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0. Introduction

In recent years, several authors have investigated Girsanov transformations
of symmetric diffusion processes, that preserve the strong Markov property as well
as the symmetrizability, and the corresponding transformations of the associated
analytic objects, in particular the Dirichlet forms, cf. [12], [15], [16], [25], [3],
[26], [22], [11] and [13].

As an illustration, consider the following simple situation:

Let M=(Q,%,(X,);> 0> (P,);era) b€ the canonical Brownian motion on R? de N,
and

Eu,v)= JVu Vo dx, u,ve H"*(R%),

the associated Dirichlet form. Let ¢ be a function in H};2(R?) satisfying ¢ >0 a.e.

loc

and le(p{zdx< co. Fix a quasi-continuous modification ¢ of ¢, and let

st [ Yo,
o9

defined up to the stopping time r:=i1:s inf{r>0; j{,%‘%ﬁ(xs)dSZn}.

By a result of P.A. Meyer and W.H. Zheng (cf[15]), the process
M?=(Q,F?,(X})» 0,(P?),era) Obtained by transforming M with the multiplicative
functional

1
0.1 Lg(p]:exp(Mglog‘p]_§<Mu°g¢]>t>'1(t<r)
is a @2?dx-symmetric conservative diffusion;(M? is defined as the unique Markov

process with life-time { satisfying [, <, /(X)dP?=[f(X)L”)dP, for any zeE, >0,
and f: E —» R measurable). Let (£%,D(6%)) be the Dirichlet form of M?. Recently,
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M. Takeda showed (s.[26, Th. 4.1]) that:
0.2) (€%,D(6?)) is the closure of the bilinear form

E°u,v)= |Vu-Vv @?dx,  uve CRY.

There have been several approaches to carry over these facts to more general
symmetrizable diffusions M living on more general (even non-locally-compact) state
spaces. The transformation can be done as above, if, roughly speaking, ¢ is locally
in the Dirichlet space of M, and M!°#9] is the local martingale additive functional
part in Fukushima’s decomposition of the additive functional log @(X,)—log ¢(X,)
(cf. [13, Sect. 6.3] for details). While the construction of the transformed process,
as well as the proof of its symmetrizability have already been carried out in
[25](s.also [13, Th. 6.3.3]) in a very general situation, the identification of the
associated Dirichlet form remained open in general. Partial results for concrete
situations or under additional assumptions on ¢ have been obtained in [4], [22,
§10], [26] and [11]. In particular, during the time of preparation of this paper,
I received a preprint of P.J. Fitzsimmons, in which he gives a representation of
the transformed form generalizing (0.2) under very weak assumptions on the initial
diffusion, cf.[11, Th. (5.2)]. However, Fitzsimmons supposes abstract conditions
on ¢ (s.[11,(5.3), (5.4)]), that are not always easy to check in concrete situations.

In this paper, an alternative, more analytic approach is used, provided the
Dirichlet form (&,D(&)) of the initial diffusion admits a square field operator (cf.
Section 1 below for the definition). We proceed as follows: First, we construct
a transformed Dirichlet form (6%,D(6¢)) in a purely analytic way and prove
analytically (s. Theorems 1.1 and 1.4 below) that this form is quasi-regular and
has the strong local property (cf. Section 1). By general results on Dirichlet forms
(cf[14, IV. 6.7 and V.1.11]), this implies that it is associated with a diffusion
process M?. Moreover, we give a necessary and sufficient condition for some
general “test-function-subspace” of D(&) (e.g. the smooth functions with compact
support, if the state space is a subset of R" or a Riemannian manifold, or the
bounded smooth cylinder functions in infinite dimensional situations) to be dense
in D(€%) (s.Theorem 1.2). As a consequence of this density property, a representation
of (&%,D(6%)) similar to (0.2) holds. Finally, we prove that the diffusion associated
with (8%,D(£?)) is a generalized Girsanov-transform of the initial diffusion, and
thus obtain an absolute continuity result (s. Theorem 1.5). The two main ingredients
in the proof of this result are Proposition 4.1 (treating the case of ¢ bounded from
above and below), and the analytic considerations done before (which enable us
to pass to more general functions ¢). Proposition 4.1 is also contained in [11] (cf.
Thm. 4.9), but we give an alternative proof using a method of S. Song [22].

The main advantages of this approach are:
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e It always leads to a precise description of the Dirichlet form of the
transformed process (cf. Theorems 1.1 and 1.5).

® It produces a necessary and sufficient, and rather concrete, condition on ¢ for a
representation of this Dirichlet form similar to (0.2) to hold (cf. Theorem 1.2 and
Corollary 1.3).

e It includes the case of non-locally-compact state spaces.

® A special localization procedure (in terms of balls w.r.t. a metric generated by
functions in the Dirichlet space) enables us to prove all the results for not
necessarily finite symmetrizing measures, and functions ¢ which are only locally
(in our sense) contained in the Dirichlet space. For regular Dirichlet forms on
complete locally compact separable metric spaces, our local Dirichlet space
coincides with the usual one, but it is also useful in infinite dimensional situations
(cf. the examples in Section 1).

In Section 5, we apply the results to some concrete situations, and obtain
sufficient conditions for local absolute continuity of diffusions w.r.t. Brownian
motions on Riemannian manifolds, reflected Brownian motions on smooth Euclidean
domains, and diffusions associated with gradient Dirichlet forms on Banach
spaces. In particular, we obtain generalizations of the main result (Theorem 1.5)
from [4](s. Section 5c)below), as well as the result by M.Takeda mentioned above
(s. Remark (i) in Section 5 a)).

The results of this article can also be used to study the Markovian uniqueness
of the generator of (§2,D(6%)). This will be done in detail in my PhD-thesis ([9]).

This work profited a lot from techniques developed in [4], [19] and [22].

1. Preparations and Main Results

Let E be a metrizable Lusin space (i.e. homeomorphic to a Borel subset of
a Polish space), #(E) its Borel-g-algebra, and m a o-finite positive measure on
(E,%(E)).
Recall that a symmetric closed bilinear form (&,D(£)) on L%(E,m) is called
a Dirichlet form, if u* AleD(&) and &u™ Al,u™ A1)<&(u,u) whenever ue D(&).
D(&) is a Hilbert space w.r.t. the inner product &(u,v) :=é"’(u,v)+juvdm. The
space of all measurable functions representing a class in D(&) is denoted D(&) as
well. The generator of (&,D(&)) is the unique negative-definite self-adjoint operator
(L, D(L)) such that D(&)= D(/ — L) and &(u,v) = [/ — Lu/— Lvdm for all u,v € D(&).
We fix a Dirichlet form (&,D(&)) with generator (L,D(L)), which satisfies the
following assumptions:
(D1) Strong local property: &(f—f(0)ou, (g—g(0)ou)=0 for all ueD(8) and
f,g€ CP(R) with suppfnsuppg=0,
(D2) Existence of a square field operator: There is a positive symmetric continuous
bilinear operator I': D(€) x D(€) = L'(E,m), such that
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&(uv,u)— 36 (v,u?)= [vI'(u,u)dm for all bounded u,ve D().

We also write &(u) and I'(x) instead of &(u,u) resp. I'(u,u). Note that it is
enough to check (D1) and (D2) with D(&) replaced by a dense subspace of bounded
functions (s.[7, I, 4.1.3 and 5.1.5]). The relation of (D1) to other forms of the
strong local property is discussed in [7, Sect. .5 and Notes]. An important
consequence of (D1) is the following “energy image density property”: For a function
ue D(&) the law of u under the measure I'(u)-m is absolutely continuous. In
particular, I'(«) (and thus I'(u,v), ve D(&)) vanishes m-a.e. on {u=0}, cf. [7,1,7.1.1].

For an increasing sequence (F,)..n of Borel subsets of E we set

Dy(&,(F)={ueD(&);, u=0 m-ae. on E\F, for some ke N}.

Recall that (F\).n is called an &-nest, if each F, is closed and D(&,(F,)) is
dense in D(&). A set N c E is &-exceptional, if it is contained in ﬂkeN(E\Fk) for
some &-nest (F)),n, and a property of points in E holds &-quasi-everywhere (£-q.e.),
if it holds up to an é&-exceptional set. Finally, a function f:E— R is called
&-quasi-continuous if there is an &-nest (F),.n such that the restriction of f to F,
is continuous for all ke V.

We are going to introduce a special kind of local Dirichlet spaces. We first
need some preparations:

Let € be a set of &-quasi-continuous functions in D(&), such that

(1.1) <1 VEe®.

We assume that € is symmetric (i.e. €= —%), and that there is an &-nest (Fy)n
such that all the restrictions of functions in € to sets F,,ke N, are continuous.
This is e.g. the case if 4 is a subset of a countably generated linear space of
quasicontinuous functions (cf.[14, Prop. 13.3]) or consists of continuous
functions. We define a pseudo-metric p:E x E — [0,00] by

(1.2) px,y)= S:}lg(é(X) —&0).
Fix peE and let p,:=p(-,p). We assume

(L.3) (E,p) is separable and
(1.4) pp<00 m-ae. .

Note that (1.3) holds whenever the p-topology is weaker than the original topology
on E. For keN let

(1.5) E,:={z€E; p(z)<k} and e(z):=(k—p,2)* Al (z€E).

Modifying similar considerations of M. Biroli/ U. Mosco ([6]) and K.T. Sturm ([23]),
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we can show that the functions e, are nice cut-off functions in the following sense:
(1.6) For all keN, e(z)=0Vze E\E,, and ¢z)=1Vz€E,_,
(1.7) e, 71 m-ae.

(1.8) u-e,e D(&) and T(u-e)<2-(u*+T(u)
whenever ue D(§) and ke N.

(1.6) is obvious, (1.7) follows from (1.4), and the proof of (1.8) is given in the
appendix (Proposition Al).

It is a consequence of (1.8) that (E, N F})xn 1s an &-nest (s. Appendix, Corollary
A2). In particular, Dy(&,(E))) is dense in D(&). Let

DV*(8):={ue D(&), u,I'(uye L*(E,m)} and
Dy *(8,(Ey)):=Do(&,(E)) N D" *(8).
In addition to (D1) and (D2) we assume:
(D3) D(L)nD{>(&,(Ey)) is dense in D(&).

We will show in Section 5 below how to check (D3) in concrete situations.
Now we define the local Dirichlet space D,,(&,(E,)) as the set of all measurable
functions u: E — R satisfying

(1.9) Vke Ndu, e D(§). u=u, m-ae. on E,.

EXAMPLES

1) We may always choose ¥={0}. In this case p=0, thus e,=1
and E,=E for all ke N, hence Dy(8,(E,)=D,,.(€,(E,)=D(8).

2) Assume that E is a locally compact separable metric space and (&, D(&)) is
regular (ie. Co(E)nD(&) is dense both in D(&) w.r.t. the &;-norm and in Cy(E)
w.r.t. the uniform norm). Let %:={feCy(E)nD(&); T(§)<1}. The associated
pseudo-metric p is called the intrinsic pseudo-metric of (&£,D(8)) (s. [6],
[24]). Suppose that p is a metric which gives back the original topology on E,
and that the metric space (E,p) is complete. Then E, is relatively compact for
any ke NV, cf. [24, Th. 2]. On the other hand, any compact subset of E is contained
in some E,. Thus Dy(&,(E,)) consists of the elements of D(&) with compact
support, and D, (&,(E,)) coincides with the local Dirichlet space as it is usually
defined in the locally compact case (i.e. u€ D, (&,(E})) iff for any relatively compact
open subset G of E there is a function u' € D(§) such that u=u" m-ae. on G).

3) For the choice of ¥ and the definition of non-trivial local Dirichlet spaces in
certain infinite dimensional situations cf. Example c), Choice B, in Section 5 below.

Because of the energy image density property, we can assign to any u,ve
D, ,(&,(E})) a (unique) m-class I'(u,v) such that I'(u,v)=I(u',v') m-a.e. on E,, whenever
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keN and «',v'eD(&) such that u=u' and v=v" m-ae. on E, (s.[7, I, 7.1.4]).
We fix a function ¢ € D, (&,(E,)), ¢ >0 m-a.e. Note that the m- and ¢p*m-classes
- of functions E — R coincide. We define a symmetric bilinear form (£%,2¢) on
L*(E,@*m) by

(1.10) 9= {ueD(@@); J(I"(u)+u2)g02dm< oo},

Eu,v) = Jr(u, v)p2dm.

In particular, we have 2% =D(&) whenever ¢ is bounded. In Section 2 below we
prove:

Theorem 1.1. (£%,2°) is densely defined and closable on L*E,p*-m). The
closure (6°,D(6%)) is a Dirichlet form with the strong local property.

To state the next result, let o/ be a linear space consisting of functions in
Dy =(&,(Ey). Suppose that o/ is dense in D(&) and satisfies

(1.11) o is closed under composition with Lipschitz-continuous functions
fe CP(RY, de N, vanishing at the origin.

Here, C;°(RY) is the set of all infinitely often differentiable functions such that
all partial derivatives are bounded. Clearly, &/ is contained in 2¢. &/ should
be thought of as a space of “test-functions” — typical examples are the smooth
functions with compact support on a subset of R” or a manifold and the bounded
smooth cylinder functions on a topological vector space, see also Remark 54. We
denote the closure of &/ w.r.t. the £¢-norm as ./, and fix functions f, e C!(R) such

that y;_pm<fo<X(-n-2.+2 and |fj]<1.

Theorem 1.2. (&£%,o7) is a Dirichlet form, which coincides with (§°,D(&°)) if
and only if

(1.12) f.(logp)-e,e/ for all k,neN.
Note that for ue o/ we have I'(u)e LY(E,m)nL(E;m)= ), < p< o L*(E,m).

Corollary 1.3. Suppose € < of. Let p,qe[2,00] such that p~*+q '=27",

and assume that the following conditions hold for any k,neN:

(1.13) f |o)idm < 0.
Exk

(1.14) There is a sequence u,€ (le N) such that u,— f,(log ) m-a.e. on E, and
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supj T(uy)P?dm < oo.
Ex

leN

Then (£°,50)=(&%,D(E?)).
The proofs of Theorem 1.2 and Corollary 1.3 are given in Section 2 below.

REMARKS. (i) If ¢ is bounded on any E ke N, (1.13) and (1.14) always hold
with g=oc0 and p=2. In fact, f,clog:(0,00) > R can be extended to a C/-map
from R to R vanishing at 0, so we have f,(log ¢)e D,,(&,(E,)). Since &/ is dense in
D(&), this implies (1.14).

(i) For certain gradient-type Dirichlet forms on finite and infinite dimensional
state spaces, it can be shown that (1.12) holds for any ¢e D, [(&,(E))); see in
particular the remarks in Section 5 a) and c¢).

(iii) Suppose o« < D(L)n D} *(&,(E,)) and L(/) = LYE,p?-m). Then it can
be shown that &/ is contained in the domain D(L?) of the generator L? of (§¢, D(£°))
and L°u=Lu+ ¢ 'T'(p,u) Yue of. Moreover, Theorem 1.2 can be applied to obtain
a criterion for (L?,.</) to be Markov-unique (i.e. (L?,D(L?)) is the only self-adjoint
operator on L*(E,p?m) extending (L®,/) that generates a Markovian semigroup).
This criterion, which generalizes results of [19], will be proved in my PhD-thesis ([9]).

Recall that the Dirichlet form (&, D(&)) is called quasi-regular, if the following
conditions hold:
(i) There is an &-nest of compacts,
(ii) Every ue D(&) has an &-quasi continuous modification,
(iii) There are an &-exceptional set N < E and &-quasi continuous functions
u,e D(&) (ne N) that separate the points of E\N.

The notion of quasi-regularity is important, because a symmetric Dirichlet
form on L%(E,m) is quasi-regular if and only if there is an associated right process
(s. [14, IV.6.7]).

In Section 3 we show:

Theorem 1.4. (i) Every &-nest is an &°-nest.
(i) If (&,D(6)) is quasi-regular, then (6¢,D(&%)) is quasi-regular.

Now suppose that (£,D(&)) is quasi regular. The strong local property (D1)
implies in particular, that &(u,v)=0 whenever u,ve D(&) such that u-v=0 m-ae.
(s. [7, 1, Prop. 5.1.3]). Thus by [14, V.1.11 and IV.6.7], there is a diffusion process
M=(Q,Z,(X);5 0,(P.).cx,) properly associated with (&,D(&)), i.e.

PN =ELf(X)]  (z€E)

is an &-q.c. m-version of e'“f for any square integrable bounded function f:E — R
and r>0. Here A is the cemetery point, E, means expectation w.r.t. P,, and we
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set f(A):=0. M is m-symmetric, i.c. [p,fgdm=(fp,gdm for all t>0 and all bounded
measurable f,g: E— R. We may assume, that M is canonical, i.c. Q is the space
of continuous E-valued paths w:[0,{(w)) > E with life-time (e[0,00], X (w)=
o(t) VO<t<{(w) and X(w)=A Vi>{(w).

Because of Theorems 1.1 and 1.4, we also have a @?m-symmetric canonical
diffusion M?=(Q,%°,(X);5 0,(P?).£,) properly associated with (6%,D(?)).

We will show in Lemma 3.1, that the functions in D, (&,(E,)) have &-quasi-
continuous modifications. Let ¢ be such a modification of ¢. Because of Corollary
A2 in the appendix, we can find an &-nest (E)), .y such that E; < E, and @|p is
continuous for any ke N. Let ‘

(1.15) Ef=E;n{k ' <$<k}).

We will show in Lemma 3.2 below, that (Ef), .y is an &®-nest. Since ¢ is in
D,.(&,(E,), we can find functions ¢™ e D(&) (ke N) such that

(1.16) o=0®P=¢, m-ae. on Ef.

where @, :=(@®Nk)Vk~'. Let ¢, be an &-q.c. modification of ¢, and set
¢(A):=0. By [13, Thm. 5.5.1], we have the Fukushima decomposition (w.r.t. M)

log @,(X,) —log@y(X ) = M8 ?4 Nilosox]

of the additive functional on the left-hand side into a martingale additive functional

locally of finite energy MU°2¢x] and a continuous additive functional locally of zero

energy NI°e¢x  Because of the regularization method of S. Albeverio, Z.M. Ma

and M. Rockner (s. [14, Ch. VI]), the decomposition exists, even if the state space

is not locally compact and (&,D(&)) is not regular; cf. Section 4b) below for details.
For t>0 and keN let 4,:=0(X,;0<s<?) and

o:=inf{s>0; X;e E\E{}.

For a positive measure u on #(E) we set P,:= j'Pz[ ~Ju(dz). M is called conservative,
if (=00 P,-as. for &-q.e. z. Our final theorem shows that M? is a generalized
Girsanov transform of M, provided M is conservative:

Theorem 1.5. Suppose that M is conservative. Then for £%-q.e. ze E, P{ is
locally absolutely continuous w.r.t. P, up to the life-time (, i.e.,

Pllg,nie <0< Polanp<g Vi>0.

In particular, P%.., is locally absolutely continuous w.r.t. P, up to (.
More precisely, we have:
(i) P?[Supno<{1=0 for &%-qe. zeE.
(ii) Let t>0 and ke N\{1}. Then for §°—gq.e. ze E, P? and P, are equivalent on
the o-algebra #B,n{t<a,_,} with density
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apr?
dP,

— exp( mlog Pr] _ %< Mlog ¢k]>t) .

Ben{t<ok-1)

The proof is given in Section 4.

ReMARK. Theorem 1.5 does not make a direct statement about the law of
the life-time under P%.,. In fact, the diffusion M? may explode with strictly
positive probability, although M is conservative. Sufficient criteria for conservative-
ness of M? are given in [27] and [13, Th. 6.3.3], e.g. it is enough that {T'(¢) dm < co.

In Section 5 we show how to apply Theorems 1.1 - 1.5 to concrete examples. In
particular, we discuss Girsanov type transformations of Brownian motion on
manifolds, reflected Brownian motion on smooth Euclidean domains, and diffusions
associated with gradient Dirichlet forms on Banach spaces.

2. Transformation of the Dirichlet Form

In this section we prove Theorem 1.1 and 1.2, and Corollary 1.3. The following
lemma will be needed in the proof of Theorem 1.1:

Lemma 2.1. Let  be a bounded function in D, (&,(E,) satisfying >0
m-a.e. Then for all functions u,ve Dy ™(&,(Ey)

Jl“(u, Wrdm=— Ju -LYvy? dm,
where LYv=Lv+2y ~'T(v,y)e L*(E,\y*m).
Proof. Fix u,ve D(L)n Dy >(&,(E,)). Since u vanishes m-a.e. on E\E, for
some ke N, we can find a bounded function e D(€) such that =y m-ae. on
{u#0}. ¥ and wy® (=wj?) are in D(&). Using the functional calculus for

Dirichlet forms with strong local property (cf.[7, Sect. 1.6]) and the fact that I'(x,v)
vanishes m-a.e. on {u=0}, we obtain

Jr(u, o)W dm= Jr(u, o2 dm= j T(f?,0)dm— J ul'(J2,v)dm
=&wj?,v)— fuleF{lﬁ, v)dm = &(uy?,v)— J w2y T IT(f, o) % dm

=— Ju “(Lv+ 2y ~'T(y,v))?* dm.

Now choose y'eD(&) such that Y=y’ m-ae. on {v#0}. Then we have
[T, 0)| =T, 0)| <TW)?- |Tw)| > m-ae. on {v#0}, and T'(Y,0)=0 m-ae. on
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{v=0}. We obtain T'(y,v)e LXE,m), and thus y ~'T'(¥,v)e LXE,y*m). The claim
follows from the fact that Lve L%(E,m) = L*(E,\y*m), because y is bounded. O

Proof of Theorem 1.1. If ¢ is bounded, 2° = D(&), and by [14, Prop.1.3.3.], the
closability stated is a direct consequence of Lemma 2.1 and (D3).

Now, we consider the case of not necessarily bounded ¢. We want to
aproximate ue L*(E,p?m) by elements of 2? w.r.t. the L%(E,p*m)-norm. Without
loss of generality we may assume that u vanishes m-a.e. outside {i™'<¢<i} for
some ie N. Choose u, € Dy(&,(E,)) such that u, - u in L*(E,m), and fe CZ((0, 0)),
0<f<1, such that f=1 on [i~%,i]. Then f(¢) u, converges to u in L*(E,m) and
thus in L2(E,>m). For ne N we choose ¢ € D(&) s.t. =@ m-a.e. on {u,#0}. Then
we have f(¢) u,=f(§) u,€ D(&) and

ﬁ(f (@) u)* +T(f(9) u,)p* dm= f((f (@) u)* +T(f(@) u,)p> dm

< c2 ’ éa1(f(¢) ' un)g

where ¢ is the supremum of the support of £. So f(¢) u, is in 2? for all neN,
and hence 2° is dense in L*(E,¢*m).
Next, we define a symmetric bilinear form (€% *,D(€**)) on L*(E,p’*m) by

neN

2.1 D(é”"”+)={u€ (nenD(E?""); sUpET"(u) < 00},

& (u)=sup,en & " "(u)

(-actually all the spaces D(6?""), ne€ N, coincide, but this is not important here). As
a supremum of closed forms, (€7 *,D(6”*)) is closed. This can be shown similarly
to [14, Prop. I. 3.7], cf. [10, Lemma A5]. Moreover, (§**,D(§* ")) extends
(€°,2°), which is hence closable. (% *,D(6” ")) is an extension of the closure
(&°,D(&%) as well. We will show later, that actually both forms coincide (s.
Corollary 2.4 below).

For ue 2°, ¢>0, and a smooth function g,: R - [—¢,1+¢] such that g,=id
on [0,1] and |g}|<1, we have g,oue D(&) and

f (g, o w)e? dm= J(g Lo u)’ Tw)p® dm < &%(u).

Thus g,ou is in D(&¥) and
22 &g, o u) < E(u);

so by [14, 1.4.10], (£%,D(8?)) is a Dirichlet form.
Finally, by the chain rule for I, we have
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é""’(f°u—f(0),g°u—g(0))=ff’ ou g'ou I(u) p>dm=0

whenever ue 2° and f,ge CF(R) with suppfnsuppg=0. Since 2? is dense in
D(&?), this implies the strong local property for (6%, D(£?)). O

We now fix functions f,,ne NV, as in Theorem 1.2, and define (6%, D(&% )
as in (2.1). The following proposition is crucial for our approach. It is the
essential step not only in the proof of Theorem 1.2, but also in that of Theorem
1.4 and Lemma 3.2 in the next section.

Proposition 2.2. Let 4 be a dense subset in D(&) satisfying:

(23) For any ue¥% and c>0 there is a map T:R—[—c—1,c+1] such that
T(s)=s Vse[—c,c], |Ts)—T()|<|s—t| Vs,teR, and Touec%.

Then 9, :=span {f,(log 9)- e, u;k,ne N,ue % n L*(E,m)} is a subspace of D(&?), which
is dense in D(&%7).

Since we can always apply the proposition with ¥ = D(&), we obtain in particular
that D(&¥) is dense in, and hence equal to, D(&%'*). Thus we have shown:

Corollary 2.3. (&9,D(6°)=(6"",D(&*Y)).

For the proof of Proposition 2.2 we need a preparatory lemma:

Lemma 2.4. Let ¢>0.
(i) Let u be a function in D(&) vanishing m-a.e. on {¢>c}. Then u is in D(6%) and
E%u)=8E%"(u).
(il) The form (&°",D(E° ")) admits a square field operator T'?", and I'® " “(u,v) =T '(u,v)
for all u,ve D(8).

Proof. (i) Since I'() vanishes m-a.e. on {u=0}, we have

J(uz +T(W)p*dn= j u?+T(w)prdm<c?- & ()< o,
{

p<c}

hence u is in D(6?). Moreover,
&)= J T(w)o? dn= J T(u) @ Ac)* dm=E°"(u).
{p<c} {p<c}

For u,ve D(§)n L*(E,m) we have
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E° " (uv,u) —18° " (v,u?) = J(l"(uv, u)— i v,u?)) @ Ac)* dm

= Jl) “T(u,u)(p Nc)? dm

by the product rule for I'. Since D(&)nL*(E,m) is dense in D(£?"°), the claim
follows by [7, Sect. 1. 4.1]. g

Proof of Proposition 2.2. We denote the closure of a subset & < D(&°™)
w.r.t. the &¢""-norm by £.

Step 1. 4, < D(8°).
Fix ,neN and ue 49 L*(E,m). The map f,-log:(0,00) = R can be extended to
a Cy-map from R to R vanishingat0. Thus we have f,(log ¢) € D,.(&,(E,)) N L*(E,m)
and (by (1.8)) f,(log ¢)-e,-ue D(6?). The claim follows, since Lemma 2.4(i) implies
f(log @) e, ue D(&?).

Step 2. D(&%+)=Do(&% ,(E})).
Fix ue D(6”*) and ke N. Because of Lemma 2.4(ii), we may apply Proposition
A1l from the appendix to each of the forms (§°",D(&°"), ieN. We obtain
u-e,e D(€°"Y) and
EON(u-e) <2 ELM W) <2- & ().

Thus u-e, is in D), and & (u-e)<2 -9 (u). But (u-e)n converges to u
in L%(E,m) by Lebesgue’s theorem and (1.7), so the theorems of Banach /Alaoglu
and Banach/Saks (cf. [14, Appendix 2]) imply, that the Césaro means of a

subsequence of (u-e,),.y converge to u in D(&**). This proves the claim of Step
2, since the functions u- e, (k € N), and thus their Césaro means, are in Do(&*,(E})).

Step 3. Dy(&”*(E)) < #,
where # =D& (E,n {pe[k™"k]}) N L2(E,m).

We fix ue Do(6”*,(E,)) n L*(E,m) and ke N such that u vanishes m-a.e. outside
E,. Let Y eD(&) such that o=y m-a.e. on E,. By (1.8), we have for all ne N

(2.4) flog @) e, =f,(logy) e, e D(&) and
[(f(log 9)- ) <2- (1 +T(/,(log¥)))
<2 (L4415 ¥ T <2-(1+y 7 *T()).
Because of the strong local property we obtain

J [(fllog 9) e)op® dm= J I(f(log ¢)- e)p* dm

Ex
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< 2J (1+y TW)p* dn= 2[ W2 +TW)dm<2-&,().
Ex Ex
Thus f,(log @) e, is in D(&°) = D(&* ") for all ne N and

sup&® ™ (f,(log ) €) <2 &,() < 0.

neN

Since all the forms (£°"',D(6°"%), ie N, are Dirichlet forms, (§*,D(6% ")) is a
Dirichlet form, too. Therefore we obtain

f{log @) - u=f,(log)-e, ue D(E”*) and

sup8®* (f,(log ) )t < llull - (2- &1 (Y))* + 8% ()* < 0.

neN

But the sequence (f,(log¢)-u),.y converges to u m-a.e. and thus in L%(E,¢*m), so
the Césaro means of a properly chosen subsequence are elements of 5# that converge
to u in D(E” ™).

Hence we have shown Dy(6?*,(E,)) N L®(E,m) = #, which implies the claim
of Step 3.

Step 4. # <9,
Fix ue#. We choose k,ne N such that u=f,(log¢)-e,-u, and ie N such that
Jfnolog=0 on (i,00). In particular, u=0 m-a.e. on {p>i}. By assumption, ¥ is
dense in D(&) w.r.t the &,-norm and thus in D(&°"") w.r.t the &¢"-norm.
Since ueD(&"*) < D(€*"Y), we can find a sequence u,€% (leN) such that
lim,, &% (u,—u)=0. For any /e N, we choose a contraction T;: R = [ — ||u| ,—1,
lull, +1] such that Ty(s)=s Vse[—ully,llullo] and T (u)e%.

I claim that the Césaro means w, of a subsequence of

v=flog ) e, Tiu) (leN)

converge to u w.r.t. the &¢"*norm. In fact, we have f,(log¢)-e,e D(6?"%), and
thus v,e D(6°"%) for all /e N,

(25) |o—ul=|f,(log @) e, T(u)—f,(log ¢) & Ty(u) <|u,—ul, and

(2.6) sup&®i(v)t <sup&?” ()t +(llull, +1)- 622 (flog pey)* < co.
leN leN
By (2.5), (v),y converges to u in L®(E,(¢ Ai)*m), so the claim follows from (2.6)
by the usual arguments.
Lemma 2.4 (i) and the fact that the w, vanish on {¢>i} now imply w,e D(&?)



510 A. EBERLE

Vle N, and
ESw—w,)=E9" (W —w,,) =0 (l,m — o).

So (w),.ny converges in D(&7), the limit has to be u. This completes the proof of
Step 4, since the w, are in %, '
Step 2, 3 and 4 now imply 4,=D(£%*). O

Proof of Theorem 1.2. For ue/, ¢>0, and a C;°-function
g.:R—-[—¢1+¢] such that g(s)=s Vse[0,1] and |gi|<1, we have g,cue.o/ by
(1.11),and &°(g, o u) <E°(u) by (2.2). Thus the closed form (6¢,.%¢) is a Dirichlet form.

Moreover, for any ¢>0 we can find a C>-map T:R - [—c—1,c+1] such
that 7(s)=s Vse[—c,c] and |T'|<1. By (1.11), Tou is in o/ whenever ue .o/, so
we may apply Proposition 2.3 with ¥ =.o/ to conclude that </, (as defined in the
proposition) is dense in D(&9).

Now suppose (1.12) holds. Then ./ contains ./, since it is a Dirichlet
space, and thus we obtain &7 = D(6?). On the other hand, .« = D(£?) implies (1.12)
because of Lemma 2.5 (i). d

REMARK. For u,ve.o/ we have
&2 (uv,u) —36°(v,u?) = [(C(uv,u*) — 3T (v,u*))@> dm= [v- T(u,u)p* dm.

Thus (£°,./) admits a square field operator, which coincides with T on .o/ x /.

Proof of Corollary 1.3. Fix k,ne N. For ue.o/, Holder’s inequality implies

2/p 2/q
J Twe?dn< ( J () 2dm) : <J @? dm) .
Ex Ep Ex

Thus by the assumptions, we can find a sequence u, € <7 (/€ N) such that u, — f,(log ¢)
m-a.e. on E, and

(2.7 ’ sup j (u)p?* dm < .
Ex

leN

Since f,(log¢) is bounded and .o/ satisfies (1.11), we may assume that (u).y is
uniformly bounded. For /eN let v;:=u,"¢,. Then (v),.y converges to f,(log ¢)-e,
m-a.e., and (|v)]),cy is dominated by sup,yllull - xg, forall /e N. But [, ¢*dm< oo,
so v, > f,(logp)-e, in LX(E,@*m) by Lebesgaoe’s theorem. Since € is a subset of
o/, the square field operators of (&,D(¢)) and (£%,.7) coincide on % (s. the remark
above). Hence we may apply Proposition A 1 from the appendix to (6,.7). We
obtain v,e.& and
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&E%v) = J Tv)p?dm< ZJ (T(u) +u?)p? dm
Ex Ej

SZ-(supf I‘(u,)gozdm-i—supnu,llw-f (pzdm><oo VieN.
Ep Ex

leN leN

Thus the Césaro means of a subsequence of (v),y converge to f,(log@)-e, w.r.t.
the &¢-norm. Hence f,(log @) e, is in o7 for all k,ne N. The claim follows from
Theorem 1.2. O

3. Potential Theory of the Transformaed Form

In this section we prove some potential theoretic properties of (£%,D(&%))
which will be needed to show the existence of an associated diffusion, and to
identify it as the Girsanov-transform of the initial diffusion. We first need a
preparatory lemma:

Lemma 3.1. If (&,D(8)) is quasi-regular, then any ue D, (&,(E,) has an
&-quasi-continuous modification il.

Proof. For any ke N there is a function u, € D(8) such that u=u, m-a.e. on
{p,<k}. Because of the quasi-regularity, we may choose an &-q.c. modification
i, But by Corollary A 2 (i) in the appendix, p, is £-q.c.,, so {p, <k} is £-quasi-open
(i.e. there is an &-nest (F)),y such that {p,<k}nF/ is relatively open in F; for
any [e N. Thus for k,/e N, 4, and 4, coincide &-q.e. on {p, <k Al} (cf. [13, Lemma
2.1.5]), and hence there is a modification # of u such that #=4, &-q.e. on {p,<k}
for all ke N. Because of Corollary A 2 (i), we can find an &-nest (F})in, sSuch
that for all ke N Fy' < {p, <k}, illp;; =ii|p;, and &, is continuous. Hence it is £-q.c.

|

Proof of Theorem 1.4
(i) Suppose (Fy)n is an &-nest; so Dy(&,(F})) is dense in D(&). For ¢>0 and
ue Dy(&,(F,)) we have (uAc)V(—c)e Dy(&,(F,)). Thus, by Proposition 2.2,

A =span{f,(log ¢) e, u; k,ne N, ue Dy(&,(F,)) bounded}

is a dense subspace of D(6¢). Since (F).n is increasing, s# consisits of functions
that vanish outside some F,, ke N. Thus, Dy(8%,(F,) is dense in D(6?), and (F)ien
is an &%-nest.

(i) Assume (&,D(8)) is quasi-regular. Then there is an &-nest (F),.y of
compacts, and by (i), (Fi)en 18 an &?-nest, too.

Moreover, the elements of 2¢ have &-q.c. modifications. But every &-nest is
an &?-nest, so these modifications are £°-g.c., too. Since 2 is dense in D(8?),every
ue D(&?) has an &£¢-q.c. modification (cf. [14, IIL. 3.5]).
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Finally, fix &-q.c. functions u,€ D(&) (/e N) that separate the points of E up
to an &-exceptional set N.  We may assume, that the u, are bounded. By Corollary
A 2 in the appendix, the functions e,k €N, are £-q.c., and e, 71&6-q.e. Moreover,
we can choose an &-q.c. modification ¢ of ¢ by Lemma 3.1. We fix smooth
functions h;:[0,00) — [0,1] (ie V) such that 2(0)=1, h/(s)=0 for all s>i, ie NV, and
sup;cy hs)=1 for all s>0. Then the functions

Ui =t e hi(@) (=u- e +u- e (h;—1)P)) (Lk,ieN)

are &-q.c. functions in D(&) (since ;- e, (h;—1)(@)e D(€) L*(E,m)). Because of
(i) and Lemma 2.4 (i), they are also £°-q.c. elements of D(6%). But

u,=Supk,,~ ul’k.i g'q.e. VlG N,
so {u,; lLk,ie N} separates the points of E up to an &-exceptional, and hence

&°¢-exceptional, set. This proves the quasi-regularity of (6%, D(&?)). O

Now assume that (&, D(&)) is quasi-regular, and let ¢ be an &-q.c. modification
of ¢. By Theorem 14 (i), ¢ is &?-q.c., too. The set {¢=0} may not be
&-exceptional, but by the following lemma it is always &?-exceptional:

Lemma 3.2. Let (F)),.y be an &-nest such that |, is continuous for any ke N,
and let F{:=F,n{k™'<p <k} (keN). Then (Fi)n is an &-nest.

Proof. The sets F,, ke, are closed. Applying Proposition 2.2 with
% .= D(&,(F,)) shows that Dy(&,(Fy)) is dense in D(&?). O

4. The Associated Diffusion

In this section we identify the diffusion process associated with (8%, D(&?)) as the
(generalized) Girsanov transform of the diffusion associated with (&, D(¢)), provided
the latter is quasi-regular and conservative.

a) Identification under restrictions on (£,D(&)) and ¢

In this subsection, we assume that E is a locally compact separable metric
space, m is a positive Radon measure on #(E), (&, D(&)) is a regular (i.e. Co(E) N D(&)
is both dense in D(&) w.r.t. the &,-norm and in Cy(E) w.r.t. the uniform norm)
Dirichlet form on L?(E,m) satisfying (D 1) and (D 2), and

=W An)Vn~!
for some Y e D(&)) and neN. In this case, we can define the transformed form

on L*(E,p*m) by

4.1 D(&°):=D(&),  &%u,v):= J [(u,v)p? dm.
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Since the & and &¢-norm are equivalent, (§?,D(6%)) is a regular Dirichlet form
as well.  Let M=(Q,7,(X)):5 0,(P.);ep,) and M?=(Q,F7,(X),5 0,(Pf).ck,) be m-resp.
@*m-symmetric canonical diffusions properly associated with (&, D(&)) resp.
(6%,D(6%). Since ¢ is bounded from below, log ¢ is locally in D(&) (i.e.for any
relatively compact open subset G of E there is a function ue D(&) such that u=log ¢
m-a.e.on G). Thus the Fukushima decomposition w.r.t. M of the additive functional
log (X,)—log ¢(X,), where @ is an &-q.c. modification of ¢, exists. Let MUe?] be
the local martingale part.

The following proposition was first proved by S. Song (s. [22, §8, Lemma 2 and
3]) in the special situation of classical Dirichlet forms on topological vector
spaces. Song partially extended a previous result by S. Albeverio, M. Rockner
and T.S. Zhang ([4]). His proof carries over to our situation with minor
changes. For the reader’s convenience, we nevertheless give a detailed proof.

Proposition 4.1. Suppose that M is conservative. Then P? and P, are locally
equivalent for &-q.e. ze E with density

)

dpP
4.2) sz =exp(Milcedl — I MUleeoly ) V>0,
z|Be

Proof. For t>0 let LI* :=exp(MU°s?) L1 pMU°e?)y ) and let &, be the natural
filtration of M, ie. [e 4, if and only if I' is in the P ,-completion of o(X;;0<s<7)
for any probability measure p on E,. It is shown in [13, Lemma 6.3.5], that
there is a @2>m-symmetric diffusion M?=(Q,%?,(X,),»0,(P?).c,), such that

zeE 4

4.3) Ef[F'X{T<{)]=Ez[L[T¢]'F] VzeE

for any bounded (# )-stopping time T and any & ;-measurable bounded function
F:Q > R. Moreover, I'(p) is well-defined, because ¢ is locally in D(&), and

ff(qo)dmsj.r(w)dm<oo.

Thus, by [13, Lemma 6.3.7], M is conservative. In particular, we have for &-g.e.
zekE:

4.4 FP[F1=E,J[LY"-F] for any T and F as in (4.3).

Since MU°e9] is a local (£ )-martingale, L!”! is a non-negative local (# )-martingale,
and hence a supermartingale under P, for &-q.e. z. But by (4.4), E[L¥]=1
for all >0 and &-q.e. z, so L is even an (% )-martingale under P, for §-q.e. z.

Let (), o and (5¢),> o be the transition semigroups of M resp. M?. We denote
by (R),>o resp. (R?),», the resolvents of M and M?, ie.
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4.5) (R.N)2):=E, Uwe‘“'f (X)) dt] = J we’“'(p,f)(Z) dt
0 0

(4.6) (Ref)):=E2 Ume (X)) dt] = re‘“'(ﬁ?’f)(Z) dt
0 0

for all zeE and all bounded measurable f:E— R. Note that because of the
m-resp. @>m-symmetry of M resp. M?, p,, aR,, p¢ and aR? are contractions w.r.t.
the L'(E,m)- resp. L'(E,p*m)-norm. Thus (4.5) and (4.6) make sense for any
integrable f: E — R.

Now, we proceed in two steps: In Step 1 we show that

4.7 R?f=R, f+2R’T(R, f,logp) m-ae.

for any bounded, m-square integrable /: E — R and «>0. In Step 2 we conclude that
M? is properly associated with (€%, D(€¢)). This completes the proof of the lemma:
In fact, M? is properly associated with (£?,D(6?)) as well, and thus it follows from
[14, TV. 6.4 and 1V.6.2(ii))] and monotone class arguments, that

(4.8) P?=P? on B, (:=0(X,;t>0)) for &%-qe. zeE.
But the &;-and &¢-norm are equivalent, and thus (4.8) holds for &-q.e. z€E,

too. (4.4) implies the claim of the lemma.

Step 1. First note, that for any u locally in D(&)
(4.9) ['(u,log @) =T (,108Y)* Xin-1 <y <ny

Thus (R, f,log ¢) is integrable w.r.t. m and @?m, and R?T(R, f,log ) exists m-a.e.

Because of the strong local property of (&,D(8)), 2-T(R,f,logp)-m is the
Revuz measure of the additive functional (MR«f1 pgllegely (s [13, Lemma 5.3.3
and (3.2.20)]). Thus

(MReS) ppliogely — 7. J‘I“(Ral flogo)X)dt P,-as. for &-qe. z,

0

independent of the version of I'(R,f,log¢) chosen (s. [10, Beispiel A72] for
details). Moreover, by 1td’s formula, we have P,-as. for £-q.e. z

L=1+ J LI®ldMtlose), and thus
0

<M[Raf]’ L[¢]>s — JSLE“’]d<M[R““,M“°g ¢]>t
0
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=2- f LT (R, f,log p)(X)dt Vs>0.
0

For neNlet T,:=inf{t>0; LI?’>n}. Then T,1 oo P,-as. for £-q.e. z. By Fubini’s

Theorem and by dominated convergence, we obtain for m-a.e. ze E:

[e 9]

(410)  2RIT(R,flog ¢)z) =2 f e”“E2[T(R,f,log p)(X,)]dr

0

=2 r E,[( f " e ”ds)LE“” ‘T(R,f,log )X, t)] dt
0 t

= EZI: f °°oce _¢s< J 32L5¢J ‘T(R,f,log 9)(X)) dt) dsJ
0 0

© sATn
= lim EZ[J oe” “‘(j 2LV -T(R, f,log 0)(X,) dt> ds:I

n=o 0 0

=lim EZI:J ae” S(MWRI Ll d5:|

n—ow 0

= lim J ae” SE,[{(MWRSLLIeYs o 1ds

n—=wJ 0

0
= lim J ae”SE,[ MR LI, 1 ds.

n—=w0J0

Note that our use of Fubini’s and Lebesgue’s Theorem is justified, since for any

(Z )-stopping time T and m-a.e. ze E:

(4.11) J ae” “E[[KMPBSL L o [1ds
0

= E’[J oe ds]
0

< EIZ J " e f Lo |T(R, /. log o) X)| dt ds:|

0 0

sAT
J LI'I'(R, f, log p)(X)) dt

0

= R2IT(R, £ log p)|(z) < 0

by the same calculation as above. Thus all the integrands appearing above are
integrable on the respective product spaces, and the integrand in the third line of
(4.11) can be used as an integrable majorant.

Now, we will calculate the right hand side of (4.10). Since M is properly
associated with (&,D(&)), R,f is &-quasi continuous. Hence ¢+ R, f(X,) is
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continuous P,-a.s. for &-q.e. z, because M is a conservative diffusion. Moreover,
the Fukushima decomposition of R, f(X;)—R,f(X,) w.r.t. M reduces to the usual
semi-martingale decomposition and

Ms[Ra” = Raf(Xs) - Ruf(XO) - ﬁaRaf—f)(Xt) dt Vs> 0
0

P,-as. for £-q.e. z. Since f is bounded, we obtain by (4.4), dominated convergence
and Fubini’s Theorem for m-ae. z:

0
) _ R,
lim J ae” “E [ M®Rf LI 1ds
0

n— o

'SATn

= lim rae B “E?[Raf (Xsa1,)— RS (Xo)— @R, f—/NX)dt } ds

n—=o0dJ 0 0

= Jwae_ “EY [Raf (X)— R, f(Xo)— f(aRaf —/)X) dt] ds

0 0

- f wae‘“<ﬁ§"Raf— R~ rﬁ:”(aRaf-f) dt) ds

0 0

=aRR,f— R, f— Jw<Jwae_“sds>p~;”(aRaf—f) dt

0

ZO‘RZ’Raf_ Raf_ R?(“Raf_f’) "_‘Rg’f— Raf
Together with (4.10), we obtain (4.7).

Step 2. Since M? is p2m-symmetric, it is properly associated with a (symmetric)
Dirichlet form (&%,D(€%) on L*(E,@?m). The proper association, ie. the
&*-quasi-continuity of j?f for any bounded square-integrable f:E — R, follows
from [14, IV.6.7].

We are going to deduce from (4.7) that (§%, D(€?)) and (&%, D(€?)) coincide. First
note, that

4.12) Jocﬁfgf(pzdm—v Jgfcpzdm (o = o0)

for any bounded ¢?m-integrable f:E— R and any ¢?m-integrable g: E— R. In
fact: Since aR? («>0) are contractions on L!(E,@’m), it is enough to prove (4.12)
for continuous bounded g. But in this case, lim, ffg=g m-ae., hence
lim,, R?g=g m-ae., and (4.12) follows by dominated convergence. Now fix
feCHE)ND(E?) (=Co(E)nD(8)). Then (4.7) implies for a>0
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(4.13) Ja(f—aﬁg’j)fgﬂdm

= f a(f—aR, ) o*dm— Zfocﬁfr(ale, log @) f* dm.

But fo? is in D(&), since the map T:R- R, T(s)=((sAn)Vrn )2 —n"2 is
Lipschitz-continuous, bounded and vanishes at 0, and fo*=/f"T(y)+n"%f. Hence
the first term on the right-hand side of (4.13) converges to &(f,f@?) when o — c©
(s. [13, Lemma 1.3.4]). Moreover,
|fxReT (@R, £, 108 9)f ¢* dim— [T (f,log @) f o> dm|
<|foaRET (xR, —f,10g @) f o> dm|
+|faRIT(f; log @) f ¢ dm— [T'(f, log @) f 9 dm,

which converges to 0 by (4.12) and the facts that aR,f—f in D(&),

I'(+,log 9): D(&) = L\(E,p*m) is continuous (by (4.9)), and aR? is a contraction on
LY(E,p*m) for any «>0. Thus

lim Jd(f —aRef) fo? dm=&(f fo?) -2 J I(f,log ¢)fo* dm

= J.F(f,f(pz)dm - fF(f, @) fdm= fl"(f,f) Q> dm=&(f,f).

Hence we have feD(&?) and &°(f,f)=&°(f,f) by [13, Lemma 1.3.4]. Since
Co(E)n D(&%)is dense in D(&?), we have shown that (£%, D(£?)) extends (£%, D(&°)).
On the other hand, for any bounded function fe D(&?) we have

Jaﬁfr(aRJ, logg)f dm‘ <Ifllo-n?: ﬁ“ﬁf TR, f,log p)lp* dm

k3 %
sIlfllw'n4-sup(JF(aRaﬁdm> -(JF(log(p)dm) =:c<00.

a>0

Here we used that aR? is a contraction on L'(E,p*m), T(log o) is in L'(E,m) by
(4.9), and

jl“(ocRaf)dm=é”(ocRJ)sé"(f) Va>0
(cf. [14, 1.2.22(ii) and 1.2.22]). Thus by (4.7) and [13, Lemma 1.3.4] we obtain

4.14) lim supfoc(f— aR, f)fdm

a—* oo
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<lim supJoc(f —aR2f)f o~ % p*dm+2sup J aReT (@R, f;log @) fdm

a— o0 a>0

<E(fifo Y +c<oo.

Note that, in fact, fo =2 is in D(&®), since  is in D(&)=D(&?) = D(&?), the map
T:R—R, T(s):=(sAn)Vn~")~2—n? is Lipschitz continuous, bounded and
vanishes at 0, and fo~2=f- T(Y)+n?f.

By (414), fis in D(&) and thus in D(&?). Hence (8%, D(§%)=(£7,D(67)), ic.
M? is properly associated with (£¢,D(£%)). O

b) Regularization

From now on, we again assume only that E is a metrizable Lusin space, m
is a o-finite positive measure on #(E), and (&,D(&£)) is a quasi-regular Dirichlet
form on L*(E,m) satisfying (D1) and (D2). In this subsection, we keep the
assumptions on ¢ from a), and we define (6%, D(&£?)) as in (4.1). Since ¢ is bounded
from above and below, it is obvious that every &-nest is an &®-nest, and (£¢, D(£?))
is quasi-regular. By the regularization method of Z. M. Ma and M. Réckner (s. [14,
Ch.VI]), we can transfer the result of Proposition 4.1 to the more general situation
considered here. A detailed description of the application of the regularization
method in a similar situation is given in [10, p.56, “Reduktion von 43 auf
45”]. Here we just note (s. [10, Appendix, Section 6] for proofs resp. references
to proofs) that, since ¢ is bounded from above and below, we can find an &- (and
hence £?-) nest (E, ).y consisting of compact metrizable subsets in E, and a locally
compact separable metric space E containing Y:= UEk as a dense subset, such that:

o YeA(E) and B(Y)=RB(E)n7Y,
e The trace topologies on E,, ke N, induced by E, E respectively, coincide,
® The measure 7 obtained by restricting m to #(Y) and trivially extending to #(E) is

a positive Radon measure,
e The Dirichlet forms (&, D(&)) and (%, D(é7)) on L*(E, 1) resp. L¥(E, ¢*) defined by

D& =T (D), ETuTv)=_EWuv),
D(E0)=TUD(&®),  ENT°u,T *v):=Eu,v),
are regular. Here 7 :L*E,m)— L*E,r) is the canonical isometry (m(E\Y)

=m(E\Y)=0 and m|gy, =gy, imply L¥(E,m)=L*Y,m|y)=L*E,r) canonically,
¢:=¢°T, and T9: LYE,¢*m) - L*(E,¢*-m) is again the canonical isometry.

Clearly, (6°,D(£°) is the ¢-transform of (&,D(f) in the sense of
(4.1). Moreover, if M=(Q,%,(X);50,(P.):cg,) and M?=(Q,F*,(X);5 0,(P?).cg,) are
canonical diffusions properly associated with (&, D(&)) resp. (6%, D(6?)), we can find
canonical diffusions M =(Q,3'A' ,(X),ao,(Pz)zegA) and 1\7"’:((3,.92~ "’,(/\",),20,(132’)“,:; )
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properly associated with (£,D(£)) resp. (€2, D(€?)) such that
(4.15) P[QNQ]=P,[QNnQ]=P[QnQ]=P[QnQ]=1,
Pz{Qnﬁ=ﬁz|Qnﬁ and Pflﬂr\ﬁ:iiglﬂnﬁ

for &-resp. £7-q.e. ze Y and thus &-/8%-qe. ze E. Here QnQ is the space of
Y-valued paths with possibly finite life-time, which are continuous both w.r.t. the
E-and E-topology.

If M is conservative, M is conservative, too. Hence we may apply Proposition
4.1 to conclude that for é-q.e. ze E, P? and P, are locally equivalent with density
exp (MUs? _1(Nplos?)y ) Here MUE? is the local martingale part in the
Fukushima decomposition w.r.t. M. By restricting M!"#?! and the corresponding
locally-zero-energy-part NU°¢? to QnQ, and then extending trivially to Q, we
obtain the Fukushima decomposition of log ¢ w.r.t. M (cp. [14, proof of VI.2.5.]). If
MUg?! denotes the local martingale part of this decomposition, then Proposition
4.1 holds because of (4.15).

c¢) The general case

Finally, we are going to prove Theorem 1.5 by localizing to the sets Eg,
keN. The proofs in this subsection are modifications of those in [4]. The
application of the techniques from this article to our more general situation becomes
possible because of the results of Sections 2 and 3 above.

So consider again the setting from the introduction. In particular, we assume
only g € D, (&,(E}), ¢ >0 m-a.e., and we define E¢, o®, ¢* and o, for ke N as in (1.15)
and below. Let (£%,D(&%)) be defined as in the introduction and (§?%,D(&6%%)) for
keN as in (4.1). For a space & of functions E— R and Ae%(E) we set
F o={ueF; u=0 m-ae. on E\A}.

Lemma 4.2. (6%,D(8%)g, )=(6",D(E)gp_) for all ke N\{1}.

Proof. Fix ke N, and let uED(é"“”‘)Eﬁ,_1 (=D(£’)Eg_ l). Since ¢ =@, m-a.e. on
E¢_ |, we have

J(I‘(u) +u?)p?dm= J(I“(u) +u?) @} dm =& -(u) < co.
Hence u is in D(6%)g,  and

Eu)= fr(u) pdm= fr(u) ©E dm=E"(u).

On the other hand, let ¥ be a bounded element of D(é"")Eg_l. Then there is a
sequence u,€92® (neN) that converges to u w.rt. the &{-norm. Now fix
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g.€ C'([0,00) - [0,1]) such that g, =1 on [(k—1)"!,k— 1] and g, =0 outside (k™ !,k),
and let v, == (u, A llull ) € g(®). We can find a subsequence of (u,),.5 that converges
to u m-ae. Butv,=u,Alul|, m-ae. on Ef_ , and |v,—u|=|v,| <|u,| =|u,—u| m-a.e.
on E\E?_, for any ne N. Hence there is also a subsequence of (v,),.y cOnverging
m-a.e. to u. Moreover, e, g, (o) is in D(&) by the same argument as in (2.4), and
in D(6?) by Lemma 2.4. So for any neN, v, is in D(&) (=D(£9), and

v, = J(F(v,.) +v3) il dm= f(l"(vn) +07) p* dm=&9(v,)

<(lull - E%ew gl@))* + &) + Juf @’ dm.

Since (4,),.xy 1s bounded w.r.t. the &¢-norm, (v,),y is bounded w.r.t. the
&¢-norm. Therefore the Césaro moeans of a subsequence of (v,),.y converge to
u w.r.t. the £9%-norm, in particular u is in D(&?<). Thus D(6%)gy_, = D(E™)gg_

which completes the proof of the lemma. O

Let M®=(Q,7%,(X)i20,(P?).ce,) and M =(Q.F (X)) 0,(P{"):e,), k€N, be
canonical diffusions, which are properly associated with (8%,D(6%)), (6%, D(&%))
respectively.

Corollary 4.3. Let ke N\{1}. Then for £%-q.e. z€E:

Pllg,nit<on- 1y =Pt @entt<an-y Jor all t=0.

Proof. For t>0, >0, ze E, and any positive or bounded measurable f/: E — R
let

pif@)=EPf(X)t<0,_1], p*f@)=E[f(X)t<0,_4],

e " (X) dt:l,

© Ok—1

—"

0o

Rf(2) :=J

0

Ok —

——_

0

[e o]

R2f(2) = f e (X) dz].

0
We fix «>0 and a non-negative function f: E — R which is square-integrable both
w.r.t. m and ¢?m. By [14, 1V.5.6], and since g, _, =0 Pf*-a.s. for m-a.e. ze E\E{_ |,
we have R}fe D(6*)g,  and

1

1

EP(RLS, v)=ffv pidm  Vve D(E™)g, .

Similarly we obtain, using Lemma 4.2, R? fe D(é”"’),:-,.:,_1=D(é"“”‘),5‘.2,_1 and
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&?”‘(Ré?ﬁv)=é"f(RZ°ﬁv)=J’fv ¢2dm=va @idm  VoeD(E™)g, .

Hence &R f— R f,R® f—R*f)=0, and R®f=R%f m-a.c.

Moreover, R:f is &%-quasi-continuous (cp. [14, proof of 1V.5.25 (ii)]) and
thus &-, and by Theorem 1.4 (i), &9-quasi-continuous. Since RXf is &?-quasi-
continuous as well, we have

(4.16) R2 f=REf £°-qe.

By dominated convergence, we see that (4.16) holds for any bounded measurable
fE—R. Let J be a countable subset of Cy(E), that separates the points of E, is
closed under multiplication, and contains the constant function 1. The
&?-exceptional set in (4.16) can be chosen independent of xe @ and fe 7. Since
tpPf(z) =EZ[f(X), t<o,-,] and t+—p* f(z) are right-continuous for any fe I
and zeE, we obtain by the uniqueness of the Laplace-tramsform:

4.17) pEf=ptf for all t>0 and fe T, &%-qe.

T generates #(E), because E is a metrizable Lusin space (s. [21, p. 102, Cor. 1,
and p. 108, Lem. 18]). Thus, by monotone class arguments, (4.17) remains true
if  is replaced by the set of all bounded %(E)-measurable functions
f-E— R. Moreover, by [14, IV.6.5], we obtain for £¢-q.e. z€ E:

PP[pef(X)=p*f(X)]=1 for all £,s>0 and all bounded meas. f: E — R.

The claim now follows by standard arguments, cp. [4, Cor. 4.5] or [10, Folgerung 67].
O

Proof of Theorem 1.5. By Lemma 3.2, (E#),.n is an &%-nest. Hence Claim

(i) follows by [14,1V.5.30.(i)]. Claim (ii) is a direct consequence of Corollary 4.3 and

Proposition 4.1, which can be applied to (§%<,D(6%%)), kelV, because of the

considerations in subsection b). For &°-q.e. z€ E, P? is locally absolutely continuous
w.r.t. P, up to sup,.n0; by (ii), and hence by (i) up to {.

O

5. Examples
a) Brownian motion on a complete Riemannian manifold

Let E:=M be a complete connected Riemannian manifold with metric g
and corresponding volume element dv. For u,ve Cg?(M) we set

Eu,v) = %Jg(Vu,Vv) do ( =-1 J‘ ulv dn) .

Here V denotes the gradient and A the Laplace Beltrami operator on M.
(€,C&(M)) is closable on L2(M,p) and the closure (&,D(&)) is a regular Dirichlet
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form satisfying (D 1) and (D 2). D(&) is the usual Sobolev space H!'%(M), and
T(u,v)=1g(Vu,Vv)  (u,ve H'2(M)).
We may choose
€:={te Co (M), g(VEVO<T)
or  G={(eCPM)nH (M), g(VEVE<T ae).

In both cases the metric p generated by % coincides with the distance-function of
(M,g). In particular, p is finite and (M,p) is separable.

By Example 2 in Section 1, D, (&,(E,)) is the local Sobolev space H,\\:*(M),
and Dy(&,(E,)) consists of all functions in H!'%(M) with compact support. Since
Cg(M) is dense in H'*(M), (D3) is satisfied. Hense we may apply Theorems
1.1 and 1.4 to conclude that for any ¢e H.2(M), (£°,D(£%)) is a quasi-regular
Dirichlet form with strong local property, that extends

(5.1) &%u,v) =%Jg(Vu,Vv) o*do  (u,ve CE(M)).

(6°,D(6%)) is the closure of (5.1) if and only if (1.12) holds for & =Cg(M); e.g.
the conditions in Corollary 1.3 are sufficient. The diffusion M properly associated
with (&,D(&)) is Brownian motion on (M,g). We assume that M is conservative.
This is the case (s. e.g.[23, Th. 4]), if the volume growth condition

J 4 dr =00
y log V(1)

holds. Here V(r) is the volume of the ball of radius r around a fixed point
peM. By Theorem 1.5, the law of the diffusion M? properly associated with
(€°,D(6%)) is locally absolutely continuous, with density as in 1.5, w.r.t. Wiener
measure on the path space of M.

REMARKS. (i) In the special case M =R’ with Euclidean metric, (1.12) holds
for any pe H;2(RY. In fact, it is shown in [20, Proof of 3.1] by probabilistic
arguments, that f,(log)-v is in C(R% (i.e. in the closure of C°(R?) w.r.t. the
&¢-norm) for any ne N and ve C(RY. An application of Proposition A 1 in the
appendix and of the subsequent remark to the form (£%,C¢°(R) shows that ¢, is in
CP(RY for any keN. Thus we obtain f(logg)-e,e CP(RY) Vk,neN by
approximating e, with Cg°(R-functions.

Consequently, the Dirichlet form of the Girsanov-transform of Brownian
motion in R? w.r.t. ¢ is the closure of (5.1) for any ¢ e H.':2(R?, i.e. we obtain M.
Takeda’s result mentioned in the introduction.
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(i1) Similarly, sufficient criteria for absolute continuity w.r.t. diffusion processes
generated by more general elliptic differential operators on manifolds (with not
necessarily continuous coefficients ) may be derived.

b) Reflected Brownian motion

Let U < RY, de N, be a bounded Euclidean domain with smooth boundary dU,
and dm:=dx Lebesgue-measure on U. The form given by

D(&):=H"YU), &wu,v):= %JVu ‘Vodx

is a symmetric Dirichlet form on L*U,dx) with strong local property and
square-field-operator TI'(u,0)=Vu-Vv. (&,D(€)) is not quasi-regular, but by
identifying L*(U,dx)~ L*(U,dx) we may consider (&,D(&)) a regular Dirichlet form
on U. For ¢:={0}, p is the Euclidean metric, and D, (&,(E,) = Do(&,(E) = D(&).
(D 3) holds, because the image of C®(U) under the 1-resolvent of (&,D(£)) is
dense in D(&), and by elliptic regularity (cf. [5, 10.17, 10.18 and 8.8]), contained
in CY(U)nD(L) = D"*(&)nD(L). By [13, Thm. 1.6.6], the corresponding diffusion
process is conservative. It conincides with reflected Brownian motion on U. For
pe H"*(U), Theorems 1.1 - 1.5 apply as above.

c) Infinite-dimensional gradient Dirichlet forms

Let E be a (real) separable Banach space and m a finite measure on %(E) which
charges every weakly open set. For K< E’ let

‘%-wa(K):z {f(ll”ln), nENs fe Cbco(Rn), lla"'alnEK}

be the smooth cylinder functions based on K, and let #C°:=% C*(E’). Here
C°(R") is the space of all smooth bounded functions on R" with bounded partial
derivatives. By the Hahn-Banach theorem, E’ separates the points of E. If K is
a dense subspace of E’, then K and & C,°(K) separate the points, too. The support
condition on m implies that we can regard # C*(K) as a subspace of L*(E,m),
and a monotone class argument shows that it is dense in L*E,m). For
u=f(, 1 )eFC let du:E—E’,

du(z) = zﬁigﬂl(z),m,ln(z>)-li,

be the differential of u.

We now assume in addition that we are given a separable real Hilbert space
(H,{-,- ) densely and continuously embedded into E. H should be thought of as a
“tangent space”to E at each fixed point ze E. Identifying H with its dual H', we
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have that
(5.2) E' ¢ H c E densely and continuously,

and the dualization between E’ and E restricted to E’ x H coincides with {-,->. We
define the gradient Vu: E — H as the function obtained from du via the imbedding
(5.2). In particular, for he H and ze E we have

VuD iy =3 1@ L@ 1) =L utz +5h)s 0= 240)
i=10x; ds oh
For u,ve #C,° let
(5.3) E(u,v):= J{Vu(z),Vv(z))m(dz),

We assume that there are a dense subspace K < E’ and functions f, e L*(E,m)
(ke K), such that the integration by parts formula

(5.4) Ezvdm= - Juzg dm— J;w B, dm

holds for any u,ve #C;® and ke K. In this case, the bilinear form (8,4 C;°) is
closable on L?*(E,m), and the closure (£,D(¢&)) is a Dirichlet form with & C2(K)
in the domain of its generator (s. [19, Sect. 1]). Moreover, it follows from the
chain rule, that (£, D(&)) satisfies (D 1) and (D 2). The square field operator is
the unique continuous bilinear extension of T'(u,v):=<{Vu,Vv), uve #Cy°, to
D(&). By[14,Sect. IV 4b)],(&,D(&)) is quasi-regular. Let M =(Q, % ,(X,);»05(P,)cE)
be the properly associated canonical diffusion.
There are two canonical choices for the set ¥ generating the metric:

Choice A. If we just want to consider transformations with @€ D(&), ¢ >0
m-a.e., we may set ¢ := {0} (s. Example 1 in Section 1). Then Dy(&,(E,))=D,(&,(E}\))
=D(&). (D 3) holds, because & C;*(K) is dense in D(&) by [2, Prop. 2.10]. Hence
we may apply the theorems from Section 1 to conclude that (£%,D(67)) is a
quasi-regular Dirichlet form with strong local property, that extends

(5.5) E%(u,0)= f (VuVodoldm (e FCP).

It is the closure of (5.5) if and only if f,(log ¢) is in the domain of this closure for
any nehV, e.g. it is sufficient that ¢ is in this domain.

Let M? be the canonical diffusion properly associated with (6%,D(6¢)). Since
the constant function 1 is both in D(&) and D(&?), and &(1)=6%(1)=0, M and
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M? are conservative (cf. [13, Th. 1.6.5]). Hence by Theorem 1.5, the path-space
law of M? is locally absolutely continuous (up to oo!) w.r.t. that of M for &°-q.e.
starting-point. This generalizes the main result of [4](Thm. 1.5).

Remark. If E is large enough and
(5.6) sz(z)m(dz) <0 VkeK,

then it can be shown (s. [3, Thm. 6.6 and Ex. 6.4 (i)], that there is an E-valued
stochastic process (W,),»o on (Q,%), which is a Wiener process starting at 0 with
covariation

CUONIOWL=t- Ky VTR
under P, for £-q.e. z, such that the stochastic equation

(5.7) k(X)) =k(Xo)+ k(W) + %J,Bk(Xs)ds Vt>0 P,-as. for &-qe. z

0

holds for any keK In particular, if (E,H,m) is an abstract Wiener space,
then M is an infinite-dimensional Ornstein-Uhlenbeck process (i.e. (5.7) holds with
.=k for any ke E’), and if E, H, K and m are chosen as in [3, Sect. 7, I], then M
is the stochastic quantization process of the space-time resp. time-zero free quantum
field (-note that the space of tempered distributions in [3] may be replaced by a
subspace which is a Banach space). If, moreover,

(5.8) j(kz(z) + B9 @mdz) <0 VkeK,

then M? satisfies a stochastic equation of type (5.7) with f, replaced by
B+ k(@™ 'Vo),cf. [10, Part I, (51)]. This is the starting-point for an alternative proof
of our absolute continuity result based on an infinite-dimensional version of
Girsanov’s Theorem. This proof, which is carried out in [10, Satz 30], works in
many concrete situations, including the infinite-dimensional Ornstein-Uhlenbeck
processes and the processes from quantum-field-theory mentioned above. We also
remark that in these situations, by [10, Proof of Satz 35 and Satz 22], f,(log o)
is in the domain of the closure of (5.5) for any nelN, hence FC;° is
dense in D(&?).

Choice B. To introduce a suitable local Dirichlet space let

¢ :={ueF Cy; ||du(z)|lp <M~ 'VzeE},
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where M denotes the operator norm of the imbedding E' g H. Clearly, € consisits
of continuous functions u satisfying I'(u)={Vu,Vu) <1. The metric p generated
by € is given by

pley)=M~"'-|x=ylg  VxyeE.
In fact, “<” holds because
u(x)—u(y) <sup,epllduz)p - Ix—ylg<M ~'-x—ylg  Vue®,
and “>" follows from
lx=yllg=sup{ ) —fUO); [eE', |lllg=1, fe C°(R), |f<1}
<sup{u(x)—u(y); ue # C,°, |du(z)llp <1 Vze E} =M p(x,y)

In particular, p is finite, (E,p) is separable, and the sets E, (ke N) are balls in
E. If (D 3) holds, the theorems from Section 1 apply to any ¢ e D, (&,(E)), ie.
to any measurable ¢:E — R that coincides with some function from D(&) m-a.e.
on every fixed ball.

Claim. (D 3) holds, if the following two additional assumptions are satisfied:

(5.9) E is a Hilbert space
(5.10) m has a square-integrable logarithmic derivative, i.e. there is a function

pe L*(E - E,m), such that (5.4) holds with f,=k(f) for any ke E'.

Proof. We fix decreasing functions g, € C;°([0,0)), k€ N, such that g,=1 on
[0,k],gx=00n[k+2,00),and |g;|<1. Because of (5.9), the functions é,(z):=g,(l|z )
are in C°(E), the space of all infinitely often Fréchet-differentiable functions on
E with all derivatives bounded. Hence &#,:={u-é; ue#Cy°, ke N} is a subset
of C,°(E) as well. It is shown in [1, Lemma 6], that (5.10) implies that C°(E) is
contained in the domain D(L) of the generator of (&,D(£)). Moreover, every
function from %, vanishes outside some E,, and

T(u)=(Vu,Vudy <M?-||dul|2. e L°(E;m)  Vue F,.

Thus #, = D(L)n D} *(&,(E,)), and it only remains to show that span . is dense in
D(&). This is the case, since for any ve F Cp°, (v- &)y COnverges to v m-a.e., and
SUp N84 (v-€,)<38(v)< oo by Prop. A 1 in the appendix. O
ReMARK. If (5.9) and (5.10) hold, then the “test-function” space
o ={ue C;°(E); suppu < E, for some keN}

contatins %, and hence satisfies the conditions imposed above Theorem 1.2.
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d) Other examples

Other examples may be treated similarly to those described above. In
particular, we refer to [18], [17] and [8] for the setup needed to apply out
theorems to Fleming-Viot processes and processes on path and loop spaces of
Riemannian manifolds.

Appendix: Maetrics and Cut-off-functions related to Dirichlet Forms

Let E be a separable Hausdorff space, m a o-finite positive measure on its
Borel-g-algebra, and (&,D(&)) a Dirichlet form on L*(E,m) satisfying (D 1) and (D
2). Suppose ¥ is a symmetric (i.e. €= —%) set of functions & e D(&) satisfying

<l m-a.e.
Let p: Ex E—[0,00],

px,y) =sup(&(x) — ()
te®
be the pseudo-metric generated by 4. Assume that (E,p) is separable. We fix pe E
and set p,:=p(",p).

Proposition A 1. Let u be a function in D(&), and let g:RU {0} - [0,1] be a
decreasing and Lipschitz-continuous function such that g=1 on (—00,0] and g=0
on [b,00] for some b>0. Then u-g(p,) is in D(&) and

L(u glp,) <2(Cw)+llg'll% - u?) m-ae.

Moreover, u-g(p,) is &-quasi-continuous, if both u and the functions in € are
&-quasi-continuous.

ReMARK. Under additional assumptions, it follows from the results of [6]
and [23] that g(p,) is in D(&) and I'(g(p,) < lg’ll%. If there is a function ue D(&)
such that u=1m-a.e. on {p,<b}, then g(p,) € D(&) is a consequence of the proposition.

Corollary A 2. Suppose there is an &-nest (Fy)n such that the restrictions of the
functions from € to each F,, ke N, are continuous. Let E,:=F,n{p,<k}. Assume
Surther p,<oo m-ae. Then:

(i) (E)wen is an &-nest.
(i) If the functions in D(&) have &-q.c. modifications, then p, is &-q.c.

Proof of the corollary. (i) Let ke N. Since p, is a supremum of functions with
continuous restrictions to F, p,|r, is lower-semi-continuous. Thus E, is relatively
closed in F, and therefore closed in E. Now fix ue D(6) and ¢>0. We can find
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le N and ve D(&), such that v vanishes m-a.e. on E\F,, and &,(u—v)*<e/2. For
keN let e :=(k—p,)* Al. Since p, is finite m-ae., (v-e)n converges to v
m-a.e. Morever, by the proposition, v-e, is in D() and

sup, &,(v-e)= supkj(lv e|2+T(v-e))dm
<3 J‘(v2 +T(v))dm=3"&,(v)< c0.

Thus the Césaro means of a subsequence of (v-e,),.y converge to v in D(&). But
v-e, vanishes m-ae. on E\E,,, and thus the Césaro means are in D(&,(E,)).
Therefore we can find weDy(&,(E,), such that &,(v—w)!<e/2 and hence
&,(u—w)t<e. Since u and & are arbitrary, Dy(&,(E))) is dense in D(&), and thus
(E)ien is an &-nest.

(i) By [14, I1I 3.6], there is an &-q.c. function ue D(8) such that u>0 &-q.e. Let

neN. The proposition implies that u-(n—pp)+ is &-q.c., hence p,An (=n—u"'-u

‘(n—p,)*é-qe) is £-q.c, too. By (i), we can find an &-nest (F)wen such that on
F, ppis bounded by k, and p |z, = p, Ak|, is continuous. Hence p,, is £-q.c. O

Proof of the proposition

Step 1. Fix yeE and e>0. We show that there is a function {=¢, ,e % such
that

(A1) )—lp)<plx) Vxek, and
(A 2) {x)—lp)=p(x)Nb—3e  VxeB(y),

where B,(y) denotes the p-ball of radius ¢ around y.
In fact, by definition of p, we can find £e€% such that

M —EP)zp, () Nb—e.
Using the triangle inequality, we obtain for x e By(y)
8(x) = &p) =E(x)— E0) + E0) — &)
> —p(x,y)+p,(Y) Nb—e>p,(x) N\b—3e.
Thus (A 2) holds. (A 1) follows from the definition of p.

Step 2. We fix a bounded, non-negative function ue D(§). For y, ¢ and &
as in Step 1 let

vy (x)=u(x) g(&(x)—&(p)),  x€E.

I claim that v,, has the following properties:
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(A 3) v, ()zux)glpx)  VxeE

(A 4) v, (x)<u(x) glp(x)+3e llull, lg'll,  VxeB(y)
(A5 v,,eD@&) and T(v,,)<2(T@)+ gl -u?) m-ae.

In fact, (A 3) follows from (A 1), since g is decreasing. Moreover, g vanishes
on [b,o0], and thus

vy~ g(py) =u-g&—<(p)—u-glp, \b)
<llull o 18l (P AO—=(E =N <llull - llg”ll -3
on B,y) by (A 2). Finally, the map
£:R—R,  £s):=g(s—p)—g(—<0)

is Lipschitz-continuous with constant |g’||,, bounded, and vanishes at 0. Thus
we have

vy, =u"§(&)+u g(—E(p) e D(&) and
I(v, )=u T(g(&),v, ) +8(&) Tw,v,,)+&(—iP) Twy,,)
=u: F(g(é)’ Uy,a) +g(£ - ‘f(P)) ! r(u’ Uy e
=u®-T((&) +2u- g(¢ — &p))- T(E(&),u)+g(¢ — @) - T(w)
<2-(u? T(EQ)+8(¢—Ep)* Tw)<2- - lg'll% +T(w) m-ae.
Step 3. We prove the assertion of the lemma for bounded, non-negative
functions ue D(&). By (A 3) and (A 4), we obtain for # and v,, as in Step 2
(A 6) u(x)-g(p,(x))=inf, yinf v, ,-1(x) VxeE,

where M is a countable dense subset of (E,p). On the other hand, the strong local
property and (A 5) imply that for any finite subset K< NxM we have
inf(n,y)el( Uy,n‘ 1€ D(g),

A7 F< inf vy,,,-1>s sup I'(v,,-) <2(Tw) + llg' 1% - u?) m-a.e.

(n,y)eK (n,y)eK

(s. [7, I, Ex. 7.2]), and thus

sup@@,( inf vy,n-x)sz-u+ng'||§0)-£1(u)<oo,

K (n,y)eK

where the supremum is taken over all finite subsets K of Nx M.

Using the Theorems of Banach-Saks and Banach-Alaoglu, we conclude that
there is an increasing sequence (K)),.y Of finite subsets of Nx M, such that
\UKi=Nx M, and the Césaro-means w, of v;:=inf, . k,v,,-1 (€ N) converge in
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D(&). Because of (A 6) the limit is u-g(p,), which is hence in D(&). The first
part of the assertion now follows from (A 7) and the continuity of
I: D(6) x D(&) —» L(E,m).

Moreover, if u and the elements of ¥ are &-quasi-continuous, the functions
v, ,-1 (€N, ye M), and hence v, and w, (/e N), are &-q.c., too. Since w;— u-g(p,)
pointwise (s. (A 6)) and in D(&), u-g(p,) is &-q.c. as well (s. [14, IIT 3.5]).

Step 4. (general ue D(6)):
For any non-negative function ue D(&) we have (uAn)-g(p,) € D(€) and

(A ) D((uAn)-glp,) <2(TuAn)+ g% - (uAn)?)
<2T(u)+|g’||? -u?) m-ae. for all neN.
Thus
supé (uAn)-g(p,) <2-(1+lg'l1Z)- € 1(u) < oo,

neN

and the assertion for u follows by the same kind of argument as used in Step
3. Finally, for arbitrary functions ue D(8) we have

u-glp)=u"-glp,)—u"-glp,) e D(&) and
T glp,)=T(u™ - glp,)+Tu™ glp,)
SAT@)+Tw )+ g 1% (@) +@™))=200) + 1g'Il% - u*) m-ae.
Here we used that I'(u™ - g(p,),u™ -g(p,)=0 m-ae., and I(u*) resp. I'(u™) vanishes

m-a.e. on {u <0} (resp. {u>0}) and coincides with I'(u) m-a.e. on {u>0} (resp. {u<0}).
This completes the proof of the proposition. O
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