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Introduction.

This thesis 1s devoted to the study of W*—dynamical
systems and C*—dynamical systems. When we have a W*—dynamical
system (M, G, a) or a C*—dynamical system (A, G, a), we can
construct from it a W*—crossed product GXuM or a C*—crossed
product GXaA. Many fesults in the theory of operator algebras
are established in these terms. And the structure of these
dynamical systems and crossed products'are our main concern.
There are many ways to pick up problems and I want to establish
here three results.

This thesis consists of three chapters. Each chapter concerns
with each one of these results. Now I will explain briefly the
contents of each éhapter.

In the first chapter, we will be concerned with the non-
existence of conditlional expectations on W*—crossed products
([231).

Let (X,#},u) be a measure space and let B be a o-subfield

of’é&. The conditional expectation E in statistics is a linear

map of L'(X,A&,u) onto L'(X,B,u) satisfying
§o e auto =l B G dutx)

for all Béd;raﬁa)fééLl(X,gﬂ;u). E is an Lm(X,@3,u)—bimodu1e

map, namely it satisfies E(gfh) = gE(f)h for all g,h €L (X,B ,u)
and fEELl(X,ﬁ¥,u). In the study of operator algebras, condi-
tional expectations of Lm(X,é%,u) onto Lm(X,dB,u) are in
question. The transposed operator E* of E in the above is not the
one to find because it is but the canonical inclusion map of
L7(X,B ,u) into L7(X,& ,u). A desired conditional expectation
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T of L (X,€Y,1) onto L (X,B ,u) should be a map which makes
correspond to each fe-ﬁ@(X,ﬁi,n) an element T(f) in Lm(X,QB,n)

such that

[ 200800 am = [} £Gem) anx)

for all ge&Ll(X,OB,uj. Then T is shown to be an L (X,B ,u)-
bimodule map, namely it satisfies - T(gfh) = gT(f)h for all g,hc¢
L°(X,8 ,u) and £ €L7(X,& ,u). This method may be applied in the
context of general operator élgebras, especlially in the case

of finite von Neumann algebras. Let M be a finite wvon Neumann
algebra with a normal tracial state T andrlet N be a von
Neumann subalgebra of M. Then the conditional expectation T of

M onto N will be defined as a map which satisfies for each x¢M

T(T(x)y) = 1(xy)
for all yeN. In this way, J. Dixmier [8] and H. Umegaki [50]
have introduced.the notion of the conditional expectation in
Operator'algebras;-Ahd;thére;are‘abundantrstudieérconcerning‘
this ([81,[211,0367,[441,046]1,[471,(50]1--[53]1). A map P of a
C*-aigebpa A onto?a-Cf—subalgebra%Bwof Ais called a conditional
expectation if P is a B-bimodule linéar map with P(x) ='x for
all x&B. J. Tomiyama [46]-showed that every projection of norm
one is a conditional expectation. And M. Takesaki [44] examined
under what condition there exists a nomal conditional expectation
of a von Neumann algebra M onto a von Neumann subalgebra N of M.
It was shown that, if there is a normal conditional expectation

of M onto N, then the type of M is greater than that of N (seel[}47]).

*
The study of W -crossed product with a discrete group was
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initiated by F. J. Murray and J. von Neumann, and many people
investigated the structure of these crossed products. In their
studies, the éxistence of a conditional expectation of G xM
onto M played an important role. If the group 1s not discrete,
the situation is not quite favorable. Indeed, my result here
is that

there is not any normal conditional expectation

of GxaM onto M if G is a locally compact connected

group.
One of the reasons why the study of the crossed product with
a continuous group is difficult will lie in this fact. As
an application, we prove that GXaM is always properly infinite
when G 1is a locally compact connected group. This is related
to the von Ngumann - Segal Theorem "the connected semisimple
Lie group has not any non-trivial finite representation”([41}
Corollary 1).

In the second chapter, we discuss about isomorphisms of
Fourier algebras{(seel(12}) in crossed products. For two locally
compact abelian groups G and H, Pontrjagin's theorem implies
that Ll(G) and Ll(H) are isomorphic as Banach algebras if and
only if G and H are isomorphic. Y. Kawada [26] and J. G. Wendel
(49) proved the same statement for arbitrary locally compact
groups. Now for an abelian group G, we set A(G) = {’? ; fe
Ll(a)} where T is the dual group of G and f is the Fourier
transform of f (see [11) (3.6)'and 40)) and we give a norm
i i on A(G) by H?l\: Ll—norm of £, Then A(G) turns out to be

a Banach algebra with pointwise-multiplication. The above



fact may be reformulated in this way; A(G) and A(H) are
isomorphic as Banach algebras if and only if G and H are
isomorphic. The algebra A(G) was later extended as the Fourier
algebra of an arbitrary locally cqmpact group G. The definition
is due to P. Eymard [11] and it is shown to be isomorphic as
Banach spaces to the predual m(G), of the von Neumann algebra
m(G) generated by the left regular representation of G. M. E.
Walter [48] showed that A(G) and A(H) are isometrically isomor-
phic as Banach algebras if and only.if G and H are isomorphic.
Quite recently J. Canniére, M. Enoch and J. M. Schwartz [3,
Theoré&me 2.9] established the same statement as the M. E. Walter's
result in the category of Kac algebras. We have also the notion
of Fourier algebra for w*—dynamical system. 1t was defined by
H. Takai [43] and M. Fujita [12]. Now, what we prove in this
chapter 1s that

two W*—dynamical systems are equivalent or anti-

equivalent if and only if their Fourier algebras are

isomorphic as Banach algebras.

The third chapter is an attempt to extend some results

on C*—dynamical systems with 1ocally compact abelian groups to
C*—dynamical systems with non-abelian groups. W. Arveson [2]
constructed the theory of spectral subspaces for W*- and C*—
dynémical systems with locally compact abelian groups. Using
this, A. Connes [6]Vdefined the Connes spectrum T(o) which is
a closed subgroup of the dual group é of G, and established a
beautiful structure theory of factors of type III. A. Connes and

%
M. Takesaki ([7]1,[45]) proved for a W -dynamical system (M, G,



a) with an abelian group G that GXaM is a factor if and only

if I'(a) = & and a is ergodic on the center of M. There were two
ways to generalize this statement, the one was toward C*-
dynamical systems ([271,[281,[371,[38],[39] etc.), the other
one was toward w*—dynamical systems with non-abelian groups
([291,0301,0321,[831,[34]).

Now, suppose that we have a C*_dynamical system (A, G, a),
when G is an abelian group, we have a dual action & of o on the
C*—crossed product GXaA and we can conslder the Connes spectrum
P(&) for the C*—dynamical system (GXQA, é, &)(see[B?]). Unless
the group G is abelian, we can not construct the dual action.
Instead, @ co-action § on GXaA can be constructed, which plays
the same role as the dual actlion in the case of abelian groups.

In this chaptér,

for a C*—dynamical system (A, G, o) we introduce the
notion of §-invariantness for C*-subalgebras of GXQA,
and, using this, we define the -essential spectrum
I'(d), which is coincident with F(&) in the case of
abelian groups. It is shown that A i1s prime if and
only if A is G-prime and T(S§) = G.

D. E. Evans and T. Sund [10] investigated C*—dynamical
systems with compactvgroﬁps and mentioned that I'(a) is-not invari-

ant under exterior equivalence. We prove that

A

I'(a) is invariant under exterior equivalence (é is
the bidual action of &) by characterizing F(g) in
terms of the dual co-action § of «a.

Qur final result is that

a von Neumann algebra should be hyperfinite when a



compact group acts on it ergodically,
This was proposed as a problem in the preprint of [17] of R.
Hpegh-Krohn, M. B. Landstad and E. Stgrmer, and, when the paper

appeared, it was poved independently with us.
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Chapter I Expectation.

The conditional expectation in operator algebras played
an imporfant role from the outset in the theory of operator
algebras. Thus J. von Neumann and F. J. Murray wereable to show
the existence of type II; factor by using it. The notion of
conditional expectations in general was first introdued by J. Dixmier
and H. Umegaki in a finite von Neumann algebra. There are abundant
literatures on conditional expectations (see(8]), (21}, lBéj, (447,
46y, (47), (50)-(53)).

Now let (M, G, o) be a W¥-dynamical system and GXQM be the
crossed product constructed from it (Precise definition will appear
in section 1). An important problem is whether there is a condi-
tional expectation of NEGxuM onto M. When G is a discrete group,
there exists a faithful and normal conditional expectation.

But it was not known whether there exists a normal conditional
expectation of N onto M in the case when G is non-discrete.

In this chapter we establish that there is no normal condi-
tional expectation of the crossed product N with a iocally compactd
connected group G onto M under certain conditions.

In spite of this result, a normal semi-finite operator valued
weight from N into M can always be found. This was shown by TU.

Haagerup[13] prior to our result.



1. Non-Existence of Expectation. Let M be a von Neumann
algebra on a Hilbert space %f and G be a locally compact group.
The triple (M, G, o) is said a W¥-dynamical system if the mapping
o of G into the group Aut(M) of all automorphisms of M is a
homomorphisms and the function g+woag(x) is continuous on G for
any x €M and weM, (M, is‘thé predual of M).

The crossed product GX M of M with G is the von Neumann
algebra on LZ(G,ia) generated by the family of the operators
{Tru(x), Ag)s xeM, geGl;

v {(ﬂ&(x)é)(h) - o, N 0e(n),  rer?(e, k) o)
(M(g)c)(n) = z(g™'n) . cet?(a, 4. '
The mapping m, is then a normal isomorphism of M onto ﬂa(M) such
that X(g)ﬁa(x)x(g)%zﬂa(ug(x)) for all g¢& G and x¢ M. We often
identify the von Neumann algebra M with the von Neumann algebra
WQ(M).

Let T be a linear mappingygf a von Neumann algebra M onfo a
von Neumann subalgebra N of M.

Definition 1.1. T 1s called a conditional expectation of
M onto N if T has the following properties.

(i) T(1) = 1, where 1 is the identity operator

(ii) T(axb)v= a(T(x))b, for all a, b&EN, xEM,

Moreover T is called normal if tT(N_X,)C.M_X_.

Let ¢ be an automorphism of a von Neumann algebra M.

Definition 1.2. ¢ is saild freely acting if the element x
of M with the property that x6(y) = yx for any y¢ M is necessarily

zero., For each automorphism ¥ of M, there is a unique central

projection g of M such that;

(1) w(q) =g
(i1) w]Mq is an inner automorphism of M

(111) WIM(l—q) is a freely acting automorphism of M(l—q)'

- 8 _



This central projection q will be denoted by p(¥) (ecf. Kallmann
[20]).

Let M be a von Neumann algebra. We also identify M_. with

£
fMf = {fxf; x& M} where f is a projection of M or M'.

Theorem 1.1. Let (M, G, a) be a W*—dynamical system and we
suppose that sup {p(ag); g€G, g # e} #1, where e is the identity
of G. Then, the following statements are equivalent;

(i) G is a discrete group

(i1i) there exists a normal conditional expectation of GXaM

onto M;

Remark 1.2, That (i) implies (ii) is well known (cf.(6) Pro-
position 1, 4, 6, [35) §4 and (15) g2). In fact if G is a discrete
group, the Hilbert space LZ(G,A%J is identified with éyazz(e).

On the other hand, for each g in G, put
n o { 1 (g = h)
e Lo (g#mn),

then the Hilbert space L2(G,€;) is identifiable with the direct

e (n) = ¢

sum Zgéd‘g@eg of subspaces %@gg(g €G). For each g in G and q
1n9, put Jg

n = n®sg, then Jg is an isometry ofﬁ;/ onto %@Eg.
Every x in,C(L2(G,%J) has a matrix representation with an operator

oné as elements
J XJh,

() g p = Iy
where £(R) is the algebra of all bounded linear operators on the

Hilbert space R. Especially, we have
h

(”a(x))g,h = 6gag—1(x) (xeM, g, h,e G)
kh .
(MngJ1=6g (g, h, k€G).

Put T(y) = (y) for ye€ Gx M. Then T is a faithful normal

e, e

conditional expectation of GxaM onto M.



Before we prove (ii) ©» (i), we will give two lemmas.
Lemma 1.3 will be used repeatedly in the whole of our study.
Lemma.l.3. Let T be a conditional expectation of GX M onto
M. We then have T(A(g))(l_p(ug)) = 0 for any geG.

Proof.v For each yng(l_p(aG))’we have;
3 * * %
yT(A(g) ) = T(yrlg) ) = T(A(g) A(glyrlg) ).
Since A(g)yr(g) =‘ag(y) is an element of M,
yT(a(g)") = T(X(g)x)ag(y).
Therefore T(A(g) )(l—p(ag)) =0 becguse ug is a freely acting
automorphism of M(14p(a ))
.8 .
Lemma 1.4. sup{p(ag); gecG, g # e} is a G-invariant central

projection of M.

Proof. For any y€M, g, h,€G with g # e, we have
uhgh-l(yuh(p(ug))) = uh(U)yah(p(ag))qh(U) ,

where U is an element of M such that |, = AQU, U U = pla )
gl My (o ) g

3.

Therefore we get an(p(ag)) é'p(uhgh"l)’ so that

and U0 = P(&g) (AdU(x) = UxU for Xé’Mp(dg)

ah(sup{(ag); gé&G; g £ e}) & sup{p(ag); g€G, g # el.

Hence sup {p(ag); g€G, g # e} is a G-invariant central projection
of M.

(The proof of Theorem 1.1). Lemma 1.4. implies that it is
sufficient to prove the Theorem in the case when p(ag) = 0 for
all gé G except the identity e. It follows that T(A(g)) = 0 for
all g¢ G except e by Lemma 1.3.

Suppose that T is a normal conditional expectation of GxaM
onto M. Let K(G, M) be the family of M-valued, o-weakly conti-

nuous functions on G with a compact support. By (14) Lemma 2.3,
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a *-representation u ofthe involutive algebra K(G, M) is defined,
w(g) = § A lg)m ((g))av(g)
where £ € K(G, M) and v is a left Haar measure of G. Moreover the
representation u maps K(G, M) onto a o-weakly dense subalgebra
of Gx,M. Since T is normal and T(x(g)) = 0 for all g &G except
e, we have ‘
T(u(e)) = JT()m (E(g)) av(g) = m (£(e))v({e}).
Therefore v({e}) must be a positive number, so G must be a discrete
group.
Remark 1.5 Let (M, G, o) be a W*—dynamical system. Let V
be a strongly continuous unitary representation of G into M. such.
that ag = AdVg for any ge€G.
We define a unitary operator W on LZ(G,QJ = %%9L2(G)
(we)(g) = v e(g) |
for all & ¢ L2(q, f’?). We get;
wﬂ&(x)w* = x®l for any x € M
Wk(g)w* = Vg@ p(g) for any g e G.
where p is the left regular representation of G on LZ(G). We
therefore get
w(GxaM)w* = M®p(a)", W'ITOL(M)W* = M®1.
Whence we knoW that there are many normal conditional expectations
of G><QM onto M, according to the result of (47} Theorem 1.1.
We will have a decisive result about the eiistence of a
normal conditional expectation in case of a connected group.
Theorem 1.6, Let G be a locally compact connected group
and (M, G, o) be a W%—dynamical System.- If there is an element

h in G such that ay is an outer automorphism of M, then there

does not exist any normal conditional expectation of GX M. onto M.
a



Proof. We suppose that there exists a normal conditional
expectation T of GX&M‘onto M.

Assume first that there is an element g in G such that g is
on a one—parametér subgroup x(t) at t = s and ug = 0 (g) is an
outer automorphism of M. p(ux(s)) is then a central projection of

M which is not the identity operator of M. For any né&iN, we get,
plogg)) £ ploy(q))
0
because (ax(s)) =0 (g)

From Lemma 1.3, T(A(X(S)))(l_p(a )y = 0, so we have
| x(2)

=R 6)]

S
T()\(X(ﬁ)))(l_p(ax(s))) = 0

for any né&IN. Therefore we get,
T(Ar(e)) = w-1im T(A(x(2))) = 0,
(1-plo (gy)) = [ St (A-ple))
so we get 1 :-p(ag), which is a contradiction. So the assumed

situation does not take place.

When an element g in G is on a one-parameter subgroup of G,
we write e v g. By the above argument, ag must be an inner
automorphism of M for any g in {gé G; e ~ g}. Now G 1is equal to
the closed subgroup K generated by {g& G; e g}. Indeed, suppose
that thereare an element g in G and an open.neighborhood U of e
in G such that the intersection of gU and K is empty. By (31]
Theorem 4.6, there exists in U a compact normal subgroup H such
that G/H is a Lie group. Then there is a neighborhood V of e in
G such that V contains H and each poinﬁ of V/H is on a one-parameter
subgroup in G,H. Since G-H is also a connected group, G/H is

the group generated by V/H, so that there are a finite subset

- 12 -



giH; i=1, 2, «.., n} in GH, and one-parameter subgroups xi(t)
(1 =1, 2, «.., n) in G/H such that _ﬁ g;# = gH, g;H is on the
one—parameter subgroup xi(t) of G-H iglt = s, (i =1, 2, v.., 1)
and g, €V (i =1, 2, ..., n). By (31) Theorem 4.15, there are
one-parameter subgroups yi(t) of G (i =1, 2, ..., n) such that
yi(t)H = xi(t) for any téR (i = 1, 2, ..., n). The element

n n
g-l I yi(si) is contained in HCU because I y;(s;)H = gH.

o i=1 : i=1 n
Then the intersection of K and gU is not empty since I

1—lyi(si) is

contained in both K and gU, which is a contradiction.

As the group generated by {g€ G; e ~ g} was shown to be dense
in G, there is a net {gi}iél in this group such that it converges
to h in G, h being the element in the statement of the Theorem.
Since ag are inner autom?rphisms of M for any g in {ge G; e v g},

Q are inner automorphisms of M for any i €I. Then we get;
i
ple ;) = pley),
g; b

-1 -1
T(A(g7"R)) (1 _p(a _1h)) = T(x(g] h))(l-p(uh)) = 0,
€1

T(A(e))(l—p(ah)) = W-%i? T(A(gilh))(l-p(ah)) = 0,
so that l—p(uh) = 0, which is not the case. We get thus a con-
tradiction and the proof is complete.

Remark 1.7. TIf the group is not supposed connected, there
are W%—dynamical systems with a non-discrete locally compact
group such that there is an element h in G with the freely acting
automorphism ay of M and there is a normal .conditional expectation

of GXQM onto M. For instance, let G be a locally compact group

Glx G, where G1 is a discrete group and G, is a non-discrete



locally compact group. Then (Lm(Gl), GyX Gy, @) and (Lm(Gl),

G o) are w“-dynamical systems where the actions a(g n) ° Gg
’

1°
are the translation of Lw(Gl) for all (g,h)e€ Gy X Gy Then
GxaLw(Gl) is isomorphic to GlXOLm(Gl)@)p(GZ)" where p is the
left regular representation of G, on L2(G2). Let w be a normal
state of p(Gz)", p, be a slice mapping associated with w (See
C47)) ovalXOLw(Glxap(Gz)" onto GlXOLm(Gl). Let T be a normal

conditional expectation of G;x Lw(Gl) onto Lw(Gl) (Remark 1.2.).

o
Then T'pw is a normal conditional expectation of GXQLm(Gl) onto
L”(¢;).

Proposition 1.8. Let (M, G, a) be a W%-dynamical system,
I' be an open subgroup of G and w be a faithful normal semi-finite
weight on M. Then there is a faithful normal conditional ex~-
pectation T of GX M onto W (M, T, ) = {m (M), A(T)}" such that
$eT = & and T(A(g)) = 0 if g¢I‘where’m is the dual weight
associated with w.

Proof. By (14) Theorem 3.2 we get,

"
Oﬁ(ﬂa(x)) =vna(0$(x)) for all x e M

)it

oﬁ(x(g)) = A(g A(g)ﬂm((Dweag : Dm)t) for all geG.

Therefore W (M, T, a) is O%-invariant for all t€R. Let K(T, A )
be the family of all Aw—valued continuous functions on I' with
a compact support where,Ad)is the left Hilbert algebra associated
with w. We regard K(T, A )as Irex(a, Aw); f = 0 outside r}.

Then by (14) Theorem 3.2, w]w*(M ,) 1S semi-finite. Then
’

T,
by (44) Theorem, there is a unique faithful normal conditional
expectation T of GX M onto W (M, T, o) such that el = 3.

Moreover we find, by the construction of T in (44), that

- 14 -



T(x) = ¢(E x E) for all x € GX,M where E i1s the projection of
L2(G,7§() onto L2'.(‘F, /?) and ¢ is the canonical automorphism of

FxBM onto W (M, T, a);

@(ﬂB(x)) = ﬂa(X) for all x €M

o (Ax(g)) = Ar(g) for all ger

(where the action B is the restriction of o on I'). For all

x(g) € X(G, M), we obtain,

T( jGﬂa(x(g>)k(g)dg)

¢ (E jGﬂa(X(g))K(g)dg E)

IRNCIENINGLES

Then we get T(A(g)) = O for all g¢T since EA(g)E = O for g¢T.
Remark 1.9. The above proposition was proved by H. Choda

in case of a discrete group ([(4)Proposition 2).

2. Applications.

Corollary 2.1. Let G be a locally compact connected group
and (M, G, a) be a W%—dynamical system. If there is an element
g€ G such that p(ag) = 0, then the crossed product GxaM is properly
infinite.

Corollary 2.2. Let (M, G, o) be a W*—dynamical system. If
the group G is not discrete and p(ug) = 0 for all g¢ G except
g = e, then the crossed product GX@M is properly infinite.

We prove the Corollary 2.1 only, as we can prove the Corollary
2.2 in the same way.

(Proof of Corollary 2.1)J. We suppose Gx M is not properly

infinite and let (GXaM)p be the greatest finite portion of GX M.
a
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Since p is a centiral projection of GXaM, p is a projection of ﬂa(M)'.
Let g be the central support of p in ﬂa(M)'. Then we get that g

is a G-invariant projection of ﬂa(M)P\ﬂu(M)' because p is AdA(g)-
invariant for all g& G. The von Neumann algebra Mp is a von Neumann
subalgebra of a finite von Neumann algebra <GXaM)p’ so that there

is a normal conditional expectation T, of (GXuM)p onto Mp (See

(8) Thebreme 8 or. [50) Theorem 1). We define a new normal condi-

tional expectation T of (GX&M)q onto Mq;
T(x) = @(Tl(pxp))

for all XE-(GXuM)q where ¢® is the canonical isomorphism of M
onto M
q

For a,b€M , €(Gx_ M) , we have
qr X €8xy

T(axb) = @ (T, (paxbp))

o {T, ((pap) (pxp) (pbp))}

¢ {pap T, (pxp) pbp}

a{©°Tl(pxp)}b = a(T(x))b,
and

T(q) = ® Tl(pqp) = &(p) = q.

Therefore T is a conditional expectation of (GXQM)q onto M
The normality of T is clear. On the other hand, (GxaM)q is the

M ). This

crossed product with the W -dynamical system (Mé, G, o
q

contradicts Theorem 1.6.
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Chapter II Isomorphism of Fourler algebra.

For locaily compact abelian groups G and H,Pontrjagin's
duality theorem mentions that Ll(G) is isomorphic to Ll(H) as
Banach algebras if and only if G is isomorphic to H as locally
compact abelian groups. Y. Kawada [26] and J. G. Wendel [49]
proved the same statement for arbitrary locally compact groups.

For an abelian group G, we set A(G) = {%; fé&Ll(a)}
where é is the dual group of G and % is the Fourier transform
of £ (seel[11] (3.6) and [40]) and we give a norm k- i on A(G)
by H%Hs Ll—norm of f. Then A(G) turns out to be a Banach alg-
ebra with pointwise-multiplication. The above fact may be refor-
mulated in this way; A(G) and A(H) are isomorhpic as Banach
algebras if and only if G and H are isomorhpic as locally com-
pact abelian groups. The algebra A(G) was later extended as
the Fourler algebra of an arbitrary locally compact group G.
The definition is due to P. Eymard [11] and it is shown to be
isomorphic as Banach spaces to the predual m(G)y of the von
Neumann algebra m(G) generated by the left regular represen-—
tation of G. M. E. Walter [48] showed that A(G) and A(H) are
isometrically isomorphic as Banach algebras 1f and only if
G and H are isomorphic. For a w*—dynamical system (M, G, a),
the Fourier space FQ(G;M*) was defined by H. Takai in [40]
such that FG(G;M*) is isometrically isomorphic to the predual
of the crossed product GXaM as Banach spaces. M. Fujita [12]
defined a Banach algebra structure in the Fourier space FG(G;M*).
Then he showed that the group of all characters _Fgfﬁ?MET of

Fa(G;M*) is isomorphic to G and studied the support of the



operators in GXGM.

In this chapter we generalize the Walter's result for
W*—dynamical system (M, G, a).

Let (M, G, o) be a W*—dynamical'system. The covariant
representation (ﬂu,vl) defined in (1.1).will be denoted by
(ﬂa, XG) in this chapter. Fach element w in the predual

(GXaM)* of GxuM may be regarded as an element u, of Cb(G;M*);
u,legl(x) = <7 (2)A,(g) , w > (2.1)

for all x& M, g¢&G where Cb(G;M*) is the space of all bounded
cohtinuous,M*—valued functions on G. We denote FG(G;M*) =

b - ) ]
{ u, ;wE(GXuM)*}C.C (G;Mg). A norm |i-ljis defined on Ba(G;M*)

< jiuil for all uegFa(G;M*) where

by i uw1|= ilwil . Then iiunm
4 i, 1s the sup-norm on Cb(G;M*). We define a product on

F (G:My) by
(u x V)[gl(x) = ulgl(x)vlgl(1) (2.2)

for all u, v&F (G;My), x&M and g &G. Then Fa(G;M*) is a Banach
algebra ([12] Theorem 3.5). So we can define products between

Gx M and Fu(G;M*);

<uT , v > = <T, vu >

< Tu , v > = <T, usv >

for Té&GxaM, u, ve&Fa(G;M*) ((3.7),(3.9) in [12]3). Let T be an
operator in GXGM. Then thé supp(T) of T the set of all g&G
satisfying the condition that_xG(g) belongs to the o-weak closure

of TFa(G;M*) (see [12] Proposition 4.1).
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Theorem 1. Let (M, G, d), (N, H, B) be W*-dynamical systems
and FQ(G;M*), FS(H5N*) their éssociated Fourier algebras. Let
¢ be an isometric isomorphism of Fd(G;M*) onto FB(H;N*) as Banach
algebras.
Then we have five elements (k, p,. g, I, 6) with the follow-
ing properties:
(1) keG such that AL(k) = t¢(AH(e)) where U¢ is the
transposed map of ¢ and e is the identity of H,
(2) I is an isomorphism or anti-isomorphism of H
onto G,
(3) p(resp. q) is a projection of ZMI\MG (resp.
ZNF\NH) where Zy (resp. ZN) is the center of M (resp. N)$and

MG = {x eM; ag(x) = x for all g €G}, NH

= {x&N; 8, (x) = x for
h ¢ H}, |

(4) © is an isometric linear map of N onto M such
that ®1is an isomorphism of N, onto M, and 6 is an anti-isomor-
phism of Nj_. onto M

(5) ¢(uw)hl(y) = (Lu)lI(h)](6(y)p) +

| (W LI(R)ICap ,y(8(y)(1-p)))

for all y¢N, h€H and ueF_(G;My), where (ku)[g](y)=u[kg](ak(y)),

(6) 6L, (y)I=lay y)8(y)Ip + [aT(y,8(y)1(1-p) for all
y €N, h €H.

Proof. The transposed map t¢ of ¢ is an isometric linear

map of HXBN onto Gx M. Using [19] Theorem 7.10, we get;
t. ot
¢ = "¢(Ag(e)) (yp + vp)

where Y1 is an isomorphism of (HXBN)Z, onto (GxaM)z’ Yp is an
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anti-isomorphism of £HXBN)(1—Z') onto (GXdM>(1—z)’ z (resp. z')
being a central projection of GxaM (resp. HXBN). (2.3).

It follows from (2.2) that for all u, VGEFQ(G;M*),

<t¢(AH(h)) , U%v > < AH(h) , ¢o(uxv)>

[l

< AH(h) , ¢ (u)xd(v)>

< XH(h) 8 ?\H(h) > P(WI®(v)>
< t¢(AH(h)), u> < t¢(AH(h)), v>

Therefore t¢(AH(h)) is a character of Fa(G;M*) for all héH,
which implies that tqa()\H(H)) C:AG(G) because the group of all
characters’ﬁgzg;ﬁgj is isomorphic to G ([12] Theorem 3.14),
moreover since ¢ is an isomorphism,

Po(ag () = Ag(@).
We denote AG(k) = t¢()\H(e)). By the same argument in [48]

Theorem 2, we get that

v = So0uen™ Bo = vy + v, (2.4)

%
is a C -isomorphism in Kadison's sense [19] and

Y(Ay(h)Ag(hy)) is either y(Ag(h)))v(Ag(hy)) or v(Au(hy))y(Ay(h)),
moreover if we put AG(I(h)) = y(AH(h)), then I is either an iso-
morphism or an anti-isomorphism of H onto G. (2.5)
The transposed map ¢ of y is also an isometric isomorphism of

Fa(G;M*) onto FB(H;N*). Then we get

[t}

< 1, (¥) ,'w(u*v) >
TrB(y) > v(w)xyp(v) >
ﬂB(y)s& 1, v(uY(v) >

< y(mg(y)) , uxv >

i
A

u
A

]
N

y(ﬂs(y)) , uxv >

for all y&N, u, vé}Fa(G;M*). By [29] Proposition 2.3, we obtain
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Y(WB(y)) is an element of ﬂa(M), so we can define an isometric

surjective linear map 8 of N onto M by 6 = W&%Ycﬂ Since Yy

8"
is a Jordan isomorphism,

Y(T)y(z') + y(z2")y(T) = v([T,z']) = 2y(Tz"*)

for all T(EHXBN, therefore we get y(Tz') = y(T)z. Hence

Y(ﬂe(xy))z = Y(NB(X))Y(ﬂB(Y))Z

for all x, y&€ N. Since z is a central projection of GXQM,

z is also a projection of ﬂa(M)', then we get

Y (g (xy))p = Y(ﬂB(X))Y(wB(y))p (2.6)

for all x, y €N where p is the central support of z in ﬂu(M>'.

We denote by g the central support of z' in FB(N)', then the

equations y(q)z = yv(qz') = y(z') = z imply that y(a)p = p,
similarly we obtain Y_l(p)q = § so that
_ ol _ ool | ]
y(a) = y(y “(p)a) = v(y “(p))y(a)p = py(a)p = p.

Hence 6 is an isomorphism of Nq onto Mp and 6 1is an anti-

isomorphism of N( ) onto M The projection p (resp. q)

1-q (1-p)-
is G-invariant (resp. H—inVariant) since ﬂa(M)' =
% %
1 =
Ag(g)m (M)A, (g)  and Ao (8)zd, (g) z.
Now we have already proved (1) n~ (4) and the statements (5),(6)

still remain to prove. For all y&€N, h €H we get,

{r =008, (30032 = YO () (32, (h) zr)

A (T()m e 8(3)A,(T(n) Dz

= {ﬂaoaI(h)S}(y)z,
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hence

eeBh = uI(h)ve on N

a,

and similarly

Therefore
0c8,(y) = apyy=0(ylp + aI(h-l)Ce(y)(l—p)
for all y ¢ N and h €H. To prove the statement (5), we shall show,
supp Y(ﬂB(y)AH(h)) = {I(h)}.

For since Y(ﬂs(y)AH(h))u = Y(ns(y)AH(h)w(u)) for all ué&Fu(G;M*)
and ¢ is surjective,

~0-W ~g-W
[y (mg(y) Ay (h))F (G3Me) 1 = yImg(y)Ag()F g (HiNy)

-0-W . _
where [ ... ] means a o-weak closure, on the other hand,

' ~0-W _
[mg (79I Ay (R)F o (H;Ng) ] M ag(H) = Eay(h)
because of supp ﬂB(y)AH(h) = {h}, so we obtain

. -0-W
[y (mg (A (0))F (G3M) T M Ag(6) =€ 2a,(T(h))

supp Y(ma(y)ay (h)) = {I(h)}.

By [12] Theorem 4.4 or [32] Proposition 6.1, there exists an

element x of M such that Y(ﬂs(y)AH(h)) = Wu(x)XG(I(h)).

ﬂa(x)AG(I(h))z = Y(ﬂB(y)XH(h))Z

= Y (rg(3)Y Oz = 1 (8(y))A(I(h))z,

- 22 -



then xp = 8(y)p, and similarly x(1l-p) = aI(h)G(y)(l—p). we get

x = 0(y)p + aI(h)e(y)(l-p),
Y(ﬂS(y)kH(h)) z‘'nm(G(y)p)AG(I(h)) +~wa(aI<h)6(y)(1—p))AG(I(h)).

By (2.1), ¢(u) = W(ku) for uE}Fa(G;M*) and the above equation,
we can get the statement (5).

Remark 2. Theorem 1 is a generalization of [48] Theorem 2.
Corollary 3. Let (M, G, a), (N, H, B) be W*—dynamical
systems and the two actions o and B are ergodic on their centers

(that is Z,\M° = 2, ANT =().

The following statements are equivalent,

(1) Fa(G;M*) is isomorphic to FB(H;N*) in the sense of
Banach algebras

(2) there exists either an isomorphism I of H onto G, an
isomorphism 6 of N onto M such that 6°Bh = aI(h>ce for all h €H or
an anti-isomorphism I of H onto G, an anti-isomorphism 6 of N
onto M such that SoBh = aI(h—l)ce for all h eH.

Proof. Suppose ¢ is an isometric isomorphism of Fa(G;M*)
onto FB(H;N*) and we use the same notations in Theorem 1. The
projection p in (3) of Theorem 1 must be zero or 1 by the ergo-
dicity of the action a, then 6 is either an isomorphism or an
anti-isomorphism of N onto M. When G 1s a locally compact
abelian group (it follows from (2.5) that H is a locally compact
abelian group), I in (2.5) can be regarded as both an isomor-
phism and an anti-isomorphism, therefore the statement (2)
follows from Theorem 1 when G is abelian. Hence we may assume
that G is non-abelian. When I is an anti-isomorphism of H onto
G, the projection (l-z) in (2.3) must be non-zero. For if the

projection z is the identity in GX M, then Y in (2.4) is an
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isomorphism of HXBN onto GXaM, so I 1s an isomorphism, which
is a contradiction. Taking the central support of (l-z) in
wa(M)' as (2.6), 6 is an anti-isomorphism of H onto G such

that o ;6 = eosh for all h€H. If I is an isomorphism, ©

T(h
is an isomorphism such that aI(h)ee = eosh.

Conversely suppose I is an isomorphism of H onto G such
that ecsh = aI(h)oe for all h&H. Then there exists an iso-
morphism T of HXBN onto GXaM such that P(ﬂB(y)) = ﬂa(e(y)) for
all y € N and F(AH(h))=Ag(;(h)) for all héH (cf. [45] Proposition
3.4). Then the transposed map ¢ of I' is an isometric isomor-
phism of Fa(G;M*) onto FB(H;N*). Suppose I is an anti-isomorphism
H onto G such that eth = aI(h—l)oe for all h €H. Considering
the opposite von Neumann algebra M° of M and the isomorphism J
of H onto G by J(h) = I(h~}) for all h €H. There exists an
isomorphism I of HxgN onto Gxa(Mc) such that F(ﬂs(y)) = ﬂa(e(y))
for all y €N, F(AH(h)) = AG(J(h)) for all he€e H. On the other
hand, Gxa(M°) is isometrically isomorphic to GxaM as Banach
spaces, therefore T is a o-weakly continuous isomefric linear

map of HX_N onto GXaM. Then the transposed map ¢ of T is an

B
isometric isomorphism of Fa(G;M*) onto FB(H;N*).
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Chapter III C*—dynamical system.

This chapter is an attempt to extend to some results on
C*—dynamical systems with locally compact abelian groups to
C*—dynamical systems with non-abelian groups. W. Arveson [2]
constructed the theory of spectral subspaces for w*—and C*—
dynamical systems. Using this , A. Connes [6] defined the Connes
spectrum I'(a) which is a closed subgroup of the dual group é
of the group G, and established a beautiful structure theory of
factors of type III. A. Connes and M. Takesaki ([7]1,[451)
proved for a w*—dynamical system (M, G, a) with an abelian group
G that GXaM is a factor if and only if TI'(a) = & and o is ergodic
on the center of M.

Now, suppose that we have a C*—dynamical system (A, G, a).
When G is an abelian group, Connes-Takesaki's statement was
replaced by the following, (1) the C*—crossed product GxaA
is prime if and only if T'(a) = é and A is G-prime ([27],[38],
[391), (2) GXaA is simple if and only if for the strong
Connes spectrum %(a), ?(a) = & and A is G-simple ([28]1). 1In
the proof of these statements, it was important that we have
a dual action & of o on GXaA and we consider the Connes spec-
trum F(&) for the C*—dynamical system (GXaA, é, &). Unless the
group G is abelian, we can not construct the dual action.

Instead, a co-action § on GxaA can be constructed, which then
plays the same role as the dual action in the case of abelian
groups.

In this chapter, for a C*—dynamical system (A, G, o) we
introduce the notion of d-invariantness for C*—subalgebras of GXGA

and, using this, we define the essential spectrum TI'(§),



"

which is coincident with ['(®) in the case of abelian groups.

It is shown that A is prime if and only if T(S8) = G and A is
G-prime. D. E. Evans and T. Sund (10] investigated C%-dynamical
systems with compact groups and mentioned that T(a) is not
invariant under exterior equivalence. We prove that P(&) is

~

invariant under exterior equivalence (& is the bidual action of
@) by characterizing F(&) in terms of the dual co-action § of a.
Qur final result is that a von Neumann algebra should be hyper-
finite when a compact group acts on it ergodically. This was
proposed as a problem in the preprint of (17] of R. Hgegh-Krohn,
M. B. Landstad and E. St¢rmer, and, when the paper appeared,

it was proved independently with us.

1. The relation between I (&) and T'(&) for an abelian group.

Now take a C*—algebra A and a locally compact group G with a fix-
ed left Haar measure dg on G. Suppose that there is a homomorphism
o of G into the group Aut(A) of all *‘autOmorphisms of A such
that each function g___gag(a) is norm continuous for a €A.
The triple (A, G, @) is called a C*—dynamical system. Let
(A, G, @) be a C*—dynamical system and assume A CB(ép for some
Hilbert spacei%. We denote by K(G, A) the space of continuous
functions from G to A with compact support. Define a faithful

representation of K(G, A) on LZ(G,f;) by

(x)() = | o -1(x(e)e(nle) ag (3.1)

G
for x€ K(G, A) and £€ L2(G,f}). We identify K(G, A) with its
image in B(LZ(G,%?)) and denote by GX A the C*;algebra generated
by K(G, A). We say that GX,A is a crossed product of G with A.

We define a representation v of G on LZ(G,§O and a faithful
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representation 1 of A on LZ(G,Z%) by

-1

(v(n)g) = &(n

I

g), (1(x)g)(h) = ap-1(x)e(h)

for h, g€ G, x €A and EeiLZ(G,>?). This covariant representation
(v, v) is (ﬂu’ A) in (1.1). We also use a unitary operator W

(called the Kac-Takesaki operator) on 12 (GxG)

(wg)(g,h)

2
for & € L (GxG) and we denote by X a left regular representation
of G and by m(G) the von Neumann algebra generated by {,(g); geG}.
Note that this ) is different from ) in (1.1). Then we define

an isomorphism ¢, of m(G) into m(G)® m(G) by GG(X) = w*(X@,l)w

for xem(G).
When A and B are Cw-algebras, we denote by M(A) its multi-
plier algebra. If A is a concrete Cw-algebra, we may define

M(A) = {a€eA"; ab + ca €A for b,ced} ([1]). We put

i~

M (A®B) = {x cM(A)®M(B);
x(1®b) + (1®c)x ¢ A® B, ch(x)eA for b,c € B, d)éB%}

where L¢ is the left slice map of ¢ and the symbol ® means the

spatial tensor product.

Proposition 1.1. The map &;

§(x) = (LW )(x®1) (1 W) for x€Gx A,

N

ig a -isomorphism of Gx A into M (Gx,A®C_(G)), where C_(G) is
the reduced group Cﬁ—algebra of G. It satisfies the following

relation.,
S(vig)) =vig)®aleg), (geG), os(i(a)) = 1(a)®1, (aech) (3.2)
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(6®1i)8 = (i@cSG)d ' (3.3)

where i's are identity mappings of M(Ci(G)) or M(GX A).
Proof. We get (3.2) by an easy calculation. It follows from
(3.1) and (3.2) that

§(x) = 5 ci(x(g))e 1)(v(g)®Ar(g))dg

for ¢ K(G, A). Since 1(A) and v(G) are contained in M(Gqu) and
A(G) is contained in M(C;(G)), §(x) is an element of M(GXQA)@)M(C;(G)),
which implies &(Gx A) CM(GxaA)-@M(c;(G)),

If x€K(C, 4), feK(G)= K(G,8), We have
s(x)(1® \(£)) = 5(} (1x(g))®1)(v(g)®ag))(1® A(£)) ag
=[S e £ Gx(e))® 1) (W(@)RA(gh)) dgan
:jgexa (g™ Tn)x(g))®1) (w(g)® 1)) dgdn

cf(n)A(h) dh, therefore 6(6x 4) (1@ Ci(G))C

Gx A®C (G). Similarly we have (1® C. (G))s(Gx. A) € (GX A)®C.(G).
o] r r (¢} o r

where A(f) = j

Take xe K(G,A) and(béCi(G)*? then
L¢(5(X)) = Ld;UG (tx(g))®1)(vig)® A(g)) dg_)

SG 1(x(g))o(r(g))V(g) dg

§ o 160 x(e)V(e) g = ox,

where (¢x)(g) =¢(A(g))x(g) €XK(G, A). We have therefore

0 8(GxX A)C Gx A ec (o)
ch (Gxa )cha for ¢ ¢ r(G)

because HL¢°5h§ Pt
The relation (3.3) follows from (3.2) and 5G(A(g)) = 2 (g (g)

for g¢G.
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We will introduce the essential spectrum of a co-action following
Y. Nakagami (33) and Y. Nakagami-M. Takesaki (34). To do this we
first recall some definitions.

A co-action § of G on a C*—algebra A is an isomorphism of A
into ﬁi(A@)C:(G)) satisfying (6®1)6 = (i@>5G)6. Then we define
6, by

6u(a) =2Hf6(a) fortléBr(G), a€eh,

where Br(G) is defined in (83 to be regular ring, and we identify
Br(G) with the dual space C;(G)W of C;(G). It follows from (3.3)
that Gugv = 8§06 for u,véeB (G).

We set

Spg(a) = {geG; ulg) =0  for 6 (a) = 0, ueB (a)},
sp(8) = {geG, ulg) =0 for 8§ =0, ueB_(G))

and | |
r(s) = N{sp(s]B); Bed(n)I,

where‘%§(A) is the family of non-zero hereditary Cw—subalgebras
B of A such that Su(B)CLB for ue}Br(G), which is called S-invariant.

Let E be a closed subset of G, we set

2%(8) = {a€h; Sps(a)CE}.
Lemma 1.2, If g€ G, then g €Sp(8) if and only if Aé(V) Z 0
for every compact neighbourhood V of g.

Proof. Let V be a compact neighbourhood of g with AS(V) = (0}.
Take an element goé-Vc and VWEBT(G) with (the support of v)NV = ¢
and v(gy)=l. If u€B_ (G) with (the support of u)CV and u(g) = 1,
then,

Gvoéu(a) = Gv-u(a) =0 for a€ A,
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which implies goéispé(éu(a)) that is 6u(a)éEA6(V). Therefore
Gu(a) = 0 for all a€A. As u(g) # 0, we see geSp(8).

Suppose that ge%Sp(é). Take a compact neighbourhood V of g
with VNSp(d8) = ¢ and take aé{Aé(V), then it follows from Spﬁ(a)
CSp(8) that Spg(a) = ¢. Since

I, = {ueB.(G), éu(a) = 0}

is a closed ideal of Br(G) with {geG; u(g) = 0 for all uel_} = ¢
and Br(G) is a regular ring ((111), I, contains the Fourier algebra

A(G) of G because it contains K(G)({11})). For we&A*, we have
0 = <6u(a),w> = <8(a),w®u> for uEA(G)CBr(G).

Since, by [1, Proposition 2.4}, the algebraic tensor product

A’OA(G) of A" and A(G) is dense in (M(A)@)M(C;(G)))N with respect

(G)), we have 6(a) = 0, that is

ok

to the w*—topology of M(A)® M(C
a = 0. We hafe therefore AS(V) = 0.

Lemma 1.3. Let E. be a compact set in G (i = 1,2), then
2%(2)8%(8,) A’ (5 E,).

This lemma is proved by a usual argument (See [ 34, IV,
Lemma 1.2J), and we leave its verification to the reader.

Proposition 1.4. T(8) is a closed subgroup of G.

Proof. Since Sp(§) is a closed set, I(g§) is a closed set
of G. We want to see that Sp(s§)r(s)C Sp(s). Take glesp(g),gzép(g) and
compact neighbourhoods V, Vl’ and V2 of g182s 87» and g9 respectively
such that V,V,CV. For a € Aé(Vl), ag # 0, B denote the smallest
G—invafiant hereditary C%-subalgebra generated by {5u(al); ug;Br(G)}.
Then we can find an a,é€ B(\Aé(Vz), ar # 0. Let I be the closed
linear span of {adu(al); a€Al, uéEBr(G)}, then I is a closed left

¥*
ideal of A such that B = I NI. Therefore if § (a;)a, = 0 for any
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ue€ Br(G)’ it implies B a, = 0 that is aj; = 0. Hence there is

a ué?Br(G) such that éu(al)a2 # 0. By Lemma 1.3,
0 # 6 (a)a,eab (v )ab(v.)cad(v,v,)cad(v)
wlaglas 1 2 1V2 .

By Lemma 1.2, we conclude from this that Sp(s)T(§) CSp(s). As

this is true for 6|B in place of §, we see that I'(§) is a semi-
group and it is easy to prove I'(§) = r(6)"L. Therefore I'(8) is
a closed subgroup of G.

From now on, G is supposed to be abelian and we study relations
between the co-action & on GXaA and the dual action & of the dual
group T of G on GX_ A (See L42]).

Proposition 1.5. Let (A, G,a) be a C%—dynamical system and
B is a C*—subalgebra of GX A. Then B is §-invariant if and only if
B is &Y—invariant for y eI (I'-invariant).

Proof. Take £,n €K(T) and xeK(G, A),
J 1 emte, Goay

= jf E(Y)H(Y)&Y(\[ 1(X(g))V(g)dé)dy

G

- [ § eomtotenvi @y
r G

=jG(fF E(yIn(¥)TZ;vody) 1 (x(g))v(g)dg

=jG'é-x-?{(—g)1(x(g))v(g)dg»

where £ is the inverse Fourier transform of £ and the symbol ¥

means the convolution in Ll(G). On the other hand, set

w(g,n)(x) = <x&, 70y, for XéCi(G)

where ﬁb(g) = n(-g), then we have
o(E) (M(g)) = AL = | 2 - OiC-n)an - E¥iCg),
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Then we have,

jlGw(g'n)(K(g))l(x(g))V(g)dg

Sute,ny ([ 1xtenviedag ) = 6,05 0G0

Therefore

§

The set {w(&,n); &,n €K(I')} is dense in (C;(G))W with respect

; E(Y)H(Y)&Y(X)dY = aw(i,n)(x) for x €Gx A. (3.4)

to O(Ci(G)W, M(C;(G)))—topology and the map
¢ € (C.(G)) —>6¢(x) € Gx A

is norm continuous with respect to o((Ci(G))*, M(Ci(G)))-tOpology

for each xE;GXaA‘ Hence if B is I'-invariant, then B is §-invariant.
Conversely suppose that B is 6-invariant. Take vy é&T, the

positive definite function <-,y> 1s an element of Br(G).

Then by an easy calculation, we have §_ = & therefore B

taY> Y’
is I'-invariant.
Given a C -dynamical system (A, G, a), we denote by »%(4)

the family of non-zero, G-invariant, hereditary Cw—subalgebra of

A. The Connes spectrum I'(a) of ¢ is defined as
I(a) = N\ {Sp(elB), Bef*(n)},

cf. 1L37).
Theorem 1.6. Let (A, G, o) be a C - dynamical system with

an abelian group G. Starting from this, we have a Cﬁ—dynamical
system (GXQA, I ,&) and a dual systenm (GxaA’ §). Then T'(8) and

T(8) coincide.

- 32 -



>

I

298¢

Proof. At first we prove A (V) -V) for every compact

>

neighhourhood V of g&G, where A (V)

{x €Gx A, Sp&(x) CV}.
Take x € AY(V), gy ¢ V and compact neighbourhood Vg of gy with
Vof\V = ¢, we can find £,n€¢K(T) with %*%(go) = 1 and %%% = 0 on

Vg. The inverse Fourier transform of £(y)n(y) is %%%, g0

6m(€,n)(x) :‘[F 5<Y)ﬂ(¥)&Y(x) dy = 0, as x&A (V).

AS.w(E,ﬂ)(A(-gO))‘= %*%(go) = 1, we have —gOEESpé(X) that is
Spg (x) C -V.

Conversely, take xefAS(—V), gOeév and a compact neighbourhood
VO of gy with Vof\(—V) = ¢, and take &,n&€K(I') as above. Put

y = 6w(€’n>(x), then we have Spd(y) = ¢, since Spé(éu(y))C:(the

support of u)f\Spé(y), hence we get y = 0. By (3.4) we have

which implies gogéSp&(X) that is Sp&(x)(:v. As g€ Sp(d) if and
only if A*(V) # {0} for each compact neighbourhood V of g (See
(37)), by Lemma 1.2, we have Sp(&) = -Sp(S8). We conclude that

r(&) = 1(s8).

2. Primeness of C%—algebra with a co-action.

The statements in this section are some generalizations of
those in [39) for arbitrary 1locally compact groups. The arguments
which we do is a modification of those which D. Olesen and G.K.
Pederéen did there.

Lemma 2.1. Let (A, G, o) be a C*—dynamical system and § be a co-
action of G on GXuA. Then an element g €G belongs to I'(§) if and only
if I[\&g(l) is non-zero for every non-zero closed ideal I of A.

Proof. Suppose that I(\ug(l) = {0} for some non-zero closed
jdeal I of A. As D. Olesen and G.K. Pedersen did in (39), choose

(by spectral theory) ncn-zero positive elements b,c € I with bc = b.
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There is then a compact neighbourhood € of the identity e in G

such that Hah(c) - ¢cl] < 1 for every he,

il

0, (0) = a, (B)(1 - o, (e) + )(f T_ (o, (c) - c)™)

Il

uh(b)c(z i=o(”h(c> - e)Mer

, whence bhay -1 (b) = ahfl(ah(b)Aag(b))c ah'l(IAug(I)) = {0} (3.5)
for every hé€ Q.

Let B be the hereditary C%—Subalgebra of Gx, A generated by
1(b)(GXuA)1(b) and note that BGQ{G(GXQA) since §(1(b)) = 1(b)R1.

For &, n €K(G) with'ﬁxg(g) # 0 and supp ﬁ*EC;Q—lg where
A(t) = n(t) and E(t) = £(+71), put x = 1(b)v(f) 1(a)v(f)i(b) for
a€hA, feK(G) where v(f) = j‘Gf(t)v(t)dt' and put wl&,n ] (a) = <d&,n>
for d¢ C;(G) .
Then
(x)

|
(e2]

wlE, nJ(l(b))-Saf#(t)v<t>dt1(a>~jGf(s)v(s)d51(b))

6w[€, nj

1l

Soie, ”](55 Gfo#(t)f(s)l(b o, (a)o, _(b))v(ts)dtds)

Il

Ijgxdﬁ*g(ts)f#(t)f(s)l(b@t(a)ats(b))v(ts)dtds
(3.5)
= 0

where f#(t) = Z%%Tat(x(t))&,A is the modular function of G.
Since {x€Gx A; x = 1(b)v(£) 1(a)v(£)1(b), a€A. £<€K(G)) is
o v .
dense in B, we have dw[i n](B) = {0}. Since Tx&(g) # 0, this
implies g;éSp(c‘S!B) i.e. ggT(3).

Conversely, if g;{?(é), there is a Bﬁéfé(Gqu) such that

s

g€ Sp(élB). Therefore there is a compact neighbourhood Q of g in
¢ and Be)°(Gx A) such that 6 (B) = {0} whenever ue B_(G) with
QC suppt)s the closure of {geG; u(g) # 0}. Choose a compact nei-
ghbourhood Ql of g and a symmetric compact neighbourhood fig of e

with QOQlQ C € and QO g QOCL91, , (3.6)
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ILet L be a S-invariant closed left ideal of GxaA such that
B = LML and Ly be the §-invariant closed left ideal generated
by {xv(f); xelL, fekK(G), supp fCQO}. We show that the norm-
closure LOO_Of {\fo(t)v(t)dt; xe K(G; L), supp XCLQO};is a §-

invariant closed ideal containing Lg-

LOO is a closed left ideal of GXQA since L is a closed left
ideal of GXaA. It contains the element of the form xv(f). So we
only need to show that L,, is §-invariant. For x €K(G; L) with

supp x CR,, we have
< §w(jGX(t)v(t)dt), b >
= <6(fex(t)v(t)dt), 6 ® w>
= [ 48 (x () (L) ®A(E), o@w>dt
=SG<5>\(t)w(x(t))v(t), o>dt

forcué(Ci(G))* andcbe(GxaA)* where <d, A(t)w> =<dr(t),n> for
d€(c_(a)).

Put z(t) = ak(t)w(x(t))’ then z(t) is an element of L since
x(t) is an element of L and L is S§-invariant, moreover z is an
element of K(G; L) with supp ZCLQO. Therefore LOO is 6-invariant
and contains LO'

Take x, y€ K(G; L) with supp x Usupp y CQy, then we have for

u.eBr(G) with supp uC @, and d>6(Gx0LA)*,
<6u((JGy(t)\)(t)dt)*(jGX(S)V(S)dS))’ >
= < [ v () ® A8 8 (y(6) " x(2))v(2)® A(s)dtds, o@u>

= 55 axe<Srtsran() *F(8) x(s)), vis)ov(t) >atds,
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Since supp x Vsupp yC @y, supp A(s)ur(t) € Q for t, seQ

and Y(t)*x(s)eEB, this is
=‘HQOXQo<6>\(s)u>\(t)*(y(t)%x(s)), v(s)ev(t) >dtds = o,

Therefore Su(ywx) = 0 for x,y&Lj and ueB (G) with supp u C Q.
* S .

Put B, = LyNL,. Then we get ByeX (GxyA) and §,(By) =0
whenever ueEBr(G) with supp uC@;. 8o, for any element x in B,
we have Sp(dlB )f\Ql = 6.

0
Choose a non-zero positive element y in B and fe K(G) with

supp f CQ, such that the element y, = v(£) yv(£) of By is non-zero

and choose positive linear functionals uiféBr(G) with supp uiC_QO

such that sup u; = ¢ (with respect to the order in (C;(G))é)

where ¢ is the Plancherel weight on C;(G)C:m(G), that is the
canonical weight of a generalized Hilbert algebra K(G). (See [29)).
Then we have Sp(s(éu (yo))stupp u,C 25, sup 6u (yo) = 5¢€(yo) and
i - i e

6¢ (yo)é-ld(A) by [29]) Lemma 3.2 ~ 3.5 and Theorem 3.

e

yo)l(a)v(g)6

Put Xi,i = § -

o

u, (yq) € Byla €A).  Then x; 5 €

1 J
AG(QO)AS(gQO)C:Aé(Ql) by Lemma 1.3 and (3.6). Therefore Sps(xi L)

3
o

= 0. Let ay be an element of A such

that 1(ao) = 6¢e(y0), Since Xi,j converges weakly to 1(ao)1(a)v
(g)l(ao) for a& A, we get aoAag(aO) = {0}. Then we find a non-

zero closed ideal I of A (viz the closed ideal generated by the
non-zero element ao) such that If\ug(I) = {0}.

Let (A, G, a) be a C*—dynamical system. We say that A is G-prime
(reSp prime) if'any two non-zero G-invariant- closed ideals(resp closed
ideals) of A have a non-zero intersection and that Gx A 1is S-prime
if any two non-zero S-invariant closed ideals of GX@A have a non-
zero intersection. :

Theorem 2.2. Let (A, G, a) be a C*-dynamical system. Then the
following two conditions are equivalent;
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(i) A is prime

(ii1) (a) A is G-prime and (b) 1(8) = G.

Proof. (i) = (ii) (a) is obvious, (i) - (ii) (b) follows
immediately from Lemma 2.1.

(ii) > (i) If A is not prime, there are orthogonal non-zero
closed ideals I and J of A. Take gé&G and assume that ag(I)f\J

# {0}, Then by (ii) (b) and Lemma 2.1, we have {0} # ag(I)(\Jf\

](a

Og” g(I)f\J)(:J(\I = {0}, which is absurd. Consequently qg(I)

NJ = {0} for any ge& G. Let IG be the closed ideal generated by

U | _ o : . .
e ag(I), then I.MNJ {0} and I, is G-invariant, which contradicts
(ii) (a). Thus A is prime.

Proposition 2.3. Let (A, G, a) be a C*—dynamical system.
Then A is G-prime if and only if Gqu is 6-prime.

Proof. If Jl and J, are orthogonal non-zero §-invariant
closed ideals of Gx@A, take non-zero positive elements Xy and X5
in Jl and J2 respectively, and ehoose fEX(G) with v(f)*xiv(f)

# 0 (i = 1, 2). Since Ji<i =1, 2) is §-invariant, we have

8, (V(£) % v(£))C T, (1 =1, 2), and § (v(f) xv(£)) M(Gx A)S, ,°

N

(w(£) % (£)) = {0} for w, w'€(C_(6)) . By [29] Lemmas 3.2 o 3.5

and Theorem 3,8 (v(f)wxiv(f)) is a non-zero element of q(A)

o)

e

(i = 1, 2) and we put 1(ai) = 6¢ (v(f)*xiv(f)) (1 =1, 2). we

e
have then that 1(al)M(GxaA)1(a2) = {0}, and in particular, we

nave 1(u (ap)aoy (a)) = v(gh(a)v(g) " hi(a)vnhilay)v(n)™ =0
for a¢hA. In this way, we have found orthogonal non-zero G-
invariant closed ideals of A viz the closed ideals generated by
the orbits ajy(ay) and a,(a,).

Conversely, suppose thatwe have two orthogonal non-zero G-
I

invariant closed ideals T of A, Let Ji be the closed subspace

1 =2
of Gx A generated by {ngi(x(g))v(g)dg; x € K(G; Ii)} (i = 1, 2).
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For x,€ K(G; I,) (i =1, 2), we have

JarCxy (e))vig)as J g1 (xy())vig)ag
:jj ch.l(Xl(g)ag(xz(h)))\)(gh)dgdh =0

because I, is G-invariant (i = 1, 2), and this implies Jq
Since Ii is G—invariant,'Ji is a closed ideal of GXQA.

For wé(c;(s))"" and x<K(G; 1.),

5 (] o 1xl@)vie)ag) = (e (x(8))v(g)de,

therefore Jl and J2 are S-invariant.
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3. C*—dynamical system with the action of a compact
group.

Throughout this section, we assume that G is compact
and dg is the normalized Haar measure on G. Let (A,G,o) be
a C*—dynamical system and @ be the space of isomorphism
classes of all irreducible representations of G. If ﬂf&@,
we denote by Xq the associated "modified character" Xﬂ(g) =
(1/dim 7)Tr(n(g)), and u(i,j,w) the associated "coordinate
functions" u(i,j,m)(g) = <ﬁ(g)£i, £j>, where {gi} is a

normalized orthogonal basis for Hﬂ. By definition w &Sp(a),

iff a(xﬂ)(A) # {0}, where
alx,)(a) = [ x,(@)ag(a) dg  for a ca,

([101), and T(a) = M{Sp (a|B); B ea€“<A)}.
Lemma 3.1. If 1 ¢& I'(a), then there is a non-zero

closed ideal I of G)(aA such that

S

v

N y(I)NI = {0},

u(i,j,n

where >(I) denotes the closed ideal of G;(aA

Vi,itu(i,g,r

generated by ﬂ)(I), i,j=1,2,->,dim 7.

Su(i,g,
Proof. If mé¢T(a), there is a B € W*(A) such that
a(xﬂ)(B) = {0}. Take a non-zero G-invariant positive element

b of B and put a non-zero element ¥y =‘jG1(b)v(g)dg<£G-XaA,

then we have, for a€¢A, geG,

Gu(i,j’ﬂ)(y)l(a)v(g)y

= jf axg u(i,3,m) (h)1(baey (a)b)v(hgk)dkdh



=-[G1(J’G u(i,j,ﬂ)(h)ah(bab)dh)v(k)dk,
put
z = J-G u(i,j,ﬂ)(h)ah(bab)dh ;
Since B 1s hereditary, the element bab is in B. Therefore
we have a(xﬂ)(bab)'=*0 . By the relation a(u(i,j,m))[(u(k,
1,m))(c)] = alu(i,j,m)#u(k,l,w))(c) for any ¢ in A and the
orthogonality relations for compact groups, a(xﬂ)(c) = 0 is

equivalent to
-YG u(i,j,n)(h)ah(c)dh = 0, for i,j=1,2,..,dim 7.

Therefore z=0 and so (y)1(a)v(g)y = 0, that is

Su(isjsﬂ)

6u(i,j,n)(y)G><aAy = {0}, for i,j=1,2,.--,dim w.

Let I be the non-zero closed ideal of Gx;aA generated by y.

By easy calculation, we nave \/ )(I)[\I ={0}.

1,3%(1,,n

We use the definition of the crossed product G-xé(GlxaA)
with the co-action §, the dual action g'of 6§, and Takesaki's
duality (See [18],[30] and [34]).

Lemma 3.2. If there 1s a non-zero closed ideal I of
Gx.aA such thiF \/i,jau(i,j,w)(l)r\l = {0}, then 7 does not
belong to T (&) where @ i1s the bidual action of o (See[30]
or [34]).

Proof. Take a non-zero positive element y in I. For
ge &, put z=6(y)(l®u(i,j,o))s(x)s(y) for x&GX A. We then

have
AN
Vel
S-G xﬂ(g)ag(Z)dg

-f (e (e uli,i.e) d
=\a Xﬂ(g)é y o(,g ®u(i,j,o))s(x)s(y)dg
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dim o
§ o xp (@80 X% TOHT, (@808, 5oy (x3))

,m=1

(1® u(k,m,c))dg

dim o
> ! KG X (8)ulk,1,0) (g)dgs(ys
k,m=1

)(xy))

u{m,j,o

(1®u(k,m,0))

{‘0, when w#c, by [16, Theorem 27.19] ,
o, w&?n =0, by yéu(m,j’c)(xy) =0 .

Then we get - SGXT(g)QQ(S(y)aS(y)) dg=0 for a.eG,X&(G.XaA)

because the vector space generated by {(1® u(i,j,o))s(x); x¢&

GXaA’ ceé\} is norm dense in GXG(GXQA)‘ Let B be the non-

*

zero hereditary C -subalgebra of G><6(G>(aA) generated by
A . N

§(y). Then B is ag—lnvarlant for each g ¢ G because ag(a(y)) =

§(y), therefore
A -
SG X (8)a,(B)dg = {0} ,

A
which implies m £T(3).
*
Theorem 3.3. Let (A,G,a) be a C -dynamical system, then
Ay - A
F(OL) = {ne G, i-\,/jﬁu(i,j,

AY
ideal I of GX A and (o) Dr(a).

Tr)(I)f\]: # 0}, for each non-zero

Proof. By Takesaki's duality, G'X&(G xﬁ(Gx OLA)’) is
isomorphic to (G)<aA)@ﬂML?(G)), therefore each closed ideal I!
of (G xaA)®C(L2(G)) is of the form I®C(L2(G)), where I is a
closed ideal of G>(aA’ moreover

R o 2
Vs Suta,gm @) = Ny Sug,g,m (@@ @),

3

AN
Hence, if ﬂ'%P(Q), we have a non-zero closed ideal I of

G xaA such that



V.os

i,J u(iyjsTr)(I)r\I ={O}

by Lemma 3.1.

Remark 3.4. Let (A,G,o) and (A,G,B) be C*—dynamical
systemg, If a 1is exterior equivalent to B (See [39, 4.2]),
then P(§)=P(§3, but T'(a) is not always equal to T(B) (See
[(101).

Here.webgive an affirmative answer for the problem
whether a von Neumann algebra is hyperfinite if a compact group
acts ergodically on it.

Proposition 3.5. Let (M,T,a) be W*—dynamical system
with Mr =C1 where T is a second countable compact (not
necessarily abelian) group. Then the von Neumann algebra M
is injective.

Proof, For.fé:Ll(F), we define a(f)(x) =-§P f(y)aY(X)dy
for x€é M. It is easy to prove that a(f) is a normal completely
positive map of M with ||a(f)]|]| is equal fo L1 norm Fle] ]
if f is a positive function on I'. Let ‘F(T) be the linear
span by {u(i,j,m); ﬂE&f, i=l,2,'",dim 7} where u(i,j,m) are
coefficient functions for- the irreducible representation .
Then F(I') is a dense subalgebra of the space C{I) of all
continuous functions on T. Choose'{fn} in C(T) such that L
converges to the Dirac measure Ge at e in the w*—topology
with Li-norm [1£. ]l = 1. Then 1im a(f_)(x) = x in the o-

n nre O
weak topology. Since ‘A(T) contains constant functions,
we can choose g in ‘A(Tr) such that g, is a positive function
with L'-norm |lg, !l = 1 and sup-norm ||f - g ||£ 1/n.

Then a(gn) is a unital normal completely positive map of M
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such that u(gn) converges to 1 in the point-o-weak topology.
Since g_ is in Z(1), a(gn)(M) is contained in the subspace
generated by the finite union of o(u(i,j,m)) M) (i,j=1,2,-",
dim 7, WEEE). Since a(u(i,j,m))(M) is contained in M%(m)
and M%*(7) is a finite dimensional subspace of M (See [17],
Proposition 2.1), a(gn)'is of finite rank.: @ Thus we conclude
that M is semi-discrete. By [9] Corollary 5.10, M is
injective.

corollary 3.6. Let (A,T,a) be a C*mdynamical system
with AT = @1 and T is a second countable compact group.
Then the C*—algebra A is nuclear. |

proof, The proof is the same way as above by using [5].
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