

Title	Unitary representations and a general vanishing theorem for (0,r)-cohomology
Author(s)	Williams, Floyd L.
Citation	Osaka Journal of Mathematics. 1988, 25(3), p. 599-606
Version Type	VoR
URL	https://doi.org/10.18910/11730
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

UNITARY REPRESENTATIONS AND A GENERAL VANISHING THEOREM FOR (0, r)-COHOMOLOGY

FLOYD L. WILLIAMS

(Received June 26, 1987)

1. Introduction

Let X=G/K be a Hermitian symmetric space where K is a maximal compact subgroup of a connected non-compact semisimple Lie group G. We assume that G has a finite center. Let $H \subset K$ be a Cartan subgroup of G, let g, k, h be the complexifications of the Lie algebras g_0 , k_0 , h_0 of G, K, H, let $\Delta = \Delta(g, h)$ be the set of non-zero roots of (g, h), and let $\Delta^+ \subset \Delta$ be a system of positive roots compatible with the G-invariant complex structure on X. That is, if $g_0 = k_0 + p_0$ is a Cartan decomposition of g_0 then the splitting of the complexified tangent space p = p g of X at the origin is given by

$$(1.1) p = p^+ \oplus p^- \text{ where } p^{\pm} = \sum_{\alpha \in \Lambda^{\pm}} g_{\pm \alpha}$$

for g_{β} the root space of $\beta \in \Delta$ and $\Delta_n^+ = \Delta^+ \cap \Delta_n$, Δ_n = the set of noncompact roots in Δ . Let $\Delta_k^+ = \Delta^+ \cap \Delta_k$ where Δ_k = the set of compact roots in Δ and let $\langle Q \rangle$ be the sum of roots in Q for $Q \subset \Delta$. In particular we set $2\delta = \langle \Delta^+ \rangle$ as usual, and then we can define the following subset of the dual space h^* of h: for L the character lattice of H:

(1.2)
$$F'_{0} = \{ \text{integral forms } \Lambda \text{ in } L | (\Lambda + \delta, \alpha) \neq 0 \text{ for each } \alpha \text{ in } \Delta \text{ and } (\Lambda + \delta, \alpha) > 0 \text{ for each } \alpha \text{ in } \Delta_{k}^{+} \}.$$

Now let $\tau \in \hat{K}$ be an irreducible unitary representation of K with highest weight Λ relative to the positive system Δ_k^+ for (k,h). The induced homogeneous vector bundle $E_{\tau} = G \times_K V_{\tau}$ over X has a holomorphic structure (here V_{τ} is the representation space of τ). Let Γ be a fixed torsion free, co-compact, discrete subgroup of G. Then given $\tau \in \hat{K}$, there is a natural sheaf $\theta_{\tau}(\Gamma)$ over $X_{\Gamma} = \Gamma \setminus X$ generated by the presheaf: $U \mapsto \text{abelian}$ group of Γ -invariant holomorphic sections of E_{τ} on the inverse image of U under the map $X \to X_{\Gamma}$, where $U \subset X_{\Gamma}$ is an open set. The cohomology groups $H^*(X_{\Gamma}, \theta_{\tau}(\Gamma))$ of X_{Γ} with coefficients in

600 F.L. WILLIAMS

 $\theta_{\tau}(\Gamma)$ were introduced (and described somewhat differently) and studied by Matsushima and Murakami in [2], [3]. In [4] they obtained the formula

(1.3)
$$\dim H^r(X_{\Gamma}, \theta_{\tau}(\Gamma)) = \sum_{\substack{\pi \in \hat{G} \\ \pi(\Omega) = (\Lambda, \Lambda + 2\delta)}} m_{\pi}(\Gamma) \dim \operatorname{Hom}_{K}(H_{\pi}, \Lambda^r p^{+} \otimes V_{\tau})$$

where $m_{\pi}(\Gamma)$ is the multiplicity of π in $L^2(\Gamma \setminus G)$, Ω is the Casimir operator of G, H_{π} is the space of K-finite vectors in the representation space of π , and (,) is the Killing form of g; also see [1].

The purpose of this paper is two-fold: (i) We find the most general and precise vanishing theorem possible for the cohomology $H^*(X_{\Gamma}, \theta_{\tau}(\Gamma))$, for any $\tau \in \hat{K}$ with highest weight $\Lambda \in F'_0$; (ii) We describe precisely the unitary representations π and the integers r which contribute to the formula (1.3)-i.e., those $\pi \in \hat{G}$ and those integers r such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)$ 1, $\operatorname{Hom}_{K}(H_{\pi}, \Lambda^{r} p^{+} \otimes V_{\tau}) \neq 0$. Actually we do a bit more in Lemma 2.2. The results are formulated in Theorems 1.9 and 1.10 below. Theorem 1.9 solves a problem (one of four problems) raised by M. Harris at the recent 834th meeting of the A.M.S. in New Jersey. If one assumes that the positive root system

(1.4)
$$P^{(\Lambda)} \stackrel{\text{def.}}{=} \{ \alpha \in \Delta \mid (\Lambda + \delta, \alpha) > 0 \}$$

(corresponding to the regular element $\Lambda + \delta$) is also compatible with some G-invariant complex structure on X, here we write $X \leftrightarrow P^{(\Lambda)}$, then the results (i), (ii) are already obtained in [12], [14] respectively. Thus the complete generality of this paper amounts to the removal of the assumption $X \leftrightarrow P^{(\Lambda)}$. In view of (1.3), clearly Theorem 1.9 implies Theorem 1.10.

Before stating the main results we introduce a bit more notation. For $\Lambda \in F_0'$ let

(1.5)
$$Q_{\Lambda} = \{\alpha \in \Delta_{n}^{+} | (\Lambda + \delta, \alpha) > 0 \}, \quad Q'_{\Lambda} = \Lambda_{n}^{+} - Q_{\Lambda}$$

$$b_{\Lambda} = h + \sum_{\alpha \in P^{(\Lambda)}} g_{\alpha} \quad \text{(a Borel subalgebra of } g \text{)}.$$

If q=l+u is a Levi decomposition of a parabolic subalgebra of g with unipotent radical u and a reductive complement l, we let $\Delta(u)$, $\Lambda(l)$ denote the roots of u, l and we set

(1.6)
$$q_{u,n}$$
 = the set of non-compact roots in $\Delta(u)$.

In particular if θ is the Cartan involution of $g_0=k_0+p_0$ we shall consider θ -stable parabolic subalgebras $q\supset h$ in the sense of [9]. That is, for some $\lambda \in h^*$ which is pure-imaginary valued on h_0 one has

(1.7)
$$\Delta(l) = \{\alpha \in \Delta \mid (\lambda, \alpha) = 0\}, \quad \Delta(u) = \{\alpha \in \Delta \mid (\lambda, \alpha) > 0\};$$

$$l = h + \sum_{\alpha \in \Delta(l)} g_{\alpha}.$$

One then has $l=(l_0)^C$ where l_0 is the Lie algebra of a connected Lie subgroup L of G. For $2\delta^{(\Lambda)}=\langle P^{(\Lambda)}\rangle$, $2\delta^{(\Lambda)}_n=\langle P^{(\Lambda)}_n\rangle$, $\Lambda+\delta-\delta^{(\Lambda)}$ is $P^{(\Lambda)}$ -dominant since $\Lambda+\delta$ is $P^{(\Lambda)}$ -regular and we assume that the finite-dimensional irreducible g-module F^{Λ} with $P^{(\Lambda)}$ -highest weight $\Lambda+\delta-\delta^{(\Lambda)}$ integrates to a smooth G-module. In particular if $(\Lambda+\delta-\delta^{(\Lambda)}, \Delta(l))=0$ then the highest weight space of F^{Λ} is l_0 -invariant and hence is L-invariant (as L is connected). Thus this weight space can be regarded as an $(l, L\cap K)$ module which we shall denote by $C_{\Lambda+\delta-\delta}(\Lambda)^{(\Lambda)}$. We let R^*_q denote Zuckerman's parabolic induction functor from the category of $(l, L\cap K)$ modules to the category of (g, K) modules [7]. Then we have [8]

Theorem 1.8. For a θ -stable parabolic subalgebra q=l+u (as above) and $\Lambda \in F_0'$ with $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(l)) = 0$, let $\pi(q) = R_q^s C_{\Lambda + \delta - \delta^{(\Lambda)}}$, where $s = \dim u \cap k$. Then $\pi(q) \in \hat{G}^{(2)}$ and $\pi(q)(\Omega) = (\Lambda, \Lambda + 2\delta) 1$. Also $\pi(q)|_K$ contains $\mu(q) = \Lambda + \delta - \delta^{(\Lambda)} + \langle q_{u,n} \rangle$ as its lowest highest weight (relative to Δ_k^+); see (1.6). For $j \neq s$, $R_q^i C_{\Lambda + \delta - \delta}(\Lambda) = 0$.

Also see [10]. We can now state the main results.

Theorem 1.9. For $\Lambda \in F_0'$, let $\pi \in \hat{G}$ with $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)$ 1, and let $r \geq 0$ be an integer with $\operatorname{Hom}_K(H_\pi, \Lambda^r P^+ \otimes V_\tau) \neq 0$ where (as above) H_π is the space of K-finite vectors in the representation space of π and V_τ is the representation space of $\tau \in \hat{K}$ with Δ_k^+ -highest weight Λ . Then (i) $\pi = R_q^{\dim u \cap k} C_{\Lambda + \delta - \delta}(\Lambda)$ for some θ -stable parabolic $q = l + u \supset b_\Lambda$ (where as above we assume $F^{(\Lambda)}$ integrates smoothly to G) with $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(l)) = 0$ and (ii) $r = |Q'_\Lambda| - |q_{u,n}| + 2|Q_\Lambda \cap q_{u,n}|$; 3) see (1.5), (1.6). Conversely let $q = l + u \supset b_\Lambda$ be a θ -stable parabolic subalgebra of g and assume $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(l)) = 0$. Let $\pi(q) = R_q^{\dim u \cap k} C_{\Lambda + \delta - \delta}(\Lambda)$ so that $\pi(q) \in \hat{G}$ such that $\pi(q) (\Omega) = (\Lambda, \Lambda + 2\delta)$ 1 by Theorem 1.8. Let $r_{q,\Lambda} = |Q'_\Lambda| - |q_{u,n}| + 2|Q_\Lambda \cap q_{u,n}|$, and let $\mu(q) = \Lambda + \delta - \delta^{(\Lambda)} + \langle q_{u,n} \rangle$ be the lowest K-type of $\pi(q)$. Then if, at least, $\mu(q) = \delta_n^{(\Lambda)}$ is Δ_k^+ -dominant, $\operatorname{Hom}_K(H_{\pi(q)}\Lambda^{r_{q,\Lambda}} p^+ \otimes V_\tau) \neq 0$ and in fact is one-dimensional.

Theorem 1.10. Let $\tau \in \hat{K}$ be an irreducible representation of K with Δ_k^+ -highest weight $\Lambda \in F_0'$. Then the sheaf cohomology $H'(X_{\Gamma}, \theta_{\tau}(\Gamma))$ vanishes unless $r = |Q_{\Lambda}'| - |q_{u,n}| + 2|Q_{\Lambda} \cap q_{u,n}|$ for some θ -stable parabolic subalgebra $q = l + u \supset b_{\Lambda}$ of g with $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(l)) = 0$.

As observed earlier the first half of Theorem 1.9 immediately implies Theorem 1.10, given the formula (1.3).

^{1).} $C_{\Lambda+\delta-\delta}(\Lambda)$ is unitary

^{2).} $\pi \in \hat{G}$ and its (g, K) module are denoted by the same symbol.

^{3).} |S| is the cardinality of a set S.

2. Proof of the main lemma

In this section G/K need *not* be assumed to be Hermitian. We assume only $\operatorname{rank}_R G = \operatorname{rank}_R K$. We shall make use of the 1/2-spin modules S^{\pm} for k. Its weights are of the form $\delta_n - \langle T \rangle$, where $T \subset \Delta_n^+$, $(-1)^{|T|} = \pm 1$. If $V_{\Lambda + \delta_n}$ is the irreducible k-module with Δ_k^+ -highest weight $\Lambda + \delta_n$, $\Lambda \in F'_0$, then $S^{\pm} \otimes V_{\Lambda + \delta_n}$ integrates 1) smoothly to a K-module, and we have the following main lemma. Here W, W_k are the Weyl groups of (g, h), (k, h) and for $(w, \tau) \in W \times W_k$

$$(2.1) \Phi_w^{(\Lambda)} = w(-P^{(\Lambda)}) \cap P^{(\Lambda)}, \quad \Phi_\tau = \tau(-\Delta_k^+) \cap \Delta_k^+.$$

Lemma 2.2. Let μ be a common K-type (relative to Δ_k^+) of $\pi|_K$, $S^{\pm} \otimes V_{\Delta + \delta_n}$, where $\pi \in \hat{G}$ such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta) 1$. Then (even without the assumption that G/K is Hermitian symmetric) there is a θ -stable parabolic subalgebra $q = l + u \supset b_{\Lambda}$ such that $(\Lambda + \delta - \delta^{(\Delta)}, \Delta(l)) = 0$, $\mu = \mu(q)$ and $\pi = R_q^s C_{\Lambda + \delta - \delta^{(\Delta)}}$, $s = \dim u \cap k$. q can be chosen such that $(P_n^{(\Delta)} - q_{u,n}) \cup \Phi_{\tau^{-1}} = \Phi_{\tau^{-1}w}^{(\Delta)}$ for some $(w, \tau) \subset W \times W_k$ with $wP^{(\Delta)} \supset \Delta_k^+$ (see above notation). Conversely let $q = l + u \supset b_{\Lambda}$ be a θ -stable parabolic subalgebra of g with $(\Lambda + \delta - \delta^{(\Delta)}, \Delta(l)) = 0$, let $\pi = \pi(q) = R_q^{\dim u \cap k} C_{\Lambda + \delta - \delta^{(\Delta)}}$, and let $\mu = \mu(q)$. Then $\pi \in \hat{G}$ such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta) 1$ and if (at least) $\mu = \delta_n^{(\Delta)}$ is Δ_k^+ -dominant then μ is a common K-type of $\pi|_K$, $S^{\pm} \otimes V_{\Lambda + \delta_n}$ for $\det \sigma(-1)|_{P_n^{(\Delta)}} - q_{u,n}| = \pm 1$ where $\sigma \in W$ is the unique element $\exists P^{(\Delta)} = \sigma \Delta^+$.

Proof. The hypotheses on Λ , μ , π are exactly those of Theorem 2.8 of [15]. Thus by that theorem μ has the form

(2.3)
$$\mu = \Lambda + \delta_n + \tau^{-1}(w\delta^{(\Delta)} - \delta_k)$$

for some $(w, \tau) \in W \times W_k$ with $\Delta_k^+ \subset wP^{(\Delta)}$. We re-interpret (2.3) as follows. Let P be the positive root system $\tau^{-1}wP^{(\Delta)}$. Thus $(as \ \Delta_k^+ \subset wP^{(\Delta)}), \ \tau^{-1}\Delta_k^+ \subset P \Rightarrow P = \tau^{-1}\Delta_k^+ \cup P_n, \ P_n = \Delta_n \cap P, \ \Rightarrow \delta(P) \ (=\frac{1}{2} \text{ the sum of roots in } P) = \tau^{-1}\delta_k + \delta_n(P),$ where $2\delta_n(P) = \langle P_n \rangle$. On the other hand $\delta(P) = \tau^{-1}w\delta^{(\Delta)}$; i.e. $\tau^{-1}(w\delta^{(\Delta)} - \delta_k) = \delta_n(P)$. Then since $\delta - \delta^{(\Delta)} = \delta_n - \delta^{(\Delta)}_n$ for $2\delta^{(\Delta)}_n = \langle P^{(\Delta)}_n \rangle$, (2.3) can be written

(2.4)
$$\mu = (\Lambda + \delta - \delta^{(\Delta)}) + \delta_n^{(\Delta)} + \delta_n(P).$$

Thus by Kumaresan's 2nd lemma, Proposition 5.16 of [9], there is a θ -stable parabolic subalgebra $q=l+u\supset b_{\Lambda}$ of g such that

(2.6)
$$\mu = \Lambda + \delta - \delta^{(\Lambda)} + \langle q_{u,n} \rangle \stackrel{\text{def.}}{=} \mu(q) \\ = \Lambda + \delta_{n} - \delta^{(\Lambda)}_{n} + \langle q_{u,n} \rangle, \\ (\Lambda + \delta - \delta^{(\Lambda)}, \Delta(l)) = 0.$$

Thus $\pi|_{K}$ contains the lowest highest weight $\mu(q)$, and since $\pi(\Omega) = (\Lambda, \Lambda + 2\delta) 1$

^{1).} Since $\Lambda \in L$ implies $(\Lambda + \delta_n) + \delta_n = \Lambda + 2\delta_n \in L$.

 $=(\Lambda+\delta-\delta^{(\Lambda)}, \Lambda+\delta-\delta^{(\Lambda)}+2\delta^{(\Lambda)})$ 1 we may also conclude from Proposition 6.1 of [9] that $\pi = R_q^{\dim u \cap k} C_{\Lambda + \delta - \delta}(\Lambda)$. From (2.3), (2.6), $\tau^{-1}(w\delta^{(\Lambda)} - \delta_k) = -\delta_n^{(\Lambda)} +$ $\langle q_{u,n} \rangle$. Then by (2.1), $\langle (P_n^{(\Lambda)} - q_{u,n}) \cup \Phi_{\tau^{-1}} \rangle = 2\delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta_k) = \delta_n^{(\Lambda)} - \langle q_{u,n} \rangle + (\delta_k - \tau^{-1}\delta$ $\tau^{-1}w\delta^{(\Lambda)} + \tau^{-1}\delta_k + (\delta_k - \tau^{-1}\delta_k) = \delta^{(\Lambda)} - \tau^{-1}w\delta^{(\Lambda)} = \langle \Phi_{\tau^{-1}w}^{(\Lambda)} \rangle$, from whence we may conclude that $(P_n^{(\Lambda)}-q_{u,n})\cup\Phi_{\tau^{-1}}=\Phi_{\tau^{-1}w}^{(\Lambda)}$. Conversely let $q=l+u\supset b_{\Lambda}$ be a θ stable parabolic subalgebra of g with $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(l)) = 0$, let $\pi = \pi(q) = 0$ $R_q^s C_{\Lambda+\delta-\delta}(\Lambda)$, $s=\dim u \cap k$, and let $\mu=\mu(q)$. Then $\pi \in \hat{G}$ such that $\pi(\Omega)=(\Lambda, \Lambda)$ $+2\delta$) 1 by Theorem 1.8, and by that same theorem μ occurs in π . It suffices therefore to show that μ occurs in $S^{\pm} \otimes V_{\Lambda + \delta_{\bullet}}$, at least if $\mu - \delta_{n}^{(\Lambda)}$ is Δ_{k}^{+} -dominant. Define $Q = P_n^{(\Lambda)} - q_{u,n} \subset P_n^{(\Lambda)}$ so that $\mu = \Lambda + \delta - \delta^{(\Lambda)} + \langle q_{u,n} \rangle = \Lambda + \delta_n - \delta_n^{(\Lambda)} + \langle q_{u,n} \rangle$ $=\Lambda + \delta_n + \delta_n^{(\Lambda)} - \langle Q \rangle = \Lambda + \delta + \delta_n^{(\Lambda)} - \langle Q \rangle - \delta_k$. That is, π , μ , Q satisfy the conditions of Theorem 2.6 of [15]. By that theorem $\exists (w, \tau) \in W \times W_k$ therefore such that $\Phi_w^{(\Lambda)} = Q \cup \Phi_\tau$, $\tau^{-1}wP^{(\Lambda)} \supset \Delta_k^+$, $w(\Lambda + \delta - \delta^{(\Lambda)}) = \Lambda + \delta - \delta^{(\Lambda)}$. Let P = 0 $\tau^{-1}wP^{(\Lambda)}$ so that $\delta_n(P) = \tau^{-1}w\delta^{(\Lambda)} - \delta_k$ by the same argument preceding (2.4). Note also that for $\alpha \in \Delta_k^+ \subset \tau^{-1} w P^{(\Lambda)}$, $w^{-1} \tau \alpha \in P^{(\Lambda)} \Rightarrow (\Lambda + \delta - \delta^{(\Lambda)}, w^{-1} \tau \alpha) \ge 0$; i.e. $0 \le (\tau^{-1}w(\Lambda + \delta - \delta^{(\Lambda)}), \alpha) = (\tau^{-1}(\Lambda + \delta - \delta^{(\Lambda)}), \alpha);$ i.e. both $\Lambda + \delta - \delta^{(\Lambda)}$ and τ^{-1} $(\Lambda + \delta - \delta^{(\Lambda)})$ are Δ_k^+ -dominant $\Rightarrow \Lambda + \delta - \delta^{(\Lambda)} = \tau^{-1} (\Lambda + \delta - \delta^{(\Lambda)})$ (since $\tau \in W_k$). Now $\delta^{(\Lambda)} - w\delta^{(\Lambda)} = \langle \Phi_w^{(\Lambda)} \rangle = \langle Q \rangle + \delta_k - \tau \delta_k \Rightarrow \tau^{-1} \langle Q \rangle = \tau^{-1} \delta_n^{(\Lambda)} - \tau^{-1} w \delta^{(\Lambda)} + \delta_k = \tau^{-1} \delta_n^{(\Lambda)} + \delta_k$ $\delta_{\scriptscriptstyle n}^{\scriptscriptstyle (\Lambda)} - \delta_{\scriptscriptstyle n}(P) \!\!\!\! \Rightarrow \!\!\!\! \mu \! = \! \Lambda + \delta - \delta^{\scriptscriptstyle (\Lambda)} + 2\delta_{\scriptscriptstyle n}^{\scriptscriptstyle (\Lambda)} - \! \langle Q \rangle \!\!\! = \!\! \tau [\Lambda + \delta - \delta^{\scriptscriptstyle (\Lambda)} + \tau^{\scriptscriptstyle -1} \! (\delta_{\scriptscriptstyle n}^{\scriptscriptstyle (\Lambda)} - \! \langle Q \rangle)] + \delta_{\scriptscriptstyle n}^{\scriptscriptstyle (\Lambda)}$ (by (iv), (v)) = $\tau [\Lambda + \delta - \delta^{(\Lambda)} + \delta_n(P)] + \delta_n^{(\Lambda)} \Rightarrow \mu - \delta_n^{(\Lambda)} = \tau [\Lambda + \delta - \delta^{(\Lambda)} + \delta_n(P)],$ where $\delta_n(P)$ is Δ_k^+ -dominant since $P \supset \Delta_k^+$. If we assume that $\mu - \delta_n^{(\Delta)}$ is Δ_k^+ dominant then we see that both $\Lambda + \delta - \delta^{(\Lambda)} + \delta_n(P)$ and $\tau [\Lambda + \delta - \delta^{(\Lambda)} + \delta_n(P)]$ are both Δ_k^+ -dominant with $\tau \in W_k$. Hence $\Lambda + \delta - \delta^{(\Lambda)} + \delta_n(P) \stackrel{\text{(vi)}}{=} \tau \lceil \Lambda + \delta - \delta^{(\Lambda)} + \delta_n(P) \rceil = 0$ $\delta_{\mathbf{n}}(P)] \Rightarrow \mu - \delta_{\mathbf{n}}^{(\Lambda)} = \Lambda + \delta - \delta^{(\Lambda)} + \delta_{\mathbf{n}}(P) = \Lambda + \delta_{\mathbf{n}} - \delta_{\mathbf{n}}^{(\Lambda)} + \delta_{\mathbf{n}}(P) \Rightarrow \mu = \Lambda + \delta_{\mathbf{n}} + \delta_{\mathbf{n}}(P).$ But (v) and (vi) imply that $\delta_n(P) = \tau \delta_n(P) = w \delta^{(\Lambda)} - \tau \delta_k$; i.e., $\tau^{-1} w \delta^{(\Lambda)} - \delta_k = w \delta^{(\Lambda)}$ $-\tau \delta_{k} \Rightarrow \langle \Phi_{\tau^{-1}w}^{(\Lambda)} \rangle = \langle \Phi_{w}^{(\Lambda)} \rangle - \langle \Phi_{\tau} \rangle = \langle Q \rangle \Rightarrow \Phi_{\tau^{-1}w}^{(\Lambda)} = Q \stackrel{\text{def. }}{=} P_{n}^{(\Lambda)} - q_{u,n}. \quad \text{As } \Delta_{k}^{+} \subset P = \tau^{-1}$ $w\sigma\Delta^+$, $\delta_n(P)$ is a k-type of S^{\pm} for det $\tau^{-1}w\sigma=\pm 1$; i.e. $\mu=\Lambda+\delta_n+\delta_n(P)$ is a Ktype of $S^{\pm} \otimes V_{\Lambda+\delta_n}$ for $\det \sigma(-1)|P_n^{(\Lambda)}-q_{u,n}|$ (=\det \sigma \det \tau^{-1}w \text{ by } a.)=\pm 1, which concludes the proof of Lemma 2.2.

REMARKS. Lemma 2.2 refines and completes the results in [11], [13]. In the converse statement in Lemma 2.2 the preceding proof shows that $P_n^{(\Lambda)} - q_{u,n} = \Phi_w^{(\Lambda)}$ for some $w \in W$ such that $\Delta_k^+ \subset w P^{(\Lambda)}$. Also since the K-type $\mu(q)$ occurs exactly once in $\pi(q)$ one has

(2.7)
$$\dim \operatorname{Hom}_{K}(H_{\pi(q)}, S^{\pm} \otimes V_{\Lambda + \delta_{n}}) = 1$$
 for
$$\det \sigma(-1)|P_{n}^{(\Lambda)} - q_{u,n}| = \pm 1.$$

3. Proof of Theorem 1.9.

Assume now, as above, G/K has a G-invariant complex structure com-

patible with the positive system Δ^+ . Then (see 1.1)

(3.7)
$$\Sigma \oplus \Lambda^{n-j} P^+ = S^{\pm} \otimes V_{\delta_n}$$
$$(-1)^j = \pm 1$$

for $n = |\Delta_n^+|$. Here dim $V_{\delta_n} = 1$ by Weyl's dimension formula (since $(\delta_n, \Delta_k^+) = 0$) and for $(-1)^{n-r} = \pm 1$ we have $r = n - (n-r) \Rightarrow \Lambda^r P^+ \otimes V_{\Lambda} \subset S^{\pm} \otimes V_{\delta_n} \otimes V_{\Lambda} = S^{\pm} \otimes V_{\Lambda + \delta_n}$. Suppose $\operatorname{Hom}_K(H_{\pi}, \Lambda^r P^+ \otimes V_{\tau}) \neq 0$ as in the statement of Theorem 1.9. Then there is a common K-type μ of $\pi|_K$, $\Lambda^r P^+ \otimes V_{\tau}$. Since Λ is the highest weight of τ , $\mu = \Lambda + \langle T \rangle$, where $T \subset \Delta_n^+$, |T| = r, and since $\Lambda^r P^+ \otimes V_{\tau} \subset S^{\pm} \otimes V_{\Lambda + \delta_n}$ (by (i)) Lemma 2.2 gives $\mu = \mu(q)$, $\pi = R_q^s C_{\Lambda + \delta - \delta}(\Lambda)$, $s = \dim u \cap k$, for some θ -stable parabolic $q = l + u \supset b_{\Lambda}$ with $(\Lambda + \delta - \delta^{(\Lambda)}, \Lambda(l)) = 0$. We claim that

$$(3.8) r = 2|q_{u,n} \cap Q_{\Delta}| + |Q'_{\Delta}| - |q_{u,n}|.$$

To see this we use the following set-theoretic observation.

Lemma 3.9. There is a bijection b of the subsets of $P_n^{(\Lambda)}$ onto the subsets of Δ_n^+ given by $bQ = (Q'_{\Lambda} \cap -Q) \cup (Q_{\Lambda} - Q) \subset \Delta_n^+$ for $Q \subset P_n^{(\Lambda)}$, $b^{-1}T = (Q_{\Lambda} - T) \cup [-(T \cap Q'_{\Lambda})] \subset P_n^{(\Lambda)}$ for $T \subset \Delta_n^+$. b satisfies $\langle bQ \rangle = \langle Q_{\Lambda} \rangle - \langle Q \rangle$ and $|Q| = |bQ| - 2|(bQ) \cap Q_{\Lambda}| + |Q_{\Lambda}|$ for $Q \subset P_n^{(\Lambda)}$.

In the following application we need only to know that b is onto. Namely, we can write $T=bQ_1$ for some $Q_1 \subset P_n^{(\Delta)}$ with $\langle T \rangle = \langle Q_{\Delta} \rangle - \langle Q_1 \rangle$, and

$$|Q_1| = |T| - 2|T \cap Q_{\Lambda}| + |Q_{\Lambda}|.$$

By Lemma 2.2 we may also assume that $(P_n^{(\Delta)} - q_{u,n}) \cup \Phi_{\tau^{-1}} = \Phi_{\tau^{-1}u}^{(\Delta)}$ for a suitable $(w,\tau) \in W \times W_k$. As $\mu = \Lambda + \langle T \rangle$ and $\mu = \mu(q) = \Lambda + \delta - \delta^{(\Delta)} + \langle q_{u,n} \rangle = \Lambda + \delta_n - \delta_n^{(\Delta)} + \langle q_{u,n} \rangle$, we have $\langle T \rangle = \delta_n - \delta_n^{(\Delta)} + \langle q_{u,n} \rangle$. But also $\langle T \rangle = \langle Q_{\Lambda} \rangle - \langle Q_1 \rangle = \delta_n + \delta_n^{(\Delta)} - \langle Q_1 \rangle$ and hence $\langle Q_1 \rangle = 2\delta_n^{(\Delta)} - \langle q_{u,n} \rangle = \langle P_n^{(\Delta)} \rangle - \langle q_{u,n} \rangle \Rightarrow \langle Q_1 \cup \Phi_{\tau^{-1}} \rangle = \langle \Phi_{\tau^{-1}u}^{(\Delta)} \rangle$ (by (ii)) $\Rightarrow Q_1 \cup \Phi_{\tau^{-1}} = \Phi_{\tau^{-1}u}^{(\Delta)} = \langle P_n^{(\Delta)} - q_{u,n} \rangle \cup \Phi_{\tau^{-1}}$ (again by (ii)) $\Rightarrow Q_1 = P_n^{(\Delta)} - q_{u,n}$. Finally since $T = bQ_1$, $T \cap Q_{\Lambda} = Q_{\Lambda} - Q_1$ by definition of b; i.e. $T \cap Q_{\Lambda} = Q_{\Lambda} \cap q_{u,n}$ by (iii), so that $t = |T| = |Q_1| + 2|Q_{\Lambda} \cap q_{u,n}| - |Q_{\Lambda}|$ (by (3.10)) $= |Q_{\Lambda}'| - |q_{u,n}| + 2|Q_{\Lambda} \cap q_{u,n}|$, by (1.5) and (iii), which proves (3.8) and which proves the first half of Theorem 1.9. Conversely let $q = l + u \supset b_{\Lambda}$ be a θ -stable parabolic subalgebra of g with $(\Lambda + \delta - \delta^{(\Delta)}, \Delta(l)) = 0$, let $\pi = \pi(q) = R_q^s C_{\Lambda + \delta - \delta^{(\Delta)}}$, $s = \dim u \cap k$, and let $t_{q,\Lambda} = |Q_{\Lambda}'| - |q_{u,n}| + 2|Q_{\Lambda} \cap q_{u,n}|$. As observed in Lemma 2.2, $\pi \in \hat{G}$ such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)$ 1 and for det $\sigma(-1)|P_n^{(\Delta)} - q_{u,n}| = \pm 1$, $\mu = \mu(q)$ is a common K-type of $\pi|_K$, $S^{\pm} \otimes V_{\Lambda + \delta_n}$ at least if $\mu - \delta_n^{(\Delta)}$ is Δ_k^+ -dominant, which we assume. The point therefore is to show that μ is a K-type of $\Lambda' P^+ \otimes V_{\Lambda}$ for $t = t_{q,\Lambda}$. Since V_{μ} occurs in $S^{\pm} \otimes V_{\Lambda + \delta_n}$, V_{μ} occurs in $\Lambda^{n-j} P^+ \otimes V_{\Lambda}$ for some j

with $(-1)^j = \pm 1$ (by (3.7)) according as $(-1)^{|P_{\Lambda}^{(\Lambda)} - q_{u,n}|} \det \sigma = \pm 1$. Write $\mu = \Lambda + \langle T \rangle$ where $T \subset \Delta_n^+$, |T| = n - j. Also write T = bQ by Lemma 3.9, where $Q \subset P_n^{(\Lambda)}$, $|Q| = |T| - 2|Q_{\Lambda} - Q| + |Q_{\Lambda}|$ (since $bQ \cap Q_{\Lambda} = Q_{\Lambda} - Q$), and $\langle T \rangle = \langle Q_{\Lambda} \rangle - \langle Q \rangle$. By the remarks following the proof of Lemma 2.2 we can write $P_n^{(\Lambda)} - q_{u,n} = \Phi_w^{(\Lambda)}$ for a suitable $w \in W$. Since $\mu = \mu(q) = \Lambda + \delta_n - \delta_n^{(\Lambda)} + \langle q_{u,n} \rangle$ we have $\langle T \rangle = \delta_n - \delta_n^{(\Lambda)} + \langle q_{u,n} \rangle = \delta_n + \delta_n^{(\Lambda)} - (2\delta_n^{(\Lambda)} - \langle q_{u,n} \rangle) = \langle Q_{\Lambda} \rangle - \langle \Phi_w^{(\Lambda)} \rangle$; i.e. $\langle Q_{\Lambda} \rangle - \langle \Phi_w^{(\Lambda)} \rangle = \langle Q_{\Lambda} \rangle - \langle Q \rangle \Rightarrow \langle Q \rangle = \langle \Phi_w^{(\Lambda)} \rangle \Rightarrow Q = \Phi_w^{(\Lambda)} \Rightarrow \text{(by (vii))} \quad n - |q_{u,n}| = |\Phi_w^{(\Lambda)}| = |T| - 2|Q_{\Lambda} - \Phi_w^{(\Lambda)}| + |Q_{\Lambda}| = n - j - 2|Q_{\Lambda} \cap q_{u,n}| + |Q_{\Lambda}| \Rightarrow n - j = 2|Q_{\Lambda} \cap q_{u,n}| + |Q_{\Lambda}'| - |q_{u,n}| = r_{q,\Lambda}$; i.e. $V_{\mu} \subset \Lambda^{r_{q,\Lambda}} P^+ \otimes V_{\Lambda}$, as desired. By (2.7) dim $Hom_K(H_{\pi(q)}, \Lambda^{r_{q,\Lambda}} P^+ \otimes V_{\Lambda}) = 1$, which completes the proof of Theorem 1.9.

References

- [1] R. Hotta and S. Murakami: On a vanishing theorem for certain cohomology groups, Osaka, J. Math. 12 (1975), 555-564.
- [2] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
- [3] ——: On certain cohomology groups attached to Hermitian symmetric spaces, I, Osaka J. Math. 2 (1965), 1-35.
- [4] ——: On certain cohomology groups attached to Hermitian symmetric spaces, II, Osaka J. Math. 5 (1968), 223–241.
- [5] S. Murakami: Cohomology groups of vector-valued forms on symmetric spaces, Lecture Notes, Univ. of Chicago, 1966.
- [6] ———: Vanishing theorems on cohomology associated to Hermitian symmetric spaces, 1987 lecture given on the occasion of the retirement of Prof. J.L. Koszul, Grenoble, France.
- [7] D. Vogan, Jr.: Representations of real reductive Lie groups, Progress in Math. 15, Birkhäuser, 1981.
- [8] ——: Unitarizability of certain series of representations, Ann. of Math. 120 (1984), 141-187.
- [9] D. Vogan, Jr. and G. Zuckerman: Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51-90.
- [10] N. Wallach: On the unitarizability of derived functor modules, Invent. Math. 78 (1984), 131-141.
- [11] F. Williams: Remarks on the unitary representations appearing in the Matsushima-Murakami formula, Non-commutative harmonic analysis and Lie groups, Marseil-le-Luminy Proceedings, Springer-Verlag Lecture Notes in Math. 880 (1980), 536-553.
- [12] ———: Vanishing theorems for type (0,q) cohomology of locally symmetric spaces I, Osaka J. Math. 18 (1981), 147–160.
- [13] ——: Vanishing theorems for type (0,q) cohomology of locally symmetric spaces II, Osaka J. Math. 20 (1983), 95–108.

- [14] —: An alternating sum formula for the multiplicities of unitary highest weight modules in $L^2(\Gamma \setminus G)$, unpublished manuscript, 1982.
- [15] —: Discrete series multiplicities in $L^2(\Gamma \backslash G)$, Amer. J. Math. 106 (1984), 137–148.

Department of Mathematics University of Massachusetts Amherst, Mass. 01003 U.S.A.