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1. Introduction

In [1], Atiyah and Singer obtained an invariant for certain S'-actions and
Browder and Petrie used the invariant to distinguish certain semi-free S*-
actions [5]. In [9], we made a different approach to these problems and were
able to extend the result of [5].

In the present paper, we first define invariants for some periodic actions
on oriented closed manifolds (see Theorem 2.1). The idea is really a mixture
of those of [9] and [10]. Then, by making use of the invariants, we distinguish
periodic actions on the Brieskorn spheres (see Corollary 2.2).

2. Statements of results

Throughout this paper, we assume that p denotes an odd prime integer.
We identify the group Z, with the group {exp 2zai/p, a=0, 1, ---,p—1}. Let
(M*", @, Z,) be a Zy-action on a closed oriented manifold M”. Then the normal
bundle of each component F, of the fixed point set has a canonical decomposi-
tion invariant under Z,:

N, = 31 Ny(m)

where the m are positive integers with 1<m=<(p—1)/2 and where N,(m) has a
unique complex structure such that exp(2zi/p) operates by multiplication with
exp (2zmi[p). Therefore a fiber of the normal bundle of each component of
the fixed point set has a canonical orientation. We can canonically orient F,
so that the orientation of a fiber followed by that of F, yields the orientation of
N,, where N, has the orientation of a tubular neighborhood of F, in M”. When
N,=N,(m) for some fixed m and for all v, we call the action a regular Z ,-action.
Hereafter we assume that m=1 whenever we say regular. However, it will be
easy to see that all the theorems in this paper still hold for any m.

Let (M*®*™*, @, Z)) be a regular Z,-action on a closed oriented (2n—1)-
manifold M*~'. We suppose that
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(i) The fixed point set F(Z,, M**') is a homology sphere,

(i) (M*7, @, Z,) extends to a regular Z-action (W™, @, Z,) (0W**=
M?™' as Z,-manifold) such that the fixed point set F(Z,, W*") is connected
and the s~th Chern class of the normal complex bundle of the fixed point set is
divisible by p for all 7=1. _

When dim F(Z,, W**)=0 (mod 4), we define Pontrjagin numbers of
F(Z,, W) as follows. Let P;(F(Z,, W?*)) be the i-th Pontrjagin class of
F(Z,, W*). Since 0F(Z,, W*)(=F(Z,, M*™")) is a homology sphere, the

natural homomorphism

J¥: H{(F(Zp, W), OF(Zy, W™)) — Hi(F(Z,, W™))
is an isomorphism for 0<:<dim F(Z,, W)—1. Given an oriented manifold M,
let o(M) be the orientation class.

DerFINITION. For each nontrivial partition o= {i, ---,%,} with d(0)=
dim F(Z,, W)/4, we define the Pontrjagin number P,[F(Z,, W*")] by
J* TP (F(Zpy W)+ j* 7Py (F(Zp, W), a(F(Zp, W))) .
Then we shall obtain

Theorem 2.1. Pontrjagin numbers P,[F(Z,, W)] mod p depends only on
M*' and not on W**. If dim F(Zp, M**™*)<2p—3, then the index I(F(Z,, W*"))
mod p depends only on M**™* and not on W*".

As an application, we can distinguish regular Z,-actions on the Brieskorn
spheres. Recall the explicit description of homotopy spheres in bP,,,,, given
by Brieskorn [4] and Hirzebruch [8];

g.qg:_r;l = {(2{1, ) zzq+2r+1)eczq+2r+l[zi+ng_l+z§+"'+z§q+zr+l =&,
|2 24+ | Rogizrsa | 2 = 1}

where € is a small real number. Let @: Z,— SU(2r) be the representation
defined by

[A(e™/?) 0

P(e™?) = where
0 A(e~?)

[cos 2z[p —sin Zn/pJ

| sin 27z[p cos 2z [p .

A(ezm'/p) —

Then Z, acts on the last 27 variables of >13%“* by means of the representa-

tion @. Let us denote this action by (333%™, @4 Z5). Then we shall have
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Corollary 2.2. If 49<2p—2 and k=K mod p, then (33° 71", Pa,u» Z1) 15
not equivalent to (23%073" Pa.w» Zs).

REMARK 2.3.  Actually, if ¢>7, then (333%.1", ®q¢.x Z,) is not equivalent
to (3% Paws Zy) for k+E (see Ku [11]).

The proofs of Theorem 2.1 and Corollary 2.2 will be given in §3 and §4
respectively.

3. Invariants for regular Z,actions

Suppose a regular Z,-action (M**™*, @, Z,) satisfies the hypotheses (i) and
(ii) preceding Theorem 2.1 in §2. Let (W?", ®,, Z,) and (W3", ®,, Z,) be two
extensions of the action (M?*"7}, @, Z,) satisfying (ii). Denote by £, and £, the
normal complex bundles of the fixed point sets F(Z,, W,) and F(Z,, W,) respec-
tively. By pasting the two Z,-manifolds together, we obtain the action
(W, @, Z,)= (WIH(——WZ), @, UD,, Z,) where —W, is W, with the opposite

orientation. It follows from the uniqueness of the complex structure that the
normal bundle of the fixed point set F=F(Z,, W) U(—(F(Z, W,))) of the action
(W, ®, Z,) has the complex vector bundle structure & whose restrictions to
F(Z,, W,) and F(Z,, W,) are isomorphic to &, and &, respectively as complex
vector bundles. Hence we have by a standard argument involving Mayer-
Vietoris exact sequences that the i-th Chern class ¢;(£) is divisible by p for
0<i<dim F/2.
In addition to that, we shall have the following lemma.

Lemma 3.1. ¢; (&) is divisible by p where i,=dim F|2.

Proof. If dim F>dim W/2, ¢; (£)=0 by definition. Therefore we have
only to prove that ¢;(£) is divisible by p when dim F <dim W/2.

We now introduce some notations. For a space X and a non-negative
integer #, we denote by Q,(X) the bordism group in the sense of Conner and
Floyd [6]. The bordism class to which f: M*— X belongs is denoted by [M", f].
Following [6], we also use the notations Q,(G)(=Q,(BG)) and O,(G) where
G is a finite group. Since we can regard Q,_,(CP~)(resp. Q,_,(Z,)) as the
bordism group of free S*-actions (resp. free Z,-actions), there is a natural homo-
morphism

i Qu_o(CP™) = Q_(Z,)
defined by restricting the group S* to Z,. Denote by 7v,;,, the element of

Q,;(CP~) represented by the natural free S*-action on S%** where =0, 1, 2, ---.
Then we can interpret the main theorem of Conner and Floyd [6] as follows.

Theorem 3.2. There exist a sequence of manifolds M= p-points, M,
M5, --- such that
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(i) Kerp is the submodule generated by (8,, 3;, B, where sz—lz[Mg]'sz—l

‘I“ [M:]'sz— 5+ [Mg]')'zk—g_"‘ B
(ii) the ideal of Q. generated by all the [M3*] (k=0, 1, 2, ---) coincides with
the ideal of all elements of Q4 whose Pontrjagin numbers are all divisible by p.

Denote by CP(£) the total space of the complex projective space bundle
associated with £ and by »: CP(¢)—F the projection map. Let f: CP(§)—~CP>
be a classifying map of the canonical line bundle over CP(£) and t H*(CP(§))
(resp. t,= H(CP~)) be the first Chern class of the canonical line bundle over
CP(£) (resp. CP~). Denote by f,: CP*—CP~, v=0, 1, 2, -- the inclusion
maps.

Denote by D() (resp. S(£)) the normal disk (resp. sphere) bundle of F in
W. Since the action (W, ®, Z,) is regular, u[CP(§), f]=[S(€), ®, Z,], which
is equal to zero by the bordism (W—Int D(§), ®, Z,).

It follows from Theorem 3.2 that there exist b,,_,,EQ,,_,, for k=1,2, -+, n,

such that
[CP(§), 1= 32 ban b [ME on s [M]7sit-+)

in Q,,_,(CP~). Namely there exist a compact oriented manifold X**™* and a
map f: X**7'— CP" such that

0X = CP(£)U —3" Byu_pu X (MSX CP¥ 1 UM X CP*U )
k=1
and
flepE) =f
and

lezn—szM:iXCPk_zt—l :fk—-zi—loﬂl

where B,,_,; is a closed oriented manifold representing the class bg,_5, and
70, Bop_ope X M3t X CP*~2"1— CP* %1 is the projection map.
It will be convenient to introduce the following notations. Set G=

SV By X (MSX CP* UMEXCP* U ) and set f'=f |G.
a Then we have
A7 o(CP(E)>
= {f*57, o(G))
= ; <7f>1kff—2i_1tg—1, (Bon_os X M2 X CP*-1)>
= a¥fE 2 o(Byx MOX CP* )
= £ pb, .
Here we identified Q, with Z. It follows that " (=f*(£s"") e H" (CP(£))=Z)



PERIODIC ACTIONS ON BRIESKORN SPHERES 139

is divisible by p. Let x be the element of H" *(CP(¢)) such that #*"'=px and
choose c;H?*(F) such that ¢;(§)=pc; for 0<i<dim F/2. According to
Dold [7], H*(CP(¢)) is a free graded H*(F)-module with base 1, ¢, -+, " %7,
via the induced homomorphism z*. It follows that there exist y, y,, **+, ¥;,-, €
H?(F) such that x==*(y)" %o and z*(c{)" * '=n*(y,)t* %7}, i=1, -+, 5,—1.
On the other hand, recall the following formula (cf. Borel-Hirzebruch [2] and
Bott [3]),

(3.3) £ 3 (e @)) - = 0.

Hence we have
* {P(y-l—;i,l‘l Y+ (8t
— prtp S )
LA 00
= 07 (ot 3 A e
=0.

In view of the module structure of H*(CP(¢)), we may conclude that

i(§) = —p(y ‘|‘:%=4—]:J’i) .

This completes the proof of Lemma 3.1.
Using Lemma 3.1 and the formula (3.3), we obtain

.Lemma 3.4. ¢ is divisible by p for i =n—i,.

We are now ready to prove the following proposition which provides the
main step in the proof of Theorem 2.1.

Proposition 3.5. (P,(F), o(F)>=<{P,(CP(&))t* %', a(CP(£))> modp for
all partitions  with d(w)=1,/2.

Proof. Let 7 be the complex vector bundle along the fibers of the bundle
n: CP(§)—F. Then the Chern class (with real coeflicients) of the complex
vector bundle % is generally given by the formula:

(n) = 3} (14174 n (e 8)

(see Borel-Hirzebruch [2]). Hereafter we say that an element xe H*(X, R)
is dividsible by p if x is in the image of pH*(X; Z) under the following natural
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homomorphism H*(X; Z)—H*(X; R) induced by the inclusion Z—R. Then
we can express ¢(7) as

e(n) = (1+2)""%+3,

where 8, is an element of H*(CP(¢); R) divisible by p, since ¢;(¢) is divisible
by p for all £=1. The i-th Pontrjagin class P;(7) is in general given by
(=1 2‘(—1)"'10 1(1)+¢;,(n) for a complex vector bundle 7. It follows im-

Jy+ig=2i
mediately that we can express P;(n) (with real coefficient) as

P = (17 52 ("7 e

jytig=2i J2

where §, is an element of H*(CP(¢); R) divisible by p. Since P(CP(§))=
7*(P(F))P(n) modulo 2-torsion, we have the formula (with real coefficients);

P(CP() = 5} w*(P(F))-Pin)
— . (—1)z — 1V ”Tio ”Tio 24,
= 3w @E-1e 3 [ e
where §; is an element of H*(CP(§); R) divisible by p. Hence for each parti-
tion » with d(w)=%,/2, we have
SP(CP(g))™ %7, a(CP(€)))
= {a*(P,(F))t" %~'4-terms with higher powers of ¢, o(CP(£))> mod p
= <{PF), o(F)> modp

by Lemma 3.4. This completes the proof of Proposition 3.5.
A brief computation, using Theorem 3.2, leads to the following result.

Lemma 3.6. The bordism Pontrjagin numbers
CP(CP(&)f*ta7 ™, o(CP(§))>
are divisible by p for all partitions o with 0<d(w)<(n—1)/2.
By combining Proposition 3.5 and Lemma 3.6, we conclude that
{P,F), o(F)>=0 modp

for all partitions o with d(w)=7,/2. We are now ready to prove our Theorem
2.1. We introduce some notatoins. Denote by a, 1 or 2. Then we set
F,=F(Zy, W,). Leti,: F,—~F,U(—F,) be the inclusion and let z: F, U(—F),)
—F,U(—F,)/0F, be the map obtained by collapsing 0F, to a point. Let
jau: F,— F,[0F, be the map obtained by collapsing 9F, to a point and =,: F,U
(—F,)/oF,—F,[0F, be the map obtained by collapsing F,_, to a point. Since
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J¥: Hi(F,[0F,) — H(F,)

is an isomorphism for /<24,—1, there exists the unique class JB.eH 4(F,[0F,)
such that j;"(als,-)=P,-(Fa) for 4i<2i,—1. We shall now show that »* {ﬂi"(,p,-)-l—
7P} is equal to P,(F, U (—F,)) for 4<2i,—1. Sicne

i¥Pif: Hi(F,U(—F,)) — Hi(F,)DH:(F,)
is an isomorphism for 0<i<2i,—1, an element x& H*(F, U(—F,)) satisfying
ifx=Py(F,) (a=1, 2) is nothing but P(F,U(—F,)). We have
e {w ¥ (P + 75 P}
= ifn*nik(lp;)—l—ifﬂ*n;"(,p;)
=3Py
= PyF,) for 0<4i<2i,—1,
since
i,’fn‘*n’f,/ _ { ]ﬁ if a=a’
0 if azd.
Therefore we have shown that
7 (L) +nE (P} = PAF,U(—F)).
Let w=(z,, :**,%,) be a non trivial partition of 7,/2, then

P(F,U(—F,)
= 7* (o) + 7 (L)} (B )+ nEGP:)}
= z* {zf (L) +7ECP}
where ,,15‘,, means ,,15,-1---,,15,-', since ni‘(aﬁi)-n";/(arls,-/)zO for a#=a’. Hence we
have
(P(F,U—F,), o(F,U(—F))
= {a* (e (LI} + L)}, o(F,U(—F))
= <t (L) +7ECL.), maa(F,U(—F,))
= <a¥(,L.), mxo(F,U(—F)>+<nf(L.), mso(F,U(—F))
= (B, morso(F,U(—F)D+GLy, mosmsa(FyU(—F))>
= B, o(F.JoF)>+ B, —a(F,[0F,)>
= P[F]—PJF,).

Thus we have that
PIF]=P(F) modp.

If dim F <2p—2, then {P,(F), o(F)>=0 mod p means that [F] is divisible
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by p in Q4 (see Conner-Floyd [6]). In particular, J(F)=0 mod p. Since
I(F)=I(F,)—I(F,), we have that

I(F)=I(F)) mod p .
This completes the proof of Theorem 2.1.

4. An application to Z,-actions on Brieskorn spheres

Let >35%." ,C 2%%. " be the imbedding defined by

3,6k—1
(21, *ty zzq+1) = (zu oty Zagugy 0y 00y O) ’

then the fixed point set of the action (333%™, @44, Z,) is this submanifold
which is a homology sphere [4], [13]. The manifold

WA = {30+ Fagrar ) ECTH b4 2§ o o
+z§q+zr+1 =&, |z| R |zzq+zr+1|2§1}

admits a regular Z,-action given in the manner of the action (233%7", @q,5 Z5)-

We denote it by (W3%¥, @44, Z5). Then the restriction O(W 3%y, @y p, Zp)
to the boundary 0W 3%, is nothing but (325%™, @g s Zp). The fixed point
set of the action [W3%i, ®, ., Z,] is Wilk,1 which is connected and the
normal complex bundle of the fixed point set is trivial, i.e., the hypotheses (i)
and (ii) preceding the statement of Theorem 2.1 in §2 are satisfied. According to
[4], I[W§%i-1]=(—1)?8k. It follows from Theorem 2.1 that (333%.4", Pg.z Z5)
is not equivalent to (333%7 7%, @g s, Zp) if k%K mod p. This completes the
proof of Corollary 2.2.
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