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                          Xntroduction. -
                                             x     This thesis is devoted to the study of W -dynamical

systems and C -dynamieal systems. When we have a W -dynamical
                       eesystem (M, G, or) or a C -dynamical system (A, G, ct), we can

                     ee eeconstruet from it a IAT -crossed product GxctM or a C -erossed

product Gx orA. Many results in the theory of operator algebras

are established in these terms. And the structure of these

dynamical systems and crossed products are our main concern.

There are many ways to pick up,pi?oblems and I want to establish

here three results. '
.

     This thesis consists of three chapte]?s. Each chapter conce]?ns

with eaeh one of these r•esults. Now I will explain briefly the
                 icontents of each chapter.

     In the fiTst chapter, we will be'concerned with the non-
                                          eeexistence of conditional expectations on W -crossed produets

([23])•
        '
     Let (X,fS\,p) be a ineasure space and let gB be a o-subfield

oÅí sC\. The conditional expectation E in statistics is a linear

map of Ll(x,26>r,u) onto Ll(x,cB,u) satisfying '

                  SB f(X) dV(x) =SB (E(f))(x) dy(x) n,

'for ' 5'f'i ' BLE(s'el'fid'beLi(x, pt,y). E is an Lco(x,a3 ,y)-bimoduie

map, namely it satisfies E(gfh) = gE(f)h for all g,h(Lco(X,4B,p)

        1         (X,A-,u). In the study of operator algebras, eondi-and fE{ L

tional expect at ions of Lco (X, &, ,v) onto LOO (X, (B ,v) a]?e in

                                   eequestion. [[he transposed operator E of E in the above is not the

one to find because it i3 but the eanonical inelusion map of
Lco (X,G6,p) into Lco(X,i<l,u). A desired conditional expectation



T of Lco (X,g<>( ,y) onto Lco (X,CB ,y) should be a map which makes
correspond to each fe Lpa'(X,A,u) an element T(f) in Lco (X,(g ,p)

such that

             Sx T(f)(x)g(x) dp(x) = fx f(x)g(x) dy(x)

       'for all g e Ll (x, OB .u) . Then T is sho wn to be an Lco (x, tB ,li )-

                   'bimodule map, namely it satisfies -T(gfh) == gT(f)h for all g,h(
Lco (X,8,u) and f(Lco(X,gCt,u). This method may be applied in the
                                     'context of general operator algebras, especiaZly in the ease

of finite von Neumann algebras. Let M be a finite von Neumann
                      'algebra with a normal tracial state T and let N be a von .
                                  'Neumann subalgebra of M. Then the conditional expectation T of
                     'M onto N wi!1 be defined as a rnap whieh satisfies for each xGM
                  '
                     T([I?(x)y) = T(xy)

for all yeN. In this way, J. Dixmier [8] and H. Umegaki [50]
                    '                       'have introduced.the notion of the.conditional expectation in

operator algebraS` Andithere:areLabundant studieS coneerning

this ([8],[21],[36],[44],[46],[47],[50]--[53]). A map P of a

 ee -- eeC -algebT.a A onto' a C--s'ubalgebra B-of- A'is eaUed a conditional

expectation .if P is a B-bimodule- linear map with P(x) = x for
                     'all xeB. J. Tomiyama [46] showed that every projeetion'of norm

one is a eonditional expectation. And M. Takesaki [44] examined

under what condition there exists a nomal conditional expectation

of a von Neumann algebra M onto a von Neumann subalgebra N of M.

It was shown that, if there is a normal conditiona] expeetation

of M onto N, then the type of M is greater than that of N (see[47]).
                  ee     The study of W -crossed product with a diserete group was
                                                          '
                            -2-



initiated by F. J. Murray and J. von Neumann, and many people

investigated the structure of these erossed products. In their

studies,the existence of a eonditional expeetation of GxorM

onto M played an important ro[Le. If the group is not diserete,

the situation is not quite favorable. Indeed, my result here

               '                                              '
         there is not any normal eonditional expeetation

         of GxM onto M if G is a loeaUy eompact conneeted
              or
         group.

One of the reasons why the study of the crossed produet with

a continuous group is difficult will lie in this fact. As

an applieation, we prove that Gx M is always p]?operly infinite
                                or
when G is a locally eompact conneeted group. This is related

to the von Ngumann r Segal Theorem "the conneeted $emisimple

Lie group has not any non-trivial finite representation"(Ul)

Corollary l).
                                                     '
     In the second chapter, we discuss about isomorphisms of

Fouyier algebras(seeC12]) in crossed products. For two locally

compact abelian groups G and H{ Pontrjaginrs theorern implies
that Ll(G) and Ll(H) are isomorphie as Banach algebras if and

only if G and H are isomorphic. Y. Kawada (26) and J. G. Wendel

(49) proved the same statement fo]r arbit]7ary loeaUy compaet
                                                   .Agroups. Now for an abelian group G, we set A(G) i { f ; fe
LZ(a)} where AG is the dual group of G and Af is the Fourier

transform of f (see (ll) (3.6) and (LO)) and we give a norm
ii-ti on A(G) by llC3tl= Ijl-norm of f. Then A(G) turns out to be

a Banaeh algebra with pointwise-multiplieation. The above
                                          '
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faet may be refo]?mulated in this ways A(G) and A(H) a?e

isomoyphic as Banach algebras if and only if G and H are ,

isomorphic. The algebra A(G) was later extended as the Fourier

algebra of an a]?bitTary loeally compact group G. [Vhe definition

is due to P. Eymard [11] and it is shown to be isomorphie as

Banaeh spaees to the predual rn(G)ee of the von Neumann algebva
                                                             'm(G) generated by the Zeft regular representation of G. M. E.

Walter [48] showed that A(G) and A(H) are isometrieally isomor-

phic as Banach algebras if and onZy if G and H are isomorphic.
Quite reeently J. Canni5re, M. Enoeh and J. M. Schwaytz [3,
                                                             '
Theor5me 2.9] established the same statement as the M. E. IAralter's

result in the category of Kae algeb?as. We have also the notion
                        eeof Fourier algebra for W -dynamieal system. It was defined by

H. Takai [43] and M. Fujtta [l2]. Now, what we prove in ehis

                                                           'chapter is that
              x         two W -dynamical systerns are equivalent or anti-

         equivalent if and only if their Fourie]? algebras are

         isomorphic as Banaeh algebras.
                                                   '     The third chapter is an attempt to extend some results
    ee
on C -dynamieal systems with loeaUy eompact abelian g?oups to
 ee
C -dynamical systems .with non-abelian groups. W. Arveson [2]
                                                  ee eeconstructed the theovy of spect?al subspaces for W - and C -

dynamieal systems with locally eompact abelian groups. Using

this, A. Connes [6] .defined the Connes speetrum r(or) which is
                                    Aa closed subgroup of the dual group G of G, and established a

beautiful structuve theory of faetors of type IU. A. Connes and
                                     eeM. Takesaki ([7],[45]) proved for a W' -dynamical system (rvl, G,

                                        t tt         '                                             '                             -- 4-



ct) with an abelian group G that GXqM is a factor if and only
if r(ct) = a and or is ergodie on the eenter of M. There were two

                                                     eeways to generalize this statement, the one was toward C -
dynamical Systems ([27],[28],[37],[38],[39] etc.), the other
one was toward Wee-dynamical systems with non-abelian groups

([29],[30],[32],[B3],[34]).
     Now, suppose that we have a Cee-dynamieal system (A, G, ct),

                                                i                                  'Awhen G is an abelian group, we have a dual action ct of or on the
 xC -crossed product GxctA and we can eonsi.der the Connes spectrum

r(or) for the C -dynamieal system (GxctA, G, ct)(see[37]). Unless

the g]?oup G is abelian, we can not construct the dual action.

Instead. a eo-action 6 on GXaA can be construete'd, whieh plays

the same role as the dual action in the case of abelian groups.

     In this chapter,
                     '        for a Cee-dynamical system (A, G, ct) we introduce the

                                      ee        notion of 6-invariantness for C -subalgebras of GsorA,

        and, using this, we define-.the..essential spectrum -,,,,.
                                        A•        r(6), whieh is coincident with r. (ct) in the case of

        abelian groups. It is shown that A is prime if and

        only if A is G-p]?ime and r(6) = G.
     D. E. Evans and T. Sund [IO] investigateq Cee-dynamical

systems with compact g?oups, and mentioned that r(ct) is:-not ipvanf-

ant under exterior equivalence. We prove that -
        r(ct) is invariant under exterior equivalence (ct is
        the bidual action of ct) by characterizing r(&"') in

        terms of the dual co-action 6 of ct.

     Our final result -is that
                                                      '
        a von Neumann algebra should be hyperfinite when a

                           - 5 --
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                    Chapter I Expectation.

     The conditional expectation in operator algebras played
                                      'an important role from the outset in the theory of operator

algebras. Thus J. von Neumann and F. J. Murray wereable vo show

the existence of type IXI factor by using it. The notion of

eonditional expectations in general was first introdued by J. Dixmier

and H. Umegaki in a finite von Neumann algebra. There are abundant
literatures on eonditional expectations (See(8), (21), I363, (44),
                 .                                                      't46) , (47), (50) - t53))s

     Now let (M, G, or) be a W'S(--dynamical system and GXorM be the

erossed product construeted frorn it (Preeise definition will appear

in section l). An important problem is whether there is a condi-

tional expectatlon of N=-GxcxM onto M. When G is a discrete group,
                                                             'there exists a faithful and normal conditional expectation.

But it was not known whether there exists a normal conditional
             '
expeetation of N onto M in the case when G is non--discrete.

     In this chapter we establish that there is no normal eondi-
                                                   'tional expectation of the crossed produet N with a locally compact
                                          'connected group G onto M under certain eonditions.

     In spite of this result, a normal semi-finite operato]7 valued
                 'weight from N into M can always be found. This was shown by U.

HaagerupC131 prior to our result. , ' -

- 7-



l. Non-Existenee of Expectation. Let M be a von Neumann
                 '                'algebra on a HUbert space IY> and G be a locally compaet group.

The triple (M, G, or) is said a W7"<"-dynanical system if the mapping

or of G into the group Aut(M) of all automorphisms of M is a .

homomoirphisms and the function gÅÄedoorg(x) is eontinuous on G for
                            'any xeM and tueM,.,(M.., is the pTedual of M). '' '
     The crossed product GXorM of M with G is the von Neumann
algebra on L2(G,f7) generated by the family of the operato?s

{T pt (x), X(g); x c- M, ge G}; ' ,
          [[:or,S2iiS'.=,Åéi,iil'4(h'; gSi2,[g;igi. •(iip

The mapping Tor'  is then a normal isomorphism of b4 onto "orOI) such
Lhat X(g)T,M (x) X(g) "`-  =" or ( (x g<x) ) for all g <- G and x (i M. We often

identify the von Neumann algebra M with the von Neumann algebra

                                                            '     I]et T be a linear mapping pf a von Neumann algebra )(] onto a

von Neumann subalgebra N of M. '
        '     Definition 1.l. T is called a eonditional expeetation of
                                            'M onto N if T has the following properties.

     (i) T(1) = 1, where 1 is the identity operator
                  '                    '     (ii) T(axb) = a(T(x))b, for all a, bGN, x(--M.
     Moreover T ls called normal if tT(N,,<.)C M,,e. '

     Let Åë be an automorphism of a von Neumann algebTa M.

     Definition 1.2. .Åë is said freely acting if the element x

of M with the property that xÅë(y) = yx for any yeM is neeessarily

zero. For eaeh autoll•norphism V of'M,.there is a unique eentrai
                                                               'projection q of M sueh that;

     (i) v(g)=q '
     (ii) wlMq is an inner automorphism of Mq

     (iil.) VIM(1-q) is a freely aeting automorphism of Ma-q).

                               -- 8 -



This central projection q will be denoted by p(th) (cf. Kallmann

[20))e

  ' Let M be a ven Neumann algebra. We also identify Mf with
                                                   'fMf = {fxf; xe M} where f is a projection of M or M .
                                       .SAt'     Theorem 1.l. Let (M, G, or) be a W -dynamieal system and we

                      ); geG, g/ e} /' 1, where e is the identitysuppose that sup {p(or
                     g
of G. Then, the following statements are equivalent;

     (i) G is a discrete group

     (ii) t] ere exists a normal conditional expectation of GXorM

           onto M.

     Remark 1.2. That (i) implies (ii) is well known (cf.<6) Pro-

position l, 4, 6, (35) g4 and (15) g2). In fact if G is a diserete
giiO::8 .thtfi.ilii.b.edrl ig:Cg.ti(:'ij[.l)Glspi2entified with {}K?)22(G).

          e,(h)-6}"{g [:;:l,

then the Hilbert space L2(G, Ef) is identifiable with the direet

SUMXgeG{l<8)eg Of SUbSPaCeS {l&eg(g6G). For each g in G and n

l:.Z,' ;"l.le1,5',a!ig,; XgS".J:.:'i,:n.S;:ggil.Zl.2 e2•Ifi 2.Qgg.'..,..

on Ei as elements

          (x)g,h=Jl`-xJh, ,'
where L(R) is the algebra of aU bounded linear operators on the

Hilbert space R. Especially, we have
          (Tct (X) )g,h = 61] org-1 (X) (X 6M, g, h, G G)

           '
          (X(k))g,h"6Ilh (g, h, k(- G)e
Put T(y) = (Y)e,e for yQGXorM. Then T i.s a faithful normal

condiLional expeetation of GxaM onto M.

                              - 9 •-



     BeÅíore we prove GÅ}) Q (i), we will give two lemmas.

Lemma 1.3 will be used repeatedly in the whole of our study.

     Lemma.l.3. Let T be a conditional expectation of GX orM onto

M. We then have T(X(g))(1-p(.g)) = O for any geG.

     Proof.. For each yeM(l"p(orG)),we have;

          yT(x(g)"') = T(yX(g)X') = T(X(g)X(g)yX(g)ec').

               y.Since )L(.g)yJN(g)"  = org(y) is an elemen"t of M, '

                         '          YT (X(g)X) = T(X(g) X' )or g(y) .

                                   'Therefore [C(X(g)""C)(1-p(org)) = O beeguse org is a freely acting

automorphism of M(1--p(ct )).
     temma' i i' h:' b' 'u'b{ PL('gg) ; g 'Li G, g s e} is a G- iAvariant cent.rai

projection of M.

     Proof. For any yEM, g, h,eG with gf e, we have
, "hgh-1(Y"h(P("g))) = "h(U)Y"h(P(org))"h(U)"'

                                                       X-where U is an element of }"I such that orglMp(or ) 7 AdU, U U'= P(org)

and UU""C -- p(ctg) (AdU(X) = UXU'X'  fOr X(Mp(org)iii'

Therefore we get orn(p(ag)) ;g p(orhgh-l), so that

          orh(sup{(org.); geG, g/ e}) gE sup{p(org); geG, g/ e}.

               ); gGG, g Y e} is a G-invariant central projectionHence sup {p(or
              g
of M.

    [[[he proof of Theorem !.O. I)emma l.4. implies that it is
                                             'sufficient to prove the Theorem in the case when p(ctg) = O for

all gGG except the identity e. It follows that T(X(g)) = O for

                                                       'all g(! G except e 1)y Lemma l.3.

     Suppose that T is a normal conditional expectation of GxorM

o,nto M. Let K(G, M) be the family of M-vaZued, a-weakly conti-

nuous funetions on G with a compaet support. By (14) Lemma 2.3,

                              - 10 -



a rr-representation. p ofthe involutive algebra K(G, M) is defined,
          y(g) " 5Gx(g)T.(g(g))dv(g) ' '
         'where g (S K(G, M) and v is a left }Iaar measure of G. Moreover the'

representation y maps K(G, M) onto a o-weakly dense subalgebra

of GXorM. Sinee T is normal and T(X(g)) = O for all geG except

                                                                 '                                                '                                                             tt          T(u(g)) = JGT(x(g))T.(g(g)) dv(g) = Tr.(g(e))v({e}). '

Therefore v({e}) must be a positive number, so G must be a diserete

group.
                                     ",(-     Remark l.5 Let (M, G, ct) be a W -dynamical system. Let V
                                                                 '
be a strongly eontinuous unitary representation of G into M such

         'that or g = AdVg for any geG.
     we define a unitary operator w on IJ2(G, 67) = z291@L2(G)

                                               '          (WC)(g)-Vgg(g) '
for an g(- L2(G, f.4f). We get;

                 -si(-          WT or (x)W = xpt1 for any x eM
       . WX(g)W'X = VgDp(g) for any g (- Ge

where p is the left regular representation of G on L2(G). we

                               '                                      '

                  st v                                        A                  IN          W(GX,,M)W = M&P(G)", IAfT.(M)W' = M';K'le

Whence we know that there are many norrnal conditional expectations

of G)< ctM onto M, aceording to the result of(47) Theorem l.IL.
                                               '     We wUl have a decisive result about the existenee of a

norrnal conditional expeetation in case of a connected group.

     Theox'em l.6. Let G be a locally compact connected g]roup

                    v•                    -"-and (M, G, or) be a W -dynamical systern. If there is an element

h in G sueh that orh is an oute]7 automo]?phism of M, then there

does not exist any normal conditional expectation of GxctM onto M.

                             - 11 ti-



     Proof. We suppose that there exists a normal eonditional

expeetation T of G>(ctM onto M.

     Assume first that there is an element g in G such that g is

on a one-parameter subgi7oup x(t) at t = s and ctg = ctx(s) iS an

outer automorphism of M. p(orx(s)) is'then a central projection of

M xftrhich is not the identity operator of Mt For any nEI iN, we get,

' '  ' ' P("x(fi)) -` P("x(s))

because . (ctx(fi.))n " orx('
s).

'From Lemrna 1.3, T(X(x(X)))(INp(. )) = O, so we have

          ' '' x(E)                       •n-                                 '           '    , T(X(X(fi)))(l-p(or.(,))) =O'' '
                                           '
for anynC-IN. Therefore we get, ' '
            '  ' T(X(e))([L-p(ct.(.))) " inW-iiEYgg T(A(X(fi')))(L-p(ctg)) = O,

                      'so we get l = p(org), whieh is a contradietion. So the assumed

situation does noL take plaee. ' . '                                      '
     IAThen an elemenL g in G is on a one-parameter subgroup of G,

we write e rxJ g. By the above argument, org must be an inner '

automorphism of M for any g in {geG; e nv g}. Now G is equal to

the elosed subgroup K generated by {gC-' G; e rv g}. Indeed, syppose

that thereare an element g in G and an open neighborhood U of e

in G sueh that the interseetion of gU and K is empty. By (31)

Theorem 4.6, there exists in U a compact norrnal subgroup H such

that G/H is a Lie group. Then there is a neighborhood V of e in

G such that V eontains H and each point of V/H is on a one-parameter

subgroup in G/H. Since G/H is also a conneeted group, G/H is

the group generated by V/}I, so that there are a finite subset

                             -- 12 -



fgiH; i= l, 2,...., n} in G/H, and one-parameter subgroups xi(t)
                                     n(i = .L, 2, ..., n) in G/H such that illgiH = gH, giH is on the

one-parameter sub'group xi(t) of G/H at t = si (i = l, 2, ..., h')

and gi(!V (i = l, 2, ..., n). By (31) Theorem 4.15, there are

one-parameter subgroups yi(t) of G (i = l, 2, ..., n) such that

yi(t)H = xi(t) for any teR (i = l, 2, •.., n). The element
g-l i$yi(si) is contained in HCU because ig.lyi(Si)Hn= gH.

Then the intersection of K and gU is not eMpty SinCe ig.IYi(Si) iS

contained in both K and gU, which is a contradiction.

     As the group generated by {gEG; e "V g} was shown to be dense

in G, there is a net {gi}iel in this group such that it converges

to h in G, h being the element in the sÅíatement of the Theorem.

Since org are inner automg,.rphisms of M for any g in {geG; e N g},

orgi are inner aueomorphisms of M for any iel. Then we get;

          P( or gi -lh) =p( cth), ,
                           '          T(A(g{' lh))Q-p(orgl. lh)) = T(X(gl' lh))Q-p(orh)) = O'

          T(X(e))(i-p(cth)) " W-l. ,i': T(X(gl'ih))(z-p(orh)) = O'

                          '
so that l--p(orh) = O, which is not the case. We get thus a eon-

tradiction and the proof is complete.

     Remar'k l.7. !f the group is not supposed connected, there
     -Xtare W' -dynamical systems with a non-discrete locally compact

group $uch that there is an element h in G with the freely acting

automorphism ah of M and there is a 'normal conditional .expectation

of G>(orM onto M. For instanee, let G be a locally compact group

GIX G2 where Gl is a discrete group and G2 is a non-discrete
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locally compaet group. Then (Lco(Gl), GIX G2, or) and (Lco(Gl),

            -wrtGl, o) are W -dynamical systems where the aetions ct(g,h) = og
are the translation of Lco (Gl) for ail (g,h)(f Glx G2. Then
GxorLeO(Gl.) is isomorphic to GlXoLco(Gl)pap(G2)" where p is the

        t'left reguZar representation of G2 on L2(G2). Let co be a normal

state of p(G2)", ptu be a slice mapping associated with tu (See

(47)) of GlXoLoo(Gl)<2bp(G2)" onto Gl>(oLco(Gz-)-• Let T be a normal

                                               'conditional expectation of GlxuLco (Gl) onto ]Lco(Gl) (Remark 1.2.).

Then Tepc,) is a normal conditional expectation of GXorLOO (Gl) onto
Lco (Gl)•

     '             '                                           .v.     Proposition l.8. Let (M, G, or) be a W"-dynamical system,

r be an open subgroup of G and cD be a faithful normal semi-finite

weight on M. Then there is a faithful normal conditional ex-
                          y.pectation T of GxorM onto W" (M, r, or) =- {Tor(M), X(r)}" such that
                                     'aSeT = 'to" and T(A(g)) = O if gszEr where NcD i's the dual weight

                     'associated with al. '                                       '     Proof. By (14) Theorem 3.2 we get,

           N          otot(rr.(x)) =•T•.(o2(x)) for all xcM

                  '           N          (J[e(X(g)) = A(g)itX(g)sc.((Duleorg : Dto)t) for all geG.

                                '
                          N           stTherefore W7"- (M, r, or) is oÅé-invariant for all t(}R. Let K(r, Atu)

be the family of all Atu-valued continuous functions on r with

a eompact support where AiD is the letlt.HUber.t.algebra associated

with ck). IAIe regard K(r, Atu)as {fEK(G, Aco); f = O outside r}.

Then by (l4) Theorem 3.2, tuiwX(M, r, or) is semi-finite. Then

by (44) Theorem, the]re is a unique faithful normal conditional '
expectation [D of GXctM onto W"" (M, r, or) such that 'coN'eT = as.

Moreover we find, by the construction of T in (44), that
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T(x) = Åë(E x E) for all xEGXorM where E is the projeetion of
L2 (G,9) onp.o L2(r, Ef) and Åë is the canonicai automorphism of

rx3M onto w'N (M, r, or);, .
                                               '
          O(7TB(x)) = TT'.(Å~) for aLl Å~ <fM

          Åë(A(g)) = X(g) for all g(r

(where the aetion B is the restriction of or on r). For aLl

x(g)6K(G, M), we obtain,

          T(S               wr.(x(g))X(g)dg)
              G
       = O(E SGT.(x(g))X(g)dg E)

         "       =5pT.(x(g))x(g)dg.

                                                     '
Then we get T(X(g)) ='O for all gser sinee EX(g)E = O for gelr.

     Remark l.9. The above proposition was proved by }l. Choda

in ease of a discrete group ((4)Proposition 2).

              '
     2. Applieations.

     Corollary 2.1. Let G be a locally eompact connected group
                    -SAtand (M, G, or) be a W -dynamical system. If there is an element

g(E} G such that p(org) = O, then the erossed product GxorM is properly

infinite.
                                                     '                                                               '
                                        --    .Corollary 2.2. Let (M, G, or) be a W"-dynamical system. If

the group G is not discrete and p(org) = O for all geG except

g = e, then the crossed product GXorM is pr.operly infinite. .

     We prove the CoroUary 2.l only, as we can prove the Corollary

2.2 in the same way. •
     (Proof of Corollary 2.1). We suppose GxorM is not properly

infinite and let (GX M)                    a p be the greatest finite portibn of GXaM.
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Since p is a central projeetion of GxorM, p is a projection of Tor(M)t.

Let q be the centraZ support of p in Tor(M)'. Then we get that q

is a G-invariant projection of Tor(M)ATct(M)T because p is AdX(g)-

invariant for all geG. The von Neumann algebra M p is a von Neumann

subalgebra of a finite von Neumann algebra (GXaM)p, so thqt there

is a normal conditional expectation Tl of (GXctb4)p onto Mp (See

(s) The6r5me8 orp .(50) Theorem 1). We define a new normal condi-

tional expectation T of (G>SM)q ohto Mq; '

   '          T(x) = Åë(Tl(PXI)))

ifiZoaiii XG.(GKorM)q where Åë is the canonicai isomorphis.m of Mp

      q'
                                           '     Fbr a,bEMq, xe(GXaM)q, we have

                     '
          T(axb) ic Åë(Tl(paxbp))

                 "O{Tl((pap)(pxp)(pbp))}

                 = Åë{pap Tl(pxp) pbp}

                 = a {Åë eTl(pxp)}b = a(T(x))b,

and
          T(q) = Åë T]-(pqp) = Åë(p) - q.

Therefore T is a eonditional expectation of (GxorM)q onto Mq.

The normality of T is ciear. On the other hand, (GXorM)q is the
                          .v.crossed product) with the W"-dynamical system (Mq, G, orIM ). This

cohtradicts Theorem l.6. q
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        Chapter II Isomorphism of Fourier algebra.

     IPor locally compaet abelian groups G and }I,Pontrjagin's
duality theorem mentions that Li(G) is isomo?phic to Li(H) as

Banach algebras if and only if G is isomorphie to H as locally

eompact abelian groups. Y. Kawada [26] and J. G. Wendel [49]

proved the same statement for arbitrary locally compact groups.
     Fo]? an abelian gx,oup G, we set A(G) =- {?; feLl(a)}

where G is the dual gyoup of G and f is the Fou]r'ier transfor'm

of f (see[ll] (3.6) and [40]) and we give a norrn i`•"on A(G)
by "6;i; Ll-norm of f. Then A(G) turns out to be a Banaeh alg-

ebra with pointwise-multiplication. The above fact may be veÅíor-

mulated in this way; A(G) and A(H) are isomorhpic as Banach
                                                             '
algebras if and only if G and H are isomorhpie as locally eorn-

pact abelian groups. The algebra A(G) was later extended as

the Fourler algebra of an a?bitrary locaUy compaet group G.

The definition is due to P. Eymayd [ll] and it is shown to be

isomorphie as Banaeh spaces to the predual rn(G)ee of the von

Neumann algebra m(G) generated by the leÅít regular represen-
                                                             tt
tation of G. M. E. Walter; [48] showed that A(G) and A(H> are

isometrically isomorphic as Banach algebras if and only if
G and H are isomorphic. For a Wee-dynamieal system (M, G, or),

the Fouriey space Fct(GsMee) was defined by H. [Vakai in [4e]

sueh that Fct(G;Mee) is isometrically isomorphie to the predual

of the crossed product Gx ctM as Banach spaces. M. Fujita [l2]

defined a Banach algebra structu?e in the Fou]?ie? space Fct(G;Mee).

Then he showed that the g?oup of all chai?acte]?s :ECct(a15i">-, ee of

For(G;Mee) is isomorphic to G and studied the suppQpt of the
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operators in GXq.M.• ,
                             '     In this ehapter we generalize the W'alte]?'s r•esult for
 eeW --dynamieal system (M, G, or).
     Let (M, G, ct) be a Wee-dynamical systerrr. The covai?iant

       'vep]f)esentation (Tor, A) defined i.n (1.1) will be denoted by

(avct, XG) in this chapter. Each element tu in the predual
                                                            '(GxorM)ee of GxorM may be regarded as an element uto of cb(G,Mee);

                   u.[g](x) = < rr.(x)AG(g) ,,ee > (2.l)
                                                  '                  '                          '                                       ttfor all x(2 1vf, g(-' G where Cb(G;Mee) is the space of all bounded

continuous Mee-valued functions' on G. We denote For(G;Mce) =
                     '{ uaj ;coE(Gx ctM) ee } (L Cb (G;Mx ) . A norrn it e it is de fined on )" { (G;Mee )

by li ucoll = ilco li . [[]hen iluii. .< liuii for all uc{i D'ct(G;Mce) where

 u ls is the sup-norm on Cb(G;Mee). we define a product on

                                                   'F.(G;rvl,) by

                                                  '
                    (u.ee v)[g](x) = u[g](x)v[g](1) (2.2)
                                  '                '                                    '
for aU u, ve Fct (G3Mee ) , xG M and g (-'-G. Then For (G;Mee ) is a Ban ach

algebra ([12] Theorem 3.5). So we can define produets between
                    'GxaM and Fct(G;Mee); '
                                                             '         '                           '
                                                 '                                       '                < u[l] , V > = <T, vacu >

                < Tu . v > = <T, ueev >

      '  '                                    '                           'for TeGx.M, u, veF.(G;M.) ((3.7),(3.9) in [l2]). Let T be an

ope"ator in GxorM. Then the supp(T) of T the set of all g(iG

satisfying the condition that AG(g) belongs to the u-weak closiire

of TF.(G;Mee) (see [l2] Proposition 4.1).
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     Theorern l. Let (M, G, ct), (N, H, 3) be di-dynamical syStems

and For.(G;PCee), F3(H;Nee) their assoeiated Fourier algebras. Let

Åë be an isometric isomorphism of Fct(G;Mee) onto FB(H;Nx) as Banach

                         '
     [[hen we have five eZernents (k, p,.q, T, e) with the foUow-

ing properties: '
                        '          (l) keG such that, XG(k) = tÅë(xH(e)) where tÅë is the

transposed map of Åë and e is the identity of H,
                                                     '          (2) ! is an isomorphism or anti-isomorphism of H

onto G,
          (3) p(resp. q) is a projeetion of ZMAMG (resp.

ZNANH) where ZM (resp. ZN) is the eenter of M (resp. N)..and

MG = {xeM; org(x) = x for alz gEG}, NH' ='fx (!N; Bh(x)""L' x for

hGH}, .
          (4) e is an isometric linear map of N onto M such

that eis an isomorphism of Nq onto Mp and e is an anti-isomor-
                                 'phism of Nl-q OntO MI-p,'

          (5) Åë(u)[h](y) = (ku)[I(h)](e(y)p) +

                                     (ku)[X(h)](ctr(h)(e(y)(1-p))).

for alz yGN, hGH and ueFct(G;Mx), where (ku)[g](y)=u[kg](ctk(y)),
                                       -l          (6) 9[3k(y)]=[cti(h)e(y)]p + [cti(h)e(y)](i-p) for azi

yGN, heH.
     Proof. The transposed map tÅë of Åë is an isometrie linear

map of HXBN onto GxctM. Using [19] Theorem 7.10, we get;
                                     '                                               '
                    tÅë -- tÅë(AH(e))(YI " YA)

                                                         '
where yx is an isomorphism of (HXBN)z, onto (GXctM)z, yA is an '
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anti-isomorphisrn of ](iHXBN)(1-z,) onto (GXctM)a--z), z (resp. z')

being a central pr'ojection of GxctM (resp. HxBN). (2.3)
It foUows from (2.2) that fo? all u, veFct(G;Mee),
            t'           < Åë(AH(h)) , ueev > = < XH(h) , Åë(ueev)>

                             = < XH(h) , Åë(u)xÅë(v).>

                             = < XH(h) pt "H(h) , Åë(u)cg>Åë(v)>
                             = < tÅë(XH(ts.)), u> < tÅë(AH(h)), v>

Therefore tÅë(XH(h)) is a character of F.(G;pax) for ali heH,

which implies that tÅë(XH(H)) ( AG(G) beeause the group of all
characters -'Frctfr(li)ii), x is isomorphic to G ([12] Theorem 3.l4),

moreover since Åë is an isomorphism,
                   t                   r,Åë.(XH(H)) = XG(G)•

We denote XG(k) = tÅë(AH(e)). By the same argument in [48]

                                  '                                                   '                          ttTheorem 2, we get that

           y =- tÅë(xH(e))'1 ttp =y! +yA (2.4)

      {is a C -isomorphism in Kadison's sense [l9] and

y(XH(hl)XH<h2)) is either y(XH(hl))Y(XH(h2)) or Y(XH(h2))y(AH(hl)),

moreover if we put XG(I(h)) = y(AH(h)), then 1 is either an iso-

                                                 'rnorphisrn or an anti-isomorphism of H onto G. (2.5)
The transposed map " of y is also an isometric isornorphism of

Fct(G;Mce) onto IPB(H;NK). 1]hen we get

                                       '          < 'y(iTB(5T)) , ueev > : < Tct(y) , iL,(ueev') >

                            = < Ti'B(Y) , iP(U)xil,(v) >

                            = < Tr B(y) po 1, il, (u )Ql) iP (v) >

                            = < Y(Tl'B(Y)) , ueeV >

for all yG N, u, v6Fct(G;Mee). By [29] Proposition 2.3, we obtain
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y(TB(y)) is an element of TTct(M), so we can define an isornetrie
surjective linea]p map e of N onto M by e = Tct-loyoTB. Since y

is a Jordan isomorphism,

          y(T)y(z') + y(z')y(T) = y([T,z']) = 2y([[izr)

                   '                                      '                                                 'for all 1] (EHx BN, therefore we get y([Vz') = y([e)z. Hence

                  '                                 '                                            '              '    '
            Y(Ti'B(XY))Z = Y(TTB(X))Y('iTB(Y))Z

 '                                                       '                                         '
for all x, yGN. Since z is a eentral projection of GxqlYI,
                                   '                                              'z is also a projeetion of Tor(M)', then we get .

                                                  '            Y(TrB(XY))P = \(TTB(x))'y(TrB(y))p (2.6)
                                         '
for all x, yEN where p is the central suppore of z in Tct(M)'.

We denote by q the central support of z' in TB(N)', then the

equations y(q)z = y(qz') = y(z') = z imply that y(q)p = p,
simiiariy we obtain yMi(p)q = q so that

                                 '                                           '          y(q) = y(ywi(p)q) = y(ypti(p))y(q)p = py(q)p = p.

                                               ' '      '
Hence e is an isomorphism oÅí N onto M and e is an antl-                             qp
isomorphism of Namq) onto Ma-p). The projection p (resp. q)
       '
is G-invariant (yesp. H-invariant) since Tor(M)' =

               ee eeAG(g)zct(M)'XG(g) and XG(g)zXG(g) = z. .
Now we have already proved (1) fu (4) and the statements (5),(6)

stUl remain to prove. For aU y(N, h(H we get,
                                     '
                                          x•          {'rr.oe(Bh(y))}z = y(XH(h)TB(y)XH(h) z')

                                               -l                        = xG(I(h))Tr.ce(y)xG(x(h) )z

                        ='{T.b ctr(h)e}(y)z,

                            '
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hence

                    eeBh = ctI(h)oe on Nq,

            '
and sirnilarly

                                      '                               '                                            '                        '                    eeBh'" ctI(h-Z)Se'On N(1"q).
                                      '                          '                                   '     '                     '                                '                    '
                            '                                       '  '                         '                                   '                                             '          ecBh(y) ='orI(h)ve(y)p + orI(h--l)ce(y)(1-p)

                           '                                               '                                                     'for all yeN and heH. To prove the statement (5), we shall show
                          '                                  '            '                                            ' '                    '                   SUPP Y(TrB(Y)AH•(h)) = {I(h)}.
                            '                       '
Ii'o? since y(TB(y)XH(h))u = y("B(y)AH(h)tp(u)) fo]f) all uC- IE' .(G;M.)

and tp is surjective,

                           -u-w -a-w       [Y(TB(y)XH(h))IIi".(G;M,)] = y[TB(y)XH(h)IF'B(H;N,)]

                    '          -o-w •- •where [ ... ] MeanSa a-weak closure, on the other hand,

                   '                  , ---a-w   ' ' [TB(y)XH(h)FB(H;Nee)] A AH(H) =(XH(h)
                                       '                                           '                                               '                                         '                                                  'beeause of supp TB(y)XH(h) = {h}, so we obtain

                          '                        - -U-W        [Y(TB(Y)XH(h))F.(G;Mee)] AXG(G) -CAG(Z(h))

           SUPP Y(TB(Y)AH(h)) = {r(h)}.

By [12] Theorem 4.4 or [32] Proposition 6.1, there exists an

element x of M such that y(uB(y)XH(h)) = vr.(X)XG(I(h))•

                                                  '                           '
          T.(X)XG(X(h))Z = Y(TB(Y)XH(h))Z

        = Y(TB(Y))Y(XH(h))Z = T.(e(y))XG(I(h))z,

                                         '
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then xp = e(y)p, and simUarly x(1-p)= orx(h)e(y)(l-p). we get

                  x = e(y)p + ctI(h)e(y)(l-p),

     Y(TB(Y)XH(h)) !- T.(e(y)P)AG(E(h)) •+• ir.(ctx(h)e(y)(1-p))XG<X(h)).

By (2.1), Åë(u) = W(ku) fo]7 ueFct(G;Mee) and the above equation,

we can get the statement. (5).

     Remark 2. Theorem 1 is a generalization of [48] Theorem 2.
                                              ee     Corollary 3. Let (M, G, ct), (N, H, B) be W -dynamical

systems and the two actions or and B are e]?godie on their; eenters
(that is ZMAMG = ZNANH =(C).

     The foUowing statements are equivalent,

     (l) Fa(G;Mee) is isomorphic to IPB(H;Nee) in the sense of

Banach algebras

     (2) there exi.sts either an isomorphism I of H onto G, an

isornorphism e of N onto M such that evBh = orI(h)ce for all h GH or

an anti-isomorphism I of H onto G, an anti-isomorphism e of N

onto M such that eeBh = ctx(h-l)ee for all heH.
  '     Proof. Suppose Åë is an isometric isomorphism of For(G;Mee)

onto FB(H;Nee) and we use the same notations in Theorem l. [Phe

projection p in (3) of Theorem l must be zero or Z by the ergo-

dicity of the action or, then e is either an isomovephism or an

anti-isorno]?phism of N onto M. When G is a locally compaet

abelian group (it follows from (2.5) that H is a locally compact

abelian group), ! in (2.5) can be regarded as both an isomor-

phism and an anti-isomorphism, therefore the statement (2)

foUows from Theorem 1 when G is abelian. Henee we may assume

that G is non-abelian. When r is an anti-isomorphism of H onto

G, the projection (l-z) in (2.3) must be non--zero. For if the

pyojection z is the identity in GXaM, then y in (2.4) is an

                           - 23 -



isomorphism of HX BN onto GxctM, so I is an isomorphism, which

is a contradiction. Taking the central support of (1-z) in

rrct(M)t as (2.6), e is an anti-isomorphism of H onto G such

that orx(h-1)oe = eeBh for all heH. rf I is an isomorphism, e

is an isomorphism such that ctI(h)ee = eeBh• ,

     Conversely suppose I is an isomo]?phism of H onto G such

that evBh = ctI(h)oe for all h(H. Then there exists an iso-

morphism r of Hx BN onto GxctM such that r(TB(y)) = Tor(e(y)) for

aU yeN and r(XH(h))=XG(T.(h)) for aU heH (cf. [45] Proposition
          '                                             '3.4). Then the transposed map Åë of r is an isometric isomoy-
                                     '             'phi,sm of Fct(G;Mee) onto FB(H;Nce). Suppose Z is an anti-isomorphism

H onto G such that eo3h = ct1(h-l)oe for all hEH. Consideying
the opposite von Neurnann algebra Mb of M and the isomorphism J
                                                    'of H onto G by J(h) = I(h-1) for all heH. There exists an, '

isomorphism r of HxBN onto Gxct(MC) such that r(TB(y)) = Tct(e(y))

for all yEN, r(XH(h)) = XG(J(h)) for all heH. On the other
hand, Gxct(Me) is isometrically isomorphic to GXctM as Banaeh

spaces, therefore r is a u-weakly continuous isometrie linear

map of Hx BN onto GXctM. [Vhen the transposed map Åë of r is an

isometric isomorphisrn of Fct(GsMee) onto FB(H;Nee)•
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                             ee               Chapter ZII C -dynamical system.

     This chapter is an attempt to extend to some results on
 xC --dynamical systems with loeaZly eompact abelian groups to
 ee
C -dynamical systems with non-abelian groups. W. Arveson [2]
                                                  ee eeconstructed the theory of spectral subspaces for W -and C --

dynamical systems. Using this , A. Connes [6] defined the Connes
spectrum r(ct) which is a closed subgroup of the dual group a

of the g]?oup G, and established a beautifuZ..structure. Cheory,of
               'factors of type !II. A. Connes and M. Takesaki ([7],[45])
              ecpyoved for a W -dynamical system (M, G, ct) with an abelian group
                                              AG that GxctM is a faetor if and only if r(ct) = G and ct is ergodic

on the eenter of M.
    '                                  x     Now, suppose that we have a C --dynamieal system (A, G, ct).

When G is an abelian group, Connes-[Vakesaki!s statement ygas
                                     eereplaced by the foUowing, (l) the C -crossed product GxctA
                               Ais prime if and only if T(a) = G and A is G-prirne ([27],[38],

[39]), (2) GxctA is simple if and only if fove the strong
                              AConnes speetrum ?(ct), ?(ct) = G and A is G--simple ([28]). In

the proof of these statements, it was important that we have
              Aa dual aetion ct of or on GxctA and we consider the Connes spec-
trum r(a) for the CX-dynamical system (GxctA, a, &). Unless the

groutp G is abelian, we can not construct the dual actiolt.

Znstead, a co-aetion 6 on GxctA can be constructed, which then

plays the same role as the dual action in the case of abelian

groups.
                             ee     !n this chapter, for a C -dynamical systerb (A, G, ct) we
                                             xintroduee the notion of 6-invariantness for C -subalgeb]?as of Gx
                                                                ct
and, using this, we define the essential speetrum r(6),

A
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                            Awhich is coincident with r(ct) in the case of abelian groups.

It is shown that A is prime if and only if r(6) = G and A is
                                                       .x.G-prime. D. E. Evans and T. Sund (10) investigat,ed C -dYnamical

systems with compact grou.ps and mentioned that r(or) is not
                                                         Ainvariant under exterior equivalence. We prove that r(&) is
                                       Ainvariant under exterior equivaience (& is the bidual action of
                        Aor) by charaeterizing r(&) in terms of the dual co-action 6 of or.

Our final, resuLt is that a von Neumann algebra should be hyper-

finite when a compact group acts on it ergodically. This was

proposed as a problem in the preprint of (17) of R. HÅëegh-Krohn,

M. B. Landstad and E. StÅërmer, and, when the paper appeared, '

it was proved independently with us.

     1. The relation between r(6) and r(&.) for an abelian group.
              -x-  Now take a C -algebra A and a locally compact group G wit,h a fix-

ed left Haar measure dg on Ct. Suppose that there is a homomorphism
or of G into the group Au+J(A) of all "K--automorphisms of A sueh

                           (a) is norm eontinuous for a(A.that each function g-or                          g
                                   -x.The triple (A, G, or) is called a C -dynarnieal system. Let
                .s,e(A, G, or) be a C -dyn.amica]. system and assume A CB(ig) for some

Hilbert space Y27x. We denote by K(G, A) t•he space ,of continuous

function.q from G to A with compact support. Define a fait,hful
representation of K(G, A) on L2(G,E?) by

           (xag)(g) = .j"G cth-l(x(g))g(hr!g) dg ,(3.1)

for xe K(G, A) and ge L2(G,!:1). We identify K(G, A) with its

Å}mage in B(l[,2(G,te21;)) and denote by G'xorA the c"kLalgebra generated

by K(G, A). IATe say that GXctA is a crossed product of G wit,h A.
we define a representation v of G on L2(G,(9) and a faithful

                                          '
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representation i of A on I]2(G, 4if) by ,

                         ' , (v(h)g) - c(hPlg), (i(x)c)(h) = cth-l(x)C(h) '

for b, gEG, x eA and geL2(G, fy). This eovariant representation

[lgfili".g"%.l,'.l2,gl;.i]s..g2.:ls:.u:2,g,gn,itary operator w

 '         '
                       (WC)(g,h) - g(g,gh)
                '                                                            ' 'for g ( L2 (GxG) and we denote by A a left regular representation

of G and by m(G) the von Neumann algebra generated by {x(g); geG}.

Note that this Xis diffe]rent from Ain (1.l). Then we define
an isornorphi.qm 6c, of Tn(G) ibto m(G){ib m(G) by 6c.(x) = w'"` (x(g> IL)w

for x (: m(CT).

     When A and B are C"'('-algebras, we denote by M(A) its rnulti-

                                    F)(- .p]ier algebra. If A is a concrete C -algebra, we may define
M(A) = {a E A"; ab + ea ("L A for b,c EA} ([ IL]). We put

          •--/          ML(ALr5Z>B) i {xGM(A)DM(B);

          ' x(l iE{) b) + (l 6b e)x eAO B, LÅë(x) Er A ifor b.e ( B, Åë <2 B'X' }

where ]]Åë is the left slice map of Åë and the symbolo.. means the

spatial tensor product.

     Proposition ].l. The map 6;

                '                      .w.          6(x) = (lcg W")(xtx l)(1op W) for xEGx.A,

           '
is a 'Se .. isoip. orphism of G>< orA into 'i}IL (G xorA oo cl'le (G) ) , where c/r' (G) is

                   .st<.the reduced group C -algebra of G. It satisfles the following

relation, '
                                                        '
    6(v (g)) = v(g) Cl) x(g), (g e G), 6 G (a)) - T(a) {D l, (a (A) (3.2)

                                                        '
.)
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        , (6 L3.b D6= (i CEb 6G)6 '' . . (3.3)
wbere i's are identity mappings of M(Ci(G)) or M(GXctA)e .

     Proof. We get (3.2) by an easy caleulation. It fol]ows from

(3.1) and (3.2) that                                                                ttt
                                                '                                                    '   . 6(x) - 5 G(i(x(g))s) i)(v(g) {Eb x(g))dg • '

                                                                 '
for xGK(G, A). Sinee i(A) and v(G) are eontained in M(GxorA) and
X(G) is eontained in }C(Cl'i(-(G)), 6(x),,-is an element of M(GX.A)(8) )4(Cl`'(G)),

whiCh iMp].ieS 6(GX.A)CM(GX.A)QM(C.(G))e

  If xt! K(G, A), fG K(G) =.- K(G,a), We have '

     6( X)(1 oo x( f)) = SG ( t( x(g)) <2b l)( v( g) QNb x( g)) (l c8) x( f)) dg

             ' " 5'li G.c. f(h)(i(x(g))(5) i)(v(g)cs}A(gh)) dgdh

 - "SSGxG (i-(f(gMlh)x(g))(iOl)(v(g)oo x(h-)) dgdh

               'where X( [ir ) = 5 c.f(h) 1(h) dh, 'i] he ieeiffo re 6(G,>< ,,A ) ( IL pa Clli (G) ) C

G x..A X C;(G). Si rn i] arl l,, we .,," ha ve (ICE} C;(G)) 6(Gx.A) C (G x.A) bov Cl(G).

Take xc,K(G,A) andÅë(fC2(G) ,, then

       , IJÅë(6(x)) = Lo(SG (Z(x(g))cEDI)(v(g)<5b A(g)) dg)

                  =, SG !(X(g))ÅëO•(g))"(g) dg

                   = S"G Z(Åë(A(g))x(g))V(g) dg = Åëx,

                     )
where (ÅëÅ~.)(g) =Åë(X(g))x(g) <EK(G, A). We have therefore

          II,Åëo 6(Gx.A)C Gx.A foir Åë (E C;(G)'(',

                                                                 'beeause it I[JÅëe 6"$ il (b"•

     The relation (3.3) follows frorn (3•2) and 6G(x(g)) = A(gboA(g)
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     We will introduce the essential spect,rum of a eo-action foll.owing

Y. Nakagami (33) and Y. Na,kagami-M. Takesaki (34). To do this we

first recall some definitions.
                             -VA- '     A co--action 6 of G on a C -algebra A is an isomorphism of A
into GilirL(AXCI'(G)) satisfying (6c2bi)6 = (icg> 6G)6. Then we define

          6u(a) = Lua6(a) for ueBr(G), aeA,

where Br(G) is defined in (8) to be regule.r ring, and we identify

                          vvv                          -A' 'A' X-B.(G) with the dUal SPaee C.(G) Of C.(G)e It fOllOws from (3.3)

that 6u.v = 6uo 6v for u,v <F Br(G)•

     We seL
                                      '
         Sp6(a) = {geG;,u(g) = O for 6.(a) = O, ueB.(G)},
                        't             - -ls
         sp(6) = {geGI u(g) =O for 6. = O, ueB,t,.(G)}
                   .tt tt
                                                 'and

         r(6) =A{sp(6lB); Be,,M?6(A)},

where X6(A) is the famay of non-zero hereditary c"""-subalgebvas

B of A such that 6u(B)CB for ueBr(G), which is called 6-invariant.

Let E be a closed subset of G, we set

         A6(E) = {aeA; Sp6(a)(E}•
                                                       i   - Lemma l.2. If g(G, then gESp(6) if and only if A6(v) / o

for every compact. neighbourhood V of g.
     Proof. Let V be a compact neighbourhood of g with A6(v) = {o}.

Take an element go Ei Ve and v (- Br (G) wi th (the support of v) AV = Åë

and v(go)=1. If ueB.(G) with (the supporti of u)(V and u(g) = l,

then,

         6 e6 (a) = 6                        (a) =O for aE A,
                     v.u          vu
                              '
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which implies gog4Sp6(6.(a)) that is 6.(a)tE A6(v). Therefore

6u(a) = O for all aGA. As u(g) f O, we see g e' Sp(6).

     Suppose that g<SSp(6). Take a compaet neighbourhood V of g
with vAsp(6) = Åë and take aEA6(V), then it follows from Sp6(a)

                                                        'CSp(6) that Sp6(a) = Åë. Since

                             '          I. =- {ue B.(G), 6.(a) = O}

                                                                  '      'is a closed ideal of Br(G) with {g ({G; u(g) =O for e.ll uela} =Åë
                                 'and Br(G) is a regular riing ((ll)), !a contains tJhe Fourier algebra
                                                   rk-A(G) of G because it eontains K(G)((].l) ). For tueA , we have

          O = <6.(a),ci)> = <6(a),u} oo u> for u ({ A(G)CBr(G).

                                                      '
Since, by (1, Proposition 2.0, the algebraic tensor produgt
                    'A'bA(G) of A'A' and A(G) is dense in (M(A)XM(C2(G)))" with respect

        y- y-to the w"-topology of M(A)6DM(Cl(G)), ihre have 6(a) = O, that is

a= o. we have therefore A6(v) = o. '

     Lemma l.3. Let Ei be a eompactJ set in G (i = 1,2), then

A6(El)A6(E2)cA6(EIE2)• '
     This lemma is proved by a usual argument (See C34, IV,

Lemma Z.2)), and we leave its verificat•ion to the reader.

     Proposition 1.4. r(6) is a closed subgroup of G.

     Proof. Since Sp(6) is a closed set, r(6) is a closed set

of G. we want to $ee that Sp(6)r(6)CSp(6)• Take glcSp(6),•g2er(6) and
                                                                     'eompact neighbourhoods V, Vl, and V2 of glg2, gl, and g2, respectivel.y
such that VIV2(V. For alCA6(VP, al l O, B denote the smallest
6--invariant hereditary C"k-subalgebra generated by {6u(al); u (I Br(G)}•

Then we can find an a2GBAA6(V2), a2 t O. Let I be the closed

linear span of {a6u(al); aEA, uEBr(G)}, then I is a closed left
ideal of A such that B = IXAI. Therefore if 6u(al)a2 = O for any
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ueBr(G), it imp].ies B a2 =O that is a2 = O. Henee there is

a u(! Br(G) such that 6u(al)a2 V O. By Lemma 1.3,

          O l 6.(al)a2(A6(vi)A6(v2)< A6(viv2)cA6(v).

By Lemma 1.2, we conclude from this that Sp(6)r(6)(Sp(6). As

this is true for 61B in p]ace of 6, we see that r(6) is a serni-
                                       -1group and it is easy to prove r(6) = r(6) . Therefore r(6) is

a closed subgroup of G.

     From now on, G is supposed to be abelian and we study relations

between the co-action 6 on GX A and the dual action & of the dual
                            cr.
group r of G on GXorA (See (42)).
                                        -li(-     Proposition l.5. Let (A, G,or) be a C --etynamiea]. system and
        'VA'B is a C -subalgebra of G'Xrv,A. Then B is 6-invariant• if and only if

B is & -invariant for y Eir(r--invariant).
      Y
     Proof. Take C,n eK(r) and xeK(G, A),

        S r C(Y)n(Y)&y(x)dy

           = 5 r c(y )n (y)&ty ( j" G t(x(g))v (g)d g) dy

           =Sr SGq(Y)n(Y)i(X(g))v(g)<g,y>dy

           = SG( fr g(Y)n(Y)`g,Y>dY) r(x(g))v(g)dg

            =fG'III7x-[iX(-g)i(x(g))v(g)dg, .

      Nwhere g is the inverse Fourier transform of g and the symbol ",:-
means the convolution in Ll(G). On the other hand, set

                                          y.         cD(c,n)(x) = <xE, 5b>, for xecl(G)

where 5b(g) = fi(-g), then we have

          cD(c,n)(x(g)) = <A(g)g,fib> = 5Gg(h - g)5(-h)dh = !zz(-g).
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Then we have,
             '          ; S Ga)(g,n)(X(g))i(x(g))v(g)dg

          = 6,,,(q,n)(.j"Gi(x(g))v(g)dg) = 6.(g,n)(x).

    '
Therefbre

         Sr g(Y)n(Y)&y(X)dY = 6.(q,n)(x) fof xeGx.A. (3.4)

                                               y. -w.     The set {di(g,n); g,n eK(r)} is dense in (Cl(G))" with respect

to o(C:(G)be', M(C:(G)))-topology and the map ' •
                                '               )t "c          Åë <Ei (c"(G)) "s 6Åë(x) e Gx.A

                                                           '
                                       "t. .v. )..is no]rm eontinuous with ]respect to u((C9(G))"', M(cl)(G)))-topology

for each xEGXorA. Hence Å}f B is r7invariant, then B is 6-invariant

     Conversely suppose that B is' 6-invariant. Take yer, the

positive d.efinit,e function <d,y> is an element of Br(G).

Then by an easy calculation, we have 6<.,y> = &y, therefore B
                                       'is r-invariantt.
     Given a c'""'-dynamical system (A, G, or), we denote by,}-te.or(A)

                                                 -.sethe family of non-zero, G-invariant, hereditary C -subalgebra of

A. The Connes spect•rurn r(or) of or is defined as

          r(or) =A{sp(alB), BE){"(A)},

cf. L37)•
     [Pheorem l.6. Let (A, G, or) be a C""t- dynamical system with

                                                    e(-an abelian g]roup G. Starting from this, we have a C -dynamical

system (GxorA, r ,&) and a dual system (GxorA, 6). Then r(6) and

.
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     Proof. At, first, we prove A&(V) = A6(-V) for every corp.pact.

                                Aneighbourhood V of geG, where Act(V) = {xeG>((,A, Sp&(x)<V}•

         A'Take x{{Act(V), go sZ;V and eompact. neighbourhood Vo of go with

                                              'VoAV = Åë, we ean findu g,neK(r) with by't(-"(go) = 1 and by"•(-X :- O on

            'v8. The inverse Fourier t+ransform of g(y)n(y) is 21,.(-?)t, so

                                                     '    '                                               '          6al (e ,n) (x) = Jr q(y )n (y )&y (x) dy = o, as x e Aa (v).

     '  'As to(g,n)(X(-go)) = 2;'•(-X(go) = 1, we have -goESp6(x) that is

                          'SP6 (X) ( -V.

     conversely, take xcEA6(--v), go4v and a compact neighbourhood

                                 'Vo of go with VoA(-V) = Åë, and- take C,nGK(r) as above. Put

Y = 6,,(E,n)(x), then we have Sp6(y) = Åë, sin.ee Sp6(6.(y))(:(the

supportJ of u)ASp6(y), hence we get y= O. By (3.4) we have

         S r q(Y )n (Y )&y(x) dy = O.

whieh lmp]]t.es goÅëlSr)&(x) that is Sp&(x)( V. As g({lSp(&) if apd

         Aonly -fif Aor(V) f {O} foT eaeh compac+. neighbourhood V of g (See

C37)), by Lemma 1.2, we have Sp(&) = -Sp(6). IAfe conclude that

                                        'r(&) - r(6).

                       -kt(-     2. Primeness of C -algebra with a co-action.

     The statements in this section are some generalizations of

those in (39) for arbitrayy locally eompaet groups. The arguments

which we do is a modifieation of those whieh D. Olesen and G.K.

     tt tt                                         'Pedersen did there. • ..                   '                                               '                                     -SAC     Lemma 2.l. Let (A, G, ct) be a C -dv. namica! system and 6 be a co-
                '
action of G on•GxorA.'  Then an element geG belLongs to V(6) -if and bnly
       'if IA(M (I) is non-zero foT every non-zero closed ideal I of A.
       g
     Proof. Suppose that IActg(I) ={O} for some non-zero 'closed

ideal I of A. As D. Olesen and G.K. Pedersen did in (39J, ehoose
       '                                                                     J(by spectral theory) non-zero positive elements b,c el with bc = b.
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Tjhere is then a compact neighbourhood 9 of the identity e in G

                                        'sueh that IIah(c) - cll < l for every hest,.

          orh(b) = cth(b)(i - cth(c) + e)(E ee!o(orh(c) - e)n)

                                                                  '                                '                                                     '     . '= Oeh(b)c(E co..o(orh(e) - e)P')C-- Il ' .
                                                 '                    ', whenCe bActh'nelg(b) = orh,-l(orh(b)Actg(b))( cth-'1(IActg(I)) = {O}, '  (3•5)

                             -IS('     Let B be the hereditary C -subalgebra of G>(orA generated by
i (b) (Gx. A) i (b) and note t• hat B c-- ,}{I6 (Gx.A) since 6(i (b) ) = i (b )ifol.

                          Vv     For q, neK(G) with 'Vnsc:'g(g) f o and supp 'n-'xegcst"lg where

'h(t) = n(t) and X(t) = g(t-'l), put x = i(b)v(f)"'`'i(a)v(f)i(b) for

a(-'
 A, f9,,K(G) where V(f) =. S c.f(t)v(t)dt and put esk,n)(d) = <dg,n>

        jsfor dGC (G). '        r
Then
     6cDrg, ni(X) " 6.(E, n)(i(b)) SGfff(t)v(t)dti(a)5Gf(s)v(s)dsi(b))

                            --                 = aa)'(g, n)(5S GxGfff(t)i}(s)i(b ort(a)at,(b))v(ts)dtds)

                 = .fS c..G'-n,eg( t•s)fff (t)f(s)t(bort(a)ort,(b))v(ts)dtds

       , (3.5)
            ' =o
where f#(t) = ti}v]fctt(x(t))X-,A is the moduiar funetlon of G.

                                7X-   • Since {xGGX.A; x = i(b)v(f) i(a)v(f)i(b), aEA. f(iK(G)} is
i:.n,:9.i",Bel ,g?,l/Z)re,iz!gg4n,]EB,].= {O}' since 'fflg(g) 4 o, this

     Conversely, if gs/r(6), there is a Be(}{I6(Gx orA) such that ,

g({i Sp(61B). Therefore there is a compaet neighbourhood st of g in
c- and B(iX6(GxorA) such that 6u(B) = {O} whenever ue B.(G) with

S2(suppta)i 'the elosu:re of {geG; u(g) >g O}. Choose a eompact nei-

ghbov.rhood 91 ofr g an.d a symmetric eompact neighbourhood sto of e

with sto91sp.oC st and stog9oCstle . (3.6)
                                         '  -.J
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     Let L be a 6-invariant elosed left ideal of Gx A such that
                                                 or
B = LX' A L and Lo be the 6-invariant closed left ideal generated

by { xv (f); x e L, f e K(G), supp f C st o}. IATe show that the norm-

closure Loo of {SGx(t•)v(t)dt; xGK(G; L), supp x(.9o} .is a 6--

invariant, closed ideal containing Lo.

     Loo is a closed left ideal of Gxorll since L is a closed left

ideal of GxorA. It contains the element of the form xv(f). So we

only need to show that Loo is 6-invariant. For x(!K(G; L) with

supp xC9os we have

          < 6.(SGx(t)v(t)dt), Åë >

           = <6(Sc,x(t)v(t)dt), thxtu>

           =J G<6 (x(t) )v (t) (g) .x (t) , Åë<s) os>dt

           = SG<6.x(t).(x(t))v(t), Åë>dt

         wv vfor (k} ( (CIi, (G) )" and Åë Gr (GxorA)" where <d, )L ( 't )cÅíi> = < d)L ( 't ), tu> for

d E (c -X- (G)) .

     r
     Put z(t) = 6x(t),,,(Å~(t)), then z(t) is an element of L since

x(t) is an element of L and L is 6-invariant•, moireover z is an

elernent of K(G; L) with supp zC9,o. Therefore Loo is 6-invariant

and contains Lo. '
     Take x, ye K(G; L) with supp xVsupp yCsto, then we have for
                                    sc-u e B. (G) wi th supp uC stl and Åë C (GxorA) ,

         <6.(( -I' Gy(t)v(t)dt)'"-(fGx(s)v(s)ds)), Åë>

           = < SLS' Gx c,v (t) '"CqP ). (t) '""-6 (y( t) '"" x(s) )v ( s. )Q x(s)dtds, Åë gs> u>

           "SS GxG<6x(,).x(t)"-L(y(t)'X-x(s)), .(s)Åë.(t)'"-.dtd,,
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                                           .SAt-    Since supp xVsupp yc9o, supp X(s)uX(t) C st for t, sesto
a.nd y(t)""L

          = SJ' st ox si 6`6x(.).A (t) "` (y(t) `kx( s) ) , v(s)Åëv (t) '"'>dtds = o.

          '                    '                ÅÄe                x) = O for x,yGLo and ueBr(G) with supp uC9]..Therefore 6u(y
     put Bo = L6'4Lo. Then we g.et BoeX6(GxorA) and 6u(Bo) =o

whenever u(!:Br(G) with supp uCst1. So, for any element x in Bo,

we have Sp(6lBo)A91 = Åë'

     Choose a non-zero positive element y in B and feK(G) with
                                         l(-supp fCsto sueh that the element yo = v(f) yv(f) of Bo is non-zero

and choose positive Xinear funetionals uieBr(G) wi:th supp uiCS2o
                                                     v )i-                                                     ts-such that sup ui = Åëe (with respeet to the order in (Cr(G))")

           .v "t('where Åëe is the Plancherel weight on Cr(G)Cm(G), that is the

canonieal weight of a generalized Kilbert algebra K(G). (See (29)).

     Then we have Sp6(6..(yo))C supp uic9o, sup 6..(yo) F 6Åër(yo) and

                       l ze6Åë (yo)Giof(A) by [29) Lemma 3.2 'v 3.5 and Theorem 3.
  e.,6,,,?Xg,l&'6i.=,gu,k'iYOII(:IXig'iyg'(g.ogG,gg8.E"IA..IIg:.Xgsg,:,,,,

C91ASp(6 Bo) =Åë ie xi,j = O• Let ao be an element of A such

that i(ao) = 6Åëe(yo)e Since xi,j converges weakly to i(ao)i(a)v

(g)i(ao) for aG A, we get aoAev•g(ao) = {O}. Then we find e. non-

zero closed ides.1 1 of A (vlz the closed ideal generated by the

non-zero element ao) such that IAorg(I) = {O}.
                        "K-     Let (A, G, or) be a C -dynami,cal system. ,IAIe 'say that A•is G-prime

(resp prime) if any two non-zero G-invariant- closed ,ideals(resp closed

ideals) of A have a non-zero interseetion e.nd that GxorA is 6-prime

Å}f any two non-zero 6-invariantt closed ideals of GxctA have a non-

zero interseetion.
                                                     '                                      "e     Theorem 2.2. Let (A, G, or) be a C -dynamical system. Then the

following two conditions are equivalent;
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           (i) Ais prime - .
           (ii) (a) A ls G-prime and (b) r(6) = G.

                     '                                                              '                                          '     Proof. (i) " (ii) (a) is obvious, (i) -F (ii) (b) follows
                                    'immediately from lllemma 2.l. . .
      (ii) ' (i) If A is not prime, there are orthogonal non-zero

 closed ideals I and J of A. Take geG and assume t•hat ctg(I)AJ

 f' {O}. Then by (ii) (b) and I,emma 2.1, we have {O} / (N                                                         (I)AJA
                                                       g
org7](org(I)AJ)(JAI = {O}, which is absurd. Consequently org(I)

AJ = {O} for any gC- G. Let IG be the elosed ideal generated by
 gEl;-7G ctg(I), t•hen IGAJ = {O} and IG is G-invaTiant, whieh contradicts

                                           ' (ii) (a). Thus A is pr-ime-
                                    '                                           )t('    . Proposition 2.3. I)et• (A, G, or) be a C -dynamical s,ystem.

Then A is G- I) ir ime if ap-d only if Gx orA is 6 -- I) ]f ime.

     Proof. If Jl and J2 are orthogonal non-zero 6-invariant

 elosed ideals of GxaA, take non-zero positive elements xlL and x2
                                                       )l(-in Jl and J2 respectivelJy, and ehoose feK(G) with v(f) xiv(f)

f O (i = l, 2). Since J.(i = 1, 2) is 6-invariant, we have
                        i
        IN                                           tt6. (v (f) xiv (f)) ( eTi (i = 1, 2), an d- 6,, (v (f) xlv (f)) M( Gx.A)6.,e

 (v(f)'`'Å~2v(f)) = {O} for ed, es'(E (Cl`-(G))"`'. By (29] I•emmas 3.2 rN, 3.5

                      -v.and Theor'em 3,6Åë. (v(f)"xiv(f)) is a non-zero element of !(A)

                e.                                      7" (i = 1, 2) and we o.ut i(ai) = 6Åë (v(f) y.iv(f)) (i = 1, 2). we
                                ehave then that z(al)M(GxorA)t(a2) -- {O}, and in particu]ar, we
have i(org(al)aorh(a2)) = v(g)i(al)v(g)-1i(a)v(h)i(a2)v(h)-1 = e

for aGA. In this way, we have found orthogonal non-zero G--•

invariant closed ideals of A viz the closed ideals generated by

the orbits orG(al) and orG(a2.)•

     Conversely,suppose thatwe have two orthogonal non-zero G-

invariant closed idea.ls Il, I2 of A. Let Jl be the closed subspace
of Gx,,A genera"ted by {5Gz()c(g))v(g)dg; x("'K(G; Ii)} (i = [L, 2).

                                            '                                                                    -                                                         '     '         ttt



For x.(-- K(G; I.) (i = 1, 2), we have

                                    '          S Gi (xi (g) )v(g) dg JGx (x2(g) )v(g)dg

          '                       '                              '                 '            =J5 G. c-i(xl(g)ctg(x2(h)))v(gh)dgdh = o

                                            '                        '                       'beeause Ii i$ G-invariant (i = 1, 2), and th,is ips.plies JIJ2 =

Sinee I. is G-invariantj,'J. i:s a elosed ideal of Gx A.   .1              "t- .v- •     For co G (C 'S (G)) 'X and x (l K(G; X. ),

              r ,1                                   '                         '          6,,(SG z(x(g))v(g)dg) =SGa)(X(g))i(x(g))v(g.)dg,

therefore Jl and J2 are 6-invariant.

{o}.
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          x     3. C -dynamical systern TArith the action of a compact
                                      'gPOUP. . '                                      '
     Throughout this seetion, we assume that G is compact

and dg is the normalized Haar measure on G. Let (A,G,ct) be

a C -dynamical system and G be the space of isomorphism
                  'classes of all irreducible representations of G. If Tea,

we denote by xT the associated "modified charaeter" xT(g) =

(l/dim T)Tr(T(g)), and u(i,j,T) the associated "eoordinate

functions"  u(i,J',T)(g) =<rr(g)gi, gj>, where {qi} is a

normalized orthogonal basis for HT. By definition TGSp(or),

iff ct(x.)(A) / {O}, where

         ct(X.)(a) "SG X.(g)org(a) dg for agA,

        '
([lo]), and r(ct) = A{sp (ctIB); B e,}ect(A)}.

     Lemma 3.l. If T g15 r(ct), then there is a non-zeyo

elosed ideal I of GX A such that                      ct

         iV,j 6.(i,j,.)(I)AI = {o} ,

where Vi,J•6u(i,j,T)(I) denotes the closed ideal of G>( otA

generated by .6u(i,j,T)(I), i,j=1,2,e•,dim 7.

     PrOOf. IfgÅër(q), the]?e is a Be,}eCX(A) sueh that

ct(X    )(B) = {O}. Take a non-zero G-lnvariant positive element
   rr
b of B and put a non-zero element y =JGi(b)v(g)dg <-GxorA,

then we have, for aeA, g(G,

                  (y)i(a)v(g)y         6          U(i,j ,T)
                           '              = SS Gxc. U(i,j,rr)(h)T(bcth(a)b)v(hgk)dkdh
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             = J-Gi(J" G u(i,j,T)(h)cth(bab)dh)v(k)dk,

          z = J- G u(i,j ,T) (h) cth (bab )dh .

Since B is hereditaTy, the element bab is in B. Therefore
we have ct(xT)(bab) =-O . By the relation or(u(i,j,T))[(u(k,

l,T))(c)] = ct(u(i,j,T)eeu(k,l,vr))(c) for any c in A and the

orthogonaZity relations for cOmpact groupS, ct(xT)(c) = O is

                                                  '
                                  '          SG u(i,j,rr)(h)orh'(c)dh = Q, for; i,j=l,2,..,dim T.

            'Therefore z=O and so 6u(i,j,rr)(y)i(a)v(g)y = O, that is

          6u(i,j,T)(Y)GXorAy = {O}, for i,j=1,2,.•-,dim iT.

    '
Let : be the non-zero closed ideal of GxctA generated by y.

By easy caleulation, we have V i,j6u(i,j,T)(I)AI "{O}•

   . We use the definition of the crossed p]?oduct Gx6(GÅ~ctA)
                                    Awith the co-action 6, the dual action 6 of 6, and Takesakits

duality .CSee [18],[30] and [34]).

     L.ernma 3.2. If there is a non-zero closed ideal I of-

GX ctA such that Vi,j6u(i,j,T)(I)AI = {O}, then T does not
beiong to r(6) where 'Zor:'"N` is the biduai action of or (see[3o]

or [34]).

     Proof. Take a non-zero positive element y in I. For
oeG, put z=6(y)(lg>u(i,j,u))6(x)6(y) for xeGx A. IATe then
                                              ct
have

          S' G x.(g)""ct'g(z)dg

                                        '           = -!fG XT(g)6(Y)('i)g(1oo U(i,j,o))6(x)6(y)dg

                                                '
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           FSG. x.(g)6(y.) #i,IIr.:".1ff{i'(-if,;-r;-s-s-(fi;y, g 6(6.(.,j,.)(xy))

                                (lbo u(k,m,a))dg

           = illlil..gS'G x.(g)ii-(-iE-;,-ir-;-s-s-(-, g dg6(y6..(..j,.)(xy))

                                (lEg) u(k,m,u) )

           -fgl :h,g: gfgl:wtk.Ii?:r,?:,i7;ig].'

[Dhen we get SGx.(g)a'.(6(y)a6(y)) dg=O for aeGÅ~x.(GX.A)
                   e
because the vector space generated by' {(l<51> u(i,j,u))6(x); xe

G >< ctA, oe e} is no rm dense in Gx 6(G Å~ orA). Let B be the non-

                eeze]?o he]?editary C -subalgebra of GX6(GÅ~orA) gener'ated by
6(y). [['hen B is a' g-invar'iant for each gGG beeause a' g(6(y)) =

6(y), therefore

          SG x.(g)G'g(B)dg = {o} ,

which implies T str(a').

                                  ee    Theorem 3.3. Let (A,G,ct) be a C -dynamical systern, then
r(6') ='{vrea, iYJ•6u(i,j,.)(I)AI f O}, for each non-zero

ideal I of Gx A and r(oL))r(a').
             ct
    p]?oof. By Takesaki's duality, GXAa(GÅ~6(GX orA)) is
isomorphic to (G)< ctA)oo.C(L2(G)), therefore each closed ideal I'

of (Gx A) 6S)c(I,2(G)) is of the form IQC(L2(G)), where I is a
      ct
closed ideal of GX A, moreover
                  ct
         iYj A(ii).(Å},j,.)(i') = iYj 6.(i,j,.)(i)cx) c(i,2(G)).

Henee, if Tfr({')), we have a non-zero elosed ideal I of

GÅ~ A sueh that
   ct
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          .V. 6                       (I)AI ='{O}               U(i,j ,T)          l,J

by Lemma 3.1.
                                              - ee     Remark 3.4. Let (A,G,ct) and (A,G,B) be C -dynamical

systems. Zf or is exterior equivalent to B (See [39, 4.2]),
       A IAC)'then r(a)=r(B), but r(ct) is not alwayS equal to r(B) (See

                                         '[10]).

     Here we give an affirmative answeT for the problem

whether a von Neumann algebra is hyperfinite if a compact group

acts ergodically on it.
- Propositidn 3.5. Let (M,r,ct) be Wee-dynamical system

with Mr =Åël where r is a second countable compact (not

necessarily abelian) group. Then the von Neumann algebra M

     proof. For.feLl(r), we define or(f)(x) "Sr f(y)cty(x)dy

for xeM. rt is easy to prove that ct(f) is a normal completely
positive map of M with lIct(f)lI is equal to Ll-norm Hfll

if f is a positive function on r. Let ` U(r) be the linear
                     Aspan by {u(i,j,T); T6r, i=i,2,"',dim T} whe]pe u(i,j,T) are

coeffigient functions for- the i]?reducible representation T.

Then 3(r) is a dense subalgebra of the space Cgr) of all

continuous functions on r. Choose {fn} in C(r) such that fn

eonverges to the Dirac measure 6e at e in the wee-topology
with Ll-norm lIfnll = l. Then lim ct(fn)(x) = x in the u-
                                nb oo
weak .topology. Since 7(r) contains constant functions,

we can choose gn in `]{(r) such that gn is a positive function

with Ll-norm lIgnll = l and sup-norm llfn - gnll `-:. 1/n•

Then ct(gn) is a unital normaZ compZetely positive map of M

                '

                            - 42 -



such that or(gn) converges to l in the point-a-weak topology.
                                                          'Since gn is in {]t(r), ct(gn)(M) is contained in the subspace

generated by the finite union of or(u(i,j,x))(M) (i,j=l,2,s•-u,
dim 7r, T(lF). Sinee ct(u(i,j,T))(M) is eontained in Mct(T)

and Mct(rr) is a finite dimensional subspace of M (See [17],

Proposition 2.1), ct(gn) is of finite rank. Thus we conclude
          '              'that M is semi-diserete. By [9] Corollary 5.10, M is

                                     ec     Coyollary 3.6. Let (A,r,or) be a C --dynamieal system
with Ar = <SLI and r is a secoRd eountable compact group.

Then the C -algebra A is nuclear.

     Pr"OOf. The proof is the same way as above by using [5]e
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