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1. Introduction

Let X be a locally compact separable metric space and let m be a positive
Radon measure on X with everywhere dense support. Let (&£,%#) be a regular
Dirichlet space satisfying the strong local property, ie., &(u,v)=0 if u is constant
on a neighbourhood of the support of the measure |v|-m. Then, the form & can
be written as

1
é’(u,u)=—f dugys, UEF,
2J)x

where p, is the energy measure of ue # (cf. §3.2 in [7]). We say that a function
u is locally in # (ue #,,. in notation) if, for any relatively compact open subset
G of X, there exists a function we % such that u=w m-a.e. on G. Because of
the strong locality of (&, %), the energy measure i, can be defined for ue # .

A pseudo metric p on X associated with (£,%) is defined by

(1) p(x,y)=sup{u(x)—u(y): uey-lacm C(X)a Hewy Sm}’
where p,, <m means that the energy measure u,, is absolutely continuous with
. .. d .
respect to m with Radon-Nikodym derivative %51 m-a.e. The pseudo metric
m

p is called intrinsic metric and its properties has been investigated by Biroli and
Mosco [1] and Sturm [17], [18]. Now, we make the following:

AsSSUMPTION A. p is a metric on X and the topology induced by it coincides
with the original one. Moreover, (X,p) is a complete metric space.

The objective of this paper is to show the uniqueness of the extensions of
(&,%) under Assumption A. In §2, we shall prove that if (&, %) fulfills Assumption
A, then it has a unique extension in Silverstein’s sense (Theorem 2.2), which was
introduced in [14] in order to classify the symmetric Markov semigroups dominating
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the semigroup associated with (&,%).

Suppose that X is a smooth manifold and the domain of the self-adjoint
operator A corresponding to (&,%) contains the space C°(X), the set of infintely
differentiable functions with compact support. We can then consider self-adjoint
extensions of the symmetric operator 41 Cg(X), where 41 CP(X) denotes the
restriction of 4 to C°(X). 1In §3, we shall show that if 4 is hypoelliptic, Assumption
A implies the essential self-adjoitness of 41 CP(X) (Theorem 3.1).

Let (M,g) be a connected, smooth Riemannian manifold and A the
Laplace-Beltrami operator, that is, the self-adjoint operator associated with the
regular Dirichlet space

E(u,v)= J (grad u, grad v)dV,
) "

\

F =the closure of C;°(M) with respect to & +(, )y, ,

where V, denotes the Riemannian volume. Then, the intrinsic metric associated
with the regular Dirichlet form (2) is nothing but the Riemaniann distance, and
Assumption A is equivalent to the completeness of the Riemannian manifold
(M,g). Hence, Theorem 3.1 tells us that if (M,g) is complete, then the operator
A1 CP(M) has a unique self-adjoint extension. This fact is well known (see Davies
[5]) and thus Theorem 3.1 is regarded as an extension of it.

We emphasis that if a regular Dirichlet form is given, its extensions in
Silverstein’s sense always can be considered. Accordingly, Theorem 2.2 applies to
singular Dirichlet forms as given in §4.

2. Uniqueness of extension in Silverstein’s sense

For any Dirichlet space (&,%) on L*(X,m), denote by %, the set of essentially
bounded functions in #. Then the space &, is an algebra over the real field R
(cf. [6] or A4 in [7]). The following class of extensions was introduced by M.
Silverstein [14]:

(€,%) is a symmetric Dirichlet space on L*(X;m),
AAEF)= {(&F) F >F, Euuw=8Euu) for ue#, and

u-veF for VYue#,, YveF, (ideal property).

We call an element of &/4(8,%) an extension of (&,F) in Silverstein’s sense. For
the meanings of the extension in Silverstein’s sense, see Theorem 20.1 in [14] or
A.4.4 in [7].

Let #/ be the function space defined by
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Frel ={ue LX(X;m); u®=(—nVu)Ane F , for Y¥n>0, sup pmy(X)< o0},
n

and set

1
&/ (u,u) = lim Shcun(X) for ueF.

n-= o

The above form (£/,#"%/) is said to be the reflected Dirichlet space and was
introduced by Z. Q. Chen [3]. We then have

Theorem 2.1. For any (§,%)e oA A&, F)

FcFY,  Euu=>8Eu) ues.

The above theorem was obtained and a short proof was given in [21] ; however,
we give a full proof for the reader’s convenience. In order to do so, we need the
fact shown in [20]. Let (§,%)e (&, F) and let (X',m',&', %', ®) be its regular
representaion, ie., (§,%’) is a regular Dirichlet form on L%X’;m’) and ® is an
isometrically isomorphic map between two Dirichlet rings %, and %} (see A.4 in
[7] for detail). The map @ is constructed through the Gel'fand representation of
a certain closed subalgebra L of L®(X;m) satisfying

(L.1) L is countably generated.
(L2) &AL is dense both in (#,£,) and in (L, | ||,).
(L.3) LY(X;m)nL is dense in (L, |)

For the existence of such a subalgebra L, see Theorem A.4.1 in [7]. By considering
F N Cy(X) if necessary, we can assume that

3) Co(X) < L.

Lemma 2.1. For u,v,we Cy(X) such that supp[u]nsupp[v]=0 and w=k
(constant) on a neighbourhood of supp [u],

(i) supp [®@)] ~supp [D()]=0
(i) ®(w)=k on a neighbourhood of supp [D(u)].

Proof. (i) Take f,ge Cyo(X) such that supp[f]nsupp[g]=0 and f and g
are equal to 1 on supp[u] and supp[v], respectively. Then, since ®(u)=D(fu)
=0(f)D(u), ®(f)=1 on {xe X' : D(u)(x) #0}. On account of (3), (/) is a continuous
function on X’ (cf. Lemma A.4.3 in [7]). Hence, supp [®(»)] is included in the
open set {®(f)>0}, and by the same reason, supp [®(v)] is included in the open
set {®(g)>0}. {D(f)>0}n{D(g)>0}=0 because D(f)B(g)=(fg)=P(0)=0, so
supp [®(u)] nsupp [D(v)]=9.
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(i) Suppose that w=k on an open set U (> supp[u]) and take fe Co(X) such
that f=1 on supp[u] and supp[f] < U. Then, ®w)=k on {®(f)>0} because

DW)D(f) =D(wf) =Dk f)=kD(f). O

According to the Beurling-Deny formula, the regular Dirichlet form (&',%")
can be decomposed as

&' (u,v)=&"(u,v) + J (@(x) — a(y)Xo(x) — b)) (dxdy) + J #(x)(x)k'(dx),
x

X'xX'—d

for u,ve F'

where # and § mean quasi continuous versions of u and v. Let us define Radon
measures J on XxX—d and k on X as follows: for f,geCy(X) with

supp [f]nsupp [g]=0

@ L ] xf (x)g()dxdy)= Ll . D/ Nx)D(g)(y)J (dxdy)

and for fe Co(X)

) j xf (x)k(dx)=L<D(ﬂ(x)k’(dx)-

Note that J and k are well defined in view of Lemma 2.1. Finally, define the
form &u,v) on F N Cy(X) by

6 & (u,0) = 6"(@(1), D).

By Lemma 2.1 (i), & becomes a local form. We then see that the Dirichlet form
& can be decomposed as, for u,ve F N Cy(X)

(7 Ewv)=8@w), o)

=68"(D(u), D(v)) + f (D(e)(x) — D) Y)D(v)(x) — D))V '(dxdy)

X'xX'—d

+ J H(x)(x)k'(dx)
X

=&wv)+ j ((x) — u())v(x) —v(Y)(dxdy) + f u(x)o(x)k(dx).
X

XxX—-d
On the other hand, £=¢& on & N Cy(X). Hence, J=0 and k=0 on account

of the regularlity and strong locality of (&,#). As a result, we have

E'(D(f), D(g)) = E"(D(/), D(g)) for f,ge F N Co(X), and thus



LocAL DRICHLET ForMs 885

) &'(0(f), B(g) =E"(D(/), D) for fgeF,

by virtue of the regularity of (&,%).

Proof of Theorem 2.1. Let ue#,. Then the function u is an element of
Z 1, by the ideal property of (&,%), so the energy measure Uy can be defined.
Let {Q,}2, be a sequence of relatively compact open sets such that
QclccQ,cQ,c, Q1X. Let p,eF nCyX) be functions satisfying

{ 1 on Q,
0<¢,<1, ¢,=
0 on X\Q,,;.

We then have from the derivation property of u,, (see Lemma 3.2.5 in [7])

u<“>(X)=limf ©ndpg,, = lim lim -[ Pl -
X x

n—oo n—o m-—w

Since ¢,u belongs to &,

(9) J\ (Pnd#< Omld — Zéb((pn(pmu9 (P,,,u) - éa((pm ((pmu)z)
X

= 2g(¢n¢mu9 (pmu) - é’;;((pm ((pmu)z)‘

Let (X',m,&,7',®) be the regular representation of (£,%) stated above. Then,
by virtue of (8), the right hand side is equal to

(10) 26" (¥(9 ) V(@ n)O(1), V(¢,) D) — &'(D(@,), (D@ D1))*)
=26"(V(@,) V(@) D(u), V() P(1)) — 8" (D(@,), (V(¢,)P(1))*)

= j (Pl @mpvwy >
X

where pfq,, is the continuous part of the energy measure piq), related to a
regular Dirichlet space (',%") (see §3.2 in [7].) Since for n<m, ®(¢,)=1 on some
neighbourhood of supp [®(¢,)] by Lemma 2.1 (ii), the right hand side of (10) is

equal to J D(@,)duipwy by Lemma 3.2.5 in [7] again.

X
Since [ P(@,)ll = ll@ull o<1,

J D(@,)dpowy < J Ay < 28" (D(u), D(w)) = 28(u,u).
x’ X

Heflce, we can conclude that
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(11) J ”{u)Szg(u’u)9
X

and ue #'/. The inequality (11) is extended to any ue%, thereby completing
the proof of Theorem 2.1.

REMARK 1. It was shown in Chen [3] that (6"%/,#") is a Dirichlet
space. Hence, we see from Theorem 2.1 that (6"/,%#"¢/) is the maximum element
in .o/4(&,F) with respect to the semi-order < on 4(&,%) defined by

(L, FH<(2LF?) if F'cF? and E'uu)>E*uu) for ueF'.

An important implication of Assumption A is the next lemma proved in Sturm

[16].

Lemma 2.2. Under Assumption A, the function p(x)=p(p,x) belongs to
F 10N C(X) and p, s <m. Moreover, every ball B,p)={x:p,x)<r} is relatively
compact. Here pe X is a fixed point.

Theorem 2.2. Under Assumption A, the Silverstein extension of (&,F) is unique,
HALAE,F))=1.

Proof. Set
1 x<n
o, (x)=1 n+l—x n<x<n+l1
0 x>n+1.

Let ue #¥ (c #,). Note that by Lemma 2.2 @u(p,) is an element of &, and
supp[¢,(p,)] is a compact set according to Lemma 22. Hence, we have
ur@,(p,)e #, and

1
EuP,(py) —uPu(p,), up,(p,) —up,(p,) = 3 f AU (on(pp) — omip o))
X
< J B2 AW o) - omipp)y + J @lPp) — PP ) ditiuy
X X

= j az((p’n(pp) - ¢'m(Pp))2dN<p,> + J ((pn(pp) - (pm(pp))zdﬂ<u> .
X X

Since the first term of the right hand side is dominated by {,. pp<n+1)
oims ppsmﬂ,ﬁzdm on account of Lemma 2.2, it converges to 0 as n,;m — c0. The
second term also converges to 0 by the dominated convergence theorem. Noting
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that ug,(p,) - u in L?, we see that u belongs to &, which implies the theorem on
account of Theorem 2.1. 0O

REMARK 2. Let (£',%) and (6%,%) be regular Dirichlet forms on L*(X;m")
and L*(X;m?). Suppose that these Dirichlet forms are quasi-equivalent: there
exist constants c¢;,c,>1 such that

il (uwu) <Ewu)<c,Euu) for ueF, c;'m'<m?<c,m'.
Then, by the domination principle (cf. [10])
e My S <ciit

where p'(,, (resp. p®(,,) is the energy measure of u associated with (6*,%) (resp.
(6€%,%)). Thus, we have

3-;1 ref — yz,ref

by the definition of the reflected Dirichlet space. Here #!'¢/ and #2"¢/ are
reflected Dirichlet spaces associated with (6',%) and (§%,%). Therefore, we can
conclude that the uniqueness of Silverstein’s extension is stable under quasi-
equivalence.

REMARK 3. Let N < X be a closed set with Cap(N)=0, where Cap denotes
the 1-capacity associated with the Dirichlet form (&,%#). Set D=X\N and let
(62, #P) be the part of (£,#) on D. Then, by the same argument as in Remark
4.3 in [11], Theorem 2.2 can be extended as follows: under Assumption A, the
extension of (€2, #7) in Silverstein’s sense is unique, #(/ (&2, FP)=1.

3. Uniqueness of self-adjoint extension

Let A be the self-adjoint aperator associated with (&,%#). Throughout this
section, we suppose that X is a smooth manifold and the space Cg(X) is included
in the domain of 4. Let us denote by S the symmetric operator 4 1 CL(X), the
restriction of 4 to C§(X). Furthermore, we assume that S is a hypoelliptic
differential operator in the sense that

N1 ={ueD(S*;(1—S*u=0} c C*(X),

where S* is the adjoint operator of S.
Then, by following the proof of Theorem 5.2.3 in Davies [5], we obtain

Theorem 3.1. Under Assumption A, the operator S is essentially self-adjoint.
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Proof. Take ge.#";. By the hypoellipticity of S, ge C*(X) and Sg=g.
Let  be the function defined on [0,00) by

g 1 0<x<l
Y(x)= —x 1<x<2
l 0 2<x,

and put ¢,(x)=y(e=2). Noting that ¢,e F,,,nL*(X;m) and that

1 ;O(x))2
x=—| v(222) 4
Keh 5 (X) n2£{¢< " Koy
: J
S—z dm<oo,
n
{n<pp(x)<2n}

we see from Theorem 2.2 that ¢, Z.
Let ¢ e CP(X) such that ¢ =1 on a neighbourhood of {p,(x)<2n}. Then,

0> —f P2g*dm= —J PagSgdm= — f PagS(gyp)dm,
X X X

and since ¢2g, g€ F, the right hand side equals

1

1
—f dl‘<¢3.g,g¢>=—J badi g gy + J EPntlicy,.g0)
2 X 2 X X

1
=5j ¢3dl‘<g>+j 8Pudlicy,.g> -
X X

Hence, by virtue of Lemma 5.6.1 in [7],

J brdpigy < _2J EPnl 4>
X X

1/2 1/2
S2<J gzdl‘<¢..>) (J ¢3dﬂ<g>> ,
X X

f badp g, 54J gdpcs,y -
X X

and so

Since the right hand side is dominated by :%{i<, ) <2ng’dm,

pegy(X)=1im | 2y, =0.

n=odJXx
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Hence, ge # and &(g,g)=0 by Theorem 2.2. Noting that |&(g,v)| <&(g,8)'*&E(v,v)!/?
=0 for any ve%#, we can conclude that ge2(4) and Ag=0. Therefore,
g=S*g=Ag=0, which leads us to the theorem. 0O

REMARK 4. Let (£,%) be an element of o/4(&,%) and A the self-adjoint
operator associated with (€,%). Then, under the situation of this section, 4 is a
self-adjoint extension of S and so Theorem 3.1 implies Theorem 2.2. In fact, take
ue 2(A) and pe CE(X). Let (X',m',&',F ', ®) be the regular representation of (£, %)
as in §2. Then

(—Au,0)=Ew,¢)=lim Ew",¢) @"=(—nVu)An)

n—o

and by (8)
&, ) =E'(DW"), D)) = £(@W"), D(p)).

Take e F n Cy(X) such that Yy =1 on a neighbourhood of supp[¢]. Then the
right hand side is equal to

& (DY), B(¢)) = &' ("), V() = Eu"Y, )
on account of Lemma 2.1 (ii). Noting that (£,%)e o4&, %), we get
EW,0)=EW",0) =", —So).

Therefore, (Au,¢)=(u,S¢p) and so 4 = S*.

4. Examples

ExamPLE 1. Let (M,g) be a complete smooth Riemannian manifold. For
yeLi(M;V,) with Y >0, V,-ae., consider the symmetric form on L*(M;y>V)).

1
&Y (u,v) =3 j (grad u,grad o)y ?dV, u,ve CF(M).
M

If the above form is closable, we say that y is admissible. For conditions for
being admissible, see [6] and [8]. For an admissible function y, denote by F#V
the closure of Cg°(M) with respect to &¥+(,)yzy,. Then, (6%,#Y) becomes a
regular Dirichlet form and, independently of each admissible function y, the intrinsic
metric associated with (6¥,%V) is identical to the Riemannian distance. Hence,
Theorem 2.2 implies that #(o/a(6¥,#"¥)=1 for any admissble function Y, in
particular, for any y e H,(M; V,) with ¥ >0, V,-ae. Here H,(M;V,) is the set
of functions belonging locally to the Sobolev space of order 1.
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On the other hand, the uniqueness of Markovian extensions is known only
in the case where M=R" yeH. (R, and Y >0 dx-ae. (see [13], [15]). As a
corollary of this result, we proved in [21] that #(/a(6Y,F*)=1 for Y e HL(R?
with ¥ >0 dx-a.e.

ExAMPLE 2. Let X=R? and m the Lebesgue measure. Consider the following
regular Dirichlet form:

d ou 0
Swn)= Y. u()a“a”
12) b= 1JRe

F =the closure of Cg(R? with respect to &,.
Here, the coefficients a; ; are locally uniform elliptic and satisfy

d
(13) Y. a; ()¢ <k(x|+2)*(log(x| +2))*|¢]* for CeR’.

i,j=1

Denote by p the metric associated with (£,%). Then, the local uniform ellipticity
and (13) imply that the topology induced from p is equivalent with the usual topology
on R’
Set
x|

V) =—r Jk f n 2)10g(s+2)

We then easily see that e #,,,n C(RY and on account of (13)

a2V i,
ixj

Hence, for Vr>0

{xe R p(0,x)<r} = {xe R :Y(x)<r}

|x|
={xeR": b sﬁr}.

o (5+2)log(s+2)

Hence, p fulfills Assumption A, and which implies that #(Lo(&,F)=1. If a;
are smooth, the essential self-adjointness is known (see [4]).

ExAMPLE 3. Let X=R“ and m the Lebesgue measure. Suppose that the form
(&, C&(RY) is uniformly subelliptic, i.e., there exist constants ¢,4 >0 and C such that
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1
(14) 1IlullfZé”(u,u)zillullf—cllullﬁ, Vue C3 (R,

where |lul|? = [radd@(&)I*(1+|&|%)°dE with 4 being the Fourier transformation of
u. Then it is known that (&,C¢(R%) is closable and its closure (&,%) is a strongly
local Dirichlet form. Moreover, the uniform subellipticity condition holds if and
only if there exist constants r,>0 and C,>0 such that

1
Colx—y|<plx,y) <—|x—yI°
Co

for all x,ye R with |x—y|<r, (cf. [19]). Therefore, we can conclude that the
intrinsic metric p fulfills Assumption A and (&, %) has a unique Silverstein extension.

ExAmpPLE 4. Let D be a bounded domain in R? with smooth boundary oD,
and m(dx)=oc’(x)dx. Here ¢ is supposed to satisfy

Ad(x,0D) < o(x) < Ad(x,0D).
Let us consider the Dirichlet form defined by

E(u,v)= J (grad u, grad v)o®dx
D

(15)
& =the closure of Cg(D) with respect to &,.

Suppose a—b>2 and set

1 24+b—a
W d(x, aD)" (a =

Y(x)= <0).

Then, we see that (grady -grad )oY <1 and thus for a fixed point pe D
{xeD:pp,x)<r} c {xeD:Y(x)<r+y(p)}.

Since lim,_ p¥(x)=00 if a—b>2, Assumption A is satisfied. For the essential
self-adjointness, see [9].

The final example tells us that the completeness is destroyed by some time
change.

ExamPLE 5. Let X b_e R? (d>3) and m a smooth positive Radon measure
in the sense of [7]. Let us consider the Dirichlet form on L?*(R?;m) defined by
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Su0)= f ou 6v
l-—l

Rd ax 6x

(16)
Z =the closure of Cg(R?Y) with respect to &,(=&+(,),)-

d
Denote by % the set of C*(R%-functions f satisfying ) (?f 6f
i=1JRa0X j

denote by # the closure of % with respect to &,. Then, it is shown in [3] that
F =% if and only if the measure m satisfies

dx<oo and

(%) m(R"\A)=c for VYAeB(RY) with Cap(4)< o,

where Cap means the 1-capacity associated with the classical Dirichlet form
(&D,H(R%). Hence, if m does not satisfy the condition (), in particular, if m is
a finite measure, then the extension of (&,%#) in Silverstein’s sense is not
unique. Accordingly, the pseudo metric corresponding to (&,%) is not complete
on account of Theorem 2.2.
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