f27"'7fn/

are linearly independent. The set of differential equatian,+1 = 0,...dz, = 0
obviously defines a subbundlé < T7C", which is invariant under translation and,
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hence, descends 6. It is important to remark that this subbundle extends to e& sp
cial subbundleV < TG. This is true, since by definitiony is just of the form
V = C" x G with respect to the trivialization o' G given by the standard logarithmic
forms dzs, ..., dz,.

Siu-Yeung ([21]) defined the following logarithmic jet déffential:

dlog6 dza oo dzy
d?logt d?z1 ... d%z
G ) ) ) )

d"*togf d"*zy ... d" Mz

We want to use thi® as the® in our Main Lemma 5.12. So we need:

Lemma 5.15. ® can be considered as a meromorphic section in the line bundle

O?”H-:LV <(n/ - 1)2(’1, - 2)>

with at most log-poles alon@.

Proof of Lemma 5.15. We first show (part (a)) thatis a meromorphic function
on J,C", and, hence, also oV, which satisfies equation (3.2) with order= n’ +1
and degreen = (n' +1)(n' +2)/2 = k(k + 1)/2 (recall thatV c TC" is defined by
dzy+1r = -+ = dz, = 0). By using equation (5.10) it follows actually th& de-
fines such a function o, (C* x C™M), which extends, again by equation (5.10), to
a meromorphic function o/, (C** x C™). This meromorphic function descends to a
multivalued function on/,G. Then we show (part (b)) that it is actually singlevalued
on J;V c J,G. So it corresponds, by Proposition 3.9, to a meromorphitiGeof
Op,y(m). That it is a meromorphic section~<@EV(m) with at most log-poles along
D then follows from the local description d@f in equation (5.10) and from the local
description of meromorphic sections with at most log-paémg D right after Defini-
tion 5.7: In fact, by this description, applied to the mudtived meromorphic function
on J;G, it gives rise to a (possibly) multivalued holomorphic ftina on J,Y. But,
as we saw above, it is singlevalued owgrV, and hence, it is also singlevalued over
JiY. Thus, it yields a meromorphic section with at most log-padéong D.

(@) We show more generally: Lét, ..., 4, : (A, 0) — C be nonvanishing germs
of holomorphic functions. Leg; =logh;, i =1,...,r. Then

dg1 dgz ...dg
d?g1 d?gs ... d%g,

d'gi1dg...dg
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gives a jet differential on/, Ag which is equivariant under the full reparametrization
group J, Ag in the sense of equation (3.2). (We will apply this for theecaghere the
germsh; are obtained by composirg and the exponentials of thg's with the germ
f:(C,0) — C" representing the jet in our case.)

Only the equivariance is nontrivial. Let = (g;). Let ¢ € J,Co. Then, by using
the identity

j—1
(g0 )P(0) =g Q)Y +> D> c.i,8"(0)p(0)...¢M)(0).

s=1 i1+"'+fx:j

we get by induction on that

(god) A---A(go ¢))(r)(0) =g’ A A g(r) . (¢’(0))r(r+l)/2.

This gives the desired equivariance.
(b) From equation (5.9) we have, for e I11(G) C C":

d'logf(x +y) =d' logo(x) +d'L,(x) =d'logo(x) + Y "a;d'x; + Y a;d'x;,

Jj=1 j=n'+1

wherea; € C are constants. Then, from the properties of the determiaadtthe fact
that we restrict® to J,+1V, it follows that this jet differential is invariant undereh
action of IT11(G). Hence, it descends t6. O

Lemma 5.16. Under the assumptions dfheorem 5.1 (b),or Theorem 5.3 (b)
and (c) and the additional assumption thgt does not extend, the following holds
If X(f) N D # @, then X(f) N D is foliated by translates of an algebraic subgroup
G"” C G’ of positive dimension, wher€’ is the maximal subgroup whose translates
foliate X ().

Proof of Lemma 5.16. We may assume thatis nonconstant and, for the case
that ' = A*, that the mapf does not extend. We apply the Main Lemma 5.12 to get
the existence of an algebraic subgroGi ¢ G of positive dimension which leaves
Xw+1(f) and Olx, () invariant. As X,+1(f) is invariant under the action of” and
the projectionrmy ,+1 (respectivelymg,+1) maps X, +1(f) surjectively ontoXi(f) (re-
spectively X(f)), we see that(,(f) and X(f) are also invariant.
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Take anya € G”. Since®|x, . (s iS invariant under translation by,

dlogyids  dfi ... dfy
2 _0(f) 2 2
d*log e d°f A% | _gonr.

n 0 n’ : . n' '
d +1|og ks Ay AT
Now d log{f(x)/0(x+a)} is a rational differential orG. Since f+a cannot map entirely
into the zero set ob, becauseX(f) is the Zariski closure off (T),

) (1g DG :
o (10955 ) S A 1100

are well defined meromorphic functions ®h The functions §/9z) f1(z), ...,

(0/92) f(z) are linearly independent as fi, ..., f,, were so. Hence, we get, by the
classical Lemma of the Wronskian [1], that there exist caxphumberscy, ..., ¢y
(which may depend om € G”) such that

0
dlog —————~ +c1dfi(z) + - +cydfuy(z) =0 0NT.
alz

So we have

0(x)
0(x +a)

on fiy(T"). Moreover, sinced log{6(x)/6(x + a)} is a rational differential onG, this
equation holds orXy(f).

Assume now that Lemma 5.16 does not hold. Then there exjsts X(f) N D
and ap € G” such thatxg +ag ¢ D. We want to show that this assumption leads to a
contradiction. From equation (5.11) we get that

(5.11) dlog

+cidxy+- - +cepdxy =0

00 _ g0 *D)

(5.12) dlog————— o + 0) —9(x+ao+b)

on X.(f) for b € G”. This means that

0(f) 6(f +ao+b)\ _
d'°g<9(f+b) 6(f +ao) )=oonr.

Hence,

0(f) 6(f +ao+b)
6(f +b) 0(f +ao)

= Cao.b onl,
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wherec,, , € C is a constant, which may depend ogandb. Since{0(x)/0(x + b)} x
{6(x +ag+b)/0(x +ap)} is a well defined rational function o6, we have
O(x) O(x+ap+bh) _

(5.13) S AD) 60tag et On X(f),

whereb € G”. Now xg +ag € D, but xo € D. So we get, forb = ag and x = xq, that

Capao = 0. This means, a¥X(f) is irreducible, that eithef(x) = 0 or (x + 2ap) = 0

on X(f). But both is not true, as one sees by taking= xo + ap respectivelyx =

xo + ap — 2ag (remark that the latter is still inX(f), since X(f) is invariant under

the action ofG”). So our assumption was wrong, and we have proved Lemma 5.16.
U

Proof of Theorem 5.1 (b). Assume tha&{(f)ND #@. We want to show that this
assumption leads to a contradiction. After applying a fetitn, we may assume, by
Theorem 5.1 (a), thak(f) again is a semi abelian variety’ with nonempty divisor
D’ in G, where D’ is the reduction ofX( f)ND. Now we divide through the maximal
algebraic subgrougs of G’ which foliates D’. Then, by applying Lemma 5.16 to the
quotientG’/G and by taking the inverse image under the quotient map, wex¢éjn
D =@, which contradicts our assumption. L]

Proof of Theorem 5.3 (b) and (c). Part (b) follows immedmtélom Lemma
5.16. For (c), letG be an abelian variety. Lef’ again be the maximal algebraic sub-
group the translates of which foliat®(f). We may assume that all translates @f
which foliate X (f) intersectD (in particular X(f) N D # @), for otherwise we finish
the proof by using Lemma 5.6. Then there must be such a ttangjaof G’ such
that 7o ¢ D. Now by Lemma 5.16 we find a subgrodp’ C G’ of positive dimension
which foliatesX(f) N D. Hence,T N D is foliated by translates of;”. But sinceT is
also foliated by translates af”, there must be such a translate not hittibgat all.
This finishes the proof again by using Lemma 5.6. O

6. Appendix

We use the notations of Subsection 4.1. We now give a keytregulwhich pseu-
dometrics of negative curvature are usually constructed (2.7) of [5]). We point out
that our version is sharper than the ones in [2, 5] for thecblsius in our definition
is smaller than theirs.

Lemma 6.1. Let the setup be as iBubsection 4.1and assume further that is
normal. Then given line bundles and H over X, there is an integef; > 1 such that
x ¢ E; implies thatx ¢ Bs|/L — H| for all positive multiples of /;, more specifically,

E; D Bs|IL — H|.
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Proof. Observe that we may always writé + H' = H”, where H' and H” are
very ample divisors. Then Bd. — H”| 2 Bs|/L — H|, as one can see from the fact
that B§G — G’| UBS|G’| 2 Bs|G| for arbitrary line bundles;G and G’. Hence, we will
assume without loss of generality that is very ample.

Let x € X be outsideE;. Then, we may assume tha is birational onto its im-
age after replacind. by a suitable multiple of. (see 1.10 and 5.7 of [23]). It will be
sufficient to show that is outside B§L — H| for somel, and hence, for all multiples
thereof, as Lemma 6.1 would then follow by the quasi-conmsg ofX \ E,..

Consider the ideal shedf C Ox generated by the global sections bf By blow-
ing up this ideal sheaf, we obtain a modification: X — X so thatJ = ¢*Z - O
is an invertible ideal sheaf o®; generated by a global sectionof the line bundle
F = 0,(-1), namely,J = ImM{O(F*) =5 O}. ThenL := ¢~1L — F is spanned by
the sections« 1t)/s ast ranges overH(L). Note thatE; = o }(E), thato 1 is
an isomorphism on the neighborhoatl\ E; of x and that any section dfL. —o 'H
not vanishing on the point—%(x) gives rise to a section ofL — H not vanishing
on x by tensoring withs’ (Zariski's Main Theorem and(x) # 0). Hence, replacing
(X,L) by (X,L) we may assume that, : X — P is a birational morphism onto
its imageW = ¢, (X). Let og : Wop — W C P" be the normalization o. Then
Hy = UO_J'OPH(].) is ample so that there is a positive integesuch thatd Hy is very
ample onWy. As X is normal, there is a canonical morphigm: X — Wy such that
o1 = ogop. Noting ¢ 1Hy = L, we see that the imag#, of the morphismyp,; admits
a birational morphisnr to Wy and thaty = r o ¢4.. As ¢ is connected by Zariski’'s
Main Theorem,p—%(¢(x)) = {x}. Hence, replacing. by dL we may assume that

(6.1) 01 (e (¥)) = {x).

As H is very ample,|H| has an elemenD such thatx ¢ D Z E; by general po-
sitioning. We may now choose, thanks to equation (6.1), aetsypface of sufficiently
high degredl in P* containingg; (D) but not g, (x). This gives a divisor in/L — H|
not containingx as desired. ]

In practice, Lemma 6.1 is all that one uses. But one can edsillyice the follow-
ing strengthened version in order to complete the picture.

Lemma 6.2. Let X be a normal complex projective variety with any line bundle
H. For any line bundleL over X, there is an integerng such that

EmoL ) SL 2 BS|mOL — Hl .

Moreover, if H is very ample, the both inclusions are equalities.

Proof. Clearly there is an intege¥ such thatS; = ﬂ,’;’:lEmL. For eachm, there
is an integerl,, > 0, such thatt,,; 2 Bs|/L — H| for all positive multiple/ of 1,, by
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Lemma 6.1. Lettingno be a common multiple ofy, ..., Iy, we see that,, . 2 S,
BsimoL — H|. If, furthermore, H is very ample, one easily verifies that|Bd. — H|
E,, . for all m.

G.-E. XTHLOFF AND S. S.-Y. Wy

O v

RemARK. As BSIL — H| D E;; D Sg, it follows that S; = N,.oBs|IL — H| for

any very ampleH.
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