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ON A GENERALIZED NOTION OF GALOIS
EXTENSIONS OF A RING

To Kenjiro Shoda on the occasion of his 60th birthday

BY

TADASI NAKAYAMA

Galois theory of non-commutative rings was first developed by K.
Shoda [25] as a generalization and refinement of the R. Brauer-E.
Noether theory of commutants, or (to express in an almost, if not com-
pletely, equivalent terminology), of inner transformation groups. The
"outer" respect was introduced by N. Jacobson [12], by whom, in [13],
and by H. Cartan [6] were developed "composite7' theories too. Further
developements in the Galois theory of rings, in various directions, were
given in J. Dieudonne [8], [9], Jacobson [14], G. Hochschild [10], [11],
G. Azumaya [3], T. Nakayama [18], [19], [20], [21], [22], A. Resenberg-
D. Zelinsky [24], F. Kasch [15], N. Nobusawa [23], T. Nagahara-H.
Tominaga [17], Tominaga [26], and so forth. In some of these works
(e.g. the writer's note [22]) a much broad interpretation was given to
the theory. All these papers consider mostly (if not exclusively) those
(Galois) extension rings which are, either by assumption or by nature of
circumstances, (right, say) free over the ground ring. On the other
hand, the recent trend of algebra, influenced by the development of
homological algebra, strongly points at the replacement of "free" by
"projective". Indeed, by M. Auslander-O. Goldman [2] are studied separ-
able algebras, which turn out, at least in a very important special case,
to be a such generalization of maximally central algebras of Azumaya-
Nakayama [5], Azumaya [4]. In the present note we wish to introduce
a similar generalization of (generalized) Galois extensions studied in [22],
to examine the characterizing conditions, and to observe some of its
elementary features.

§ 1. Generalized Galois extensions.

Let A be an (associative and not necessarily commutative) ring
(with unit element 1). Let 3I0 = Hom (A,A) be the (absolute) endomor-
phism ring of A (as a module), which we consider as a right operator
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domain of A For any subset X of A. we denote by XR (resp. XL) the
set of right (resp. left) multiplications, on A, by the elements of X. For
a subring S of A, SR (resp. SL) is a subring of 5tt0 isomorphic (resp.
inverse-isomorphic) to S.

Now, let S3 be a (right) operator-ring (with unit element operating
identically) of A (as a module). There is a (unique) epimorphism <r of
93 to a subring 93O of 3ΪO such that if σ-:β->β0 (/3e93, /30e930) then
aβ=aβ° for every aeA. Adopting the notation of Auslander-Goldman
[ I ] 1 5 , we denote by £93 = 2 ^ the submodule of 21 generated by the
images of the elements of A by 93-homomorphisms of A into the 93-
right-module 93

(A, 55)

It is readily seen that %8 is a two-sided ideal of 93 to see that £$ is
a left ideal of 93, observe that if φeΉ.om^(A, 93) then the map a-+βaφ

is also in Hom^ (̂ 4, 93) for every β € 93.

REMARK 1. If 93 is such that 93O contains the left multiplication
ring AL of A;

then ίΣsβ may also be defined by

where each element of Hom^ (A, 93) is identified with the image of 1 6 A
by it. For, if 91 € Horn© (Λ 93), /3G93 then lφβ = (lβ)φ e^Hom^CA, 33), while
if a G A, φ€ Hom$B (A, 93) and if β is an element of 93 which is mapped
by σ on the left multiplication (on A) aL of a then aφ = (lβ)φ = lφβ€

Hom»C4,83)S3.
Let, on the other hand, B be a subring of A (containing the unit

element 1 of A). We set also

which is a two-sided ideal of BR.
Now consider the following conditions on the relationship of 93, B>

and A:

ii) cr: 93 -> 93O is monomorphic (whence isomorphic) and Homβ

(ABy AB)=580 by identification we express this situation simply
by writing

1) Our notations for operators are, however, left-right symmetric to those in [1],
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iii) A is 33-finitely generated (/. g.) projective,
iv) A is BR-f.g. projective,
v) S»=S,
vi) XBR = BR9

vii) the ^ - m o d u l e A has B as a direct summand.

The condition v) is equivalent to " £ ^ 3 unit element of 33" and may be
re-formulated "the 33-right-module S3 is isomorphic to a direct summand
of a direct sum of copies of A". Similarly with vi). Now, we have the
following implications :

=> vi)
>ii)

i)+v) => iv)
ii) + iv) => v)
ii) + vi) => iii)
ii)+vi) =* i)
vii) => vi)

iii) => vii).

Except the last one, these implications can readily be derived from the
general theory of projective modules and their endomorphism rings,
which has been studied by many authors in different aspects and different
generalities, and is indeed discussed fully in Curtis [7], Morita [16] and
Auslander-Goldman [1]. Refering to the appendix of this last paper,
which is already refered to above and where the theory is very nicely
summarized, we thus obtain the 1st of the above implications directly
from [1], Prop. A. 3 (E, Γ and Ω there being replaced by A, S3 and
BR). The 2nd implication is derived from [1], Th. A. 2 (g). The 3rd
follows from [1], Th. A. 2 (c), while the 4th follows from [1], Prop.
A. 3. The 5th is derived from [1], Th. A. 2 (c) (E, Γ, Ω there being
replaced by A, BR, S3 here). Further, the 6th follows from [1], Th.
A. 2 (g). The 7th is rather evident.

As for the last implication, i) + ii) + iii)=>vii), we postpone its veri-
fication till § 5 below. Assuming it here, however, we see that the
following combinations of conditions are all equivalent:

(0): i) + ii) + iii) + iv),
(I): i) + iii) + v),
(II): i) + v)+vi),
(III): ii) + iv) + vi),
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(IV): ii) + iv)+vii),
(V): ϋ) + v) + vi),
(VI): i)+v)+vii),
(VII): ii)+

Indeed, these are all equivalent to the wholesale combination i)+ii)4-
iii) 4- iv) + v) 4- vi) 4- vii).

In case this wholesale combination is fulfilled, which is thus equi-
valent to that any one of the combinations (0)—(VII) is satisfied, we
propose to say that A is %$-Galois over B, or, simply, A is 33-Galois, or,
A is Galois over 5, or, A is a (SS)-Galois extension of B.

As typical ones among the eight characterizations (0)—(VII), we
state the first five in explicit terms:

(0) Horn© (A, A) = 5*, Hom β (A 5 , A f l )=», and A is both »-/.£.
projective and BR-f. g. projective,

(1) A is ®-f.g. projective, %% ( = A Horn© (Λ » ) ) = » , and

(II) S® ( = A Hom^ (Λ 93))=33, Homsδ (A, A) = BR, and %BR ( = A HomΛβ

(III) A is JBΛ-/. #. projective, S ^ ( = A Hom^ (Λ BB))=BR, and HomB

(Afl, Aβ)=35,
(IV) Hom β (A β , Aβ)=S3 and the 5^-module A is / . # . projective

and has B as a direct summand,

where the relation Ή.omB{ABy AB)=%5 in (0), (III), (IV) is to be inter-
preted in the sense explained in ii) above.

Perhaps (0) is most natural, while the others are often more con-
venient than (0) to verify in various concrete cases. Anyway, the pro-
perty of the 93-5-module A thus we require is the one fully studied
e. g. in Morita [16], and our concern lies in the present special situation
where A is a ring which contains B as a subring.

§ 2. Digression

We wish to study the independency of some of the above conditions,
in particular those appearing in the characterization (0). Thus :

EXAMPLE 1. i) + ii) + iii) + non-iv): Let K be a commutative ring
(e. g. a field) and let A be the subalgebra of the complete matrix algebra
of degree 2 over K generated by

(1 0\ (1 0\ /0 0
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Let B be the subalgebra of A generated by 1 and b. A is directly
decomposed into the direct sum

A = B 0 eK

of 5-right submodules B and eK. Thus the condition vii) holds for our
Ay B. Hence vi) holds too. Let 33 be the 5^-endomorphism ring of
A; ϊ8 = ΐίomB(AB, AB). Then ii) is satisfied trivially. By the 5th and
6th of the implications in the preceding § we see that the conditions i),
iii) are satisfied too.

On the other hand, A is not 5^-projective, as we readily see from
the above direct decomposition of A (and the Krull-Remak-Schmidt
theorem).

We remark that our example gives actually the situation i)+ii) +
iii) + vi) + vii) + non-iv) + non-v) observe that v) could not be the case
since i) is the case and iv) is not.

EXAMPLE 2. i) + iii)+ iv)+non-ii): Let if be a commutative ring
(e. g. a field) and let A be the algebra over K having a (linearly inde-
pendent) basis (e1J e2) whose (associative and commutative) multiplication
table is given by

e\ = e1, e\ = e2, exe2 = e2e1 = 0 .

The (K-) endomorphism ring Horn*- {A, A) of A is the complete matrix

algebra of degree 2 over K> operating on the vector Γ1) from left. Let

S3 be its subring consisting of all matrices of form (t ). 33 is thus

generated by the multiplication ring AR = AL and the /f-linear map

and is indeed spanned over K by (^)L, (e2)L and 7 ^8 = (e1

Here (e1)LK®yK=(e1)Iβ, (e2)LK=(e2)L%> and we have

Further the 33-right-module A is isomorphic to the right-ideal {e^)J&y

generated by the idempotent (e^)L, by the isomorphism e1-^(e1)Ly e2->j.
Hence A is 33-(/. g. and) projective, i. e. iii).

Now, Hom^(A, A)=K. So we set B=K { = lK={e1+e2)K) to have
i). Evidently A is BR-f. g. projective, i. e. iv). On the other hand,
Hom5i? (A, A) = Ήomκ(A, A) is not 33, i. e. non-ii).

In fact our example gives a situation i) + iii)+ iv)+vi) +vii) + non-ii) +
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non-v) v) could not be the case since i) is the case and ii) is not.

EXAMPLE 3. ii)+ iii) + iv) +non-i): Let if be a commutative ring
(e. g. a field) and A be the complete matrix algebra of degree 2 over K

A = cnK@c12K@c21K®c22K y

ch' being matrix units. Let B be its subalgebra

B = cnK+c21K+c12K.

We have c22B=c21K+c22K and A is the direct sum of c22B and its iso-
morphic copy c12B=cnK+c12K. Hence A is B-f.g. projective, i.e. iv).
Hom/r (A9 A) is the complete matrix algebra of degree 4 over K, operating

on the vector Cl2 from left, and the right multiplication BR of B (on

A) consists of all

Setting 33 = Homβ

of form

matrices

(AB, AB)

of

0

, 0

(i

7 i ,

0

72ί

0

form

i 0

0

0

e. ii))

0

0

0

0

we

712

0

722

0

0 x

0

0

?22 '

*

see that S3 consists of all matrices

7 l 2

0

722 /

>

and thus coincides with the left multiplication ring AL of A. Hence A
is %$-f.g. projective, i.e. iii). Moreover, Homsβ (A> A) = HomA (AAy AA)
= AR and this is properly larger than BRy i.e. non-i).

Our example gives indeed ii) + iii)+iv) + v) non-i) + non-vi) + non-vii)
that v) is the case is evident from %$ = AL while non-vi) follows from
non-i) (and ii)) and non-vii) follows from non-vi).

REMARK 2. In the above examples K was assumed to be commu-
tative merely for simplicity of expression. The constructions go as well
for a non-commutative K.

ί?piARK 3. The existence of an example for i)+ii)+iv)+non-iii)
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seems promising. On the other hand, it is hoped too that under certain
rather weak restrictions the conditions i), ii) and iv) together imply iii).

§ 3. Comparison with separable extensions

In [2] Auslander and Goldman studied the notion of separable
algebras over a commutative ring an algebra A over a commutative
ring B is called separable when A is projective over Ae = A®BA*y A*
being the opposite of A They studied especially the case of A central
over B. Thus, let A be a ring and B be its center. They showed in par-
ticular that A is separable over B if and only if any one of the following
conditions is satisfied:

(a)
(β) Ae-*ΈLomB(AB> AB) is an isomorphism and A is BR-f.g. pro-

jective,
(7) Ae->YίomB(AB, AB) is an isomorphism and the β^-module A

has B as a direct summand.

Set ^8^AR®BAL = A®BA^ = Ae

y and let S30 be its natural image in
Horn (A, A) 33O is the subring of Horn (Ay A) generated by AR and AL.
Since %$0^AL, Zί& = A^om^ U> ®) coincides with Hom<β(A^)23 as was
observed in a Remark in § 1. Hence the condition (<x) is nothing else
as the condition v) in § 1 (for the present situation). Further, (β) is
ii)-f iv), and (γ) is ii) + vii). Needless to say that the definition of A being
separable over B is the condition iii), in § 1, and the condition i) is
evidently implied by that A is central over B. In view of the criterion
(0) in § 1, for instance, we see that, in case B is the center of A, "A is
separable over B" coincides with "A is 33 Galois over B (where

The above criteria of Auslander-Goldman [2] tell that under the
condition that B is the center of A these equivalent notions are realized
if any of the (combined) conditions iii), v), ii) + iv), ii) -h vii) holds. These
are much simpler than our (0)—(VII) for the general case, even when
we count that i) is trivially satisfied. The simplication is naturally
brought about by the assumption that A is central over B and parti-
cularly by that B is commutative (which makes the second part of [1],
Prop. A. 3 applicable).

The notion of separable algebras is a generalization of the notion
of maximally central algebras in Azumaya-Nakayama [5], Azumaya [4].
Indeed, this latter is the combination of "separable" and "free-Galois"
which we consider in the next section.
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§4 Comparison with free-Galois extensions

In [22] the writer considered the relationship of a ring Ay a subring
B of A such that A is right /. g. free over B, and the 2^-endomorphism
ring KomB(ABy AB) of A (in order to prepare for a study of special
cases as weakly normal, innerly weakly normal and maximally central
extensions). Setting ^& = ΉomB{ABy AB) we have ii) of § 1 trivially, while
iii) and vi) (and vii) too) follow immediately from UA is BR-f.g. free".
Thus, in the above situation (i. e. if A is BR-f. g. free), A is 33- Galois
over B with 33 = HomB (Λ^, AB\ as our criterion (III) (or (IV)) shows.
Indeed, under the assumption that A is BR-f. g. free, the mere condition
ii), i.e. %5 = ΐlomB(ABy AB)y (entails and) is equivalent to that A is 33-
Galois over B (i.e. i)-}-ii)4-iii) + iv) + v)-fvi) + vii)). Let us thus express
the situation "A is right /. g. free over a subring Z?" by "A is free-(33-)
Galois over B $8 = Ή.omB(AB, AB))".

§ 5. 33-projectivity

We now wish to prove the implication i) + ii)+iii)=>vii) presumed
in § 1 the argument will be a generalization of that in Auslander-
Goldman [2]. We consider, for this purpose, again an operator ring 33
of a ring A. The map

1 denoting the unit element of Ay is evidently a 33-homomorphism of
33 into A. We assume that this ^8-homomorphίsm φ is epimorphic:

Im φ = 1® = A

(which is certainly the case when the natural image 33O of 33 in §ί0 con-
tains the left multiplication ring AL of Ay ALa%ί0, as in Remark in §1).
Denoting the Ker φ by ί (which is a right-ideal of 33) we obtain an exact
sequence

0 - ϊ -> 33 Λ A - 0 .

Lemma 1. A is 33-projective if and only if this sequence splits, i. e.
if and only if there is a 33-homomorphism λ: ^4->33 such that the com-
posite Xφ: A—>33—>A is identical on A. The condition is in turn equi-
valent to that the map φ* : Hom^ (A, 33) -^ Hom<$ (̂ 4, A) induced by
φ: 33 -> A is epimorphic.

Proof is evident for the first half. The second follows immediately
if we observe that the map φ* is Hom^ (A, A)Aeίt-homomorphic.
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We now assume ALc:fΆ0. Then we have

HomsB (A A) = BR

with a subring B of A.

Lemma 2. For any element λ of Hom^ (A 33) l λ (€ S3) is a S-right-
homomorphism of A into B.

Proof. Let β be an arbitrary element of 33. For xeA we have

since λ is 33-(whence 33O-) homomorphic (and £ (naturally) 6 33 and
(*β)L (eAL)€ 33O). Hence, for any jy G A

Here <y*λ=jκ:yλ as we see by taking the unit element of 33 as β in this
relation. So we obtain

As /3 is an arbitrary element of 33 and x is an arbitrary element of A,
we have (/ λ ) Λ € Hom^ (Λ A) =## and y λ € B. This proves that l λ maps A
into β. l λ is Btf-homomorphic since l λe33 and 330czHomβ(i4β, AB).

Proposition 1. Suppose ALcz^80 and A is ^8-projective. Then the
B-right-module A has B as a direct summand, where Ήom^ (A, A) = BS.

Proof. By Lemma 1 there is an element λ in Hom$β (A, 33) such
that Xφ is identical on A. We have in particular (lλ)* = lλ* = l, and this
means, by our definition of φ> Γλ = l. As l λ is β-right-homomorphic, we
have blλ = b for all beB. Thus l λ is a B-right-homomorphism of A onto
B which is identical on B. Hence

A = 5 Θ K e r l λ ,

proving our proposition.
Proposition 1 being thus proved, the implication i)-f ii) + iii) =* vii) is

now clear, since ii) implies ΛLcz330=33. In fact, we have

Corollary. Assume i) and ii) {i.e. Hom^ (A, A) = BR and Homβ

(ABy AB)=%$). Then A is KomB(ABy AB)-projective if and only if the
B-right-module A has B as a direct summand.

The "if" part is evident, because our condition certainly implies
ZBR=BR (i.e. vii)=>vi), as we obseaved before) and this implies the
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KomB(AB, AB)-(f.g.-) projectivity of A (i.e. ii)-f vi)=^iii), also observed
before).

§ 6. 33-submodules of A

Proposition 1 may be generalized to

Proposition 2. Let the notations and assumptions be as in Proposition
1. // M is a %$-submodule of Ay then N has m=Br\M as a direct sum-
mand; here m is a left-ideal of B and satisfies AmczM. If conversely
m is a left-ideal of B, then M=Am is a %5-submodule of A and satisfies
Br\M=m.

If M is a %5-submodule of A which is BR allowable too, then m=Br\M
is a two-sided ideal of B and is a direct summand of M as a BR-module.
For a two-sided ideal m of B the %5-submodule M=Am of A is evidently
BR~allowable too.

Proof. With the same λ € Homsβ (A, S3) as in the proof of Proposition
1, l λ (€33) maps A 5^-homomorphically onto B and is idempotent we
have A=B®Keΐlλ=Alλ®ACI-lh where / denotes the unit element of 33
(operating identically on A). For any S3-submodule M of A we have
evidently M = M l λ θ M c / l λ ) . Here M l λ c M and indeed = Alλr\M=B n M.
Moreover, as ALcz^80y we have AM=M, A(Br\M)czM and B(Br\M)a

Consider conversely a left-ideal m in B. For any element β of S3
we have, since β is β^-whence m^-homomorphic,

(Amf = AβmaAm .

Hence Am is a S3-submodule of A, and we have thus Am = (Am)lλ ©
(Am)CI~lh with Br\Am(Am)lλ = Alλm=Bm = m.

If M i s a 5Λ-submodule, then both M l λ and M α " l λ ) are BR-allowable,
since both l λ, /—l λ commute with all elements of BR, and M l λ is thus
a right-ideal in B. So, Mιλ=Br\M is a two-sided ideal of B in case M
is (S3, ^-allowable.

In case A is S3-Galois over B, we can sharpen the first part of
Proposition 2 so as to have the equality Am = M. Thus, firstly,

Proposition 3. // A is %5-Galois over a subring By then

1, M)

for any %5~right-module M by the natural map A®^
Conversely, if B is a subring of a ring A if S3 is a (right-) operator ring
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of the module A such that Hom$ (A9 A)=BR and A is 35-/. g. projective,
and if the natural map A (g)βHom^ (A, M)^M is epimorphic for every
^-module M, then A is ^8-Galois over B.

Proof. The first half is merely a special cases of [1], Prop. A. 6
(the second part), e. g. replace E, ί2, Γ there by our A, 33, BR (and
observe that our notations are left-light symmetric to those there). To
prove the second half of our proposition, take 33 itself as M. The
image of the map A®BRom% (A, 33) is nothing else as ΛH°m$8 Ĉ» 33) = !£SB-
Hence our second assertion follows immediately from our criterion (I)
in §1.

Proposition 4 Let A be ^d-Galois over B. If M is a %$-submodule
of A9 then

M = Am with m = Br\M;

(here m is a left-ideal of B and M has m as a direct summand. If
conversely m is a left-ideal of B, then M=Am is a 33-submodule of A
and satisfies Br\M=m. If M is a 33-submodule of A which is BR-
allowable too, then (and only then) m=Br\M is a two-sided ideal of B,
and is a direct summand of M as a B^-module).

Proof. In view of Proposition 2 we have merely to prove the first
assertion (outside of parentheses). Now, Hom^ (A, M)dHoms8 (A, A)=BR

and we see readily

Hom δ̂ (A M) = (Br\M)R = mR .

The image of A(g)βHom^(Λ, M)->M is thus AmR = Am and by Proposi-
tion 3 it coincides with M as is asserted.

REMARK 4. Proposition 4 establishes in particular a 1-1 corre-
spondence between left-ideals (resp. two-sided ideals) of B and 33-
submodules (resp. 33β-submodules) of A. Similarly, on the other hand,
left-ideals (resp. two-sided ideals) 3K of 33 correspond 1-1 to BR-
submodules (resp. 33^-submodules) M of A, by m^M
(czA0^ = A\ M->m = RomBR (A, M) {^M®BR HomBje (A R

Hom$ (A9 33)) (aHomBR(A, A) = $&). These are naturally special cases of
category-isomorphisms discussed in Morita [16], Auslander-Goldmann
[1], e.g. In particular, m<—>M<->ςUίi establishes a 1-1 correspondence
between two-sided ideals in B and those in 33 see [1] Prop. A. 5.

Corollary. Let A be ^-Galois over B. Suppose there are given a
module-homomorphism μ of A into a second ring A; and a ring-homomor-
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phism υ of 33 into an operator-ring 33' of A' such that (aβy=(aμ)β* for
all a G A, βe 33. // μ is monomorphic on B, then μ is so on the whole of A.

Proof. Consider M=Ker μ>, which is a 33-submodule of A.

Our Proposition 3 is a generalization of Auslander-Goldman [2],
Theorem 3.1 and Nakayama [22], Theorem 2. Proposition 4 generalizes
[2], Cor. 3. 2 as well as [22], Prop. 2, and our Corollary corresponds to
a partial contention of [2], Cor. 3.4. As for the further parts of the
papers [2] and [22] we wish to come back in a subsequent work to
comprise them into our present general aspect.

NAGOYA UNIVERSITY

(Received March 5, 1963)
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