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Abstract
We consider finite-dimensional interacting diffusions which are defined by adding

a linear drift term to independent one dimensional diffusions. For these processes we
prove that the distribution of the occupation time at the first quadrant converges to
a generalized arc-sine law.

1. Introduction

Let S be a finite set, and letA = fAi j gi 6= j2S be a matrix with non-negative ele-
ments. Let us consider the following stochastic differential equation (SDE):

(1.1) d Xi (t) = �(Xi (t)) d Bi (t) +
X
j2S

Ai j (X j (t)� Xi (t)) dt, (i 2 S),

where fBi (t)gi2S is an independent system of one-dimensional standard Brownian
motions.

Assume that� : R! R+ is a Borel measurable function satisfying the following
conditions:
[A-1] For some positive constantC > 0,

(1.2) �(x) � C(1 + jxj) for x 2 R.

[A-2] For each compact setK , there exists a positive constantcK such that�(x) � cK

(x 2 K ),
one can see by standard arguments to use the Girsanov theoremthat for any initial
distribution onRS, the SDE (1.1) has a unique weak solution, which defines a diffusion
process (X(t), Px) on RS. We call the diffusion processa finite-dimensional interacting
diffusion.

In this paper we are concerned with limiting distribution ast !1 of the occu-
pation time of X(t) at the first quadrantRS

+ = [0,1)S of RS

(1.3)
1

t

Z t

0
IRS

+
(X(s)) ds.
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In non-interacting case whereA = fAi j g is absent, each coordinate process is a diffusion
process (X(t), Px) on R governed by the following SDE:

(1.4) d X(t) = �(X(t)) d B(t).

For the one-dimensional diffusion process (X(t), Px) governed by (1.4) Watanabe [5]
proved that the distribution of

1

t

Z t

0
IR+(X(s)) ds

converges to a non-degenerate distribution ast !1 if and only if

m+(x) =
Z x

0
�(u)�2 du, m�(x) =

Z 0

�x
�(u)�2 du (x � 0)

satisfy the following condition; for some 0< p < 1

(1.5) m�(x) = x1=p�1K�(x)

with slowly varying functionsK+(x) and K�(x) at x = 1 and

(1.6) lim
x%1 K+(x)

K�(x)
= b 2 (0,1).

Then it holds that

1

t

Z t

0
IR+(X(s)) ds

(d)
=⇒ Yp,q (t !1),

whereq is given by

q =
bp

1 + bp
2 (0,1),

and
(d)

=⇒ denotes convergence in distribution andYp,q is a [0,1]-valued random variable
with the Stieltjes transform given by

E

�
1

u + Yp,q

�
=

q(u + 1)p�1 + (1� q)up�1

q(u + 1)p + (1� q)up
, u > 0.

The family Yp,q, 0< p � 1, 0< q < 1, was introduced by Lamperti [2], of which
distribution is calleda generalized arc-sine law. In particular, the distribution ofY1=2,1=2
is the arc-sine law, of which density function is given by

1�px(1� x)
.
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For general 0< p < 1 and 0< q < 1, Yp,q has the densityf p,q(x) on [0, 1];

f p,q(x) =
sin p�� q(1� q)xp�1(1� x)p�1

q2(1� x)2p + (1� q)2x2p + 2q(1� q)xp(1� x)p cosp� .

For the finite-dimensional interacting diffusion (X(t), Px) governed by (1.1) we
investigate the limiting distribution of (1.3) under the following condition:
[B-1] �(x) is regularly varying both atx !1 and x !�1 with the common expo-
nent�1 <  < 1=2, and

lim
x!1 �(�x)�(x)

= c 2 (0,1).

[B-2] An S� S-matrix A = fAi j gi , j2S, of which diagonal element is defined by

Ai i = � X
j2S, j 6= i

Ai j (i 2 S),

is irreducible.
We note that by [B-2]

Qt = expt A

defines a transition matrix of an irreducible Markov process on S, so that there exists
a probability vectorm = fmi gi2S with mi > 0 such that for someÆ > 0

(1.7) jQt (i , j )�m j j � e�Æt (i , j 2 S).

The main result of this paper is the following.

Theorem 1.1. Assume the conditions[B-1] and [B-2]. Then

(1.8)
1

t

Z t

0
ÆX(s) ds

(d)
=⇒ Yp,qÆ+1 + (1� Yp,q)Æ�1 (t !1),

where +1 = fxi � +1g, �1 = fxi � �1g, ÆX(s), Æ+1 and Æ�1 stand for the one

point mass at X(s), +1 and�1 respectively, and
(d)

=⇒ denotes the weak convergence
as P([�1,1]S)-valued random variables, and here p, q are given by

p =
1

2(1�  )
, q =

c2p

1 + c2p
.

From Theorem 1.1 it follows immediately that
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Corollary 1.2. Assume the same assumptions as inTheorem 1.1.Then

(1.9)
1

t

Z t

0
IRS

+
(X(s)) ds

(d)
=⇒ Yp,q (t !1).

The result of Theorem 1.1 can be interpreted as follows. Since S is a finite set, the
effect of the interactionA = fAi j g is so strong that all component processes diverge to1 or �1 as t ! 1 simultaneously. Hence the phenomena would be quite similar
to the one-dimensional case. Nevertheless the one-dimensional analysis as in Watanabe
[5] cannot be applied, so, in the next section, we will investigate a scaling limit for the
finite-dimensional interacting diffusion (X(t), Px) on RS.

2. A scaling limit of X(t)

By the condition [B-1]�(x) has the following form;

�(x) = jxj L(x) (jxj > 0),

where L(x) is a slowly varying function both at1 and�1 satisfying that

lim
x!1 L(�x)

L(x)
= c 2 (0,1).

Let

p =
1

2(1�  )
and �� = �L(�p)�2 (� > 0).

We introduce a rescaled process (X�(t), B�(t)) by

X�
i (t) = ��pX�

i (��t), B�i (t) = ��1=2� Bi (��t), i 2 S.

Note that fB�i (t)gi2S are independent Brownians motion and the rescaled process
(X�(t), B�(t)) satisfies the following SDE;

d X�i (t) = ���X�
i (t)

�
d B�i (t) + ��X

j2S

Ai j
�
X�

j (t)� X�
i (t)

�
dt,

where

��(x) = ��p�1=2� �(�px).

Moreover it holds that

lim�!1 ��(x) =

�
x (0< x),
cjxj (0> x).
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In order to describe the limiting processes of the (X�(t)) we introduce a class of skew
Bessel processes on natural scale.

Let

�(x) =

� kmk2x (0� x),kmk2cjxj (0> x).

wherekmk2 =
qP

i2S m2
i , �(0) =1 if  < 0, and�(0) = kmk2 if  = 0.

Let us consider the following one-dimensional SDE:

d Z(t) = �(Z(t)) d B(t),

Z(0) = x 2 R.
(2.1)

If �1 <  � 0, the SDE (2.1) has a law unique solution, however, if 0<  < 1=2,
the law uniqueness for (2.1) fails. In this case, if we add thenon-sticky condition
to (2.1), i.e.

(2.2)
Z t

0
If0g(Z(s)) ds = 0 (8t > 0), P-a.s.,

the law uniqueness holds. In fact, the solution can be constructed from a Brownian
motion through the time change method. Thus we have a diffusion process (Z(t), Px)
on R, which is calleda skew Bessel process on natural scale.

Theorem 2.1. Assume the conditions[B-1] and [B-2], and X(0) is a RS-valued
random variable independent of B(t) = fBi (t)gi2S. Then

(2.3) (X�(t) = fX�
i (t)gi2S)

(L)
=⇒ (X1(t) = fX1

i (t)gi2S) (�!1),

where
(L)
=⇒ stands for the weak convergence of the probability laws on the path space

induced byfX�(t)g. Moreover, all component processes offX1
i (t)gi2S coincide with

each other and the common process is equivalent to a skew Bessel diffusion on natural
scale (Z(t)) governed by(2.1) with Z(0) = 0 being imposed the non-sticky condition
whenever0<  < 1=2;

(2.4)
Z t

0
If0g(Z(s)) ds = 0 (t > 0), P-a.s.

From Theorem 2.1 it follows the following

Corollary 2.2. Under the same assumption of inTheorem 2.1,

(2.5) X(t)
(d)

=⇒ qÆ+1 + (1� q)Æ�1 (t !1).
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Proof of Theorem 1.1. Theorem 1.1 follows immediately from Theorem 2.1. In
fact, since Z t

0
I (Z(s) = 0) ds = 0,

by Theorem 2.1 we can see that for every bounded continuous function f on [�1,1]
it holds that

1��
Z ��

0
f (X(s)) ds =

Z 1

0
f (�pX�(s)) ds

(d)
=⇒ f (+1)

Z 1

0
I (Z(s) > 0) ds+ f (�1)

Z 1

0
I (Z(s) < 0) ds

= Yp,q f (+1) + (1� Yp,q) f (�1),

because of Z 1

0
I (Z(s) > 0) ds

(d)
= Yp,q.

For the last relation see Watanabe [5].

3. Proof of Theorem 2.1

To avoid complication of arguments we prove Theorem 2.1 under the following
condition [B-3] instead of [B-1], since the proof is essentially the same even under the
condition [B-1].
[B-3] Let �1 <  < 1=2, and for some�+ > 0 and�� > 0

(3.1) lim
x!1 �(x)

x = �+, lim
x!�1 �(x)jxj = ��.

In what follows we assume the conditions [A-1], [A-2], [B-2]and [B-3]. Let

(3.2) p =
1

2(1�  )
,

and for � > 0 we set

(3.3) ��(x) = ��p+1=2�(�px),

and

(3.4) �1(x) =

� �+x (0� x),��jxj (x < 0).
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where

�1(0) =

� 1 ( < 0),�+ ( = 0).

Moreover we set

(3.5) �(x) = kmk2�1(x),

where fmi gi2S is a probability vector in (1.7), andkmk2 =
qP

i2S m2
i .

For the diffusion process (X(t), Px) governed by (1.1) we introduce a rescaled pro-
cessX�(t) (� > 0) by

X�
i (t) = ��pXi (�t) (i 2 S),

which satisfies the following SDE:

(3.6) d X�i (t) = ���X�
i (t)

�
d B�i (t) + �X

j2S

Ai j
�
X�

j (t)� X�
i (t)

�
dt.

For the proof of Theorem 2.1 we may assume that the initial condition X(0) is
non-random, i.e.

X(0) = fxi gi2S 2 RS.

We first prepare several moment estimates of the rescaled processX�
i (t).

Lemma 3.1. Let�1<  < 1=2. For a� 2 there exists a constant C= C(a, p)>
0 such that

(3.7)
X
i2S

mi E
���X�

i (t)
��a� � C

 
��pn + ��pn

X
i2S

mi jxi ja + t pa

!
(t � 0, � > 0).

Proof. Using the Itô formula and taking expectations, we have

d

dt

X
i2S

mi E[jXi (t)ja] = a
X
i2S

X
j2S

mi Ai j E
�jXi (t)ja�1 sgn(Xi (t))(X j (t)� Xi (t))

�

+
1

2
a(a� 1)

X
i2S

mi E
�jXi (t)ja�2�2(Xi (t))

�
.

(3.8)

Note that

(3.9)
X
i2S

X
j2S

mi Ai j jxi ja�1 sgn(xi )(x j � xi ) � 0,



342 T. NODA

because, using
P

j2S Ai j = 0,
P

i2S mi Ai j = 0 and a simple inequality

ta�1s� a� 1

a
ta +

1

a
sa (t > 0, s> 0),

we see X
i2S

X
j2S

mi Ai j jxi ja�1 sgn(xi )(x j � xi )

�X
i2S

X
j2S

mi Ai j
�jxi ja�1jx j j � jxi ja�

� 1

a

X
i2S

X
j2S

mi Ai j (jx j ja � jxi ja)

= 0.

Note that by the conditions [A-1], [A-2] and [B-3] there exists constantsC1 > 0 and
C2 > 0 satisfying

(3.10) C1(1 + jxj) � �(x) � C2(1 + jxj) , (x 2 R),

so that there exists a constantC3 such that

(3.11)
X
i2S

mi jxi ja�2�2(xi ) � C3

 
1 +

X
i2S

mi jxi ja
!1�1=ap

,

Hence, by (3.9), (3.10) and (3.11)F(t) =
P

i2S mi E[jXi (t)j2a] satisfies

d

dt
F(t) � C3(1 + F(t))1�1=ap.

Thus we obtain, for someC4 > 0,

(3.12)
X
i2S

mi E[jXi (t)ja] � C4

 
1 +

X
i2S

mi jxi ja + tap

!
.

(3.7) follows immediately from (3.12).

Let

Ui , j (t) = Xi (t)� X j (t) (i 6= j 2 S),

and for � > 0 let

U�
i , j (t) = X�

i (t)� X�
j (t) (i 6= j 2 S).
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Lemma 3.2. (i) For any a� 2 there exists a constant C> 0 such that

(3.13) E
���U�

i , j (t)
��a� � � C��a=2(1 + tap ) (0�  < 1=2),

C��ap (�1 <  < 0).

(ii) For each T> 0 there exists a constant CT > 0 such that for every� � 1

(3.14) E
���U�

i , j (t)�U�
i , j (s)

��6� � CT��1jt � sj2 (0� s� t � T).

Proof. First, note thatX(t) satisfies

(3.15) Xi (t) =
X
k2S

Z t

s
Qt�u(i , k)�(Xk(u)) d Bk(u) +

X
k2S

Qt�s(i , j )Xk(s) (i 2 S),

so that

Ui , j (t)�Ui , j (s) =
X
k2S

Z t

s
(Qt�u(i , k)� Qt�u( j , k))�(Xk(u)) d Bk(u)

+
X
k 6= i

Qt�s(i , k)Ui ,k(s) +
X
k 6= j

Qt�s( j , k)U j ,k(s).

Using this and the Burkholder inequality, we have

E[jUi , j (t)�Ui , j (s)ja]

� C1

X
k2S

E

��Z t

s
(Qt�u(i , k)� Qt�u( j , k))2�2(Xk(u)) du

�a=2�

+ C1E

" X
k2S

Qt�s(i , k)Ui ,k(s)

!a#

+ C1E

" X
k2S

Qt�s( j , k)U j ,k(s)

!a#
.

(3.16)

When 0�  < 1=2, using this withs = 0, (1.7) and Lemma 3.1 we have a constant
C2 > 0 satisfying that

E[jUi , j (t)ja] � C2(1 + ta p),

which yields (3.13). Using (1.7), (3.10), and Lemma 3.1, we see that the first term of
the r.h.s. of (3.16) witha = 6 is dominated by

C3

X
k2S

E

��Z t

s
e�2Æ(t�u)�2(Xk(u)) du

�3� � C4((t � s) ^ 1)3(1 + t6p ).
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Furthermore, by (3.13) the last two terms of (3.16) are dominated by

C5((t � s) ^ 1)6(1 + t6p ),

thus we have

(3.17) E[jUi , j (t)�Ui , j (s)j6] � C6((t � s) ^ 1)3(1 + t6p ).

From this it follows that

E
���U�

i , j (t)�U�
i , j (s)

��6� � C7(�(t � s) ^ 1)3��6p(1 + (�t)6p )

� CT��1(t � s)2,

which concludes (3.14). In the case�1 <  < 0, since�(x) is bounded,E[Ui , j (t)6]
is also bounded int � 0. Hence it is easy to obtain (3.14).

Lemma 3.3. Suppose that X(t) is a continuous martingale with X(0) = 0 defined
on a complete probability space(�,F , P) with filtration fFt g, of which quadratic vari-
ation process satisfies

hXi(t) =
Z t

0
�2(X(s)) ds,

where�(x) is of (3.4). If 0<  < 1, we further assume the non-sticky condition;Z t

0
If0g(X(s)) ds = 0 (t > 0) P-a.s.

Then the probability law on the path space W= C([0,1),R) induced by(X(t)) coin-
cides with that of the skew Bessel process on natural scale Z(t) starting at 0 governed
by the SDE(2.1) with (2.2).

Proof. Proof is to verify thatX(t) satisfies the SDE (2.1) for some Brownian mo-
tion B(t) using the time-change method, that is quite standard, so weomit it.

Proof of Theorem 2.1 in case 0  < 1=2. In this case the proof is rather
standard, that is, first to verify the tightness of the probability laws P� on W induced
by fX�(t)g and next to identify the limit offP�g as �!1.

For the stationary probability vectorfmi g of Qt we set

Y�(t) =
X
i2S

mi X
�
i (t),

which satisfies the following equation;

(3.18) dY�(t) =
X
i2S

mi���X�
i (t)

�
d B�i (t).
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Lemma 3.4. Let 0�  < 1=2. For each T> 0 there exists constant CT > 0 such
that for every� > 0,

(3.19) E
���Y�(t)� Y�(s)

��4� � CT (t � s)2, (0� s, t � T).

Proof. It is immediate from (3.18) and Lemma 3.1.

Lemma 3.5. Let 0�  < 1=2.

(3.20) lim"!0+
lim sup�!1

Z t

0
P
���X�

i (s)
�� � "� ds = 0. (i 2 S, t > 0).

Proof. For each" > 0 define a function'" by

'00" (x) = jxj�2 I (jxj � "),
'"(x) =

Z jxj
0

Z y

0
'00" (u) du dy.

Applying Itô formula we obtain

(3.21) E['"(Y�(t))] = '"
 
��p

X
i2S

mi xi

!
+
X
i2S

Z t

0
m2

i E
��2�(X�

i (s))'00" (Y�(s)) ds
�
.

Since

j'"(x)j � "1�2
(1� 2 )

jxj,
using Lemma 3.1 we have

(3.22) lim"!0+
lim sup�!1

X
i2S

Z t

0
m2

j E
��2�(X�

i (s))'00" (Y�(s)) ds
�

= 0.

Note that for someC1 > 0

�2�(x) � C1(��p + jxj) (x 2 R, � > 0),

and for y =
P

i mi xiX
i2S

mi�2�(xi )'00" (y) � C1

X
i2S

mi (��p + jxi j)2 jyj�2 I (jyj < ")
� C2(��p + jyj)2 jyj�2 I (jyj < ")
� C2I (jyj < ").
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Hence from this and (3.22) it follows that

(3.23) lim"!0+
lim sup�!1

Z t

0
P(jY�(s)j � ") du = 0.

Here we notice that

P(jX�
i (s)j � ") � P(jY�(s)j � 2") + P

���X�
i (s)� Y�(s)

�� > "�,
and that for each" > 0 the second term vanishs as� ! 1. Hence (3.20) follows
from (3.23).

Now we proceed to the proof of Theorem 2.1 in the case 0�  < 1=2. Let P� be
the probability measure onW = C([0,1),RS) induced byX�(t). We use the notation
EP�

for the expectation byP�. Then by Lemma 3.4 and Lemma 3.2fP�g is tight.
Suppose that for somef�ng tending to1, P�n converges weakly toP1. Let

w(t) =
X
i2S

miwi (t).

Since by (3.18)w(t) is a P�-martingale with quadratic variation process

(3.24) hwi(t) =
X
i2S

m2
i

Z t

0
�2�(wi (s)) ds P�-a.s.,

using Lemma 3.1 we see easily thatw(t) is a P1-martingale withw(0) = 0. Moreover,
it follows from Lemma 3.2 that

(3.25) P1(wi (t) = w j (t) (8t � 0)) = 1.

(3.24) implies that for every 0� s < t and aFs-measurable and bounded continuous
function8s(w) on W

(3.26) EP�" w2(t)� w2(s)�X
i2S

m2
i

Z t

s
�2�(wi (u)) du

!
8s(w)

#
= 0.

We claim that

(3.27) lim�!1 EP���Z t

s
�2�(wi (u)) du

�8s(w)

�
= EP1��Z t

s
�2(wi (u)) du

�8s(w)

�
.

For " > 0 let '" be a smooth function onR satisfying

IRn[�","](x) � '"(x) � IRn[�"=2,"=2](x).
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Since��(x) converges to�1(x) as �!1 compact uniformly inR n f0g and

��(x) � C3(1 + jxj ) (x 2 R),

using Lemma 3.1 we see that for every" > 0

lim�!1 EP���Z t

s
�2�(wi (u)'"(wi (u)) du

�8s(w)

�

= EP1��Z t

s
�21(wi (u)'"(wi (u)) du

�8s(w)

�
.

(3.28)

On the other hand by Lemma 3.5

lim"!+0
lim sup�!1 EP���Z t

s
�2�(wi (u))(1� '")(wi (u)) du

�8s(w)

�

� C4 lim"!+0
lim sup�!1

Z t

0
P(jX�

i (u)j � ") du = 0.

(3.27) follows from this and (3.28). Thus,w(t) is a P1-martingale with quadratic vari-
ation provess

hwi(t) =
X
i2S

m2
i

Z t

0
�21(wi (u)) du =

Z t

0
�2(w(u)) du.

Therefore by Lemma 3.3P1 coincides with the probability law of the skew Bessel
process on natural scale, which completes the proof of Theorem 2.1 in the case 0� < 1=2.

Proof of Theorem 2.1 in case <  < 0. In this case it seems hard to ob-
tain the moment estimate forY�(t) as in Lemma 3.4 due to difficulty of negative power
moment estimates, so we consider a spatial transformation by an asymptotic scale func-
tion S(x);

S(x) =

�
x2(1� ) ( � 0),jxj2(1� ) ( < 0).

Lemma 3.6. Let �1 <  < 0. For each T> 0 there exists a constant CT > 0
such that for every� � 1

(3.29) E
���S(Y�(t))� S(Y�(s))

��4� � CT jt � sj2, (0� s, t � T).

Proof. Recall thatY�(t) satisfies

(3.30) dY�(t) = ��(Y�(t)) dV�(t),
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where V�(t) is a continuous martingale with quadratic variation process

(3.31) hV�i(t) =
X
i2S

m2
i

Z t

0

�2�(X�
i (u))�2�(Y�(u))

du.

Applying Itô formula to S(x) together with Burkholder’s inequality we see that

E[jS(Y�(t)� S(Y�(s)))j4]

� C1E

��Z t

s
jS0(Y�(u))j2�2�(Y�(u)) dhV�i(u)

�2�

+ C1E

��Z t

s
S00(Y�(u))�2�(Y(�u)) dhV�i(u)

�4�

� C1

Z t

s
E[(S0��)4(Y�(u))] du

Z t

s
E[(hV�i0(u))4] du

+ C1kS00�2�k41(t � s)3
Z t

s
E[(hV�i0(u))4] du,

(3.32)

where

hV�i0(u) =
X
i2S

m2
i

�2�(X�
i (u))�2�(Y�(u))

,

and we notice thatS00�2�(x) is bounded inx 2 R and � � 1. Note that

C2�2p�1(1 +�pjxj)2 � �2�(x) � C3�2p�1(1 +�pjxj)2 ,

then

�2�(x)�2�(y)
� C4

�
1 +�pjyj
1 +�pjxj

�2j j � C4(1 +�pjx � yj)2j j.
Hence,

E[(hV�i0(u))4] � C5

 
1 +�8pj jX

j 6= k

E
���U�

j ,k(u)
��8j j�!,

which is bounded inu � 0 by Lemma 3.2. Accordingly, it follows from this and
(3.32) that

E[(S(Y�(t)� S(Y�(s)))4] � C7(jt � sj2 + jt � sj4),

which completes the proof of Lemma 3.6.
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Lemma 3.7. Let �1 <  < 0. Then

(3.33) lim"!0
lim sup�!1

Z t

0
E
��2�(X�

i (s))I (jX�
i (s)j � ")� ds = 0 (i 2 S).

Proof. In the proof of Lemma 3.5, replacing'"(x) by '00" (x) = I [�","](x) we have

(3.34) lim"!0+
lim sup�!1

X
i2S

Z t

0
m2

i E
��2�(X�

i (s))I [�","](Y�(s)) ds
�

= 0.

Noting that

I [�","](X�
i (s)) � I [�2",2"](Y�(s)) +

X
j2S

I [�","]�X�
j (s)� X�

i (s)
�
,

and by Lemma 3.2 we can see

lim�!1
Z t

0
E
��2�(Xi (s))I [�","]�X�

j (s)� X�
i (s)

��
ds

� lim�!1 ��2p+1k�k21
Z t

0
P
���U�

i , j (s)
�� > "� = 0.

Thus (3.33) follows from this and (3.34).

Now we are in position to complete the proof of Theorem 2.1 in the case�1 < < 0, but one can proceed the proof as in the case of 0�  < 1=2, so we shall only
sketch the proof. By virture of Lemma 3.2 and Lemma 3.6, we mayassume thatP�n

converges weakly toP1 as n !1 for some�n %1. Then,w(t) is P1-martingale
with w(0) = 0 and

wi (t) = w j (t) = w(t) P1-a.s. (i , j 2 S),

in the same way as 0�  < 1=2. Using the Lemma 3.7 instead of Lemma 3.5, we
also have (3.27) which implies

EP1��w2(t)� w2(s)� Z t

s
�2(w(u)) du

�8s(w)

�
= 0,

and then by Lemma 3.3, the probability law (w(t), P1) coincides with that of the de-
sired skew Bessel process on natural scale. Therefore Theorem 2.1 has been proved
completely.
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