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1. Introduction

Extra special p-groups are groups which are central extensions of Z/p by elemen-

tary abelian p-groups. The cohomology ring of these groups occupies an important
place in equi variant cohomology and in representation theories. Quillen [13] de-
cided the cohomology for p = 2. However for odd prime p cases, it seems very

difficult to decide the cohomology completely ([5], [14], [15], [17]). Therefore, in
this paper, we study the cohomology with localization for multiplicative sets defined
by a maximal split elementary abelian p-subgroup.

We consider the groop G which is the central product of the circle 51 and
the extra special p-group G constructed by Leary, Kropholler, Huebschmann and
Moselle [12]. Let £?r*'* be the Hochschild-Serre spectral sequence induced from the
central extension

0— +Sl — + G^V = ®2nZp — > 0.

Let A be a split quotient group of G with A — ®nZ/p such that S1 Θ A is a maximal

abelian subgroup of G, and let

eA= Bx

One of our observations is that the nonzero differentials in [e^~l]Er*^ are only

Cartan-Serre and Kudo's transgressions. Hence we get [eA~l]H*(G) easily.

In the paper [17], the author studied the spectral sequence E"r*'* and applied the
results to the representation theory and the group actions theory. However the proof

of the main lemma (Lemma 2.4 in [17]) using Araki's base-wise reduced powers

is not correct. We correct this with Corollary 2.8 in Section 2. Indeed, the spec-
tral sequence becomes quite simple and easier to understand with the localization.

Moreover we can give wider applications to representation theory and equivariant

cohomology.
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In Section 2, we study the behaviour of the localized spectral spectral sequence

whose £"2-term is isomorphic to [e^"1]^*'*. We recall the extra special p-groups in
§3. In §4, we study the case n — 1, 2 with the localization by a smaller multiplicative

set. The cohomology of other similar groups are studied in §5, and a result of this
section is used in §7 for actions on CP* x CPS. In §6, we construct the periodic

modules with period 2pl for ί < n, for extra special p-groups of exponent p2 and for

similar other groups. We use the arguments by Benson-Carlson [6] in this section.

In section 7, elementary abelian p-group actions on CPt without fixed points are

studied by using the fact that its equivariant cohomology is almost same as the
comology of the group G constructed from the extra special p-group, according to

the idea of Allday [3]. In §8, we compute the cohomology of a Sylow p-subgroup
of GL4(FP) with some localizations. The Brown-Peterson cohomology is studied in
the last section.

The author thanks to the referee for careful reading and correcting some errors
of the first version of the paper.

2. Hochschild-Serre spectral sequence

We consider the Serre spectral sequence such that the J£2-term is

(2.1) E2*'* - H* (®

induced from a fibering X — > Y — > Z with H*(X) ^ H*(BSl) and H*(Z) ^

ff*(02nZ/p). In this paper cohomology ff*(— ) always means the Z/p-coefficient
H*(— Z/p) for an odd prime p. Let us write

H(®2nZ/p) = S2n ® Λ2n, H*(BSl) * Z/p(u]

with S2n — Z/p[yι, y2n], Λ2n = Λ(XI, x2n), Bxi = Vi We assume that the first
non-zero differential is

n

(2.2) d3u = Bf with / = ̂  X2k-ι%2k
k=l

Then by the Cartan-Serre and Kudo transgression theorems, we know

(2.3)

with z(ϊ) = P?τ~2 - - - PlBf = Σyik-ιJX2k ~ 2fe*J*2*-i, for J - p^1

w(i) = BPJz(ϊ) = ̂  y2k-ιry2k - V2kIy2k-ι for / = pi

Let us write S(i) = 52n/(iί;(l), - ,w(i)). Recall that (w(l), - ,w(n)) is a regular
sequence in 52n[14].
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Let BI (resp. £?2) be the n x n-matrix with (fc,z)-entry (y2k-ιJ) (resp. G/2fcJ))

so that (x2, ,X2n)Bι — (χι > ' ' ' 5^2n-ι)£?2 = (z(l), , z ( n ) ) .

Lemma 2.4. Γλe determinant ofBi is ((-l)ne)l^p~l"> where

( A i , - - - , A 2 n - i ) / (0,- - , 0 ) e (Z/p)n.

Proof. Let us write the determinant B\\ G Z/p[2/ι, ,y2n-ι] If we take
2/2i-ι = λij/i + - - - + Ai2/ 2 i_i -f + λn2/2n_ι, then |Bι| = 0. Hence e1/^"1)^! .

Since deg(el^p-1^) = deg(\Bι\) and Πo^λez/P

 λ = -!» we βet the lemma. D

Lemma 2.5. By multiplying an upper triangular matrix with diagonal entries

1 in SLn(S2n)> we can change BI to a lower triangular matrix BI with (i^i)-entry
Yi,2i-ι where Yiιk = l\(yk + λ2ΐ_32/2ί_3 + - + A^), X2k-ι € Z/p.

Proof. It is immediate that we can change BI to a lower triangular matrix

BI by a matrix in SLn(e~lS2n) localized by e, since (Yi,ι...Yr

n,2n-ι)p~1 = (-l)ne

We will show that we need not the localization. Suppose that by multiplying an

upper triangular matrix C = (QJ), GJJ = 1, Cij G Z/p[yι, ,2/20-3] from the right
hand side, we can change BI to a matrix Br = (bijf) with bi/ — 0 for j > i
and i > k. We can take B7 when i = 1, because &n = yι\bu = yιpt . Think

6fc/ in Z/p[yι, -y2k-ι], for fe < j- If we take y2k-ι = 2/2β-ι for s < fe, then
^/ej7 = bsj1 = 0 by the supposition. Since bkj is a linear combination of y2k-ip*

with coefficients in Z/p[yι, - -,^2^-3], we also see if y2k-ι = A i y i H hA f c_i2/ 2fc-3,
then bkj' — 0. Hence lfc,2fc-ι|&fc/ Therefore we can take a matrix C7 with entries in

Z/p[ϊ/ι, 2/2fc-ι]» such that 6^' = 0 Π

Note that if we take y^k-i = y2t-ι, then bkk = ttfe7 also for t > k. Hence
we have

(2.6) Z(ί) = yί,2t-1^2ί H + lί,2n-1^2n ~ ̂ ,2^1 ^z,2n^2n-l

mod (z(l), . .-,z(i- l)) .

let us write βι — Yί,ι>2,3 Yi^ί-i One of our main theorems is

Theorem 2.7. Let R be an S^-algebra such that (w(l), , w(i)) is regular in
R and eι~l G R. Let £/'* be a Serre spectral sequence such that E2*'° = R ® Λ2n

and E2*'* = Λ (g) Λ2n 0 Z/p[w] w/ίA 5x^ = yj and d3 is given by (2.2). Then for
I = p\ J = p^1 and R(k) = R/(w(l), - , w(k)), k < ί, we get
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(i - l)[u7] ® Λ(x2i+2, - - , x2n, x1? - - - x2n-ι){l, z(ί)uJ<*-V}

for 1 + J < r < (p - 1) J

(^)[^/](8)Λ(x2i+2Γ ^2n,^l, ^2n-l) for (p - l)J < Γ < /.

Corollary 2.8. Lei Er*'* be a spectral sequence whose E^-term is isomorphic
to (2.1) and d3 is given by (2.2). Then for i <n

for 1 + J <r < (p- 1)J

1]^)^7] ®Λ(x2i+ 2, ,Z 2 n,Xι, Z2n_ι) for (p - l) J < T < I = p{

Corollary 2.9 (see Yagita [17]). Suppose the same assumption as Corollary
2.8. Ifr < pn~l(p — 1), then E2r+i*'* contains the subalgebra

{ S(i - ^[u1] 0Λ(x2ί+2, ,x2 n,xι, ,x2 n_ι) for 1 + J < r < (p - 1)J

5(z)K] 0 Λ(x2;+2, - - - , x2n, xi, - - , x2n-ι) for (p - 1) J < r < I

Corollary 2.10. Suppose the same assumption as Corollary 2.8. Then

[e-1]^*'* ^ [e-l]S(n)[v?n] 0 A(x 1 ? - - , x2n_ι).

For proofs of Theorem 2.7 to Corollary 2.10, we need lemmas. We recall some
facts from algebraic geometry. Let k be an algebraic closed field over Fp and
Var(/ι , fr) C kN be the variety defined by the ideal (/i, , fr) in SN.

Lemma 2.11 ([13]). (/1} , fr) is regular in SN if and only if

dim

Lemma 2.12. If s < n and t <n, then ( w ( l ) , , w(s), et) is regular in 52n.

Proof. We will prove that J = (w(l), , ty(s) ,2/2fcϊ2/2fc-ι + ^ιVι +

fe_3) is regular in 52n. The variety is

Var(Ideal J)

= Var(iϋ(l), , w(s)) Π {y2/c_ι = -λiyi ----- ^k-^y^k-^} Π {y2fc = 0}

ίl), - X(*)) C A:2n-2
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where w'(ι) = w(i) - (y^k-^yzk - y2kIyik-i). Since (u/(l), , w'(s)) is regular in

Z/p[yι, , 2/2fc-ι, 2/2fc, , 2/2n], we get dimfc Var(Ideal J) = 2n-2-i.
Hence J is regular and so is its subsequence. Since et = il,ι...lt,2t-ι, we have

the lemma. Π

Corollary 2.13. Ifi < n, then S(ϊ) C [ei+Γl]S(ι).

Proof of Corollary 2.9. It is immediate from the above corollary and Corollary

2.8. D

Corollary 2.14. Ifi < n, w(i) is non zero divisor in [ei~l]S(i — 1).

Proof. I f w ( i ) (eiNa) = 0 in S(i - 1), then (CIN a) = 0 from the regularity of

w(i) and α = 0 from Lemma 2.12. D

For an odd degree element z in some graded algebra A, the homology H(A, z)

is defined by d(a) — za for all α in A. Let R be an S2n-algebra satisfying the

assumption of Theorem 2.7, e.g., ei~~l G R. Let AI = R(ϊ) 0 Λ2 n/(z(l), , z ( i ) ) .

Lemma 2.15. H([ei+Γl]Ai] z(i + 1)) 9* {0}.

Proof. From (2.6) and Yk,2k-ι~l ^ [ei~1]*Sf

2n for k < i, we inductively see

Hence we get

-, x2n, x i ? -, x2n-ι), ̂ (i + 1) = 5^+ι,2i+ι^2i+2 H ---- )

i + 1), X2t+4, ", ̂ 2n, X l , ", X2n-l), ^(* + 1)) = {0},

since the homology H(/\(z, x, - - •), z) is always zero, from the definition. D

Proof of Theorem 2.7. Suppose that E2j+2*'* is isomorphic to

Since E2r+1*'fc = 0 for 0 < k < 2J(p - 1), we know dk+ι = 0 for these fe.

The next differential is the Kudo's transgression d2j(p-ι}^ι(z(ί)uj^p~1^) = w(ί)

Since w(i) is non zero divisor in R(i — 1),

(1) E2J(p_1)+2*'* ^ (E2J+2*'°/(^(0))[^]

= ^(ϊ)[^7] 0 Λ(x2ί+2, - , x2n, xi, - - , £2n-ι)
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So £2j(p-ι)+2*'° = Ai[uΣ]. Since £2j+2*'fc = 0 for 2J(p - 1) < k < 27, the next
non zero differential is the Cartan-Serre transgression d2/+i(i£7) = z(i + 1). Hence

^27+2
*,2/r

for

ι*'0 for r = p-

£2/+2*'fc = {0} k ̂  0 mod /.

From Lemma 2.15, [e +i^jί/XE^j+i*'0, ^(z+l)) = {0}. For each odd degree element
z G A, we see that Kerz|A = H(A, z) + Image (2;). Hence we get

Thus we can complete the proof of Theorem 2.7. Π

Proof of Corollary 2.10. To see this corollary, we only need to show that upn

is permanent, i.e,

d2p-ι(upn) =2:(n + l) = 0 in [e-l]S(n) <8> Λ(x l 5 - - ,x2n-ι)

From (2.6), we can easily see

Z(n + 1) = -Fn+1,2^1 ----- ^n+l,2n^2n mθd (z(l), - - - , z(n))

where yn+ι,2t = Π(y2i + A2 n_ιy2 n_ι -f + λiyi). We want to show that each
^+ι,2i is in the ideal J = (ιt (l), ,ιy(n)) of [e~1]52n. For this we recall that
J = VJ and its variety Var( J) has the decomposition

Var( J) = \JW®k

(see [14] or Theorem 5.1 below) where W ranges over the maximal 5-isotropic

subspaces of the vector space V = Z/p{yι,> - ,y2n} — (Z/p)2n with B(y,y') =
f2k-ι ~y2k-ιyl2k As a subspace of [e~1]52n(/c), each W®kis expressed by

(yι, >2/2n)|y2i = λuyi H ----- 1- A2n-i,i2/2n-i}

otherwise W is defined by linear forms not involving y2i for some i, which would

imply that y^i-i = 0 by the B-iso tropic condiction, but this is ruled out by the
localization e~l. On the otherhand

Var(Fn+ι?2i) = |J {(2/1, - ,2/ 2n)|2/2t = λiyi H ----- h λ2n_ι?/2n_ι}.
(λι, λ2n-l)
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Thus Var(Yn+1?2i) contains all [e-1]VF ® k. Since J = >Λ7, we get the result. Π

REMARK 2.16. Corollary 2.10 is also proved easily by using the cohomology
of the extra special p-group En defined in the next section (see [14] Proposition
4.7). Let M be a maximal abelian subgroup of En and z be the 1-dimentional
representation of M of which is the dual of non zero element in the center Z(En}.
Then the Chern class of the induced representation of z gives

REMARK 2.17. Let A be an elementary abelian p-group and suppose that there
exists a continuous map X — > BA for some space X. Define eA = Πy where
y ranges over all Bockstein images of non zero elements in .if1 (A). Then we can
consider the localized cohomology [eA~

l]H*(X). Since eA = e = (-l)n(det BI)P~I

for ΐankp(A) = n, we know Pi(eA) € ideal(eA) for all i. Let Pt : H*(X) — >
H*(x)[ M ] be the total reduced powers defined by Pt(x) = Y,Pl(x}t\ Then this
is a ring homomorphism and easily extends to [e~l]H*(X) by Pt(eA~l) = Pt(eA)~l>
e.g.,

Pt(y-i) = y-i(ι + yp-lt)-1 = y-1 - yp~2t + y2p~3t2 + for o ̂  y e H2(A).

Thus [e~l]H*(X) is a ^-algebra in which holds the Cartan formula. Of course the
Cartan-Serre and Kudo's transgression theorems hold for the localized Hochschild-
Serre spectral sequence, however it is not unstable, e.g. in general Pίx Φ xp for
i = 2deg(x). Given an *4P -module M, the unstable module Un(M) is defined
by elements x G M such that Pτ(x) = 0 for all 2ί > deg(x). It is immediate
that Image (H*(X) — > [e~l]H*(X)) C Un([e~l]H*(X)). (For more details about
Un([e-l}H*(X}), see [7] or Corollary 7.10 bellow.)

3. Extra special p-groups

An extra special p-group G is a group such that its center is Z/p and there is a

central extension

(3.1) 1 — >Z/p — >G — >V — > 1 where V = Θ2n Z/p.

Such a group is isomorphic to the n-th central product E E = En or En-\M
where E (resp. M) is the non abelian group of the order p3 and exponent

p (resp. p2). Hence we can explicitly write

(3.2) En = (aι, -avn,c\ [α2i_ι,α2t] = c, c G Center

[α^α,-] = 1 for i < j, (i, j ) φ (2k - I, 2k)
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The group En-ιM is written similarly except for a2n

p = c.
Let us write by Xi G Hl(V) = Hom(V, Z/p) the dual of α^ and write yι — Bxi

Then the cohomology of V is H*(V) = S2n ® Λ2n.

Proposition 3.3 (Proposition 2.4 in [14]). 77ze extension (3.1) represent the
element in H2(V)

n

2i-lX<2i (resp χ2i-ι^2i + 2/2n) for G = En (resp. En-ιM).

We consider the spectral sequence induced from (3.1)

(3.4) E2*'* =/f*(F; ί

= ^2n (8) Λ2n (

with βz = u. From Proposition 3.3, we know (Lemma 2.5 in [14])

(3.5) d2z = /.

Then £3*'* is not isomorphic to (2.1), while d<2j+ι(uj) — z(i) and

^2(p-i)J+ι(^(0 ̂  ̂ J^p~1^) = ιt (z). This spectral sequence seems quite difficult.
Hence we consider other arguments which are used by Kropholler, Leary,

Huebschmann and Moselle. Embed (c) = Z/p C Sl and consider the central product

(3.6) G = Gx(c)S
l.

Note that En = En-ιM , indeed, take α2nc~1/p as α2n, if a2n

p = c. Then we have
the exact sequence

(3.7) 1 — > 51 — > G — > V — > 1

and the induced spectral sequence

(3.8) £2*'* ̂  H*(V\ H^

This spectral sequence satisfies (2.1) and (2.2), hence we can apply all results in
Section 2. In particular, from Corollary 2.10, we get;

Theorem 3.9. [e-^H^E^ * [e-^HK"] ® A(Xl,x3, ,x2n-ι).

Given H*(G), to see H*(G) we use the following fibration induced from (2.1)

(3.10) S1 = G/G -^ BG — > BG.
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The induced spectral sequence is

(3.11) £2*'* = H*(G-,H*(S1)) = H*(G] ® f\(z) => fT(G)

with d<2Z = f. Therefore

Proposition 3.10. There is an S(n) -module isomorphism

Θ J

Since (x2, , f f 2 n ) = Oi, ,x2n-ι)^2^Γ1 +
/ = Σx2i-ι#2z is expressed as

/ =

In particular, when n < 2, we can compute that / = 0 in [e~1]5(n)0Λ(xι, , X2n-ι)

Corollary 3.11. Ifn<2, then there is an S(n) -algebra isomorphism

[e~l]H*(En) * [e-l]S(n)[v?n] 0 Λ(x l 7 - - - , x^) ® Λ(z).

Corollary 3.12. //*n < 2, ί/ze« there is an S(ri)-module isomorphism

[e-1] tf *(£„_!. M)

)^} θ S(n)/(y2n))[^n] 0 Λfo, - - - ,

Proof. From Proposition 3.3, for this case, / = y2n- D

Next consider other similar groups. Let E(s)n = En x^ Z/ps be the central
extension by Z/ps, s > 2. Then the central extention

0 — > Z/ps — > E(s)n — ̂  V — > 0.

induces the spectral sequence E(s)r*'* converging to H*(E(s)n). Let us write

Proposition 3.13 ([17]). E(s}r*'* ^ £/'* 0 Λ(z') wAβrβ Er*'* is the spectral

sequence (3.8) converging H*(En).

Proof. Let d^z') = ̂  XijXiXj+μkyk- Then λ^ = 0 since B(z') = 0. Consider
the automorphism A of E(s)n defined by a\ \ — > a\a<ι,aj \ — » aj (for j > 1) and
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c i—> c. The induced automorphism A* of E(s)r*'* is given by y2 '—> 2/2 4- 2/1,

2/j i—> yj (for j Φ 2) and 2;' ι—> z'. Hence d2(z'} is invariant and we see μ2 = 0.

Similarly we see all μk = 0. Therefore d2(z') = 0

Since E(s)n C En, there is the natural map Er*'* —> £(s)r*'*. By induction

on r, we see this proposition. D

Finally for this section, we look at the spectral sequence (3.4) for En_ι.M. Let

us write this spectral sequence as Έr*'* and write as Er*'* the spectral sequence

converging to H*(En). Recall that

d2(z) = f + y2n With /' = XιX2 H h X2n-1^2n

Hence Έ3*'* = 52n_ι ® Λ2n ® Z/p[u] where S2n-ι = Z/p[yι, , 2/2n-ι] Now

we consider a filtration of Έr*'* by the ideal / = (#ι, , #2n), and its graded

algebra #r'Er*'* = Θβ=0/V/θ+1 of corse 9r'E^* = S2n ® Λ2n ® Z/p[u]/(y2n).
Then almost all arguments in Section 2 work.

Theorem 3.14. For

r <pl < pn~l, [ei~l]gr'E2r+ι*'* = [et~1]£?2r+ι*'*/(2/2n)

For the proof of this theorem we recall the following lemmas.

Lemma 3.15. Let FI be a submodule of a module F and w e F. If the multi-

plication by w on F/Fι is injective, then Fι/wFι C F/wF.

Lemma 3.16 (Lemma E in [15]). Let FI C F and zFi C FI. If the spectral

sequenceH(F/Fι®Fι,z) =^> H(F,z) collapses at theE1 -level thenFι/zF1 c F/zF

and(F/zF)/(Fl/zFl}^

Proof. IfzFΓiFi φ zFi, then H(F, z) D (Ker z F^/zF but ~ύ (Ker d\Fι)/zFι.

This means the spectral sequence does not collapse. Π

Proof of Theorem 3.14. Suppose the statement for r = J + 1. Then by Lemma

3.15 and Kudo's transgression theorem, we get the statement for r < I. By the reason

similar to the proof of Lemma 2.15, we get H([ei~
l]gr/E2I+ι*^,z(i + 1)) = 0. Of

course the spectral sequence

°5 z(i + 1)) =» H([ei+l-
l]E2I+^, z(i + 1))

collapses, hence we have the statement for r = I + 1 from Lemma 3.16. Π
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4. The cases n small

In this section, we study the spectral sequence (2.1) without or with less
localization when n is small. More strong results are given in [15].

Suppose n < p. The first non zero differential is d$u = zn(l). At first we want

to compute H(s2n ® Λ2 n,z(l)). For this, we use the following lemma taken from
[15].

Lemma A. Let z,y e A be elements o f \ z \ = odd and \y\ = even. Then for
\x\ = \z\ — \y\, we have additive isomorphism

H(A ® Λ(x), yx + z) ^ (H(A, z ) / y ) { x } Θ Ker(y\H(A, z ) ) .

From Lemma A, we have #(S2n (g) ΛI, y^xi) = ^2n/(2/2){^ι}. By induction
on n

(4.1) H(S2n®Λ2n,z(l)) = Z/p{xl x2n} = Z/p{fn} since n< p.

Since Ker z = Imz θ H(A, z) for z 6 Aodd, it is immediate that

Lemma B. There is an isomorphism (A/z)/H(A, z) =lmz c A. In particular,

if A is w-freefor w G Aeven, then so is (A/z)/H(A, z).

Apply this lemma with A = S2n ® Λ 2 n,z = z(l),w — y\. Since w is injective
on A for this case, we know that yι is injective on A/(z θ H(A,z)). Since fn is
yι -torsion, there is no non zero differential dr : Z/p{fnus} — > A/z for r < 2p — 1.

Next recall the Kudo's transgression d2p-ι(^(l) ̂  up~l) = w(l).
By Lemma B with w = w(l), we know Ker(d2p-ι|Imz(l)) = 0.

Lemma 4.2. d2p^(fnuP-1) = nz(2)fn~l.

Proof. Since £r*'odd = 0, the Bockstein maps from £r*'even to Er*
+1'even.

The element B(fn

UP-1) = nB(f)fn~luP-1 = nz(l)fn-lυ?-1 maps to nw(l)fn~l

byd2p-ι. Since B(z(2)) = w(l), we know that d2p-ι(fnup-1) = nz(2) fn~l + a with
α e KerS. Since Xif = 0 in 52n 0 Λ2n, we know x^α = 0 in 52n ® Λ2 n/(z(l)) and

hence B(x»a) = ^a = 0 but Keryi = Z/p{fn} from Lemma B with w = t/j. D

Therefore we get ([15])

Γ S2n 0 A2n/(^(l), τι (l), ^(2)/n-1) j - 0 mod p

Theorem 4.3. E2p*'2j ^ < Z/p{fn} l<j<p-l

[o j = p- i-
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The next differential is d2p+ι(up} = z(2). Let E = S2n ® Λ2 n/(z(l),
We want know H ( E / z ( 2 ) f n ~ 1 , z ( 2 ) ) . First we note the additive isomorphism

(4.4) H(E/z(2)fn-\

The computations in [15] for the cohomology H(E,z(2}} is very long. Hence

in this paper, we give a computation with [yi"1], which is somewhat shorter. Recall
(2.4) which shows that with mod

2/2i,ι
i=2

where yM - Πλez/P(2/fc ~ λ2/ι) = 2/fcP ~ Vιp~lyk
Let Λ = S2n/(w(l)). Applying Lemma A we get H(A (g) Λ(x3);y4 )ιX3) =

2/4,1) {#3}, Applying Lemma A and induction on n, we have

(4.5) H(A 0 Λ(Z3, - - , X2n),

i=2

= A/(2/3,1, , 2/2n,l){^3 ' ^2n}

if we can see the following lemma.

Lemma 4.6. (ι/7(l),y3>ι, - - ,2/2n,ι) & regular in [yι~1]52n.

Proof. Since the variety is expressed by

Var(2/i,ι) = Var I J| (̂  - Xyι) = (J {(yι, - - - ,2/2n)|2/i =
\λez/P

we easily see Var(y3,ι, , y2n,ι) = UV(λ3?...λ2τι)

with V(x3i...iX2n) = {(yι, ,y2n)|y< = \y\\i > 3}. Then

(1) Var(^(l)) Π V(λ3?...?λ2n) 9* VΆτ(yιy2^) C

since

(2) iϋ(l) = y2i2/2i-ι,2i +2/12/2,1 = 2 -̂1,1 - y2i-ιy2i,ι +yιy2,ι
i=2 i=2

= yιy2,ι on V(λ3Γ..?λ2rι).

Therefore (1) = Uλez/P{(2/ι>2/2)|y2 = ^yi} and this has dimension 1. D

Since y2,ι — 0 in Ideal(rw(1), y3,ι, , y2n,ι), we have from Lemma A
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Proposition 4.7. [yrl]H(E,z(2)) ^ [yΓl}S2n/In{x3 - z2n} ® Λ(XI) κ

Λι = (2/2,1 , - • ' j2/2π,l )•

For arguments without localization, after long calculations the following is

given in [15],

Proposition 4.8 ([15]). β : H(E,z(ϊ))oάά =ί H(E,z(2))e™ - Z/p{fn} and

H(E, z(2))odd <* S2n{xι', , *2r/

Note that the cocycle in [yι~l]E / z(2) which is represented by x3 - - x2n in the

righthand side module in Proposition 4.7 is yι~lB(xιx3 - - - X2n)

The fact that J52p+2*'* = £"2^(^-1)+!*'* is also proved in [15]. When n = 2, we
have

(4.9) ^(p-Dp+iίΓ-1^-1^ = (yi2f - yu')B(Xlx2).

where yij' = (y^yj - y/2y<)/y iW< = yip(p~^ 4- y^-1^-1^1 + - - - + 2//(ί?-1}

so that ιu(2) = ΣyMyzi-i&yϊi-i&' Moreover d2p3_3{f2up3-2} = z(3), and these
are all of the non-zero differentials for the case n = 2.

In this paper, we give a proof of the above fact with [yι-1] -localization but for

general general n

Lemma 4.10.

iΓ"1 0 T^-1)} - 3/2,l'2/l(*3 ^2n)

i=2

Proof. Recall xι/n x = xιX3 -X2n. The element 2/2,ιχι/n 1 = ^(

%2n go to w(2)x3 - - - X2n via Kudo's transgression c?2p(p-ι)+ι The target is

(1) W(2)X3 ' ' X2n =

= / ^ 2/2i-l,2/(2/2i2/2i-l,l ~ 2/2i-l2/2ΐ,l)^3 ' ' ' ^2n

From (2.6), 2/2,ι
χι = Σi=2 2/2i-ι,ιχ2i-y2i,ιχ2i-ι mod (z(l), z(2)), since y2,fc = 2/fc,ι

Thus we know with the same modulo, 2/2,1^1^3 X2i ' xin = 2/21-1,1^3 * X2n

Hence

(1) = y2,l(yi2fX3

i=2
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Since ΐ/2,i"torsi°n elements in E/(z(2)) are also contained in H(E,z(2}) from
Lemma B, we get the lemma. D

Since the target element of the differential in Lemma 4.10 and its Bockstein are

not in H ( E , z ( 2 ) ) , they are [yι~l] 5(1) -free. Hence we get

Theorem 4.11.

where In = (y2,ι, ,2/2n-ι,ι) αw^ d & ίΛe z/wαgβ 0/d2p(p-ι)+ι £*ve/ι 6y Lemma
4.10.

5. Cohomology of other similar p-groups

In this section we study some applications for arguments in §2. Let A be
a commutative ring and let A(k) denote the variety, that is the set of ring ho-
momorphisms from A to k endowed with the Zarisky topology. Let us write by
H*(G)(k) the variety (H*(G)/VU)(k). For example, H*(V)(k) = S2n(k) = V®k

and S(n)(k) = ( S 2 n / J ) ( k ) = Var(J) for J = (^(1), - ,tu(n)).

Theorem 5.1 ([14]). Let B : VxV — > Z/p be the alternating from defined by

B(a,b) = Σa2i-ιb2i-cL2ib2i-ι. ThenVa,τ(J) = (jW®k where W ranges over the set
I of maximal B-ίsotropic subspaces of V and the cardinality of I is (p+ 1) (pn + 1).

Theorem 5.2. The ideal J has a prime decomposition J = >/J =

where Pw = Keτ(H*(V)/Vθ — »

We consider a group G which is an extension of En Θ V for V = 0mZ/p by
51. Such a group is represented by elements in H2(En Θ V , Sl) = H3(En @V',Z).
Consider the spectral sequence

(5.3) E2 = H*(En Θ V) 0 Z/p[u'] => ff*(G).

First assume the case d^v! — Σ,s

i=l B(x^i-ιx^i-^) for 2s < n. Let J1 be the ideal
in Z/p [yi, , ί/2π] generated by BPP% - - P(d$u) and let P'w be the corresponding
prime ideal. Of course e G P'w for all W, so e G J1 . Hence we only have the trivial
result, namely, [e~l]H*(G) = 0.

Next we consider the case

(5.4) d3u' = β(x2i-ιX2ίf) with
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' ) = Z/p[y2', - , y2m'] 0 Λ(x2', - - , x2m').

This group is represented as G' = G' x ̂  S1 with

G1 = (E(n), a2 , , α2m

/, c' | [α2j-ι, «//] = c'<52<7 ,/c

c'p = <4P - [α/,α/] - 1, c' G Center(G)}

Theorem 5.5._ Let J' = (w'(I), , w'(m)) with w(ί)' = BP^'2 - - - 7>(d3K))
(5.4) and let G' be the group above. Then

Proof. From Theorem 2.7, we only need to prove the regularity of

w(πι)r) in [e~l]S(n) 0 Z/p[y2, , 2/2™'] For this, we study the map

i : [ e ~ l ] S ( n ) ( k ) — > 5(n)(fe) - U W 0 k.
wei

Suppose that 0 ̂  x G Image(z) Π W for some W G /. This means that there are non

zero maps xι and x2 such that the following diagram commutes

x = i(xι)
S(n) = S2n/J - I k

Hence e £ Pw. Conversely if e £ PW, then it is easy to see [e~1]5(n)(/c) D W 0 fc.
Therefore [e~1]5(n)(/c) = UW 0 /c where W ranges I with e g P^. Hence

= Z/p[yl9 - - - , 3/2n-l]

is an isomorphism. Therefore W is

Z/p{yi, ' ' , 2/2n|2/2j = λjiS/i + + λjnί/2n-l} C F for SOΠlβ (λj j fe) G (Z/p)n.

Similar arguments can be applied for yeven' instead of yeveτι. Then we have

([e-l]S(n) [y2

f, - - - , y2n'}/ J'}

with W = Z/p{yi,y2k'\y2j =^λjiyι + ••• 4- λjny2n-ι,y2j' = λji'yi + +
λjm^m-i}- In particular dimfc W 0 /c = n. Hence (ty(l)7, , w(m)f} is regular.

D
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6. Periodic modules with large period

Let Ωr(M) be the r-th kernel in the minimal resolution of /c(G)-module M, i.e.

if

(6.1) 0 —> Mr —> Qr_ι —> > Qo —> M —> 0

is exact and if each Qi is projective, then Mr = Ωr(M) Θ Q for some project!ve

module Q. A G-module M is said to be periodic if Ωm(M) = M for some ra > 0.

The smallest such m is called the period of M.
For a G-module M, let IG(M) be the annihilator ideal in ί/"*(G;fc) of

Extk*(G)*(M,M) ̂  fr(G,Homfc(M,M)). Let VG(M) be the subvariety of H(G)(k)

associated with IG(M), e.g., VG(k) = H(G)(k). Remark that if V is a closed homo-
geneous subvariety of VG(k), then there is a fc(G)-module M with VG(M) = V
(Proposition 2.1 (vii) in [6]).

We recall arguments of Benson-Carlson [6]. Consider a central extension of a

finite group

(6.2) 1 —> TV —> G —> Q —> 1

where TV = Z/ps for s > 1 and Q is a p-group. Remark that the paper [6] is written

assuming that 5 = 1, however all arguments in [6] work also in the case s > 2.

Let TV denote the sum Σg(ΞN g as an element of the group ring k(N). Then for
r > 0, TVΩ2r(/c) is a /c(G)-module with TV-acting trivially, so we may regard it as a

/c(Q)-module. We set Vr = Vg(TVΩ2 r(/c)) c H(Q)(k).

Theorem 6.3 (Andrews [6]). Let M be an indecomposable k(Q)-module

regarded as a k(G]-module by inflation. Then M is a periodic k(G]-module of period

dividing 2r if and only ifVQ(M)f}Vr = {0}.

Theorem 6.4 (Benson-Carlson [6]). LetEr*'* be the spectral sequence induced

from (6.2). Let Kj C H*(Q) be the kernel of the induced map E2*'° -̂  ^21+1*'° for
I = P\ ThenVI = VQ(KI).

Theorem 6.5 ([17]). Let G be the p-group E(s)n, s > 2 or En_v.M. Then

there are periodic k(G] -modules of period 2pl for all ί < n, and no higher period.

Proof (See the proof of Crollary 6.2 in [6]). By Proposition 3.13, Theorem

3.14, Corollary 2.9 and Theorem 6.4, we may find a closed homogeneous subvariety

V of H(Q)(k) with Vf | Vj ± {0} but V^\ Vτ = {0} for / = p< and J = p{~1.
By the remark after the definition of VG(M), we may find a /c(Q)-module M with

VQ(M) = V. Then by Theorem 6.3, M has period 21 = 2p\ D
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Corollary 6.6. Let G and G' be p-groups such that there is a commutative
diagram of central extensions

(1) 0 —> Z/ps —> G —> G' —> 1

(2) 0 — > Z/ps —> E(s)n — > F — •+ 0

8 > 2 #«£/ g : G — » E(s)n is a split epimorphism. Then there are periodic
k(G) -modules of period 2ί for all ί <n, and no higher period.

Proof. Let us write by i#r*'* and 2EV*'* the spectral sequences induced from
(1) and (2) respectively. Then the following diagram is commutative

/(*o

Here /(fc) is split epic but there is not a split epimorphism S(i — l)(fc) — > S(ί)(k}.
Hence i(fc) is not an isomorphism. D

For example, the group G' x^ Z/ps for G' in Theorem 5.5 satisfies the above
corollary.

7. Elementary abelian p-group actions on CPm

We recall arguments of Allday [3]. Let X be a finite complex such that

H*(X) ^ #*(CPm) ̂  Z/p[u}/(urn+l).

Let V = &Z/p and H*(BV) ^St®/\t^ Z/p[yι, - - , yt] 0 Λ(XI, - , xt). Assume
that X is a F'-complex. Consider the spectral sequence

(7.1) £2*'* - H*(BV] H*(X)} ==> ffv/*(X) - ff*(X x v / EV').

Since β^ = 0, we can take n with 0 < 2n < ί such that

n

(7.2) c/3w = ^^B(x2i-ιX2i] as in (2.2).
ΐ=l

Lemma 7.3. Ifάii+^u1 ^ 0 /or / = pl, ί/ze« p/|m + 1.

Proof. We prove this lemma by induction on i. It is clear when i — —1.
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Suppose m + 1 = Is and

If p\s, then 0 - d2/+ι^m+1 = s(u/)β"1d2/+ι(w/) / 0 in £2/+ι*'* This is a
contradiction, so p|s. D

Corollary 7.4. //(7.2) A0/<&, then pn\m + 1

Proof. This is immediate from Theorem 2.7. Π

Theorem 7.5. Lei X be a V -complex such that H*(X) = Zjp\u\l(u^s} and

(7.2) holds. Then [e~l]H*v(X) ^ [e~l]S(n)[vPn]/(υrn*) ® Λ(XI, ,z2n-ι)

Z/p[2,2n+1, ,j/ t] ® Λ(x2n+1, - - - ,xt).

Hereafter we always assume (7.2) and consider only the F-action induced from

the F'-action.

For a given multiplicative set S c H*(V) and a F-complex X, let Xs be a

set of points x such that each element in 5 maps to non zero element in H*(V) — >

HV*(X) -> ^*(K) where Vx is the isotropy group of V at x G X. Then the
localization theorem (Hsiang) is stated as S~1HV*(X) = S~1HV*(XS). Hence for

a subgroup W of V\ we get SW~1HV(X) = SW~1HV(XW) for the fixed points

set Xw where 5̂  is the multiplicative set generated by B(V* - Ker(^* -* W*))
identifying W* = Hl(W). Let e\γ = \\Bx where x ranges all non zero elements in

Hl(W), e.g., eyodd - e for Vodd = Z/p{yι, - , τ/2n-ι}. Then

(7.6) [ev-
l]Hv*(X) ^ [ev-

l]Hv*(Xv) * [ev-
l}H*(Xv) 0 H*(V).

Recall the set / of maximal B-isotropic subspaces W in V in Theorem 5.1.

Corollary 7.7. Suppose that X is a V -complex as in Theorem 7.5 and n > 0.

Then [ev-
l]Hv*(X) = 0, (X is V-βxed point free), [e-l]Hv*(X) ^ [e'1]

Hv*(Xe), SVodd-
lHv*(X)(k) 9* Vodd®k, [e~l]Hv*(X)(k) = IJ^ 7®* ^ere

W ranges in I such that π+(W') = Vodd for π : W c V ~^ Voάά.

Proof. We only need to see the last statement. If e φ PW, then the map

7Γ : S(Vodd) C S(V')/J — > S(W) is injective and hence π* is surjective. Thus we

get the corollary. Π

Now we recall some results of Hsiang. We say the orbit type Q(X) of a given

G-space X is the set of conjugacy classes of isotropy subgroups Gx for each x G X.
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Theorem 7.8 (Hsiang [8]). Let X be a compact V = ®2nZ/p-space without

fixed point. Let J be Ker(π* : H*(BV) -> Hυ*(X)), VJ be the radical of J and

Λ/J = PI Π Π Pa the irreducible decomposition of J into its prime components.
Then

(i) There is 1-1 correspondence between {Pi} and the maximal elements {Hi} of

Q(X) by Pi = Keτ(H*(BV) -> H*(BHi)).
(ii) Let Yj be the fixed point set o f H j , Then

Corollary 7.9. Let V and X satisfy the assumptions of Theorem 7.5. Then

(i) There is 1-1 correspondence between the set of maximal elements in 0 (CPm)
and the set I of maximal B-ίsotropίc subspaces ofV, i.e. all maximal isotropy
subgroups are isomorphic to ®nZ/p and the cardinal number of I is (p +

(ϋ) SVodά-
lH

Si SVodd-
l(H*(Xv°Aά/V) ® #*(Kdd))

Proof. From Theorem 5.1 and Theorem 5.2, the corollary is immediate. Π

Recall that we can extend the Steenrod algebra action to the localized equi-

variant cohomology (Remark 2.16). Dwyer-Wilkerson [7], [4] proved Hγ*(XA) =

Un(SA~lHy*(X)) for each finite V-complex X and each subgroup A of V.

Corollary 7.10. Let X andV satisfy the assumption of Theorem 7.5. Then we

have Hv*(XVodd) * Un(SVoάά-
lS(n)[u^}/(uPns) 0 Λ ( X I ? - ,z2n-ι))

Next we consider the case X = CPt x CPS and V = 02n+mZ/p acts on X such
that the projection onto the first factor is equivariant with respect to an action of

V on CPt\ and supposed that V acts trivially on H*(X). Then we get the fibering

CPS — > (EV xv, (CP* x CPS)) — > (EV xv, CP1)

which induces the spectral sequence

£2*'* - fΓVίOP*) ®H*(CPS} => Hyt^CP* x CPS).

Then by the same arguments as in the proof of Theorem 5.5, we can see

Theorem 7.11. Let V = V θ Z/p{y2', , y2m'} and i = tfpn and s = s'p™.
Consider a V -action on X = CPt x CPS such that the projection onto the first

factor is equivarent with respect to an action ofV on CPt and suppose that V
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acts trivially on H*(X). Suppose also d^u is as in (7.2) and d3u' is as (5.4). Then

[e-'lffv'W = [e-l]S(n)® Z/p[y2', ,y2m'}/(J')®Z/p[UPn,u"'m}/(ut,u's)

where u andu' are ring generators of Ή*(CPt) andH*(CPs) respectively.

Remark that we can construct V actions which satisfies Theorem 7.5 and
Theorem 7.11, by using skeletons of classifying spaces of En and G in §5.

Finally we give the example for n = 1. The ideal J = (w(l)) — (yιpy2 — yιy2

p)
has the primary decomposition (yz)Γ\f}iez , (yι —iy2). Hence there are p+1 maximal

isotropy subgroups, which are isomorphic to Z/p. On the other hand, there is a EI-
action on Cp such that

OΊ - ( z ι , ' - , Z p ) — > (ξlzι, ,ξpzp) with ξ = exp2τrv/Zϊ/p

α2 : (zι, - , Zp) — > (z2, --,zp, zι)

θ : (zι, - ,zp) — > (ηzi, , ηzθ) with η = exp 2π^/^:ϊθ.

Consider the induced (Z/p Θ Z/p)-action on CPp~l = (C - {0})/{(9}. The fixed
points under the (αi) -action are (1, 0, , 0), - - , (0, , 0, 1). For x = (1, 0, - , 0),
we see Gx = (αi) = Z/p. Since we can takep^ G GLP(C) such thatpij~laιla2^pij —
ai in GLP(C), all maximal isotropy groups are (αi), (^2ail) for 0 < i < p — 1,
which correspond to (2/2)? and (yι —iyz) respectively by (yι —^2/2) — Ker(ίf*(G) — »•

We also see equi variant cohomologies for n = 1.

[e-l]Hv*(CP*-1) ** [e-l}S2 0 ̂ (

Var(ί/2 - %), Svodd^Hv^PP-^k) = Vodd Θ fc.

8. Cohomology of a Sylow p-subgroup of GL^(FP)

Let GLn(Fp) be the general linear group over Fp and Un be its p-Sylow subgroup
generated by upper triangular matrices with diagonal entries 1. Let α^ be the element
in Un such that all entries are zero except for diagonal entries and the (i,j)-entry,
which are 1. Then it is well known

( T if
and mu,v {I if 3

= S ., .
\CLik if J = h.

Hereafter we compute H(U±). When p = 2 the cohomology is computed in [16] and
it is used to compute H*(GL4:(F2)). The cohomology is also important to decide
the cohomology of the sporadic simple groups Mι2, O'N [2], [1].
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We assume p odd. For ease of argument we simply write the subscripts(12) (resp.

(23), (34), (13), (24), (14)) as 1 (resp. 2, 3, 4, 5, 6), for example αi - α12, x2 = z23, - -

Let us write by U(iι - ik) the subgroup of U generated by α ί l ? ,α ί f c. The

subgroup {7(124) is isomorphic to the extra-special p-group E\. Hence we know

from Corollary 3.11.

(8.1) [yΓ1]*

Here υ4 is defined by using the Evens' norm

(8.2) υ4 = Norm({7(14) C U(124))(y4)

and hence

(8.3) v4\U(U) = 2/4

p - yιp~ly* = 2/4i, z4\U(U) = x± - (2/4/2/1)^1,

and wι2(l) = 2/ιP2/2 - 2/ι2/2p = 2/ι2/2i

Note that x2 — (2/2/2/1)^1 in bι~1]^r*(^Γ(14)). The conjugation map α2*
induced from α2 on [yι~1]fί*({7(14)) is given by

2/4 —> 2/4 + 2/1, ^4 —> %4 + ίci

Since the elements ^4 and ^4 must be invariant under this α2*, we get (8.3).

Let us write M = U/U(6) and M = M Xu(s) Sl. We study the cohomology

[2/ι~1]ίΓ*(M). We consider the spectral sequence

(8.4) £2*'* - ̂ r^ff^t/ί^^ Θ 17(3))

where C7(5) = {7(5) Xu(s) Sl. Let us write

(8.5) R = Z/p[yΓl,yl,y3,υ4]®Λ(xι,z4) and B = Z/p{l,2/2, ,2^

Then £2*'* = R®B® Z/p[y5] <8> Λ(x3). The first nonzero differential is

(8.6) d32/5 = ?/2x3 - y3x2 = y2(x3 - (y3/y1)xί).

Let x3

7 = x3 — (2/3/2/ι)xι. Then the homology is

) B (8) Λ(x3), dy5) = H(R 05
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since wι2(l) — 2/ιp2/2 — 2/ι2/2p = 0 in [yι~l}H*(U(12^)). For ease of notations, we

write by I1 simply the element 1 — (2/2/2/1 )p~l Therefore we get

®B® f\(x3f)/(y2X3f) *' = 0

(8.7) E4*'* ' = {R{l',x3'} 0 < * 7 < p - l

R{lf, x3

f} ®R®(B- Z/p{l}){x3'} *' =p-l.

Lemma 8.8. dr = 0 for 4 < r < 2p - 2.

Proof. We only need to show that dr(x 0 y^1} = 0 for x = x3

7 or I7. Let us

write t/(i j6)/t/(6) by £7(i - j)'. Consider the extension

0 —> U(S) —> t/(1435)7 —^ ί7(134)7 —> 0

and the induced spectral sequence EEr*'*. Since t/(1345)7 — (Z/p)4 is abelian, all

differentials in EEr*'* are zero. Let i* : Er*
J* —> EEr*>* be the map induced from

the inclusion i : t/(1345)7 —> M. Suppose dx / 0 in E"r*'* for one of the above x.

Since x is y2-torsion,

drz G Ή{l7,z3 '}<S>y5S for 0 < s < p - l .

However Γ|^{17,X37} 0 y$s is injective. Hence ί*drx = dri*x / 0 and this is a

contradiction. D

Lemma 8.9. d2p-ι(l/ ® ys^'1) = 0, d2p-ι(x3

f ® 2/511"1) - (2/2/2/1)^^32.

Proof. Since z*(l7) = 1, c/r(l7 0 ys*3"1) = 0 is proved by the arguments

similar to the proof of Lemma 8.8. By the Kudo's transgression theorem, we have

d(y2X3f) = 2/22/32, Hence we get d2p-ι(x3f) = ^32 modulo Ker(y2) = Ideal(l7). Since
z*(d2p-ι(x37)) = 0 for the map i* : Er*'* —> EEr*'* in the proof of Lemma 8, we

know d2p-ι(x3f) must be in the ideal (y2) Hence we get this lemma. D

Therefore we have

Lemma 8.10.

-11E *,*' ^ ί j R ( g ) 5 ( 8 ) Λ(X3 /)/(2/2X3 /, 2/2^32) *7 = 0

2P ~\R®/\(x3f}{l'} 0 < * 7 < p - l

Here we note that R{x3', 1'} = R 0 Λ(x3

7){l7} for 0 < *7 < p - 1 and that
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additively

Since v$\U(5) = y$p, y$p is permanent in this spectral sequence. Thus

[yΓl]E2p*'* = [yι-l]Eoo*'*. Next considerfyi-^fT^M). From the fibering

51 — > BM — > BM,

we get the spectral sequence

E'2*'* = H*(BM) 0 Λ(x5) => -ff* (Af).

The differential is

d2(χ5) = ^2X3 = (2/2/2/ι)χιχ3 = (y2/yι}χιχ3f = o.

Hence this spectral sequence collapses and [yι~l]H*(M) = [yι~l]H*(M) 0 Λ(z5).

Here we can take υ 5 and 25 such that

(8.11) ^|^(1345)/ - 2/53, ^|^(1345)/ = x5 - (y4/2/ι)x3.

Let A:5 be an element corresponding to lx 0 2/5 in EΌo*'*. Then A:5|t/(1345)/ =

2/5 - (2/4/2/1)2/3 and /c5" corresponds l/f 0 y5* = I7 0 2/5* for 1 < i < p - 1. Moreover
^z5 = fc5 on £7(1345);. Here we notice that for all s > 1

Proposition 8.12. ΓAere is an additive isomorphism [yι~l]H*(M) = Q 0 (C 0

if) w/YA Q 0 C = Ker(lO and Q ® K = Im(l'),

, 2/1 »^4, ̂ s < S ) Λ x ι , 2:4,^5

C = Z/p{y2, - ̂ P-1} 0 Z/p{l,y3, ,2

® Λ(x3

;) ® {!', *5, , fcs"-1

Let i : t/(1345)/ C M be the inclusion. Then it is immediate that i*\QK is

injective. Let ί : [yι~l]H*(M) —> [yι~l,y2~
l]H*(M) be the localization. We can

take fcδ so that 2/2^5 — 0 multiplying by I' if neccessary. Then [yι~l, y2~
l]H*(M) =

[y2~
l]Q®C. Therefore we get

Corollary 8.13. The map i* x I is injective.
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Let U = U X[/(6) 51. The short exact sequence

1 —> £7(6) —>U —> M —> 1

induces the spectral sequence

(8.14) [ί/ΓW * = [yΓl]H*(M;H*(U(6)) =» [yΓ1]^)

Since 1' is permanent and Ker(l/) = Im(y2), we have a decomposition

[2/Γ1]^*'* ^ Im(l')£/'* θKer(l')£/'*.

From the argument just before Corollary 8.13, we have

Lemma 8.15. [yΓl,y2-l]Er*>* * [j^-1] Ker(l')£/'*.

Write by JEΓ*'* the spectral sequence induced from

(8.16) 1 —> £7(6) —> £7(13456) —> £7(1345)' —> 1

and write by i : £7(13456) C U the usual inclusion. Since £7(13456) = E.E the

extra-special p-group of order p5, we know the spectral sequence [(j/i^i)"1]/^*'*
well from Section 3.

Lemma 8.17. The following map z* of spectral sequences is ίnjective\

Proof. First recall Im(l')E2*>* = Q 0 X <g> Z/p[y6]. The diίferntial d2(y6) is
contained in Image (i*) and Q 0 If is a free A(z5,xs /) -module. We can easily see
the lemma for r = 3, by using the fact

Im(l')£3*'° = Im(lf)E2*>°/(d2(y6) = y,z5 + ••.).

For 3 < r < 2p — 1, the statement in the lemma is correct, since i*dr = 0 so dr = 0.
For r = 2p— 1, in IEr*'* the non zero differential is just the Kudo's transgression. In

/£7r*'*, w(l) = 2/ι2/5i +2/42/43 is a non-zero-divisor, and so it is also in
Thus we want to see that

is injective. For this, it is sufficient to prove that if w(ί)a in Imίl7)^*'0 = Q
K/(d2(ys)) for α G /£r*'°, then a e Q ® K. Here we note the fact that i*(Q
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K) = H*(U(1345)')UW the invariant ring under α2. This is proved by the facts that

Z/p[yι,y4]u(2) = Z/p[yι,Vi] and i*(fc5) = y5 + •- If w(l)a eQ®K, then w(l)a
is invariant under α2*, hence w(l)(a,2* — l)α = 0. Since w(l) is non-zero-divisor,
(α2*— l)α = 0 and this means a is in the invariant ring Q ® K. Using similar
arguments for larger r, we can prove the lemma. Π

We will study Im(l')EV*'* more explicitly. Hereafter we work only in Im(l') or
in the restriction to 17(13456).

Lemma 8.18. ^2(2/5) = 2/1^5 — ̂ 5X1 + 2/3^4-

Proof. The group f/(13456) is isomorphic to the extra special p-group with

order p5 and exponent p. Hence

^2(2/6) = 2(1) = 2/1^5 - 2/5^1 + 2/3^4 - 2/4^3

= 2/1(2:5 - (2/4/2/1)^3) - (2/5 - (2/4/2/1)2/3)^1 H- 2/3(^4 - (2/4/2/ι)^ι) Π

Lemma 8.19. 2(2) = yιpz5 H- ̂ 3 - (υδ +

Proof. Since B(z(2)) — w(l), we only need to compute z(2). Applying Pl to

Here T^fe) = p^xg - (2/4/2/1)^3) - -^P1 (2/4/2/1)^3. Since ^(ί/"1) = ~2/p~2, we
get

^(2/4/2/1) = 2/4p/2/ι - 2/42/ιP~2 = 2/41/2/1-

Similarly P1^) ~ ̂ H^ - (2/4/2/1)^1) = -(2/41/2/1)^1- Next compute

Pl(k) = Pl(y5 - (2/4/2/1)2/3) - 2/5p - (2/4i/2/ι)2/3 - (2/4/2/ι)2/3p

= 2/53 - (2/4i/2/ι)2/3 4- 2/5ysp~1 - (2/4/2/ι)ysp = ι>5 - (2/4i/2/ι)2/3 + fc52/3p~1-

Hence

z(2) = 2/1^2:5 -2/ι(2/4i/2/ι)^3

-(^5 ~ 2/412/3/2/1 + ^52/3p~1)^ι + 2/3p^4 - 2/3 (2/41 /2/ι)^ι
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Since yιp~lz(l) = yιpz5-yιp~lk5xι + yιp~ly3z4, we have with modulo (z(l))

(8.20) z(2) - (yι

p~l - y3

p-l)ksxι

w(l) = (yιp~l - 2/3p~1)fc52/ι

Moreover, modulo ( w ( l ) ) , we can make the change

(8.21) z(2) - (w(l)/yι)xι = -v4(x3 - y z x i / y i ) + 2/31^4-

To compute Ppz(2), we prepare

since Pp-l(y~l) = yp2~2p and Pp(y) = -yp2-p~l. Hence

Similarly Pp(z4) = —y4\yιp 2pxι. The action for /c5 is

^P~l ~ (2/4/2/1 )2/3p)

Lemma 8.22.

-h

Proof. The Pp action for z(2) is

Ppz(2) = yιp z§ H- 2/ιp(~2/4i2/ιP ~ Pχ

3) H~ V4pχ

3 ~~ V5

-(2/5P2/3p2~p - 2/4i2/ιp2"2p2/3p - (2/4/2/ι)2/3p)xι 4- 2/

The sum of the above line gives

Let v6(2) be an element such that v6(2)|t/(6) = y^p

Theorem 8.23. [yι~l,υ4~
l]H*(U){l'}

where v5 = k5

p — v4(y3/yι)p + k5y3

p~l in w(l) and w(2) .
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Proof. We only need to see

ksp = (2/5 - (2/4/2/1)2/3)"
ϊfe*"1 - ((y±p - ymp~l)/yιp)y3p - (2/4/2/1)^

p-1 D

For the study of [yι~l,y2~
l]H*(M)9 we study first [y2~

l]H*(M). By arguments
similar to those of the case [yι~l]H*(M), we get

Proposition 8.24. [^-^"(M) ** #[2/1, 2/3]/ (2/12,2/31)

* R' ® Z/p{l,j/ι, ^i*"1} ® Z/p{l,j/3, * ,y3p~1}
where R1 = Z/p[y2, y2~

l,v4, υ5] <g) Λ(x2, ^4, ^5)-

Proof. Consider the central extension

(8.25) 1 — > (α5) — > M — > J7(124) θ C/(3) — ̂  1.

The facts that [y2~
l}H^(U(l24,) 0 t/(3)) is Z/p[y2,y2-

l,y3] ® Λ(x3)-free and that

^s2/5 = 2/2^3 — 2/3^2 prove the proposition. Π

Next consider the spectral sequence

(8.26) [(2/ιy2)-1]^2*'* - [(2/i2/2)-1]^*(M;

To study d^djo), we first consider the theory without any localization. In the spectral
sequence induced from

1 — » £7(4) — > £7(124) — > £7(1) φ £7(2) — > 1,

the element [#2^4] € E2*'* is permanent since ^2(0:4) — 0:10:2, Write by x24 the
element [£2^4] in ίί2(£7(124)) and by z4

x its Bockstein image. Similarly we can
define x25 and z5

f in #3(£7(235)) such that £(z25) - z5' = y2z5 in [y2-
l]H*(M).

Here we recall the weight defined by the action of diagonal elements [11].
Namely the weight w(x) G Z/(p — l){α:,/3,7} is defined by

wt(xι) (resp. x 2 ,X3,x 4 ,X5,x 6 ) = a (resp. ^,7, a + /?,/? + 75 α + β 4- 7)-

The weight has the properties wt(z ) = wί(2/i) and wt(yz) = wt(y) + ιt ί(z).
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We can show that the weight space #4(M)α+20+7 = Z /p{y 3%24, y 1X25}- For

dimensional reasons, 4-dimensional elements are generated by 2/42/5>2/ιχ2£5,2/3χ2#4

in the spectral sequence of

1 — -> £7(4) Θ £7(5) — > M — > £7(1) Θ £7(2) θ £7(3) — > 1.

But 2/42/5 is not a permanent cycle.

Since wt(y2z6) = a + 2β + 7, we get ^2(2/2^6) = 2/3^24 + 2/1^25 in the spectral

sequence converging to H*(U). Applying the Bockstein, ^3(2/22/5) = 2/3^4' + 2/125'-

Therefore we have

Lemma 8.27. ds(ye) = 2/32:4 + 2/1^5 in the spectral sequence (8.26).

We will study Pl(z4'). Let Ai = (α2αι%α4) c £7(124) for 0 < i < p - 1.

Then y2\Ai = y, yι\Ai = iy and v±\Ai = y^p — yp~ly± after the identification

Lemma 8.28. If the restricted image x Ai = 0 for all 0 < i < p — 1, ί/ze« x = 0

i/i

Proof. We will prove the case x = 7(2/1,2/2) ^ ^/P [2/1? 2/2]- Other cases are

proved similarly. Since x\Ai = f(iy,y) = 0 in Z/p[y], we see that x = 7(2/1,2/2)

divides 2/1-^2/2, so divides 2/12 = Πί€j8/p(2/ι-Ϊ2/2), which is zero in [y2~
1]^*(£7(124)).

D

Lemma 8.29. Plz± = y2p~lz

Proof. Plz4\Ai = Pl(yχ4 -

From Lemma 8.28, we get the lemma.

Lemma 8.30. z(2) = y<2p~l(yιz$

w(l) = β(z(2)) = -yivs - 2/3^4-

D

0 - 2/2"1 (2/1^5 + 2/3^4)^2

Proof. Compute the following

2/2~12/ι(2/2p~ W - 2/2~12/3(2/2p~p~ -

Using the facts that yιp = 2/2p~12/ι? 2/3p — 2/2p~12/3?

 we §et tne lemma. D
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Since z(2) = 0 mod (z(l),w(l)), we have that £2p-ι*'* = #00*'* for the spectral
sequence (8.26). Therefore we get

Theorem 8.31. [yΓl,y2~l]H*(U)

-1 - y2

p~l, 2/32)

Theorem 8.32. [yΓl,y2-
l]H*(U) ** (yι-\y^]H*(U} ® Λ(*6)

Proof. First note that ^zβ is

- (2/4/2/1)33) + ^3(^4 - (2/4/2/ι)3ι)

+ ^3^4 in [2/Γ1]^Γ*(t/(13456)).

Since iί;t(z6) = α+/3+7, for dimensional reasons x2 and y% do not appear in ^2(2/6)-

Hence ^(^β) = ^1^5 +^32:4 also in [2/ι-1]/ί*(LT). For the case with [t/ι~1,2/2~1]5 we

get 2/2(^1^5+^3^4) = ^2(2/1^5 + 2/3^4) = 0. For the case [(2/ι^4)~1]Im{l/}, we have

- 2/3^4)

= (-312/3 + 2/1^3)2:4 = 0 from (8.21). D

9. Brown-Peterson cohomology theory

Let BP*(—) (resp. /ί(m)*(—)) be the Brown-Peterson cohomology theory

(resp. the Morava K-theory) with the coefficient BP* = Z(P)[VI, - - •] (resp. K(m)*

= Z/p[vm,i;rn~
1]). For any compact Lie group G, it was conjectured in [9] that

BPodd(BG) = 0 and K(m)odd(BG) = 0.

However I. Kriz [10] claims that K(m}odd(BU4} ^ 0 for the Sylow p-subgroup J74 of

GL±(FP). In this section we cosider the mod p 5P-theory P(l)*(-) = BP*(-\ Z/p)

and show that P(l)odd(JBt/4) is zero with some localization.

We also recall the theory P(m)*(—) with the coefficient

Theorem 9.1. There is a filtration such that

gr[en-
l]P(mY(BEn) * [en-

l]P(m + n)* 0 S(n)[υ?n

Proof. Consider the Atiyah-Hirzebruch spectral sequence
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Here we recall [en~
l]H*(BEn) = [en

-1]S'(n)[^n](8)Λ(xι, - - ,z2n-ι). First non-zero
differential is

d2pm-l(xi) = vm® Qm(Xi) = vmy?m ([9], [10]).

where Qm is the Milnor primitive operation inductively defined by Qo = β, Qm —

P^^Qm-i ~ Qm-iP*™'1. Let us write x<; = Xi - (yi/yι)pmχι. Then d2pm_l(xi

/)
= 0 and Λ(xι,x3V •• ,x2n-ι') = Λ(XI, ,z2n-ι) Hence we have

£2p--ι*'* - [en-
l]P(m + 1) ® S(n)[uJ] 0 Λ(x3', , *2n-ι')

We can continue this argument for d2p
s-ι for all s > m. Let B' be the matrix

whose (i,fc) entry (y2fc-ipm+'~1) = (Qm+ί-i^fc-i)- By multiplying an upper
trianglar matrix D with diagonal entries one from right, we can change Bf to a
lower triangular matrix Bn ', i.e. .B'D = J3" since |BX = ((-l)ne)??n"1/^-1). Let us

write D = (<%). Then (i, j)-entry of J37D = Sx/ is

= Qm+i-l

k k /

since Qj(dis) = 0. Let (x/, - ,X2n-ι ;) = (^i, ,a;2n-ι) D Then we have

for s = i (see Lemma 2.5)_

0 for i < s.

Thus we get

[e-l]E2pm+n*>* *

This term is even dimensionally generated and hence is isomorphic to the infinite
term. D

Recall the statements and the notations in Theorem 8.23 and Theorem 8.31.

Theorem 9.2. There is a βtration such that

(i)

(ϋ)

/(yιp~l - y2p~1,2/3i,2/32,^3^6(2)p) with v6(2) = υ6P - y2

p(p~l}v6.

=

By arguments similar to the proof of Theorem 9.1, we can easily prove the
theorem if we can show

(9.3) Q2z6 = v6(2] in both the cases Im{l'} and Ker{l7}.
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At first, we study the [(^^"^Image-fl'}.

Lemma 9.4. z6|C/(146) = x6 - (2/64/2/14)^1 - (2/61/2/41)^4.

Proof. Let us write the restriction as

z6\U(14:6) = XQ + 61^1 -}- 64X4

with 61 G Z/p((yιy±ι)~l,yι,y±,y6\> The element z6|t/(146) is invariant under the
action α5* induced from the element α5 in (7(5). Since

α5*z6|t7(146) = x6 + xi + (α5*&ι)zι + (05*64)0:4,

we have (as* — l)δι = — 1 and («5*— 1)^4 = 0. By the action 03*, we also know

(α3*-l)&4 = -1 and (α3*-l)&ι = 0. Since Z/p[yι,y6}
u^ = Z/p[yι,y6l\9 we have

bι = -(?/64/2/i4)s and 64 = -(2/6i/2/4i)*

We will prove s = ί = 1 by showing that yiy^ixβ is permanent without any

localization in the spectral sequence

E2*'* = ff* (#(13456)) (8) Λ(x6) =^ ίf*(t/(13456)).

From (2.6), we know in if* (#(13456)),

yixs = 0 mod ( x ι , X 3 , X 4 ) and 2/41^3 = 0 mod (xι,x±).

Hence ^2(2/1^41^6) = 2/12/41(^1^5 + ^3^4) = 0. D

Corollary 9.5. BZ\U(U6) = 0.

Lemma 9.6. Q2z6|t7(146) = -7/6

p2 mod {y^i < p2},

Proof. First we note that

Since 0 = P1 (2/412/41 l) = (~2/ιp ViXsAi *) + 2/4i^1G/4i *), we get Pl(y*ι l) =

2/ιp~1y4i/(2/4i)~2 = 2/ιp~V2/4i- Therefore Pl(y^/yι^} = (~2/4p~12/64/2/i4 +

2/642/4p-1/2/i4) — O From Lemma 9.4, we have

= — P 1 f 'Ufi4/'Z/14)Xl —P1(Vfi-l/V4 l)x4. = 0.
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Hence QιZQ\U(l46) — 0. Thus with mod-j^K < P2}> we βet

Q2z6\U(U6) = -

= 2/6

p2 (2/ιp/(2/ι4) + y±p/(y±ι}} = y/ . D

Next consider the case with localization [2/2"1]- Recall the subgroups Ai of
C/(124) and Lemma 8.27, In [(yιy2)-l]H*(U(124)), the element z24 defined before
Lemma 8.23 is expressed by x2z^ because its restrictions to Ai are all x2x4. Since

ίfe (2/2^e) = (2/1 £25 + 2/3^24) in H*(M\ we get

4- 2/3^2^4) = ^2(2/1^5' + 2/34) = °

in H(U). Therefore 2/22^e is permanent. Hence

z6|C/(1246) = x6 - (2/6/2/2)^2 + (W2/2>4

since 2;6|ί/(124) = 0 and z6|f/(1246) is invariant under the action α5*. But, by
considering the degree and weight, 6 = 0. Thus we have

Lemma 9.7. z6|t/(1246) = x6 - (2/6/2/2)^2-

Hence β^6|E7(1246) = 0 and ^^6|i7(1246) = (-2/62/2/2)^2- Therefore Qιz6 =

-v6.

Lemma 9.8. Q2z6|[/(1246) = 2/62

p - 2/622/2 p(p~1}.

Proof. The left hand side of the above formula is

2/62P - Ql^(2/6/2/2)*2 - 2/62P - 2/622/2p2~2P2/2P D

Last, we note the case p = 2. When p = 2, the situation is quite different.
However Theorem 9.1 also holds in this case. The cohomology of extra-special
2-groups are completely determined by Quillen [13], in particular

where Dn is the central product of the dihedral group D of order 8, S2n' =

- - , x2n], J = (/, Sqlf, , S02n~2 - - - Sqlf), f = Σ x2ί_ιx2ϊ, and |z| = 1.



LOCALIZATION OF THE SPECTRAL SEQUENCE 115

Let us write x? (resp. Zi2) by yι (resp. u) and use the filtration by y^. Then we

have

grH*(Dn} = S2n <g> Λ2n/(*(l), - - - ,z(n - l)χi), - - - , w(n - 1), /,

grH*(Dn) = S2n <g> Λ2 n/(z(l), - - - , *(ra), w(l), - - - , w(n))

Therefore Theorem 3.9 and Theorem 9.1 also hold for p = 2.

Proposition 9.9. [en-%nFΓ(£y ^ [en-
1]5(n)0Λ(x1,
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