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1. Introduction

In [1], Atiyah and Singer obtained an invariant for certain ^-actions and

Browder and Petrie used the invariant to distinguish certain semi-free S1-
actions [5], In [9], we made a different approach to these problems and were
able to extend the result of [5].

In the present paper, we first define invariants for some periodic actions
on oriented closed manifolds (see Theorem 2.1). The idea is really a mixture
of those of [9] and [10]. Then, by making use of the invariants, we distinguish
periodic actions on the Brieskorn spheres (see Corollary 2.2).

2. Statements of results

Throughout this paper, we assume that p denotes an odd prime integer.
We identify the group Zp with the group {exp2πai/p, a=Q, 1, •••,/>—!}. Let
(Mn, φ, Zp) be a Z^-action on a closed oriented manifold Mn. Then the normal

bundle of each component F^ of the fixed point set has a canonical decomposi-
tion invariant under Zp\

where the m are positive integers with l^m^(p— 1)/2 and where N^(nί) has a
unique complex structure such that exp(2πi/p) operates by multiplication with
exp(2πmi/p). Therefore a fiber of the normal bundle of each component of
the fixed point set has a canonical orientation. We can canonically orient JFV

so that the orientation of a fiber followed by that of Fv yields the orientation of
ΛΓV, where ATV has the orientation of a tubular neighborhood of Fv in Mn. When
N^=N^(m) for some fixed m and for all z/, we call the action a regular Z^-action.
Hereafter we assume that m=l whenever we say regular. However, it will be

easy to see that all the theorems in this paper still hold for any m.

Let (M2n-1, φ, Zp) be a regular Z^-action on a closed oriented (2n— 1)-
manifold M2*'1. We suppose that
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(i) The fixed point set F(ZP, M2n-1) is a homology sphere,
(ii) (M2n~\ φ, Zp) extends to a regular ^-action (W2n

y Φ, Zp) (dW2n=
M2n~l as Z^-manifold) such that the fixed point set F(ZP, W2n) is connected
and the z'-th Chern class of the normal complex bundle of the fixed point set is
divisible by p for all i^l.

When dim F(ZP, W2n) = 0 (mod 4), we define Pontrjagin numbers of
F(ZP, W2n) as follows. Let Pi(F(Zp, W2")) be the ί-th Pontrjagin class of
F(ZP, W2n). Since QF(ZP, W2n) (=F(Zpy M2n~1)) is a homology sphere, the
natural homomorphism

7*: Hi(F(Zpy W2n)y SF(Zpy W2")) -> Hi(F(Zp, W2n))

is an isomorphism for 0<iigdim.F(Zj, W)—l. Given an oriented manifold M,
let σ(M) be the orientation class.

DEFINITION. For each nontrivial partition ω={il, 9ir} with d(ω) =
dim F(ZP9 W)/4, we define the Pontrjagin number Pω[F(Zp, W2n)] by

, σ(F(Zp,

Then we shall obtain

Theorem 2.1. Pontrjagin numbers Pω[F(Zpy W)] mod p depends only on
M2"-1 and not on W2n. If dim F(ZP, M2n^)<2p-?>y then the index I(F(ZP, W2"))
mod p depends only on M2*~l and not on W2n.

As an application, we can distinguish regular Z^-actions on the Brieskorn
spheres. Recall the explicit description of homotopy spheres in bP4g+4r given
by Brieskorn [4] and Hirzebruch [8]

= ε,

where £ is a small real number. Let φ: Zp->SU(2r) be the representation
defined by

A(eMi'p) 0

where

0 A

[cos2πlρ —s'm2πlp

Lsin 2π[p cos

Then Zp acts on the last 2r variables of
tion φ. Let us denote this action by (Σs

^Y means of the representa-
β,*» ZP) Then we shall have
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Corollary 2.2. If4q<2ρ—2 and k=k' modp, then (Σί^-Γ1* <P«.*» ZP) is

not equivalent to (Σs^'lΊ1' Pi.tf* %P)
REMARK 2.3. Actually, if q>r, then (ΣίV^Γ1* ̂  *» ̂ ) *s not equivalent

to CΣKZZi1, Φ:* ZP) for k*k' (see Ku ["])'•
The proofs of Theorem 2.1 and Corollary 2.2 will be given in §3 and §4

respectively.

3. Invariants for regular ^-actions

Suppose a regular Z^-action (M2n~1

> φ, Zp) satisfies the hypotheses (i) and
(ii) preceding Theorem 2.1 in §2. Let (W\n , Φ19 Zp) and (Wf, Φ2, Zp) be two

extensions of the action (M2n~1

y <p, Zp) satisfying (ii). Denote by ξl and ξ2 the

normal complex bundles of the fixed point sets F(Zpy W^) and F(ZP, W2) respec-
tively. By pasting the two Z^-manifolds together, we obtain the action

(W, Φ, Zp) = (W1\J(—W2)y ΦiUΦz, Zp) where — W2 is W2 with the opposite
id

orientation. It follows from the uniqueness of the complex structure that the

normal bundle of the fixed point set F=F(ZP, WJ U (—(F(ZP, W2))) of the action

(W, Φ, Zp) has the complex vector bundle structure ξ whose restrictions to
F(ZP, FFj) and F(ZP, W2) are isomorphic to ξ1 and ξ2 respectively as complex
vector bundles. Hence we have by a standard argument involving Mayer-
Vietoris exact sequences that the ί-th Chern class Cj(ξ) is divisible by p for

0<ί<dim-F/2.
In addition to that, we shall have the following lemma.

Lemma 3.1. cίQ(ξ) is divisible by p where i0=dim F/2.

Proof. If dim F > dim Wβ, cio(ξ) = 0 by definition. Therefore we have
only to prove that cίQ(ξ) is divisible by p when dim F^dim Wβ.

We now introduce some notations. For a space X and a non-negative
integer n, we denote by Ωn(X ) the bordism group in the sense of Conner and
Floyd [6]. The bordism class to which/: Mn-*X belongs is denoted by [M*,f].
Following [6], we also use the notations ΩΛ(G)(=Ωw(fiG)) and Ω,n(G) where

G is a finite group. Since we can regard Ωn_2(CP°°) (resp. Cln-ι(Zp)) as the
bordism group of free ^-actions (resp. free Z^-actions), there is a natural homo-
morphism

defined by restricting the group S1 to Zp. Denote by 7?/+ι the element of
Ω2/(CP°°) represented by the natural free Sfl-action on ιS2ί+1 where i=0, 1, 2, -••.
Then we can interpret the main theorem of Conner and Floyd [6] as follows.

Theorem 3.2. There exist a sequence of manifolds M°0=p-points, M\,

Ml, — such that
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( i ) Ker μ is the submodule generated by βlf β^ β5 where β2k_ 1 =

(ii) the ideal of Ω* generated by all the [M**] (k=Q, 1,2, •••) coincides with

the ideal of all elements of Ω* whose Pontrjagin numbers are all divisible by p.

Denote by CP(ξ) the total space of the complex protective space bundle
associated with ξ and by π : CP(ξ)-+F the projection map. Let/: CP(ξ)-^CP'x>

be a classifying map of the canonical line bundle over CP(ξ) and t^H2(CP(ξ))
(resp. t0^H2(CP°°)) be the first Chern class of the canonical line bundle over
CP(ξ) (resp. CP°°). Denote by f0: CPV-*CP°°, v = Q, 1, 2, ••• the inclusion
maps.

Denote by D(ξ) (resp. S(ξ)) the normal disk (resp. sphere) bundle of F in
W. Since the action (W, Φ, Zp) is regular, μ[CP(ξ), f]=[S(ξ), Φ, Zp], which
is equal to zero by the bordism (W — Int D(ξ), Φ, Zp).

It follows from Theorem 3.2 that there exist b2n_2k^Ω2n_2k for Λ=l, 2, ••-, n,
such that

in Ω2M_2(C'P00). Namely there exist a compact oriented manifold Xzn~l and a
map/: ^2*'1-^C'P00 such that

and

and

where B2n_2k is a closed oriented manifold representing the class b2n-2k and
τtι\ B2n_2kχM*0

ixCPk-2ί-l-*CPk-2i-1 is the projection map.
It will be convenient to introduce the following notations. Set G=

ΣB2n_2kx(M°0xCPk-l(_lM*0χCPk-3(J' )sind set/'=/|G.
* = 1

Then we have

= ±pb0 .

Here we identified Ω0 with Z. It follows that f'1(=f*(tΓ1)eH''-\CP(ξ))^Z)
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is divisible by p. Let x be the element of Hn~\CP(ξ}) such that tn~l=px and
choose c't<=H2i(F) such that cί(ξ)=pc'i for Q<i<dimF/2. According to
Dold [7], H*(CP(ξ)) is a free graded #*(F)-module with base 1, t, -, Γ'Ό-1,
via the induced homomorphism r*. It follows that there existy,y1 9 •• ,^0_1e
H2ί»(F) such that Λ?=^*(y)f|-Ό-1 and π*(cί)f-i'1=π*(yi)f- io'19 i=l, -,ί0-l.
On the other hand, recall the following formula (cf. Borel-Hirzebruch [2] and

Bott [3]),

(3.3) **

Hence we have

1 = 1

*0

= 0.

In view of the module structure of H*(CP(ξ)), we may conclude that

This completes the proof of Lemma 3.1.
Using Lemma 3.1 and the formula (3.3), we obtain

Lemma 3.4. t* is divisible by p for i^>n—i0.

We are now ready to prove the following proposition which provides the
main step in the proof of Theorem 2.1.

Proposition 3.5. <Pω(F), σ(F)y=<^Pω(CP(ξ))tn-^-\ σ(CP(f))> modp for
all partitions ω with d(ω)=iJ2.

Proof. Let η be the complex vector bundle along the fibers of the bundle
π: CP(ξ)-*F. Then the Chern class (with real coefficients) of the complex
vector bundle η is generally given by the formula:

-'•'***(«<(£))

(see Borel-Hirzebruch [2]). Hereafter we say that an element x^H*(X, R)

is dividsible by p if x is in the image of pH*( X] Z) under the following natural
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homomorphism H*(X\ Z)-^>H*(X\ R) induced by the inclusion Z-+R. Then
we can express c(η) as

where S1 is an element of H*(CP(ξ)\ R) divisible by p, since cf(ξ) is divisible
by p for all i^l. The ί-th Pontrjagin class P, (^) is in general given by

(— I)' Σ ("-IX^/iO?)'^9?) f°r a c°mplex vector bundle -η. It follows im-
J1 + J2 = 2i

mediately that we can express Pi(n) (with real coefficient) as

= (-!)«• Σ (-ιχfVβlΓn7''βV'+δ,
j\ + J2 = 2i L Jl JL 72 J

where δ2 is an element of H*(CP(ξ)\ R) divisible by p. Since P(CP(ξ))=
π*(P(F))P(η) modulo 2-torsion, we have the formula (with real coefficients);

Pί(CP(ξ))= Σ
Ί+ I2 =

= Σ

where δ3 is an element of H*(CP(ξ)\ R) divisible by p. Hence for each parti-
tion ω with d(ω)=iJ2, we have

= <^*(Pω(JF))ί""'Ό-1+terms with higher powers of t, σ(CP(?))> mod/>

by Lemma 3.4. This completes the proof of Proposition 3.5.
A brief computation, using Theorem 3.2, leads to the following result.

Lemma 3.6. The bordism Pontrjagin numbers

are divisible by p for all partitions ω with 0^d(ω)^(n—

By combining Proposition 3.5 and Lemma 3.6, we conclude that

=Q modp

for all partitions ω with d(ω)~iJ2. We are now ready to prove our Theorem
2.1. We introduce some notatoins. Denote by a, 1 or 2. Then we set
Fa=F(Zp, Wa). Let ia: Fa-^F1 U (—F2) be the inclusion and let π : Fl U (— F2)
-*Fl\J(—F2)/dF1 be the map obtained by collapsing QF1 to a point. Let

ja : Fa -» Fa/dFa be the map obtained by collapsing dFa to a point and πa : Fl\J
(—F2)/dFl-^Fa/dFa be the map obtained by collapsing F3_a to a point. Since
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j*ιH'(FaβFa)-*H'(FΛ)

is an isomorphism for i<S2i0— 1, there exists the unique class aPi
such that jί(aPi)=Pi(Fa) for 4i^2ί0- 1 . We shall now show that π* {τr?(1Λ )+

is equal to Pt(ί\ \J (—F2)) for 4i^2i0— 1 . Sicne

if θι? : H*(Fι U (-

is an isomorphism for 0<i<*2i0— 1, an element Λ;eiΓ4ί(F1U(— ̂ 2)) satisfying
i*x=Pί(Fa) (a=l, 2) is nothing but P^F, U (- 2̂)) We have

for

snce

jί if a=a!

0 if

Therefore we have shown that

= W u (-,)) .

Let ω=(i1, ••-, ir) be a non trivial partition of i0/2, then

where βA means «Ai"'aAv> since «'i(eA)'7r*/G/A')=0 for αφα'. Hence we
have

, U (-

Thus we have that

PJFJsP^P.) mod/..

If dim F<2p— 2, then <Pω(ί'), σ(F)>=0 mod/> means that [-F] is divisible
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by p in Ω* (see Conner-Floyd [6]). In particular, I(F) = 0 mod p. Since
I(F)=I(F1)-I(F2)y we have that

I(F^I(F2) mod p.

This completes the proof of Theorem 2.1.

4. An application to ^-actions on Brieskorn spheres

Let Σs^-idΣs^-Γ1 be the imbedding defined by

then the fixed point set of the action (ΣsVft^Γ1' 9Ό> ̂ ) *s ̂ s submanifold
which is a homology sphere [4], [13]. The manifold

admits a regular Z^-action given in the manner of the action (ΣΓeiίT1* 9V*" Zρ)
We denote it by (JΓiftίΓi, Φ f f f j k, Z )̂. Then the restriction 9(IF^6V_r

1, Φ^,/r, ̂ )
to the boundary QW$$& is nothing but (Σs^-Γ1* ^^,Λ, )̂- The fixed point
set of the action [W^βk^ i , Φ^,ΛΓ> ̂ ] is Wiq

ι6k_Ύ which is connected and the
normal complex bundle of the fixed point set is trivial, i.e., the hypotheses (i)
and (ii) preceding the statement of Theorem 2.1 in §2 are satisfied. According to

[4], /[FΓS 6^1]=(-l)ff8*. It follows from Theorem 2.1 that (ΣS^-Λ <?*,*> ZP)
is not equivalent to (Σs^/-^1' 9Ό'» Zp) if k^k' mod/). This completes the
proof of Corollary 2.2.
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