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Abstract
We study the boundary of the 3-dimensional Rauzy fractalE � R�C generated

by the polynomialP(x)D x4�x3�x2�x�1. The finite automaton characterizing the
boundary ofE is given explicitly. As a consequence we prove that the setE has 18
neighboors where 6 of them intersect the central tileE in a point. Our construction
shows that the boundary is generated by an iterated functionsystem starting with 2
compact sets.

1. Introduction

ConsiderAD f1, 2, 3g as an alphabet. LetA� be the set of finite words onA and� W A ! A� be the map (called Tribonacci substitution) defined by

� (1)D 12, � (2)D 13, � (3)D 1.

We extend� to AN by concatenation:� (a0 � � � an � � � ) D � (a0) � � � � (an) � � � . It is clear
that � has a unique fixed pointu: � (u)D u 2 AN . The dynamical system associated to� is the couple (�, S) where SW AN ! AN is the shift map (S((xn)n2N) D (xnC1)n2N)
and� is the S-orbit closure ofu: � D fSnu j n 2 Ng. It is well-known that (�, S) is
minimal, uniquely ergodic and of zero entropy (see [23, 11] for more details).

In 1982, G. Rauzy [24] studied the Tribonacci substitution� . He proved that the
dynamical system generated by� is measure theoretically conjugate to an exchange
of domainsX1, X2, X3 in a compact tileX D X1 [ X2 [ X3. The setX is the clas-
sical two-dimensional Rauzy fractal. It has been extensively studied and is related to
many topics: numeration systems [18, 20, 19], geometrical representation of symbolic
dynamical systems [5, 6, 7, 14, 17, 27, 26], multidimensional continued fractions and
simultaneous approximations [4, 9, 8, 15], self-similar tilings [1, 2, 5, 22] and Markov
partitions of Hyperbolic automorphisms of the torus [13, 17, 22].

2010 Mathematics Subject Classification. Primary 11B85; Secondary 11K55, 28A80, 52C22,
37B10.
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Among the main properties of the setX, let us recall it is compact, connected, its
interior is simply connected, its boundary is fractal and itinduces a periodic tiling ofR2 ([24]).

It is possible to associate such a fractal set to a large classof substitutions over an
alphabet withd letters (called unimodular Pisot substitutions). Let us call them Rauzy
fractals. P. Arnoux and S. Ito [5] (see also [7]) proved that the dynamical system as-
sociated to such a substitution� is measure theoretically conjugate to an exchange of
domainsX1, : : : , Xd in the Rauzy fractalX� D X1[ � � �[ Xd � Rd�1 provided that the
“strong coincidence condition” is fulfilled. All these setsX� are compact and generate
periodic tilings and self-replicating tilings ofRd�1.

There are different ways to define the Rauzy fractal associated to a given sub-
stitution � over an alphabet ofd C 1 letters. One is through numeration systems.

Let d � 2 anda1, a2, : : : , ad be integers such thata1 � a2 � � � � � ad � 1. Consider
AD f1, 2,: : : , d C 1g as an alphabet. Let�d be the substitution defined by

�d(i ) D 11 � � � 1� �� �
ai

(i C 1) if i � d and �d(d C 1)D 1.

We define the Rauzy fractal associated to�d as follows. Consider the sequence
(Fn)n�0 defined by

FnCdC1 D a1FnCd C a2FnCd�1 C � � � C ad FnC1 C Fn, 8n � 0,

with initial conditions (calledParry conditions)

F0 D 1, Fn D a1Fn�1 C � � � C anF0 C 1, 81� n � d.

For anyn 2 N, using the greedy algorithm, we haven DPN
iD0 ci Fi where theci ’s

are integers satisfying

kX
iD0

ci Fi < FkC1 for all k 2 f0, 1,: : : , N � 1g.
We deduce that (ci )0�i�N�1 belongs toDa1,:::,ad , whereDa1,:::,ad is the set of se-

quences ("i )l�i�k, l , k 2 Z, such that for alli 2 fl , l C 1, : : : , � kg:
(1) "i 2 f0, 1,: : : , a1g,
(2) "i "i�1 � � � "i�d <lex a1a2 � � � ad1 when i � l C d, and,
(3) "i "i�1 � � � "l 0d�iCl <lex a1a2 � � � ad1 when l � i � l C d,
where<lex is the usual lexicographic ordering. We set

D1
a1,:::,ad

D f("i )i�l I l 2 Z, ("i )l�i�n 2 Da1,:::,ad , 8n � l g.
Now, consider the following polynomial

Pa1,:::,ad (x) D xdC1 � a1xd � a2xd�1 � � � � � adx � 1.
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It can be checked thatP has a root� D �1 2 ]1, C1[ and d roots with modulus
less than 1. Let�1, �2, �3, : : : , �r be the roots ofP belonging toR and�rC1, : : : , �rCs,�rC1, : : : , �rCs its complex roots. For alli 2 Z, we set

�i D (� i
2, : : : , � i

r , � i
rC1, : : : , � i

rCs).

We also put�0 D 1 D (1, : : : , 1). Then, the Rauzy fractal associated to� is the set
Ea1,:::ad � Rr�1 � Cs � Rd defined by

Ea1,:::,ad D
( C1X

iDdC1

"i�i I ("i )i�dC1 2 D1
a1,:::,ad

)
.

The setE1,1 D X is the classical two-dimensional Rauzy fractal.
The structure of the boundary of Rauzy fractals has been firstinvestigated by Ito

and M. Kimura in [16]. They showed that the boundary ofE1,1 is a Jordan curve gener-
ated by the Dekking method [10] and they calculated its Hausdorff dimension. Relating
the boundary ofEa1,1 to the complex numbers having at least two expansions in base�, A. Messaoudi [18, 19] constructed a finite automaton characterizing and generating
this boundary. See also [25] for an other approach. As a consequence it permitted to
parameterize the boundary ofEa1,1, to compute its Hausdorff dimension and to show it
is a quasi circle.

In [27], J.M. Thuswaldner studied the setEa1,a2. In particular, based on the self
replicating tiling, he gave an explicit formula for the fractal dimension of the boundary
of this set.

The purpose of this paper is to prove the following result.

Theorem 1. The setE1,1,1� R � C has the following properties:
(1) There exists a finite automatonA with a unique initial state such that the following
are equivalent:

(a) z belongs to the boundary ofE1,1,1;
(b) there exist two infinite paths(�i )i�l and (�0i )i�l belonging toD1

1,1,1 such that

zDP
i�l "i�i and ("i , "0i )i�l is an infinite path inA beginning in the initial state;

(2) The setE1,1,1 tiles R � C and has exactly18 neighboors and6 of them intersect
the central tileE1,1,1 in a point;

(3) The boundary ofE1,1,1 is
S18

iD1 Xi where Xi , i D 1, : : : , 6 are singletons, and for
all i 2 [7, 18], there exist affine functions fi j , j D 1, : : : , mi and gi j , j D 1, : : : , ni

from R � C to itself such that

Xi D mi[
jD1

fi j (X7) [ ni[
jD1

gi j (X8).
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For a graphic representation ofE1,1,1, see the Annexe section (the colored image
is available at http://www.mathinfo.u-picardie.fr/fdurand/publications.html).

2. Notations, definitions and background

2.1. �-expansions. Let � > 1 be a real number. A�-representation of a non-
negative real numberx is an infinite sequence (xi )i�k, xi 2 ZC D [0, C1[, such that

x D xk�k C xk�1�k�1 C � � � C x1� C x0 C x�1��1 C x�2��2 C � � � .
wherek is an integer. It is denoted by

x D xkxk�1 � � � x1x0 . x�1x�2 � � � .
A particular �-representation, called the�-expansion, is computed by the “greedy

algorithm” (see [21]): denote byby
 and fyg respectively the integer part and the
fractional part of a numbery. There existsk 2 Z such that�k � x < �kC1. Let
xk D bx=�k
 and rk D fx=�kg. Then for i < k, put xi D b�r iC1
 and r i D f�r iC1g.
We get

x D xk�k C xk�1�k�1 C � � �
If k < 0(x < 1), we putx0 D x�1 D � � � D xkC1 D 0. If an expansion ends by infinitely
many zeros, it is said to be finite, and the ending zeros are omitted.

The digitsxi belong to the setAD f0, : : : , � � 1g if � is an integer, or to the set
AD f0,: : : , b�
g if � is not an integer. The�-expansion of every positive real number
x is the lexicographically greatest among all�-representations ofx.

We denote by Fin(�) the set of numbers which have finite greedy�-expansion.
Let N 2 Z, we denote by FinN(�) the set of numbersx such that in their�-expansion
(xi )i�k, xi D 0 for all i < N. We will sometimes denote a�-expansionxn � � � xk, n � k
by (xi )k�i�n. We put

E� D f(xi )i�k I k 2 Z, 8n � k, (xi )k�i�n is a finite �-expansiong.
In the case where� is the dominant root of the polynomialPa1,:::,ad , it is known (see
[12]) that E� D D1

a1,:::,ad
D f("i )i�l I l 2 Z, ("i )l�i�n 2 Da1,:::,ad , 8n � l g. We will need

the two following classical lemmas.

Lemma 2 ([21]). Let xn � � �x0 and ym � � � y0 be two�-expansions. Then, the follow-
ing are equivalent
•

Pn
iD0 xi� i <Pm

iD0 yi� i ,
• xn � � � x0 <lex ym � � � y0,
where<lex is the lexicographical order.

Lemma 3 ([12]). If � D �1, thenZ[�] \ [0, C1[ � Fin(�).
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2.2. Boundary of Ea1,:::,ad . The coordinates of� have modulus strictly less
than 1. Moreover, Lemma 3 and Theorem 2 of [1] imply that 0 belongs to the inte-
rior of the central tileEa1,:::,ad . Hence, for allz 2 Rr�1 � Cs there existsk 2 N such
that �kz 2 Ea1,:::,ad . Then, all z 2 Rr�1 � Cs can be written as followszDP1

iDl "i�i ,
where l 2 Z and ("i )i�l 2 D1

a1,:::,ad
. The sequence ("i )i�l is called �-expansion ofz.

We should remark that these�-expansions are not unique: somez can have many
different �-expansions. In [19] it is proven that the points belonging to the boundary
of Ea1,:::,ad have at least two different�-expansions. These points are characterized by
the following proposition which is a straightforward consequence of a result due to
W.P. Thurston [28] (see also [19]).

Proposition 4. There exists a finite automaton B such that for all distinct elem-
ents ofD1

a1,:::,ad
, (bi )i�l and (ci )i�l , the following are equivalent:

•
P1

iDl bi�i DP1
iDl ci�i ;

• ((bi , ci ))i�l is recognizable by B(i.e. an infinite path in B beginning in the ini-
tial state).

The proof of this result does not give explicitly the states of the automaton. In
[17] is given an algorithm that gives these states forE1,1. In [20], they were given for
Ea1,1 wherea1 � 2.

3. Characterization of the boundary of E1,1,1

In the sequel we supposed D 3 anda1 D a2 D a3 D 1, andP(x)D P1,1,1(x)D x4�
x3�x2�x�1D (x��1)(x��2)(x��3)(x��3) where�1,�2,�3 are defined in Section 1.
Approximations of these numbers are� D �1 D 1.9275� � � , �2 D �0.7748� � � and�3 D�0.0763� � � C i 0.8147� � � . We recall that we defined for alli 2 Z, �i D (� i

2, � i
3).

In this situation

D D D1,1,1D f("i )l�i�n I l , n 2 Z, "i 2 f0, 1g, "i "i�1"i�2"i�3 ¤ 1111, l � i � ng,
D1 D D1

1,1,1D f("i )i�l I l 2 Z,("i )l�i�n 2 D1,1,1, n � l g
and

E D E1,1,1D
(C1X

iD4

"i�i I ("i )i�4 2 D1)

D
(C1X

iD4

"i�i I "i 2 f0, 1g, "i "i�1"i�2"i�3 ¤ 1111, i � 4

)
.
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An important and known result is:

Theorem 5. The setE is compact, connected and generates a periodic tiling ofR � C with group periods GD Z�0 C Z� C Z�2:

R � C D [
p2G

(E C p),

and the intersection of the interior of(E C p) with (E C q) is empty whenever p¤ q,
p, q 2 G. Moreover the boundary ofE is of zero measure and is equal to the union
of all Ep, p 2 G whereEp D E \ (E C p).

Proof. The proof can be deduced from [24] (done in case of cubic Rauzy fractal),
see also [7]. For clarity, we will give the proof in the Annexesection.

3.1. Definition of the automaton recognizing the points withat least two ex-
pansions. In the sequel we proceed to the construction of the automatonA that char-
acterizes the boundary ofE . This characterization will be proven in Section 3.2.

The set of states of the automatonA is

SD
(
� 3X

iD0

ci�i I c0c1c2c3 ¤ 1111, ci 2 f0, 1g, 0� i � 3

)

[ f�(��1 C 1C �2), �(��2 C ��1 C �), �(��3 C ��2 C 1C �3)g.
Let s and t be two states. The set of edges is the set of (s, (a, b), t) 2 S� f0, 1g2 � S
satisfying t D s=� C (a � b)�3. The set of initial states isf0g and the set of states
is S. A path (resp. infinite path) ofA is a sequence (an, bn)k�n�l (resp. (an, bn)n�k)
such that there exists a sequence (en)k�n�lC1 (resp. (en)n�k) of elements ofS for which
(en, (an, bn), enC1) belongs toS for all n 2 fk, k C 1, : : : , l C 1g (resp.n � k). We
say it starts in the initial state whenek D 0. The automaton is explicitly defined in the
Annexe at the end of this paper.

Let us explain the behavior of this automaton. Let" D ("i )i�l and "0 D ("0i )i�l

belonging toD1, x DP1
iDl "i�i and y DP1

iDl "0i�i . For all k � l we set

Ak(", "0) D ��kC3
kX

iDl

("i � "0i )�i(1)

In Subsection 3.2 we will prove thatx D y if and only if all the Ak, k � l , belong
to S. But as, for allk � l , we have

AkC1(", "0) D Ak(", "0)� C ("kC1 � "0kC1)�3,(2)
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this means thatx D y if and only if

(0, ("l , "0l ), Al (", "0))((Ak(", "0), ("kC1, "0kC1), AkC1(", "0)))k�l

is an infinite sequence of edges ofS starting in the initial state. And, this is equivalent
to say that ("i , "0i )i�l is an infinite path ofA starting in the initial state.

Let us give an example on how we can use this automaton to obtain information
about the digits ofx and y. Let s be the smallest integer such that"s ¤ "0s. Hence
Ai (", "0) D 0 for i 2 fl , : : : , s� 1g. Suppose"s > "0s, that is "s D 1 and"0s D 0. Then,
As D �3. From (2) we deduceAsC1(", "0) D �2C ("sC1� "0sC1)�3 which should belong
to S. Hence AsC1(", "0) D �2 2 S if "sC1 D "0sC1, and, AsC1(", "0) D �2 C �3 2 S if
("sC1, "0sC1) D (1, 0). Hence, (�3, (1, 0),�2 C �3), (�3, (0, 0),�2) and (�3, (1, 1),�2)
are edges coming from the state�3. Let us explain why (�3, (0, 1),�2 � �3) is not
an edge, and hence why we cannot have ("sC1, "0sC1) D (0, 1). We should have that�2��3 D ���1� 1�� belongs toS. Then� should satisfy the same equality. Hence��1 C 1C � should belong to(

3X
iD0

ci� i I c0c1c2c3 ¤ 1111, ci 2 f0, 1g, 0� i � 3

)

[ f(��1 C 1C �2), (��2 C ��1 C �), (��3 C ��2 C 1C �3)g,
which is not possible by Lemma 2.

3.2. Characterization of the points with at least two expansions.

Lemma 6. Let ("i )i�0, ("0i )i�0 2 D1. Then,�����
C1X
iD0

("i � "0i )� i
2

����� � 1

1C �2
,

�����
C1X
iD0

("i � "0i )� i
3

����� � C

1� j�3j6
where CD max

���P5
iD0(ci � di )� i

3

��I (ci )0�i�5 2 D, (di )0�i�5 2 D
	
.

Proof. The second inequality is easy to establish. For the first inequality, as�1<�2 < 0, all sequences (ci )i�0 which terms are 0 or 1 satisfy the following inequality:

�2

1� �2
2

D C1X
iD0

�2iC1
2 � C1X

iD0

ci� i
2 �

C1X
iD0

�2i
2 D 1

1� �2
2

.

This achieves the proof.



478 F. DURAND AND A. M ESSAOUDI

For all " D ("i )i�l and "0 D ("0i )i�l belonging toD1, we set

S(", "0) D fAk(", "0)I k � l g D
(
��kC3

kX
iDl

("i � "0i )�i I k � l

)
.

Proposition 7. Let x D P1
iDl "i�i , y D P1

iDl "0i�i , where " D ("i )i�l and "0 D
("0i )i�l belong toD1. Then, x D y if and only if the set S(", "0) is finite. Moreover

S(", "0) � SD
(
� 3X

iD0

ci�i I (ci )0�i�3 2 D

)

[ f�(��1 C 1C �2), �(��2 C ��1 C �), �(��3 C ��2 C 1C �3)g
and

SD [
(","0)21 S(", "0),

where1 D �
(("i )i�l , ("0i )i�l ) 2 D1 �D1 I P1

iDl "i�i DP1
iDl "0i�i

	
.

Proof. It is easy to establish that ifS(", "0) is finite then x D y. Let us prove
the reciprocal. Letx D P1

iDl "i�i D P1
iDl "0i�i D y with " D ("i )i�l and "0 D ("0i )i�l

belonging toD1. Let us prove thatAk D Ak(", "0) belongs toS for all k � l . As
x D y, for all k � l , we have

Ak D 1X
iDkC1

("0i � "i )�i�kC3 D 1X
iD4

("0iCk�3 � "iCk�3)�i .(3)

Let us fix k � l and assumeAk ¤ 0. From (1), we deduce there existn, p, q, r 2 Z
such that

Ak D n�3 C p�2 C q� C r .(4)

But n�3 C p�2 C q� C r or �(n�3 C p�2 C q� C r ) belongs toZ[�] \ RC, which
is contained in Fin(�) (see Lemma 3). We deduce there exists (ci )s�i�m 2 D such that
cm D 1 and

n�3 C p�2 C q� C r D � mX
iDs

ci� i .(5)

We suppose it is equal to
Pm

iDs ci� i . The other case can be treated in the same way.
As �, �2 and �3 are algebraically conjugate, from (1), (4) and (5) we have

��kC3
kX

iDl

"i� i D ��kC3
kX

iDl

"0i� i C mX
iDs

ci� i .(6)
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From Lemma 2,��kC3Pk
iDl "i� i < �4, consequentlym� 3. Settingci D 0 for i > m,

we have

Ak D 3X
iDs

ci�i .(7)

Remark that ifs � 0 then Ak belongs toS. Hence we supposes� �1.
Supposes D �1 and c�1 D 1. Let us show thatAk is equal to��1 C 1 C �2

and consequently belongs toS. In order to do so, we show that the other cases are
not possible. Using Lemma 6 and (3), the first entry of (Ak), (Ak)1, should satisfyj(Ak)1j � �4

2(1 C �2)�1 which is less thana D 1.6004. This excludes the following
points: ��1C �C �2C �3, ��1C �C �3, ��1C � and��1C �3 because the absolute
value of their first entries is greater than the value below itin the following array:

��1
2 C �2 C �2

2 C �3
2 ��1

2 C �2 C �3
2 ��1

2 C �2 ��1
2 C �3

2

1.9 2.5 2.0 1.7

In the same way we should havej(Ak)2j � Cj�3j4(1 � j�3j6)�1 which is less than
b D 1.8120. This excludes the following points:��1 C 1C �3, ��1 C �2 C �3 and��1 C 1C �2 C �3, because the absolute value of their second entries is greater than
the value below it in the following array:

��1
3 C 1C �3

3 ��1
3 C �2

3 C �3
3 ��1

3 C 1C �2
3 C �3

3

2.0 1.9 1.9

In order to exclude the other cases, except 1=�C1C�2, we used (2) to computeAkCi ,
i � 1. Let us explain the strategy. Suppose neither (Ak)1 nor (Ak)2 is greater than
respectivelya andb. Then, we computeAkC1 using (2). We have three possible values:
Ak=�, Ak=�C�3 and Ak=���3. To check thatAk does not belong toS, it suffices to
show that for all these values, either the first entry or the second is respectively greater
than a or b. If it is not the case, for each value that does not satisfy this (both entries
are less than, respectively,a and b) we apply again this strategy. Applying this just
once we show that 1=�C 1C �C �3 does not belong toS. The values of the relevant
entries are in the following array and should be read in the following way: The value
(1.9 for example) below a relevant entry ofAkC1 (resp. 1=�2

2C1=�2C1C�2
2) is greater

than the absolute value of the relevant entry:j1=�2
2 C 1=�2 C 1C �2

2j > 1.9.

Ak
1� C 1C � C �3

AkC1
1�2
2

C 1�2
C 1C �2

2
1�2
3

C 1�3
C 1C �2

3 C �3
3

1�2
2

C 1�2
C 1C �2

2 � �3
2

1.9 1.9 2.4
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For the following case, 1=� C 1, we need to apply the strategy twice because for
AkC1 D 1=�2

3 C 1=�3 � �3
3 both entries are respectively less thana and b.

Ak
1� C 1

AkC1
1�2
3

C 1�3

1�2
3

C 1�3
C �3

3

1.83 2.0

AkC2
1�3
3

C 1�2
3

� �2
3

1�3
3

C 1�2
3

� �2
3 C �3

3
1�3
3

C 1�2
3

� �2
3 � �3

3

2.1 1.63 2.7

For the caseAk D 1=�C1C� we need two steps because at the first one both 1=�2
2C

1=�2 C 1 and 1=�2
2 C 1=�2 C 1C �3

3 have entries less than, respectively,a and b.

Ak
1� C 1C �

AkC1
1�2
2

C 1�2
C 1� �3

2

1.84

AkC2
1�3
2

C 1�2
2

C 1�2

1�3
2

C 1�2
2

C 1�2
C �3

2
1�3
3

C 1�2
3

C 1�3
� �3

3

1.77 2.23 1.818

1�3
3

C 1�2
3

C 1�3
C �2

3
1�3
2

C 1�2
2

C 1�2
C �2

2 C �3
2

1�3
3

C 1�2
3

C 1�3
C �2

3 � �3
3

1.86 1.63 2.24

For the three following cases, 1=� C �2, 1=� and 1=� C � C �2, we need three steps.

Ak
1� C �2

AkC1
1�2
3

C �3
1�2
3

C �3 � �3
3

1.89 2.34

AkC2
1�3
3

C 1C �2
3

1�3
3

C 1C �2
3 � �3

3

1.83 2.26

AkC3
1�4
3

C 1�3
C �3 C �2

3
1�4
3

C 1�3
C �3 C �2

3 C �3
3

1�4
2

C 1�2
C �2 C �2

2 � �3
2

1.818 2.32 1.77
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Ak
1�

AkC1
1�2
2

1�2
2

� �3
2

1.66 2.13

AkC2
1�3
2

C �2
2 C �3

2
1�3
3

C �2
3 � �3

3

2.01 2.17

AkC3
1�4
3

C �3
1�4
3

C �3 C �3
3

1�4
3

C �3 � �3
3

2.00 2.21 1.92

Ak
1� C � C �2

AkC1
1�2
2

C 1C �2
1�2
2

C 1C �2 � �3
2

1.89 2.35

AkC2
1�3
2

C 1�2
C 1C �2

2
1�3
2

C 1�2
C 1C �2

2 C �3
2

1.84 2.30

AkC3
1�4
2

C 1�2
2

C 1�2
C �2

1�4
3

C 1�2
3

C 1�3
C �3

1�4
2

C 1�2
2

C 1�2
C �2

��2
2 ��2

3 C �3
3 ��2

3 � �3
3

1.77 1.818 2.23

Hence the only possibleAk (with c�1 D 1) is 1=� C 1C �2.
Suppose nows � �2 and cs D 1. It is useful for the sequel to remark thatU D

(ui )i�s D (cs, csC1, : : : , c2, c3, "kC1, "kC2, "kC3, : : : ) belongs toD1. Indeed, ifc3 D 0,
it is clear. If c3 D 1 andc2 D 0 then by (6),"k D 1. Hence"kC1"kC2"kC3 ¤ 111 and
U belongs toD1. The other cases can be treated in the same way.

Using (3) and (7) we obtain

u D 3X
iDs

ci�i C 1X
iD4

"iCk�3�i D 1X
iD4

"0iCk�3�i D v.

We setV D ("0iCk�3)i�s where"0iCk�3 D 0 whens� i � 3. Then (U , V ) belongs to1, AsC4(U , V) D cs��1C csC1C csC2�C csC3�2C csC4�3 and A3(U , V) DP3
iDs ci�i .

Doing what we did forx and y to u andv we obtain thatAsC4(U , V ) D ��1C1C�2.
Let us show that for alln � sC 5, An(U , V) belongs to

C D f�(��2 C ��1 C �), �(��3 C ��2 C 1C �3)g.
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This will imply that Ak belongs toS for all k � l . We have thatAsC5(U , V ) belongs to

�
1�2
C 1� C �,

1�2
C 1� C � C �3,

1�2
C 1� C � � �3

�
.

The third one can be excluded because 1=�2
3 C1=�3C�3��3

3 � 1.85. We proceed
as before to exclude the second element:

Ak
1�2
C 1� C � C �3

AkC1
1�3
3

C 1�2
3

C 1C �2
3

1�3
3

C 1�2
3

C 1C �2
3 � �3

3

2.00 2.55

AkC2
1�4
3

C 1�3
3

C 1�3
C �3

1�4
3

C 1�3
3

C 1�3
C �3 C �3

3
1�4
3

C 1�3
3

C 1�3
C �3 � �3

3

2.45 2.54 2.47

Consequently,AsC5(U , V) D 1=�2 C 1=� C �. We deduceAsC6(U , V) D 1=�3 C
1=�2C1C�3 because 1=�3

3C1=�2
3 C1> 2.03 and 1=�3

3 C1=�2
3C1��3

3 > 2.56. Once
again, AsC7(U , V ) D 1=�4C1=�3C1=�C�2��3 because 1=�4

3 C1=�3
3 C1=�3C�2

3 >
1.85 and 1=�4

3 C 1=�3
3 C 1=�3 C �2

3 C �3
3 > 2.16. But an easy computation leads to

1=�4C 1=�3C 1=�C �2� �3 D �(1=�2C 1=�C �) D �AsC5(U , V). Then continuing
in the same way we can checkAn(U , V) D �AnC2(U , V) and An 2 C for n � sC 5.
As 3 � s C 5, we obtain thatAk(", "0) D A3(U , V) belongs toC. Thus S(", "0) is
included in S.

To complete the proof we should show that each element ofS belongs to0 DS
(","0)21 S(", "0).

Remark that if Ak belongs to0 then�Ak also belongs to0. Consequently it is
sufficient to consider the cases whereAk D P3

iD0 ci�i with (ci )0�i�3 2 D or Ak D��1 C 1C �2, ��2 C ��1 C � or ��3 C ��2 C 1C �3.
Notice that we have

��3 D C1X
iD1

(�4i C �4iC1 C �4iC2) D 1C � C �2 C C1X
iD1

(�4iC1 C �4iC2 C �4iC3)

D � C �2 C �4 C C1X
iD1

(�4iC2 C �4iC3 C �4iC4)

D �2 C �4 C �5 C C1X
iD1

(�4iC3 C �4iC4 C �4iC5).
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Hence, 1C�C�2, �C�2 and�2 belong to0. Multiplying by � we deduce�C�2C�3,�2 C �3 and �3 belong to0. Now subtracting��2 we obtain 1C � and � belong to0. We have that 1 belongs to0 because
PC1

iD1 �4i D 1CPC1
iD1 �4iC1. Now, 1C �2

belongs to0 because

1X
iD2

�2i D 1C �2 C 1X
iD2

�2iC1.

Multiplying by � we deduce� C �3 belongs to0. Because

��3 C ��2 C 1C �3 C 1X
iD1

(�4iC2 C �4iC3) D 1X
iD1

(�4i C �4iC1),(8)

we obtain that��3 C ��2 C 1C �3 belongs to0. Multiplying (8) by, respectively,� and �2 we obtain, respectively, that��2 C ��1 C � and ��1 C 1C �2 belong to0. From

�4 C 1X
iD1

�4iC3 D 1C �3 C 1X
iD1

�4iC1 D 1C � C �3 C 1X
iD1

�4iC2

it is clear 1C �3 and 1C � C �3 belong to0.
The equality

�4 C 1X
iD1

�4iC2 D 1C �2 C �3 C 1X
iD1

�4iC1

implies that 1C �2 C �3 belongs to0 and achieves the proof.

Proposition 8. Let A be the automaton defined inSubsection 3.1. Then, for all
("i )i�l and ("0i )i�l belonging toD1 the following assertions are equivalent:
•

P
i�l "i�i DP

i�l "0i�i ;
• ("i , "0i )i�l is an infinite path inA beginning in the initial state.

Proof. Let x DP
i�l "i�i and y DP

i�l "0i�i . By Proposition 7 and the definition
of the automaton (see Subsection 3.1), we deduce thatx D y if and only if

(0, ("l , "0l ), Al (", "0))((Ak(", "0), ("kC1, "0kC1), AkC1(", "0)))k�l

is an infinite sequence of edges ofS starting in the initial state. And, this is equivalent
to say that ("i , "0i )i�l is an infinite path ofA starting in the initial state.

This proposition proves the first part of Theorem 1.
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Corollary 9. Let ("i )i�l be an element ofD1 and ("0i )l�i�m an element ofD with

l , m 2 Z such that
PC1

iDl "i�i DPm
iDl "0i�i . Then"0i D 0 for all i > m and"i D "0i for

all l � i � m.

3.3. Neighboors ofE . Here we prove that the setE has 18 neighboors where
6 of them have an intersection withE reduced to a singleton, and that the boundary
can be generated by just 2 subregions.

Lemma 10. Let ("i )i�4 and ("0i )i�l be two elements ofD1 such that
P1

iD4"i�i DP1
iDl "0i�i , where l< 4 and "0l D 1, then "0l�l C "0lC1�lC1 � � � C "03�3 belongs to S. In

particular l � �3 and

"0l�l C � � � C "03�3 D ��3 C ��2 C 1C �3 if l D �3,

"0l�l C � � � C "03�3 D ��2 C ��1 C � if l D �2,

"0l�l C � � � C "03�3 D ��1 C 1C �2 if l D �1.

Proof. Let ("i )i�4 and ("0i )i�l be two elements ofD1 such that
P1

iD4 "i�i DP1
iDl "0i�i where l < 4 and "0l D 1. From Proposition 7, for alll � i � 3, "0l�i C"0lC1�iC1C� � �C"0l�iC3�3 belongs toS. In particular, fori D l , we obtain the result.

Lemma 11. Let u 2 S. Then, there exist("i )i�4 and ("0i )i�4 belonging toD1
such that

P1
iD4 "i�i D uCP1

iD4 "0i�i .

Proof. This comes from Proposition 7 and the identity (3).

In our context, Lemma 2 in [19] can be formulated in the following way.

Lemma 12. Let x 2 R � C, then x belongs to the boundary ofE if and only
if there exists l� 3 such that xD PC1

iD4 �i�i D PC1
iDl �0i�i , where (�i )i�4 and (�0i )i�l

belong toD1, and, �0l ¤ 0.

Theorem 13. The boundary ofE is the union of the18 non empty regionsE(u),
u 2 fa, �aI a 2 Ag, whose pairwise intersections have measure zero, where

E(u) D E \ (E C u)

and

AD f1, 1C �, 1C �2, 1C � C �2, ��3 C ��2 C 1C �3 D 1C 2� C �2,

�, � C �2, �2, ��2 C ��1 C � D �1C �2g.
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Proof. Let u be an element ofA, then u is a state of the automatonA. From
Lemma 11, there exist ("i )i�4 and ("0i )i�4 belonging toD1 such that

P1
iD4 "i�i D uCP1

iD4 "0i�i . Thus, from Theorem 5,E \ (E C u) is not empty and with measure zero.
It will be useful to check that

��3 C ��2 C 1C �3 D 1C 2� C �2

and

��2 C ��1 C � D �1C �2.

Consequently, Theorem 5 implies
S

u2AE(u)[E(�u) is contained in the boundary ofE .
Now, let z be an element of the boundary ofE , then by Lemma 12 there exist two

elements ofD1, ("i )i�4 and ("0i )i�l , l 2 Z, l < 4 such thatzDPC1
iD4 "i�i DPC1

iDl "0i�i .
We can suppose"l D 1. Let us consider the following four cases.

Supposel D �3. From Lemma 10, we deduce thatz 2 E(��3 C ��2 C 1C �3).
Supposel D �2. From Lemma 10, we deduce thatz 2 E(��2 C ��1 C �).
Supposel D �1. From Lemma 10, we deduce thatz DPC1

iD4 "i�i D ��1 C 1C�2CPC1
iD4 "0i�i . Proposition 8 implies thatt D (0, 1)(0, 1)(0, 0)(0, 1)(0, 0)("4,"04) � � � is an

infinite path of the automatonA starting at the initial state. Using the automaton, we
see thatt D (0, 1)(0, 1), (0, 0)(0, 1)(0, 0)awww � � � , wherea D (1, 1) or (0, 0) andw D
(0, 1)(1, 0)(1, 0)(0, 1). Consequently,zD ��1C1C�2C�4C�5CP1

iD2(�4i C�4iC1) or
zD ��1C1C�2C�5CP1

iD2(�4i C�4iC1). Thus,zD ����2C�6CP1
iD2(�4i C�4iC1)

or zD �1� 2� � �2 CP1
iD1(�4i C �4iC1), and, z 2 E(�� � �2) [ E(�1� 2� � �2).

Supposel � 0. ThenzDPC1
iD4 "i�i D "00 C "01� C "02�2 C "03�3 CPC1

iD4 "0i�i .
If "03 D 0, thenz 2 E(u) whereu D "00 C "01� C "02�2.

If "03 D 1 and"04 D 0, thenzD ("00�1)C ("01�1)�C ("02�1)�2C�4CPC1
iD5 "0i�i 2

E(u) whereu D ("00 � 1)C ("01 � 1)� C ("02 � 1)�2.
Now suppose"03 D "04 D 1 and"05 D 0. Then"01 D 0 or "02 D 0, and,zD "00C ("01�

1)� C ("02 � 1)�2 C �5 CPC1
iD6 "0i�i . Hence:

• If "00 D 0, thenz 2 E(u) whereu D ("01 � 1)� C ("02 � 1)�2.
• If "00 D 1, then t D (0, 1)(0,"01)(0, "02)(0, 1)("4, 1)("5, 0) � � � is an infinite
path in the automaton beginning in the initial state. This implies that t D
(0, 1)(0, 1)(0, 0)(0, 1)(1, 1)(0, 0)ww � � � wherew D (0, 1)(1, 0)(1, 0)(0, 1). HencezD
1C � C �3 C �4 C �6 CP1

iD2(�4iC1 C �4iC2). Thus zC ��2 C ��1 C � D �5 C �6 CP1
iD2(�4iC1 C �4iC2) and z belongs toE(���2 � ��1 � �).

If "03 D "04 D "05 D 1, then"02 D "06 D 0. HencezD "00C "01���2C�6CPC1
iD7 "0i�i .

• If "00 D "01 D 0, thenz 2 E(��2).
• When "00C "01 D 1, there is no infinite path in the automaton starting in the initial
state and beginning with (0,"00)(0, "01)(0, 0)(0, 1)("4, 1)("5, 1).
• Hence it remains to consider the case:"00 C "01 D 2. But it is easy to check that
this implies"06 D 1 which is not possible.
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This ends the proof.

This theorem, together with the remark before the Annexe proves the second part of
Theorem 1.

Using the automaton given in the Annexe, we deduce the following result which
is the third and last part of Theorem 1.

Theorem 14. Let XD E(1C � C �2) and YD E(1C �). Then,
a) E(1)D 1C �X,
b) E(�2) D �1=� � 1� � C X=�,
c) E(1C �2) D f�4=(1� �2)g,
d) E(��2 C ��1 C �) D f(�5 C �6)=(1� �4)g,
e) E(��3 C ��2 C 1C �3) D f(�4 C �5)=(1� �4)g
f) E(�) D f0(X) [ f1(X) [ f1(Y)
g) E(� C �2) D g0(X) [ g1(X) [ g1(Y) [ g2(Y) [ g3(Y), where

f0(z) D � C �2z, f1(z) D � C �4 C �2z,

g0(z) D �5 C �4z, g1(z) D �5 C �6 C �4z, g2(z) D �z, g3(z) D �4 C �z,

h) X DS4
iD0 hi (X) [ h1(Y) [ h3(Y) and

i) Y DS11
iD5 hi (Y) [S17

iD12 hi (X), where

h0(z) D �4 C �4z, h1(z) D �4 C �6 C �4z

h2(z) D �4 C �5 C �4z, h3(z) D �4 C �5 C �6 C �4z,

h4(z) D 1C � C �2 C �7 C �5z, h5(z) D h2(z)

h6(z) D �4 C �7 C �4z, h7(z) D �4 C �8 C �9 C �7z,

h8(z) D h0(z), h9(z) D �4 C �5 C �7 C �4z,

h10(z) D �4 C �5 C �8 C �9 C �7z, h11(z) D 1C � C �6 C �7 C �5z

h12(z) D �4 C �8 C �7z, h13(z) D h7(z),

h14(z) D �4 C �5 C �8 C �7z, h15(z) D h10(z)

h16(z) D 1C � C �6 C �5z, h17(z) D h11(z),

Proof. a) The set 1C �X is clearly included in 1C �E . Moreover it is easy to
check that 1C�X is a subset of�4C�E which is included inE . Hence 1C�X � E(1).

On the other hand, letz 2 E(1). Then, there exist ("i )i�4 and ("0i )i�4 in D1
such that z D 1 C P

i�4 "i�i D P
i�4 "0i�i . From Proposition 8, the finite path

(1, 0)(0, 0)(0, 0)(0, 0)("4, "04)("5, "05) is a finite path in the automatonA starting at the
initial state. Following this path in the automaton we deduce ("4, "04) D (0, 1) and
("5, "05) D (1, 0). It giveszD 1C�5C�2w D �4C�2w0 wherew,w0 2 E . Consequently
E(1)� (1C �E) \ (�4 C �E) D 1C �(E \ (1C � C �2 C E)) D 1C �X.
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b) We have 1C � C �2 C �E(�2) D (�4 C �E) \ (1C � C �2 C �E) � E \ (1C� C �2 C E) D X. HenceE(�2) � �1=� � 1� � C X=�. To prove the other inclusion,
let z 2 X. Then by the automaton we deduce thatzD 1C � C �2 C �w D �4 C �w0,w,w0 2 E . Hence�1=��1��Cz=� D w D �2Cw0 and�1=��1��CX=� � E(�2).

c) Let z 2 E(1C�2): zDP
i�4 "i�i D 1C�2CPi�4 "0i�i , ("i )i�4, ("0i )i�4 2 D1.

Proposition 8 and the automaton show that (0, 1)(0, 0)(0, 1)(0, 0)("4, "04) � � � is an infinite
path starting in the initial state and ("i , "0i )i�4 is equal touuu� � � whereuD (1, 0)(0, 1).
Then,zD �4C�6C�8C� � � D 1C�2C�5C�7C�9C� � � andE(1C�2)D �4(1��2)�1.

d) Let z 2 E(��2 C ��1 C �). From Proposition 8 and using the automaton we
deduce thatzD ��2C��1C�C�4CP1

iD2(�4i�1C�4i ) DP1
iD1(�4iC1C�4iC2). Hence

E(��2 C ��1 C �) D (�5 C �6)(1� �4)�1.
e) Proposition 8 and the automaton give the result.
f) Let z 2 E(�). Then, there exist ("i )i�4 and ("0i )i�4 in D1 such thatz DP

i�4 "i�i D � CP
i�4 "0i�i . From Proposition 8, (0, 0)(0, 1)(0, 0)(0, 0)("4, "04) � � � is

a path in the automaton starting in the initial state. Hence,("4, "04)("5, "05)("6, "06) be-
longs tof(0, 0), (1, 1), (0, 1)g(1, 0)(0, 1). Consequently,z belongs to the union of (�5C�2E)\ (�C �2E), (�4C �5C �2E)\ (�C �4C �2E) and (�5C �2E)\ (�C �4C �2E)
which is equal to f0(X) [ f1(X) [ f1(Y). HenceE(�) D f0(X) [ f1(X) [ f1(Y).

g) Let z 2 E(� C �2). Then, there exist ("i )i�4 and ("0i )i�4 in D1 such that
z D P

i�4 "i�i D � C �2 C P
i�4 "0i�i . From Proposition 8, the infinite path

(0, 0)(0, 1)(0, 1)(0, 0)("4, "04) � � � is a path in the automaton starting in the initial state.
Hence, we either have
(1) (("i , "0i ))4�i�7 2 (0, 1)(1, 0)f(0, 0), (1, 1), (1, 0)g(0, 1),
(2) ("4, "04) 2 f(0, 0), (1, 1)g, or
(3) (("i , "0i ))i�4 2 (0, 1)f(0, 0)(0, 0), (0, 0)(1, 1), (1, 1)(0, 0)gww � � � ,
wherew D (0, 1)(1, 0)(1, 0)(0, 1). This means thatz belongs to

((�5 C �4E) \ (� C �2 C �4 C �7 C �4E))

[ ((�5 C �6 C �4E) \ (� C �2 C �4 C �6 C �7 C �4E))

[ ((�5 C �6 C �4E) \ (� C �2 C �4 C �7 C �4E))

[ ((�E \ (� C �2 C �E)) [ ((�4 C �E) \ (� C �2 C �4 C �E))

[ fz1, z2, z3g
D g0(X) [ g1(X) [ g1(Y) [ g2(Y) [ g3(Y) [ fz1, z2, z3g

wherez1 DPC1
iD2 (�4i C�4iC1) D �C�2C�4C�7CPC1

iD2 (�4iC2C�4iC3), z2 D �6Cz1

and z3 D �5 C z1. We can also check that (1, 0)(1, 0)(0, 0)(0, 0)uuu � � � , where u D
(0, 1)(1, 1)(1, 0)(1, 0), is an infinite path of the automaton starting in the initial state.
Consequently,z1 D �4 C �5 CPC1

iD2 (�4iC1 C �4iC2) and

z1 2 ((�4 C �E) \ (� C �2 C �4 C �E)) D g3(Y).
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Moreover, it shows thatz2 belongs tog3(Y). In the same way,z1 D �5 C �6 C�8 CPC1
iD2 (�4iC3 C �4iC4). Thus, z3 D 2�5 C �6 C �8 CPC1

iD2 (�4iC3 C �4iC4) D �5 CPC1
iD2 (�4i C �4iC1). But 2�5 C �6 D � C �2 C �7, consequentlyz3 belongs to (�E) \

(� C �2 C �E)) D g2(Y).
h) Let z 2 X D E(1C � C �2). Then, there exist ("i )i�4 and ("0i )i�4 in D1 such

that zDP
i�4 "i�i D 1C�C�2CPi�4 "0i�i . From Proposition 8, we necessarily have

("4, "04) D (1, 0) and one of the following situations:
(1) (("i , "0i ))i�5 2 (1, 0)f(0, 0), (1, 1)gww � � � wherew D (0, 1)(1, 0);
(2) (("i , "0i ))i�5 2 (0, 1)f(0, 0), (1, 1)gww � � � wherew D (0, 1)(1, 0)(1, 0)(0, 1);
(3) ("i , "0i )5�i�8 2 f(0, 0), (1, 1)g2(0, 1)(1, 0);
(4) ("i , "0i )5�i�9 D (1, 0)(1, 0)(0, 1)(1, 0)(0, 1);
(5) ("i , "0i )5�i�8 2 f(0, 0), (1, 1)g(1, 0)(0, 1)(1, 0).

This meansz belongs to
S4

iD0 hi (X) [ h1(Y) [ h3(Y) [ fx1, x2, x3, x4g where

x1 D �4 C �5 C C1X
iD4

�2i D 1C � C �2 C C1X
iD3

�2iC1,

x2 D x1 C �6,

x3 D �4 C C1X
iD2

(�4i C �4iC1) D 1C � C �2 C �5 C �7 C C1X
iD2

(�4iC2 C �4iC3),

x4 D x3 C �6,

h0(X) D (�4 C �4E) \ (1C � C �2 C �7 C �4E),

h1(X) D (�4 C �6 C �4E) \ (1C � C �2 C �6 C �7 C �4E),

h2(X) D (�4 C �5 C �4E) \ (1C � C �2 C �5 C �7 C �4E),

h3(X) D (�4 C �5 C �6 C �4E) \ (1C � C �2 C �5 C �6 C �7 C �4E),

h4(X) D (�4 C �5 C �6 C �8 C �5E) \ (1C � C �2 C �7 C �5E),

h1(Y) D (�4 C �6 C �4E) \ (1C � C �2 C �7 C �4E)

and

h3(Y) D (�4 C �5 C �6 C �4E) \ (1C � C �2 C �5 C �7 C �4E).

We easily can check (using Proposition 8 and the automaton) that

x1 D x3 D �4 C C1X
iD2

(�4i C �4iC1),

and thusx1 2 h0(X), x2 2 h1(X), and x2 D x4, which concludes the proof of h).
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i) Let z 2 X D E(1C �). Then, there exist ("i )i�4 and ("0i )i�4 in D1 such that
zDP

i�4"i�i D 1C�CPi�4"0i�i . From Proposition 8, we necessarily have ("4, "04) D
(1, 0) and one of the following situations:
(1) (("i , "0i ))i�5 2 f(0, 0), (1, 1)g(0, 1)2f(0, 0), (1, 1)g2ww � � � ;
(2) (("i , "0i ))i�5 2 (1, 0)f(0, 0), (1, 1)g2(1, 0)(0, 1)ww � � � ;
(3) (("i , "0i ))5�i�7 2 f(0, 0), (1, 1)g(0, 1)f(0, 0), (1, 1)g;
(4) (("i , "0i ))5�i�8 2 f(0, 0), (1, 1)g(0, 1)2(1, 0)f(0, 0), (1, 1), (1, 0)g(0, 1)(1, 0);
(5) (("i , "0i ))5�i�8 2 (1, 0)(0, 1)f(0, 0), (1, 1), (0, 1)g(1, 0)(0, 1)
wherew D (0, 1)(1, 0)(1, 0)(0, 1). Hencez belongs to

 
11[

iD5

hi (Y)

!
[
 

17[
iD12

hi (X)

!
[ fyi I 1� i � 8g,

where

y1 D �4 C C1X
iD2

(�4iC3 C �4iC4) D 1C � C �6 C �7 C �10C C1X
iD3

(�4iC1 C �4iC2),

y2 D y1 C �9, y3 D y1 C �8, y4 D y1 C �5, y5 D y1 C �5 C �9.

y6 D y1 C �5 C �8 D 1C � C C1X
iD2

(�4iC1 C �4iC2), y7 D y6 C �7, y8 D y6 C �6,

h5(Y) D (�4 C �5 C �4E) \ (1C � C �5 C �6 C �4E),

h6(Y) D (�4 C �7 C �4E) \ (1C � C �6 C �7 C �4E),

h7(Y) D (�4 C �8 C �9 C �7E) \ (1C � C �6 C �7 C �10C �7E),

h8(Y) D (�4 C �4E) \ (1C � C �6 C �4E),

h9(Y) D (�4 C �5 C �7 C �4E) \ (1C � C �5 C �6 C �7 C �4E),

h10(Y) D (�4 C �5 C �8 C �9 C �7E) \ (1C � C �5 C �6 C �7 C �10C �7E),

h11(Y) D (�4 C �5 C �8 C �5E) \ (1C � C �6 C �7 C �5E),

h12(Y) D (�4 C �8 C �7E) \ (1C � C �6 C �7 C �10C �7E),

h13(X) D (�4 C �8 C �9 C �7E) \ (1C � C �6 C �7 C �9 C �10C �7E),

h14(X) D (�4 C �5 C �8 C �7E) \ (1C � C �5 C �6 C �7 C �10C �7E),

h15(X) D (�4 C �5 C �8 C �9 C �7E) \ (1C � C �5 C �6 C �7 C �9 C �10C �7E),

h16(X) D (�4 C �5 C �8 C �5E) \ (1C � C �6 C �5E),

h17(X) D (�4 C �5 C �7 C �8 C �5E) \ (1C � C �6 C �7 C �5E).

Let us prove that for each integeri 2 f1, : : : , 8g, there existsj 2 f5, : : : , 11g or
k 2 f12, : : : , 17g such thatyi belongs toh j (X) or to hk(Y).
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Indeed, sincey1 D �4 C �3z1 (see case g)), theny1 2 (�4 C �7 C �4E) \ (2�4 C�5C �7C �4E) D h6(Y). We deduce thaty2 and y3 belong also toh6(Y), and, y4 and
y5 belong toh9(Y).

Using the automaton we can verify thaty6 D 1C�C�5C�6CPC1
iD2 (�4iC2C�4iC3).

Hence,y6 belongs to 1C � C �5 C �6 C �4E . But it also belongs to�4 C �5 C �4E .
Thus y6 2 h5(Y) and y7 2 h9(Y).

We havey8 D y6C�6 2 (1C�C�6C�5E). On the other hand we can check using
the automaton thaty8 D �4 C �5 C �8 CPC1

iD5 �2i , hencey8 2 (�4 C �5 C �8 C �5E)
and y8 belongs toh16(X).

Remarks and comments. There are points which have at least 6 expansions in
base�. For example:

� C C1X
iD2

�2i D C1X
iD1

(�4i C �4iC1)

D 1C � C �2 C 1X
iD2

�2iC1

D 1C � C 1X
iD1

(�4iC1 C �4iC2))

D � C �2 C �4 C 1X
iD1

(�4iC3 C �4iC4)

D ��3 C ��2 C 1C �3 C 1X
iD1

(�4iC2 C �4iC3).

We address the two following questions:
(1) Can you parameterize the boundary ofE1,1,1?
(2) Does this boundary be homeomorphic to the sphere?
The technics used in this work can be used to studyEa1,a2,:::,ad with the assumption that
a1 � a2 � � � � � ad � 1.

4. Annexe

In the sequel we prove Theorem 5, show the Rauzy fractal and its automaton. We
will need several intermediate results.

4.1. Proof of Theorem 5.

Lemma 15. Let i � 4, then � i D Gi�3 C (Gi�1 C Gi�2 C Gi�3)�2 C (Gi�1 C
Gi�2)�CGi�1 where(Gi )i�0 is the sequence defined by: G0 D G1 D G2 D 0, G3 D 1,
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Gn D Gn�1 C Gn�2 C Gn�3 for all i � 4. In particular for all ("i )4�i�N 2 D,

NX
iD4

"i� i D n�3 C an�2 C bn� C cn

where nDPN
iD4 "i Gi , an DPN

iD4 "i (Gi�1CGi�2CGi�3), bn DPN
iD4 "i (Gi�1CGi�2)

and cn DPN
iD4 "i Gi�1.

Proof. It is left to the reader.

Proposition 16. R � C DS
p2Z�0CZ�CZ�2(E C p).

Proof. From Lemma 15 and Proposition 1 in [1]), we know that the set E Dfn�3 C p�0 C q� C r�2, n 2 N, p, q, r 2 Zg is dense inR � C.
Let z 2 R � C and " > 0, then there exist a positive integerN such that for all

integerk � N, jz� zkj < " where

zk D nk�3 C pk�0 C qk� C rk�2, (nk, pk, qk, rk) 2 N � Z3, 8k � N.

On the other hand, we can write every integernk in baseGn (by using greedy algo-
rithm) asnk DPN

iD4 "i Gi where ("i )4�i�N 2 D. Therefore by Lemma 15, there exists
tk D ank�2 C bnk� C cnk�0 2 G D Z�0 C Z� C Z�2 such thatxk D nk�3 C tk 2 E .
We deduce that for allk � N, jxk � zkj � jxk � zj C jz � zkj < " C jzj C M where
M D maxfjxj, x 2 Eg. Since for all k � N, xk � zk belongs toG, which is a dis-
crete group, then there exists an increasing sequence (ki )i�1 of integers such that for
all i , xki � zki D y0 where y0 D p�0 C q� C r�2 is an element ofG. Since for all i ,
xki D zki C y0 belongs toE and E is a compact set, we deduce thatzC y0 2 E . Thus
we are done.

Proposition 17. For all u,v 2 Z�0CZ�CZ�2, we have uD v wheneverInt((EC
u)) \ (E C v) ¤ ;.

Proof. We proceed by contradiction. Assume that there existintegersp, q, r 2 Z
and an elementzDPC1

iD4 "i�i of E such thatzC p�0Cq�C r�2 2 Int(E). Then there
exists an integern0 � 0 such that for alln � n0

nX
iD4

"i�i C p�0 C q� C r�2 2 E .(9)

CASE 1: The setfi � 4, "i ¤ 0g is infinite.
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Since� > 1, there exists an integerN � n0 such that
PN

iD4"i� iC pCq�Cr�2 > 0.
By Lemma 3, we deduce that

NX
iD4

"i� i C pC q� C r�2 D MX
iDl

di� i(10)

where (di )l�i�M 2 D and l , M 2 Z. From (9) and (10), we obtain that
PM

iDl di�i DP1
iD4 ei�i 2 E , for some (ei )i�4 2 D. Corollary 9 implies that there exists an integer

K � M verifying ei D 0 for all i � K . Therefore

NX
iD4

"i� i C pC q� C r�2 D KX
iD4

ei� i .(11)

Lemma 15 gives that

m�3 C (r C am)�2 C (q C bm)� C (pC cm) D l�3 C al�2 C bl� C cl ,

wheremDPN
iD4 "i Gi and l DPK

iD4 ei Gi . Thus l D m and "i D ei for all i (because
of the unicity of representation in baseGn) and finally p D q D r D 0.

CASE 2: The setfi � 4, "i ¤ 0g is finite.
Let N D maxfi � 4, "i ¤ 0g. If

PN
iD4 "i� i C pCq�C r�2 � 0, then we are done

using the same argument as in Case 1.
Now, assume that

PN
iD4 "i� i C pC q� C r�2 < 0. We have

NX
iD4

"i�i C pC q� C r�2 D C1X
iD4

di�i .

Since
PN

iD4 "i�i is an interior point ofE (see [1]), we deduce that there exists a
nonnegative integerM such that

�p� q� � r�2 C MX
iD4

di�i D C1X
iD4

ei�i 2 E .

Since�p� q� � r�2 CPM
iD4 di� i > 0 we deduce that

�p� q� � r�2 C MX
iD4

di�i D kX
iDl

fi�i D C1X
iD4

ei�i

where (fi )l�i�k 2 D and l , k 2 Z.
From Corollary 9, there exists an integerL such thatei D 0 for all i � L and by

an argument used in Case 1 we obtainp D q D r D 0.
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Fig. 1. Rauzy fractal inR � C generated byP(x) D x4 � x3 �
x2 � x � 1.

Proposition 18. The boundary ofE has Lebesgue measure zero and is equal to
the union of allEp, p 2 G, whereEp D E \ (E C p).

Proof. Let z be an element of�E D E n Int E , the boundary ofE . There exists a
sequence (zn)n�0 such that limzn D z and for all n, zn � E . Then by Proposition 16,
there exists a sequence (pn)n�0 of elements ofG D Z�0CZ�CZ�2nf0g such that for
all n, zn 2 (E C pn) with pn 2 G D Z�0CZ�CZ�2nf0g. Hence the sequence (pn)n�0

is bounded. SinceG is a discrete group, we deduce that (pn)n�0 is a finite sequence.
Consequently there existsp 2 Z�0 C Z� C Z�2 such thatz 2 E \ (E C p). Thus, �E
is included in

S
p2G Ep.

On the other hand, ifz 2 E \ (E C p), p 2 Gnf0g, then by Proposition 17,z �
Int(E). Hencez 2 �E . The fact that the boundary has measure zero is proven in [3].

4.2. The Rauzy fractal. Fig. 1 is a two-dimensional image of the Rauzy fractal
in R � C generated byP(x) D x4 � x3 � x2 � x � 1.
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4.3. The automaton. Here is the automaton built in Section 3.



RAUZY FRACTAL SETS IN R � C 495

ACKNOWLEDGEMENTS. Both authors would like to thank the Brazil–France agree-
ment for cooperation in Mathematics and the CNRS that permitted the authors to visit each
other. This strongly contributed to this work. The first author would like to thank the hos-
pitality of the Mathematic department of the State University of São Paolo in São José
do Rio Preto (Brazil). The second author thanks the Laboratoire Amiénois de Mathéma-
tiques Fondamentales et Appliquées, CNRS-UMR 6140, from theUniversity of Picardie
Jules Verne (France) for his hospitality. The second authorwas supported by a CNPq grant
Proc. 305043/2006-4.

References

[1] S. Akiyama: Self affine tiling and Pisot numeration system; in Number Theory and its Appli-
cations (Kyoto, 1997), Dev. Math.2, Kluwer Acad. Publ., Dordrecht, 7–17, 1999.

[2] S. Akiyama: Cubic Pisot units with finite beta expansions; in Algebraic Number Theory and
Diophantine Analysis (Graz, 1998), de Gruyter, Berlin, 11–26, 2000.

[3] S. Akiyama: On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc.
Japan54 (2002), 283–308.

[4] P. Arnoux, V. Berthé and S. Ito:Discrete planes, Z2-actions, Jacobi–Perron algorithm and
substitutions, Ann. Inst. Fourier (Grenoble)52 (2002), 305–349.

[5] P. Arnoux and S. Ito:Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon
Stevin 8 (2001), 181–207.

[6] Y. Sano, P. Arnoux and S. Ito:Higher dimensional extensions of substitutions and their dual
maps, J. Anal. Math.83 (2001), 183–206.

[7] V. Canterini and A. Siegel:Geometric representation of substitutions of Pisot type, Trans. Amer.
Math. Soc.353 (2001), 5121–5144.

[8] N. Chevallier: Best simultaneous Diophantine approximations of some cubic algebraic numbers,
J. Théor. Nombres Bordeaux14 (2002), 403–414.

[9] N. Chekhova, P. Hubert and A. Messaoudi:Propriétés combinatoires, ergodiques et arithmé-
tiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux13 (2001), 371–394.

[10] F.M. Dekking: Recurrent sets, Adv. in Math. 44 (1982), 78–104.
[11] N.P. Fogg: Substitutions in Dynamics, Arithmetics andCombinatorics, Lecture Notes in Math-

ematics1794, Springer, Berlin, 2002.
[12] C. Frougny and B. Solomyak:Finite beta-expansions, Ergodic Theory Dynam. Systems12

(1992), 713–723.
[13] R. Kenyon and A. Vershik:Arithmetic construction of sofic partitions of hyperbolic toral auto-

morphisms, Ergodic Theory Dynam. Systems18 (1998), 357–372.
[14] C. Holton and L.Q. Zamboni:Geometric realizations of substitutions, Bull. Soc. Math. France

126 (1998), 149–179.
[15] P. Hubert and A. Messaoudi:Best simultaneous Diophantine approximations of Pisot numbers

and Rauzy fractals, Acta Arith. 124 (2006), 1–15.
[16] S. Ito and M. Kimura:On Rauzy fractal, Japan J. Indust. Appl. Math.8 (1991), 461–486.
[17] A. Messaoudi:Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres

Bordeaux10 (1998), 135–162.
[18] A. Messaoudi:Frontière du fractal de Rauzy et système de numération complexe, Acta Arith.

95 (2000), 195–224.
[19] A. Messaoudi:Combinatorial and geometrical properties of a class of tilings, Bull. Belg. Math.

Soc. Simon Stevin12 (2005), 625–633.
[20] A. Messaoudi:Propriétés arithmétiques et topologiques d’une classe d’ensembles fractales, Acta

Arith. 121 (2006), 341–366.



496 F. DURAND AND A. M ESSAOUDI

[21] W. Parry: On the �-expansions of real numbers, Acta Math. Acad. Sci. Hungar.11 (1960),
401–416.

[22] B. Praggastis:Numeration systems and Markov partitions from self-similar tilings, Trans. Amer.
Math. Soc.351 (1999), 3315–3349.

[23] M. Queffélec: Substitution Dynamical Systems—Spectral Analysis, Lecture Notes in Mathem-
atics 1294, Springer, Berlin, 1987.

[24] G. Rauzy:Nombres algébriques et substitutions, Bull. Soc. Math. France110 (1982), 147–178.
[25] A. Siegel and J.M. Thuswaldner:Topological properties of Rauzy fractals, to appear in Mém.

Soc. Math. Fr. (N.S.).
[26] V.F. Sirvent:Relationships between the dynamical systems associated tothe Rauzy substitutions,

Theoret. Comput. Sci.164 (1996), 41–57.
[27] J.M. Thuswaldner:Unimodular Pisot substitutions and their associated tiles, J. Théor. Nombres

Bordeaux18 (2006), 487–536.
[28] W.P. Thurston: Groups, Tilings, and Finite State Automata, Amer. Math. Soc. Colloquium lec-

tures, 1990.

Fabien Durand
Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées
CNRS-UMR 6140
Université de Picardie Jules Verne
33 rue Saint Leu, 80039 Amiens Cedex
France
e-mail: fabien.durand@u-picardie.fr

Ali Messaoudi
Departamento de Matemática
Unesp-Universidade Estadual Paulista
Rua Cristovão Colombo
2265, Jardim Nazareth
15054-000, São José do Rio Preto, SP
Brasil
e-mail: messaoud@ibilce.unesp.br


