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0. Introduction

Let W be the space of /^-valued continuous functions on [0, 1], where
We shall consider the functionals on W

o
(0.1) ψ(α, w) = *=«- f

4 Jo J

which may take infinite value. These functionals play an important role in
the investigation of properties of function w: the finiteness of ψ(α, w) implies
that the Hausdorίf dimension of range {w(ί)\ O^ί^l} is no less than a (cf.
Taylor [9]). Let Q be the Wiener measure on W. Since ψ(α, w) is finite
^-almost surely for any α<2, the Hausdorίf dimension of {w(t); O^ί ̂  l}
is no less than 2 ^-almost surely.

Next, let a tend to 2. Though the mean of ψ(#, •) with respect to Q
diverges to infinity, the functional

(0.2) Ψ.(w) = ψ{2-2-», w)-2n

converges ^-almost surely. In case d=2y Varadhan studied this limit func-
tional in connection with the quantum field theory and proved its existence
(cf. Appendix to Symanzik [8]).

Recently Fukushima [1] showed that various famous properties of sample
paths such as Lόvy's Holder continuity hold not only Q-almost surely but
also quasί-every where 9 i.e. except on a set of zero capacity with respect to the
Ornstein-Uhlenbeck process on W. On the other hand, Kόno [4] and [5]
proved that if d^,4, then sample paths are recurrent with positive capacity.
Therefore 'quasi-everywhere* is strictly finer than ^-almost everywhere'.

The purpose of this paper is to show that ^]r(a, w) is finite quasi-every where
for any α<2 and that lim Ψn(w)=Ψ(w) exists quasi-everywhere. The former
result implies the theorem in Komatsu and Takashima [3]: the Hausdorff
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dimension of range {w(t); O^ί^l} is 2 quasi-everywhere. Let (Ω, 3, P,
J?τ( )) be the Ornstein-Uhlenbeck process on W. Since a Borel subset A
of W has zero capacity if and only if

P[X£ )&A foranyτ] = l

(cf. Fukushima [1], Kusuoka [6]), it is sufficient to prove the continuity of -fy(a>

Xτ( )) in T and the uniform convergence of ψn(Xτ( )) in T.
In case d=2, the limit functional lίmψn(w)=ψ(w) is formally expressed

by

= T I' Γ2 Jo Jo

(C is an infinite constant), which is similar to the inter sectional local time con-
sidered in Wolpert [11]. Westwater [10] investigated a similar functional in
connection with the study of long polymer chains in R3. Finally, we shall
mention the relative result of Shigekawa [7]: the 1 -dimensional Brownian

local time exists quasi-everywhere.

The authors wish to express their hearty gratitude to Prof. M. Fukushima
and to Prof. S. Kusuoka for their suggestion and advice.

1. Singular Wiener functional

Let Wbe the Banach space of all /^-valued continuous functions w=(w(t))
on [0, 1] satisfying zϋ(0)=0; cϊ^, the usual Borel field and Q, the Wiener measure
on (V, W). Set, for

(1.1) /.(*, x) = -— {(|*
z — a.

Considering that Δ/ε(α, x) — > (d—ά) \ x \ ~* as 6 I 0, we shall define

(1.2) β̂(«, w) = J J i- Δ/8(α, w(ί, ί))

where Δ denotes the Laplacian and w(sy ί)=w(t)—w(s).
Set Qj=dldxj and 3^(9!, •••, dd). From the Ito formula

.(«, 0) = Γ (/8(α, «<*, 1))-Γ 9/ε(^, w(*,
Jθ *^5

Using the Fubini type theorem for the product ds dw(i) (cf. Ikeda and Wata-
nabe [2] Chap. II Sec. 4 Lemma 4.1), we have

a, 0) = /.(«, ̂  1))
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Let gζ(a, x) be the isotropic function satisfying

(α, Λ?)=/e(α, x) and ge(a,Q) = Q.

Then g9(a, x) is given by

(1.3) g,(a, x) = " r1-' 2/,(«, «|) ««-' <fo dr, |f

Let #' denote the transposed vector of xy x y=x'y, the inner product of column
vectors x and j>, and 9'9=(9I 9y): t/xrf-matrix. Define

Γ h(t, w) άw(ί) = LMim Σ h (ΐ-9 w] wί-^-, -*-
Jo »->« ι=ι \ n J \ n n

for a process h(t, w) adapted to σ-fields σ(w(u)\ t^u^l). Then we see that

j/.(α, «<*, 1)) * = g,(a> w(Q, 1))-J^ dg,(a, w(ί, 1)) rfw(ί) ,

Γ 3/t(α, a ίί, ί)) ώ = 9g,(a, w(0, ί))-(' (ίί«;(ί))' 3
Jo Jo

Therefore we have

(1.4) ψ-,(«, «>)+/,(«, 0) = g,(a, w(0, 1))

-t 3̂ «(α, «>(*, 1)) rfa>(ί)-( 8̂ , (α, α>(0,
Jo Jo

+ J J
a-e

Define, for α

(1.5) &(α,

= 2|«|2 ί l a l2-*-! 4+^-tf
(4-α) (2+d-a) I 2-α 2d

It is easy to show that, for \v\ ^2,

where v=(vly •••, vd)eZi, |ι»|=ι»,-| ----- \-vd and
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Let ψ(#, w) be the functional defined by (0,1). Since d 2^2,

ψs(a, w) -> ι/r(α, w) for all w as £ J O .

From (1.4) we have

(1.6) ψ (α, w)- -±- = go(a, w(0, 1))

-Γ dgo(a, »(*,
Jo o

Q'.Qgι(a, w(s, f))dw(t) a.e.

The following theorem is proved in Section 2.

Theorem 1. (ψΛ(α;)} converge for almost all w^W and the limit func*
tίonal lim Ψn(w)=Ψ(w) satisfies

(1.7) Ψ(w) - £MO, 1))- Γ θ^ίwίί, 1)) rf^)- f 9 (̂0,
Jo Jo

+ J a.e.,

(1.8) )̂ = |̂ |

Let (Ω, £F, P) be a probability space; B(dτXdt)=(B*(dτχdt)), a rf-dimen-
sional two-parameter white noise and BQ(t)=(BQ(t))y a J-dimensional Brownian
motion independent of B(dτ x dt) satisfying 50(0)=0. Define

(1.9) Xί(ί) - ^-τ/2 {SS(ί)+ (T ̂ 2 B?(Arχ [0, ί])} .

The process Xr= (X !,.(•)) is called the Ornstein-Uhlenbeck process on W.

Fix T and σ. Then the process ίAΛΛ->^Γτ(ί) is a rf-dimensional Brownian motion
and

We shall prove the following theorems.

Theorem 2. For α/ry 0< # <2,

P[-vJr(tf, Jίτ) ώ continuous in τ] — 1 .

From the theorem we see that ιjr(α, w)<oo quasί-every where, ί.̂ . except
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on a zero capacity set. Especially Ψn(w)<oo quasi-everywhere.

Theorem 3. The sequence {ΨΛ(«#)} converges quasi-eveiy where. Let
ψ(w)=lim Ψn(w) quasi-everywhere. Then

P[Ψ(Xτ)is continuous in τ] = 1 .

2. Elementary inequalities

Fix 0<α<2 and set 2/3=2— a. We shall consider the functions

/O 1 \ /^* / Λ / \ / \

Let k,=β-\€ίβ—(2€)2β) and

φ,(u) =* ̂

Then we have

/(?(*)= ΓίΐφMK"-1

Jo \Jo

(2.2)
8/7.(*) = x, £ φβ( I * I β) u"-1 du+~ k, x, ,

θiθyGΛ*) ==*,*, |*| -J$.(|*|)

;.-rf *, ̂ 1*1 -2) Γ φ.( I * I «) M"-1 du+\ 8{j k, .
Jo a

In this and the following sections, we shall use the convenient practice
of letting c 's stand for unimportant positive constants which may change from
line to line.

Lemma 2.1. There is a constant C independent of £ such that

(2.3) |9vGe(*)|^C|*|2-'v'£2β,

(2.4) |9vGf(*+;y)-8vσ^

for any x, y, 0<£< 1 and \v\<*2.

Proof. Since 0^φ,(u)^~k^c ε2β

9 inequality (2.3) follows from (2.2).
Set G((x)=Gz(x)— kζ\x\2/2d. It suffices for the proof of (2.4) to show that

(2.5) |9VG;(*+J)-9VG^

We see that 0^φt(ttj'Sέr*(a*)β, for φ,(u)^62β and

βφ^u) = ((ιf4 ^β—&)~((ιf+4^e^(&^^ .

Therefore we have
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It is easy to see that

9,- 9, 9, G',(χ) = h0(x)\x\\(\x\

+*,(*) ΦK I * I )+*,(*) Γ Φ«( I * I «) «"-' Λ ,Jo

where A0, /^ and A2

 are homogeneous functions with index — 1. Since

we have

Now, suppose that | x \ <2 |y | . Then, for | v \ ^2,

1 8vσ;(*+y)-8Ό;(*) ι ̂  1 8vσ;(*+y) ι + 1 Q^GW \

Suppose that \x\ ̂ 2\y\. Then, for \v\^

1 8vG;(*+y)-8vGί(*) I = I Γ 99vG8

/(
Jo

These prove (2.5). q.e.d.

Next, define

(2.6) G\x) = go(2-2β, x)-gJ2-β, x)

= \x\2β~l (l I Γ ((\x\ruY-lV u"~l du] rdr .
Jo \Jo /

Then we have

(2.7)

jG\x) = x, β-1 (( I * I «)p- 1)2 M1*-1 </M ,

•'f((|*|«)'-l)»*-lΛ.
Jo

Lemma 2.2. There is a constant C independent of β such that

(2.8) IβΌ^I^C/sμi'-

/or any x and \ v \ ̂ 2 and that
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(2.9) 1 8»G'(*)-9VGOO I ̂  Cβ ( \ x" \ x \ -*-? \ y\ ~2 1 + 1 log -

X(l+|log|*| I) (1+ \log\y\ |) (1+(|*| V\y\)2)

for any x, y and \ v |.=2, where Λ?V denotes

(a1)*! (**)v

Proof. By the inequality

(2.8) is easily proved from (2.6) and (2.7). For example, in case \v\ = 1,

1 6, G'(«) I ̂ -f- 1 * I Γ (log( I x \ M))2 (1+|*| V)2 u'-1 du
4 Jo

We see that

log —
β log(«/w)

\β-\nf-

Then it is easy to prove (2.9) from (2.7). For example,

|v|)2). q.e.d.

Proof of Theorem 1. Note that

From (2.8) we have, for | v \ <^2,
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Let Ψ(w) denote the right hand side of (1.7). From (0.2), (1.6) and the above
inequality, it is easily proved that

From

we know that Ψn(w)->Ψ(w) a.e. as w->oo. q.e.d.

3. Preliminary estimates

Let Gβ(x) be the function defined by (2.6). From (1.6) we see that

(3.1) ^(2-2/3, Jfτ)~ψ(2-/3, -£•)+ - = WTT(Q, 1))

-f dG?(XT(s, l))dxj*)-r\l 9Gt(XJp, t)) dXτ(t)
Jo Jo

+ j I ^XT(s)'d'dG%XT(s, t)) dXτ(t) a.e. (P) ,

where XT(s, t)=Xτ(t)-XT(s). Hence, for any 0^τ, σ^ 1,

-2A Xτ)-ψ(2-β, Xτ)-^2-2β, Xa)+ψ(2-β, Xa)\

+ 1 Γ {dG*(XT(s, 1)) <tX4t)-QG'(XJtt,
Jo

+ Γ {3GP(̂ T(0, ί)) ̂ τ(ί)-3^β(^σ(0, ί))
Jo

*<'

-dxj(s) WG*(XJ(s, 0) <ZΛΓβ(ί)} I

= I G WO, 1))-G 0̂(0, 1)) I +3,+^ .

Let/>>2. Using the Burkholder inequality and (1.10), we have

(3.2)
Jo

+2(1 -«-"-'"») dG\XT(s, 1)) 9'G'(XJ& 1))}

+ί E| f {|9G^T(0, ί))-8G"(̂ 0, ί))l2

Jo
, ί))}
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+c th E|8G^T(0, f))|> Λ .

Similarly we have

c- P E| P {Q'QGP(X4t, ί)) dX#)-d'dG*(Xj(s, ί))
Jθ Js

E| ' Q'

From the Burkholder inequality we see that

E I P {3'9G"(̂ τ(ί, ί)) dXM-Q'dG^Xά t
J s

+2(1 -β-ιτ-ι/») QdjG'(XJι, 0) d'djG^XA*, t))}

E I CWO, fb-ffΌ^XJp, t)) |
|V |=2 Jo

+c. (thinly72 2 P"f £ 1 9VG"(*T(0, ί)) I ' Λ ,
\ 4 / ιvι=2 Jo

and

£ I Γ 9'9G^T(^, 0) ΛX W I p£c Σ I1"' ̂  I PGUXJQ, t)) \>dt.
Js |V|=2 Jo

Combining these inequalities, we have

(3.3) E I B2 1 *£c* Σ E I Γ 1 9VG^T(0, 0)-9vG^σ(0, i)) \2dt\ >'2
|V |=2 Jθ|V |=2 Jθ

72 , ί)) I' Λ .

For 0<:τ, σ^l, set

(3.4) α

Let β ί̂) and B2(i) be independent rf-dimensional Brownian motions defined
on (ίϊ, £F, P) satisfying J31(Q)=JB2(0)=0. From (1.10) the law of the process

is equal to that of the process

t ΛΛM (B^bή+a B2(bt\ B^bή—a B2(bt)) .
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Therefore

= E I G^B1

f sup

By a similar argument we have the following lemma from (3.2) and (3.3).

Lemma 3.1. For p>2, it holds thai

(3.5) E I ψ(2-2£, χτ)-ψ(2-β, Xτ)-γ(2-2β, XJ+γ(2-β, X,) \ *

E \dvGp(B1(t))\f dt

+e
Jo

|V|=2

Fix 0<α<2 and let :G,(Λ?) be the function defined by (2.1). Replace the
function Gβ(x) by the function G^(x) in the above arguments. Then we have
the following estimate, which is much simpler than (3.5).

Lemma 3.2. For fixed 0<α<2 andρ>2, it holds that

(3.6) EI ψt(αf ^τ)-ψ2ε(α, ̂ )-ψt(α, XJ+Y»(<x, X.) I'

^ α*Σ sup
|V|=1.2 /^l

sup

4. Moment inequalities

Let 2—a=2β>0. Define a function ζp(a), 0^α<l, by

(4.1) ζp(a) =\a

p *

Lemma 4.1. There is a constant C independent of £ such that

(4.2) FJifc.f/v. Y\—ik.f/y Y\ — ̂ (rv Y\Λ-^(n Y\\P

O^r, σ^l.

Proof. From (2.3) we see that, for | v\ ^2,
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Since ap^ζp(ά), we have

From (2.4)

E

£c S» j (β I y I y» M(l+ I y I )2> e-w** dy

^c εβ" tf*"gc &* ζp(a) .

Moreover we have

E [ 1 8vG,(β1(ί)+flβ2(0)-9vG,(β1(ί)) I >; I Bβ) I >2a \ B2(t) \ ]

^C'£β"(\ (a\y\\x\*-\\+\x\γγ e-«'^W dxdy
J J \x\>2a\y\

^c'£β" \ ( J" ί (β"1)ί+1'"1 e~" dr) a(\y\γ e'^'2 dy,

for (l+r)2j> exp(— r2/2)^c exp(— r). Using the estimate

Ja\y\

We obtain the inequality

From (3.6) the proof is completed. q.e.d.

Next, we shall consider the moment inequality with respect to the process
ψ(α, Xr). Let Gβ(x) be the function defined by (2.6).

Lemma 4.2. There is a constant C independent of 0</3<1 such that,
forQ<a<l,

(4.3) α

+sup E I G W)+<LB2(ί))-
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Proof. From (2.8) we see that

Immediately we have, for | v \ = 1, 2,

of Γ E I ffΌ^BΛt)) I p dt£c (aβ)* .
Jo

Using the estimate

/S I y I )* Γ ((log I x+θay \ )2+ | x+θay \ 3)> dθ
Jo

we have

Γ EIΘG^W+^WJ-SG^W)!^^^^
Jo

It is much easier to show that

sup E\Gβ(B1(t)+aB2(t))-Gβ(B1(t))\^c^(aβ)p .

So the proof is completed. q.e.d.

In consideration of (2.9) we shall define, for | v \ =2,

(4.4) λv(α, x,y) = ( \ (x+ay)* \ x+ay \ '2-^ | * | -2 1 + | log l

Lemma 4.3. Let />=4+8δ>4. There is a constant C such that, for

(4.5) E I Γ λv(α, Bl(t)i B2(t))2 dt \ */2^ C
Jo

Proof. Divide the space R2* into three domains:

Z>(0, α)= {(*,y); |*|.V|j>|>-lρgα} ,
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and define

pk(<*> *y y) = JWα> (χ> y)

Let B(t)=^(Bl(t)9 B2(i)). First, we have

E\\\\*pQ)(a,B(t))dt\>'2
Jo

£(E P λί'(β, B(t)) dt}W (E f 1

 A(β,
Jo Jo

ί̂. (E Po(a, B(t)) at)
Jo

= c I log β|</*-1

 a

Since

Γ 15̂ ) I -1 dt = -^- { IA(1) I - Γ 1 5ι(ί) I -1 BM
Jo a — 1 Jo

it holds that

E l f 1 \B1(t)\-1dt\9<oo foranyί>0.
Jo

We see that, for any 0<μ,<l, using the mean value theorem,

(λj Pi) (a, x, y)

kl)2) (1+ kl2)}2 h(a, x,

£c (a -LzL)"(l+(logk|)4) (1+ l*l«) ft(β, *,

^.(βiogίi/β))^!*!-^!*!*).

Therefore we have, setting μ=(4+68)lp,

| Γ
Jo

Set r=(2+4δ)/S. Since (r-l)/>/r=4+6δ,
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E I ( ' (A* ft) («, B(t))dt\^
Jo

| Γ ft(β,
Jo

*• (α log(l/α))2+3δ (E I I A(0 1 ~l dt \ 4+6δ)1/2

These prove (4.5). q.e.d.

From (2.9) and (4.5) we know that

(4.6) ΣJ E| ja^fiiW+^WJ-β^fiiCO)!2 Λl"2^-^ «2(1+δ) .

Combining (3.5), (4.3) and (4.6), we obtain the following lemma.

Lemma 4.4. TV^tf w α constant C independent ofO<β<l such that

(4.7) E I .K2-2/3, -X;)-Ψ(2- A. -SΓT)— ψ<2-2/3,

^r, σ-^1, where />=4+8δ>4.

5. Proof of theorems

We shall prove Theorem 2 and 3 applying the following lemma. The
basic idea of the lemma is communicated by Prof. S. Kusuoka.

Lemma 5.1. Let {Φw(τ)}, O^r^l, be a sequence of real valued continuous
processes. If there are positive constants C, p, q and δ mch that, for all r, σ and n,

(5.1)

then

(5.2) P [ Σ sup I φΛ(τ)-ΦΛ(0) |< oo] = 1 .

Proof. Choose γ, 0<7<δ, and -ηy 0<^<1, so small that (1—97) (1+δ— γ)

1. Set

J(m) = {(ί,./)€=Z2
+; 0^i<j^2m

yj-i
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Then, from (5.1) we know that

P [\Φn(j2-m)-Φn(i2->»)\P>2-»«<2 ((j-iftΓ~γ for any (i,j)*=J(m)]

Let <4(M, JV) denote the set

A(M, N) = {\Φn(j2-m)-Φn(t2-m)\*^2-»«'2 ((/-O 2- γ

for all n^N and (ί, j)^J(m) with m

Then we have P [̂ (M, JV)] f 1 as M, JV f oo.
For a moment, we shall consider paths of processes {Φn(τ); n^N} on

the set A(M9 N). Pick 0^σ<σ'^l so close that σ'—σ<2'M^-^. Choose
7W such that

and expand σ and σ' as follows:

σ =

σ =2--

where m<m(l)<m(2)< ••• and m<m'(l)<m'(2)< ••• . Since ΦM(τ) is con-
tinuous in r, we have

{2 Σ

Therefore

sup|ΦM(τ)-Φn(0)| ^c 2-nq/

This implies (5.2), for P [A(M, N)] f 1 as M, Λ' f oo. q.e.d.

Proof of Theorem 2. Let p>2 and 2— α=2yS>0. Then there is a posi-
tive constant 8 such that ^(a)^i:-a2(1+5), where ζp(a) is the function defined
by (4.1). Set S(n)=2~n and

From Lemma 4.1, the function ΦΛ(τ) satisfies condition (5.1) for q=βp From
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Lemma 5.1 we have

lim sup I Λ/rε(n)(α, Xτ)— ψ(a, Xτ)— ψ ,c«)(α, X^+^(a, X0) \ = 0 a.e. ,
n+09 r

for

*τ) = Σ Φ*(τ)

Since i/r8(n)(#> J£"0)->ψ»(α, -X"0) w->oo, and since ιKω(α, ^r) is continuous in

T, we conclude that

P [ψ^α, XT) is continuous in r] = 1 . q.e.d.

Proof of Theorem 3 . Set

Φ.(τ) =

From Lemma 4.4, the function ΦM(τ) satisfies condition (5.1) for ρ=q=4+8S.

Therefore Ψn(Xr)— Ψn(X0) converges uniformly in r as n->oo almost every-

where. By Theorem 1, ψn(XQ) converges to Ψ(X0) a.e. as n-*oo. Hence

P [Ψn(Xr) converges uniformly in r as w— >oo] = 1 .

This implies that {Ψtt(w)} converges quasi-everywhere and

P [lim Ψn(XT) is continuous in r] = 1 . q.e.d.
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