



|              |                                                                                                       |
|--------------|-------------------------------------------------------------------------------------------------------|
| Title        | A necessary and sufficient condition for the existence of non-singular G-vector fields on G-manifolds |
| Author(s)    | Komiya, Katsuhiro                                                                                     |
| Citation     | Osaka Journal of Mathematics. 1976, 13(3), p. 537-546                                                 |
| Version Type | VoR                                                                                                   |
| URL          | <a href="https://doi.org/10.18910/11745">https://doi.org/10.18910/11745</a>                           |
| rights       | publisher                                                                                             |
| Note         |                                                                                                       |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Komiya, K.  
Osaka J. Math.  
13 (1976), 537-546

## A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF NON-SINGULAR G-VECTOR FIELDS ON G-MANIFOLDS

KATSUHIRO KOMIYA

(Received July 30, 1975)

### 1. Introduction

Throughout this paper  $G$  always denotes a compact Lie group and  $G$ -manifolds are smooth manifolds with smooth  $G$ -actions. In this paper we will give a necessary and sufficient condition for the existence of non-singular  $G$ -vector fields on closed  $G$ -manifolds.

Let  $E \rightarrow X$  be a  $G$ -vector bundle. After choosing a  $G$ -invariant Riemannian metric on  $E$ , we denote by  $S(E) \rightarrow X$  the associated  $G$ -sphere bundle of  $E$ . We abbreviate *continuous  $G$ -equivariant cross section* of  $E$  to  *$G$ -cross section* of  $E$ .

Let  $M$  be a compact  $G$ -manifold, and  $s: M \rightarrow \tau(M)$  a  $G$ -cross section of the tangent bundle  $\tau(M)$  of  $M$ .  $s$  is called a *non-singular  $G$ -vector field* on  $M$ , if  $s$  is not zero at each point of  $M$ . For a positive integer  $k$ , by a  *$G$ - $k$ -field* on  $M$  we will mean  $k$   $G$ -cross sections of  $\tau(M)$  which are linearly independent at each point of  $M$ .

For a closed subgroup  $H$  of  $G$  we set

$$M_H = \{x \in M \mid G_x = H\},$$

where  $G_x$  is the isotropy group at  $x$ . Let  $N(H)$  be the normalizer of  $H$  in  $G$ . Then  $M_H$  is an  $N(H)$ -manifold and also a free  $N(H)/H$ -manifold.

For a topological space  $X$  we define  $|\chi|(X)$  to be the sum  $\sum_Y |\chi(Y)|$ , where  $\chi(Y)$  is the Euler characteristic of  $Y$  and  $Y$  runs over the connected components of  $X$ .

In this paper we will obtain the following results:

**Theorem 1.1.** *Let  $M$  be a compact  $G$ -manifold. Let  $s: \partial M \rightarrow S(\tau(\partial M))$  be a  $G$ -cross section of  $S(\tau(\partial M))$ . Then  $s$  is extendible to a  $G$ -cross section of  $S(\tau(M))$  if and only if*

$$|\chi|(M_{G_x}/N(G_x)) = 0, \quad \text{or} \quad \dim N(G_x) - \dim G_x > 0$$

for all  $x \in M$ .

From this theorem we immediately obtain the main result of this paper:

**Corollary 1.2.** *A closed  $G$ -manifold  $M$  admits a non-singular  $G$ -vector field if and only if*

$$|\chi|(M_{G_x}/N(G_x)) = 0, \quad \text{or} \quad \dim N(G_x) - \dim G_x > 0$$

for all  $x \in M$ .

We also obtain the following corollary:

**Corollary 1.3.** *Let  $M$  be a compact  $G$ -manifold,  $F$  the stationary point set of  $M$ , and  $k$  a positive integer. We suppose that*

$$\dim N(G_x) - \dim G_x \geq k$$

for all  $x \in M - F$ . Then  $M$  admits a  $G$ - $k$ -field if and only if  $F$  admits a  $k$ -field.

*Note.* The existence of a non-singular *continuous*  $G$ -vector field on a compact  $G$ -manifold implies the existence of a non-singular *smooth*  $G$ -vector field. This fact is assured by the differentiable approximation theorem [3; (6.7)] and the usual process of averaging cross sections.

## 2. Preliminaries

(2-1) For a closed subgroup  $H$  of  $G$  let  $(H)$  be the conjugacy class of  $H$  in  $G$ . If  $H$  is an isotropy group occurring on a  $G$ -manifold  $M$ ,  $(H)$  is called an isotropy type on  $M$ .

Set

$$\begin{aligned} M_H &= \{x \in M \mid G_x = H\} \\ M_{(H)} &= \{x \in M \mid (G_x) = (H)\}. \end{aligned}$$

Then  $M_H$  and  $M_{(H)}$  are submanifolds of  $M$ , but, in general, not compact. If  $(H)$  is a maximal isotropy type on a compact  $G$ -manifold  $M$ ,  $M_H$  and  $M_{(H)}$  are compact.

(2-2) Let  $\pi: E \rightarrow X$ ,  $\pi': E' \rightarrow X'$  be  $G$ -fibre bundles, and  $f: E \rightarrow E'$  a  $G$ -bundle map covering  $\tilde{f}: X \rightarrow X'$ . Let  $s': X' \rightarrow E'$  be a  $G$ -cross section of  $E'$ .  $s'$  induces a  $G$ -cross section

$$s: X \rightarrow \tilde{f}^* E' = \{(x, e) \in X \times E' \mid \tilde{f}(x) = \pi'(e)\}$$

of the induced  $G$ -fibre bundle  $\tilde{f}^* E'$  which sends  $x \in X$  to  $(x, s' \tilde{f}(x)) \in X \times E'$ .  $E$  is canonically isomorphic to  $\tilde{f}^* E'$ . So  $s$  induces a  $G$ -cross section of  $E$ . We denote this  $G$ -cross section by  $f^* s'$ , and call induced  $G$ -cross section from  $s'$  by  $f$ .

(2-3) Recall known results:

**Proposition 2.1** (Segal [2; Proposition 1.3]). *Let  $X, Y$  be  $G$ -spaces, and  $X$  compact. If  $f_0, f_1: X \rightarrow Y$  are  $G$ -homotopic  $G$ -maps, and  $E \rightarrow Y$  is a  $G$ -vector bundle, then there is a  $G$ -bundle isomorphism*

$$\varphi: f_0^*E \cong f_1^*E.$$

From this proposition we easily obtain the following.  $I$  denotes the interval  $[0,1]$  with trivial  $G$ -action.

**Proposition 2.2.** *If  $X$  is a compact  $G$ -space, then any  $G$ -vector bundle  $E$  over  $X \times I$  is isomorphic to  $(E|X \times \{0\}) \times I$  as  $G$ -vector bundles.*

Proposition 2.1 may be stated in a more precise form as the following: *If  $f_0, f_1$  are  $G$ -homotopic relative to a closed  $G$ -invariant subspace  $A$  of  $X$ , and if we consider  $f_0^*E, f_1^*E$  subspaces of  $X \times E$ , then the  $G$ -bundle isomorphism  $\varphi$  satisfies  $\varphi(x, e) = (x, e)$  for all  $x \in A$  and  $e \in E$ .*

From this fact we obtain

**Proposition 2.3.** *Let  $E_i \rightarrow X_i$ ,  $i=1,2$ , be  $G$ -vector bundles with  $X_1$  compact. Let  $f: X_1 \times I \rightarrow X_2$  be a  $G$ -homotopy which is constant on a closed  $G$ -invariant subspace  $A$  of  $X_1$ . Let  $\tilde{f}_0: E_1 \rightarrow E_2$  be a  $G$ -bundle map over  $f_0 = f|X_1 \times \{0\}$ . Then there is a  $G$ -bundle map  $\tilde{f}: E_1 \times I \rightarrow E_2$  over  $f$  which is a homotopy of  $\tilde{f}_0$  and is constant on  $E_1|A$ .*

**Corollary 2.4.** *Let  $E \rightarrow X$  be a  $G$ -vector bundle with  $X$  compact,  $A$  a closed  $G$ -invariant subspace of  $X$ , and  $i: A \rightarrow X$  the inclusion map. Let  $f: X \rightarrow A$  be a  $G$ -map such that  $i$  is  $G$ -homotopic to the identity of  $X$  relative to  $A$ . Then there is a  $G$ -bundle map  $\tilde{f}: E \rightarrow E|A$  over  $f$  which is the identity on  $E|A$ .*

(2-4) The following result has been obtained by U. Koschorke in his paper [1; §1].

**Proposition 2.5.** *Let  $M$  be a compact manifold, and  $s: \partial M \rightarrow S(\tau(\partial M))$  a cross section of  $S(\tau(\partial M))$ . Then  $s$  is extendible to a cross section of  $S(\tau(M))$  if and only if  $|\chi|(M)=0$ .*

### 3. Proof of Theorem 1.1

The proof will proceed by an induction for the number of isotropy types on  $M$ .

(3-1) In the first place, let  $M$  be of one isotropy type, and let  $(H)$  be the isotropy type on  $M$ .

“if” part:  $M_H$  is a compact  $N(H)$ -manifold with boundary  $M_H \cap \partial M$ . Consider the sphere bundle

$$S(\tau(M_H))/N(H) \rightarrow M_H/N(H).$$

The  $G$ -cross section  $s$  induces a cross section

$$s_1: \partial(M_H/N(H)) \rightarrow S(\tau(M_H))/N(H) | \partial(M_H/N(H)).$$

This is assured by the  $G$ -equivariancy of  $s$  and the fact

$$\partial(M_H/N(H)) = \partial M_H/N(H) = M_H \cap \partial M/N(H).$$

We may extend  $s_1$  to a cross section of  $S(\tau(M_H))/N(H)$  as follows. If

$$\dim N(H) - \dim H > 0,$$

then the dimension as a cell complex of  $M_H/N(H) = M_H/(N(H)/H)$  is less than or equal to the dimension of fibre of  $S(\tau(M_H))/N(H)$ . Therefore the obstruction to extending  $s_1$  over  $M_H/N(H)$  vanishes. If

$$\dim N(H) - \dim H = 0,$$

then

$$|\chi|(M_H/N(H)) = 0$$

by the assumption, and then

$$S(\tau(M_H))/N(H) \simeq S(\tau(M_H/N(H)))$$

for  $N(H)/H$  is a finite group and  $M_H/N(H) = M_H/(N(H)/H)$ . The image of  $s_1$  is in  $S(\tau(\partial M_H))/N(H)$ . Then  $s_1$  can be extended over  $M_H/N(H)$  by Proposition 2.5.

Let

$$s_2: M_H/N(H) \rightarrow S(\tau(M_H))/N(H)$$

be an extension of  $s_1$ . Let

$$\pi: S(\tau(M_H)) \rightarrow S(\tau(M_H))/N(H)$$

be the canonical projection, and let

$$\pi^*s_2: M_H \rightarrow S(\tau(M_H))$$

be the induced  $N(H)$ -cross section.  $\pi^*s_2$  may be considered an  $N(H)$ -cross section of  $S(\tau(M))|M_H$ , since  $S(\tau(M_H))$  is a subbundle of  $S(\tau(M))|M_H$ . Moreover  $\pi^*s_2$  is an extension of  $s| \partial M_H$ . Since  $M$  is of one isotropy type, the  $G$ -action

$$G \times (S(\tau(M))|M_H) \rightarrow S(\tau(M))$$

induces a  $G$ -bundle isomorphism

$$G \times_{N(H)} (S(\tau(M)) \mid M_H) \cong S(\tau(M)).$$

Then  $\pi^*s_2$  induces a  $G$ -cross section

$$s_3: M \rightarrow S(\tau(M))$$

which is an extension of  $s$ .

“only if” part: Let

$$t: M \rightarrow S(\tau(M))$$

be an extension of  $s$ . By the  $G$ -equivariancy of  $t$ ,  $t$  is restricted to an  $N(H)$ -cross section

$$t_1: M_H \rightarrow S(\tau(M_H)).$$

$t_1$  induces a cross section

$$t_2: M_H/N(H) \rightarrow S(\tau(M_H))/N(H).$$

If

$$\dim N(H) - \dim H = 0,$$

then

$$S(\tau(M_H))/N(H) \cong S(\tau(M_H/N(H))),$$

and

$$t_2(\partial(M_H/N(H))) \subset S(\tau(\partial(M_H/N(H)))).$$

Therefore

$$\dim N(H) - \dim H = 0$$

implies

$$|\chi|(M_H/N(H)) = 0$$

by Proposition 2.5.

This completes the proof for the case in which  $M$  is of one isotropy type.

(3-2) Let the theorem be true for the case in which the number of isotropy types is  $k-1$ . Let  $M$  be a compact  $G$ -manifold with  $k$  isotropy types.

“if” part: Let  $(H)$  be a maximal isotropy type on  $M$ . Then  $M_{(H)}$  is a compact  $G$ -submanifold of  $M$  with one isotropy type. From the preceding argument we obtain a  $G$ -cross section

$$s_1: M_{(H)} \rightarrow S(\tau(M)) \mid M_{(H)}$$

such that the image of  $s_1$  is in  $S(\tau(M_{(H)}))$  and  $s_1 \mid \partial M_{(H)} = s \mid \partial M_{(H)}$ .

Let  $T(M_{(H)})$  be a closed  $G$ -invariant tubular neighborhood of  $M_{(H)}$  in  $M$ .

By Corollary 2.4 we obtain a  $G$ -bundle map

$$\pi: S(\tau(M))| T(M_{(H)}) \rightarrow S(\tau(M))| M_{(H)}$$

such that  $\pi$  covers the canonical projection of  $T(M_{(H)})$  to  $M_{(H)}$  and  $\pi$  is the identity on  $S(\tau(M))| M_{(H)}$ .  $\pi$  induces a  $G$ -cross section

$$\pi^*s_1: T(M_{(H)}) \rightarrow S(\tau(M))| T(M_{(H)})$$

from  $s_1$  such that  $\pi^*s_1| M_{(H)} = s_1$ .

To obtain a  $G$ -cross section

$$L_1 = \partial M \cup T(M_{(H)}) \rightarrow S(\tau(M))| L_1$$

extending  $s$ , we may apply Lemma 5.1 (stated in the last section) as follows. Apply  $E \rightarrow X$ ,  $A$ ,  $B$ ,  $D$ ,  $s_A$  and  $s_B$  in Lemma 5.1 to  $\tau(M) \rightarrow M$ ,  $T(M_{(H)})$ ,  $\partial M$ ,  $\partial M_{(H)}$ ,  $\pi^*s_1$  and  $s$ , respectively. So, in this case,

$$C = A \cap B = T(M_{(H)}) \cap \partial M = T(M_{(H)})| \partial M_{(H)},$$

and this is compact. Moreover this is equivariantly deformable to  $\partial M_{(H)}$ , and

$$\pi^*s_1| \partial M_{(H)} = s| \partial M_{(H)}.$$

Let  $K$  be a closed  $G$ -invariant collar of  $\partial M_{(H)}$  in  $M_{(H)}$ . By Proposition 2.2,  $T(M_{(H)})| K$  has the desired property as  $U$  in Lemma 5.1. Therefore we can apply Lemma 5.1 to this case. So we obtain a  $G$ -cross section

$$s_2: L_1 \rightarrow S(\tau(M))| L_1$$

extending  $s$ .

Let  $T^0(M_{(H)})$  be the part of  $T(M_{(H)})$  corresponding to the open disc bundle. Set

$$L = M - T^0(M_{(H)}).$$

Then  $L$  is a compact  $G$ -manifold with corner. Smoothing the corner of  $L$ , let  $L'$  be the resulting smooth  $G$ -manifold. Note that  $L$  and  $L'$  are the same topological space. Let

$$\varphi: \partial L' \times [0, 1] \rightarrow L'$$

be a  $G$ -invariant collar of  $\partial L'$  in  $L'$  such that

$$\varphi(\partial L' \times \{0\}) = \partial L'.$$

Identify  $\partial L' \times [0, 1]$  with the image of  $\varphi$ . By Proposition 2.2 there is a  $G$ -bundle isomorphism

$$S(\tau(M))| \partial L' \times [0, 1] \cong (S(\tau(M))| \partial L') \times [0, 1].$$

$S(\tau(M))|_{\partial L'}$  admits a  $G$ -cross section  $s_3$  which is a restriction of  $s_2$ . From  $s_3$  the above isomorphism induces a  $G$ -cross section

$$s_4: \partial L' \times [0, 1] \rightarrow S(\tau(M))|_{\partial L' \times [0, 1]}.$$

Set

$$L_2 = L' - \partial L' \times [0, 1].$$

$L_2$  is a compact  $G$ -manifold with  $k-1$  isotropy types.  $S(\tau(M))|_{L_2}$  admits a  $G$ -cross section  $s_5$  on  $\partial L_2 = \partial L' \times \{1\}$  which is the restriction of  $s_4$ .  $S(\tau(M))|_{L_2}$  and  $S(\tau(L_2))$  are identical, since the smoothing process of the corner of  $L$  does not change the differentiable structure outside the corner. By careful consideration we see that the image of  $s_5$  is in  $S(\tau(\partial L_2))$ . So, by the hypothesis of the induction,  $s_5$  is extendible to a  $G$ -cross section

$$s_6: L_2 \rightarrow S(\tau(L_2)) = S(\tau(M))|_{L_2}.$$

Then  $s_2$ ,  $s_4$  and  $s_6$  give a  $G$ -cross section of  $S(\tau(M))$  extending  $s$ .

*“only if” part:* It suffices to show that, for each isotropy type  $(H)$  on  $M$ , if

$$\dim N(H) - \dim H = 0$$

then

$$|\chi|(M_H/N(H)) = 0.$$

Let  $(H)$  be a maximal isotropy type on  $M$ . As in the “only if” part for the case of one isotropy type, we see that

$$\dim N(H) - \dim H = 0$$

implies

$$|\chi|(M_H/N(H)) = 0.$$

Let  $(H')$  be another isotropy type on  $M$ . Consider  $L'_{H'}$  where  $L'$  is the compact  $G$ -manifold in the previous “if” part. Since  $L'$  is of  $k-1$  isotropy types,

$$\dim N(H') - \dim H' = 0$$

implies

$$|\chi|(L'_{H'}/N(H')) = 0$$

by the hypothesis of the induction. Furthermore  $L'_{H'}$  is equivariantly homotopy equivalent to  $M_{H'}$ . Then

$$\dim N(H') - \dim H' = 0$$

implies

$$|\chi|(M_{H'}/N(H')) = 0.$$

Thus Theorem 1.1 is completely proved.

#### 4. Proof of Corollary 1.3

If  $M$  admits a  $G$ - $k$ -field, then the  $k$ -field is tangent to  $F$  by equivariancy. So the “only if” part is trivial.

Now we assume that  $F$  admits a  $k$ -field. Then there are  $k$  cross sections  $s_1, s_2, \dots, s_k$  of  $\tau(F)$  which are linearly independent at each point of  $F$ . Since  $\tau(F)$  is a subvector bundle of  $\tau(M)|F$ , we may regard  $s_1, \dots, s_k$  as  $G$ -cross sections of  $\tau(M)|F$ . As in the proof of Theorem 1.1 we may extend  $s_1$  to a nowhere vanishing  $G$ -cross section  $s'_1$  of  $\tau(M)$ . Choosing a  $G$ -invariant Riemannian metric on  $\tau(M)$ , let  $E$  be the  $G$ -invariant subvector bundle of  $\tau(M)$  which is orthogonal to the image of  $s'_1$ . The assumption

$$\dim N(G_x) - \dim G_x \geq k$$

enables us to extend  $s_2$  to a nowhere vanishing  $G$ -cross section  $s'_2$  of  $E$  by the same method in the proof of Theorem 1.1. By repeating this process we may extend  $s_3, \dots, s_k$  to a  $G$ -cross sections  $s'_3, \dots, s'_k$  of  $\tau(M)$  such that  $s'_1, \dots, s'_k$  are linearly independent at each point of  $M$ . So we obtain a  $G$ - $k$ -field on  $M$ .

#### 5. Concluding lemma

We will conclude this paper by proving the following lemma which was used in the proof of Theorem 1.1.  $G$  acts trivially on intervals considered.

**Lemma 5.1.** *Let  $E \rightarrow X$  be a  $G$ -vector bundle. Let  $A, B$  be  $G$ -invariant subspaces with  $C = A \cap B$  compact. We assume that there is a  $G$ -invariant subspace  $D$  of  $C$  such that  $C$  is equivariantly deformable to  $D$ , i.e., there is a  $G$ -homotopy*

$$F: C \times [0, 1] \rightarrow C$$

*such that  $F(x, 0) = x$  and  $F(x, 1) \in D$  for all  $x \in C$ . We also assume that there is a  $G$ -invariant neighborhood  $U$  of  $C$  in  $A$  such that there is a  $G$ -homeomorphism*

$$\varphi: C \times [0, 3] \approx U$$

*with  $\varphi(x, 0) = x$  for all  $x \in C$ . Let*

$$s_A: A \rightarrow S(E)|A$$

*and*

$$s_B: B \rightarrow S(E)|B$$

*be  $G$ -cross sections which agree on  $D$ . Then there is a  $G$ -cross section*

$$s: A \cup B \rightarrow S(E)|A \cup B$$

which agrees with  $s_A$  on  $A - U$  and  $s_B$  on  $B$ .

Proof. By Proposition 2.3 there is a  $G$ -bundle map

$$F: (S(E)|C) \times [0, 1] \rightarrow S(E)|C$$

which covers  $F$  and is the identity on  $(S(E)|C) \times \{0\}$ , and also there is a  $G$ -bundle isomorphism

$$\bar{\varphi}: (S(E)|C) \times [0, 3] \cong S(E)|U$$

which covers  $\varphi$  and is the identity on  $(S(E)|C) \times \{0\}$ . We define a  $G$ -bundle map

$$K: (S(E)|C) \times [0, 2] \rightarrow S(E)|C$$

by

$$K(v, t) = \begin{cases} F(v, t) & \text{if } 0 \leq t \leq 1 \\ F(v, 2-t) & \text{if } 1 \leq t \leq 2 \end{cases}$$

for  $v \in S(E)|C$  and  $t \in [0, 2]$ . Then we may define a  $G$ -cross section

$$s_1: C \times [0, 2] \rightarrow (S(E)|C) \times [0, 2]$$

of the  $G$ -bundle  $(S(E)|C) \times [0, 2]$  by

$$s_1(x, t) = \begin{cases} K^*s_B(x, t) & \text{if } 0 \leq t \leq 1 \\ K^*s_A(x, t) & \text{if } 1 \leq t \leq 2. \end{cases}$$

This is well-defined since  $K^*s_A$  and  $K^*s_B$  agree on  $C \times \{1\}$ .  $s_1$  satisfies the following equations for all  $x \in C$

$$s_1(x, 0) = (s_B(x), 0)$$

and

$$s_1(x, 2) = (s_A(x), 2).$$

We define a map

$$\lambda: [2, 3] \rightarrow [0, 3]$$

by  $\lambda(t) = 3t - 6$  for  $t \in [2, 3]$ . We denote by  $s_2$  the  $G$ -cross section of  $(S(E)|C) \times [2, 3]$  which is induced from the  $G$ -cross section  $s_A|U$  by the composition

$$(S(E)|C) \times [2, 3] \xrightarrow{(id, \lambda)} (S(E)|C) \times [0, 3] \xrightarrow{\bar{\varphi}} S(E)|U.$$

$s_2$  satisfies the following equations for all  $x \in C$

$$s_2(x, 2) = (s_A(x), 2)$$

and

$$s_2(x, 3) = \bar{\varphi}^{-1} s_A \varphi(x, 3).$$

Since  $s_1$  and  $s_2$  agree on  $C \times \{2\}$ , we obtain a  $G$ -cross section

$$s_3: C \times [0, 3] \rightarrow (S(E)|C) \times [0, 3]$$

from  $s_1$  and  $s_2$ . Then the induced  $G$ -cross section

$$(\bar{\varphi}^{-1})^* s_3: U \rightarrow S(E)|U$$

satisfies the following equations

$$\begin{aligned} (\bar{\varphi}^{-1})^* s_3(x) &= s_B(x) && \text{for all } x \in C \\ (\bar{\varphi}^{-1})^* s_3(x) &= s_A(x) && \text{for all } x \in \varphi^{-1}(C \times \{3\}). \end{aligned}$$

So we obtain a  $G$ -cross section

$$s: A \cup B \rightarrow S(E)|A \cup B$$

defined by

$$s(x) = \begin{cases} s_A(x) & \text{if } x \in A - U \\ (\bar{\varphi}^{-1})^* s_3(x) & \text{if } x \in U \\ s_B(x) & \text{if } x \in B. \end{cases}$$

YAMAGUCHI UNIVERSITY

---

### References

- [1] U. Koschorke: *Concordance and bordism of line fields*, Invent. Math. **24** (1974), 241–268.
- [2] G. Segal: *Equivariant K-theory*, Inst. Hautes Études Sci. Publ. Math. **34** (1968), 129–151.
- [3] N. Steenrod: *The Topology of Fibre Bundles*, Princeton Univ. Press, 1951.