

Title	A necessary and sufficient condition for the existence of non-singular G-vector fields on G-manifolds
Author(s)	Komiya, Katsuhiro
Citation	Osaka Journal of Mathematics. 1976, 13(3), p. 537–546
Version Type	VoR
URL	https://doi.org/10.18910/11745
rights	publisher
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Komiya, K. Osaka J. Math. 13 (1976), 537-546

A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF NON-SINGULAR G-VECTOR FIELDS ON G-MANIFOLDS

KATSUHIRO KOMIYA

(Received July 30, 1975)

1. Introduction

Throughout this paper G always denotes a compact Lie group and G-manifolds are smooth manifolds with smooth G-actions. In this paper we will give a necessary and sufficient condition for the existence of non-singular G-vector fields on closed G-manifolds.

Let $E \to X$ be a *G*-vector bundle. After choosing a *G*-invariant Riemannian metric on *E*, we denote by $S(E) \to X$ the associated *G*-sphere bundle of *E*. We abbreviate continuous *G*-equivariant cross section of *E* to *G*-cross section of *E*.

Let M be a compact G-manifold, and $s: M \to \tau(M)$ a G-cross section of the tangent bundle $\tau(M)$ of M. s is called a *non-singular* G-vector field on M, if s is not zero at each point of M. For a positive integer k, by a G-k-field on M we will mean k G-cross sections of $\tau(M)$ which are linearly independent at each point of M.

For a closed subgroup H of G we set

$$M_H = \{x \in M \mid G_x = H\},$$

where G_x is the isotropy group at x. Let N(H) be the normalizer of H in G. Then M_H is an N(H)-manifold and also a free N(H)/H-manifold.

For a topological space X we define $|\chi|(X)$ to be the sum $\Sigma_Y |\chi(Y)|$, where $\chi(Y)$ is the Euler characteristic of Y and Y runs over the connected components of X.

In this paper we will obtain the following results:

Theorem 1.1. Let M be a compact G-manifold. Let $s: \partial M \rightarrow S(\tau(\partial M))$ be a G-cross section of $S(\tau(\partial M))$. Then s is extendible to a G-cross section of $S(\tau(M))$ if and only if

$$|\chi|(M_{G_x}/N(G_x)) = 0$$
, or dim $N(G_x)$ -dim $G_x > 0$

for all $x \in M$.

К. Коміча

From this theorem we immediately obtain the main result of this paper:

Corollary 1.2. A closed G-manifold M admits a non-singular G-vector field if and only if

$$|\chi|(M_{G_x}/N(G_x)) = 0$$
, or dim $N(G_x)$ -dim $G_x > 0$

for all $x \in M$.

We also obtain the following corollary:

Corollary 1.3. Let M be a compact G-manifold, F the stationary point set of M, and k a positive integer. We suppose that

 $\dim N(G_x) - \dim G_x \ge k$

for all $x \in M-F$. Then M admits a G-k-field if and only if F admits a k-field.

Note. The existence of a non-singular continuous G-vector field on a compact G-manifold implies the existence of a non-singular smooth G-vector field. This fact is assured by the differentiable approximation theorem [3; (6.7)] and the usual process of averaging cross sections.

2. Preliminaries

(2-1) For a closed subgroup H of G let (H) be the conjugacy class of H in G. If H is an isotropy group occuring on a G-manifold M, (H) is called an isotropy type on M.

Set

$$\begin{split} M_{H} &= \{x \! \in \! M \, | \, G_{x} = H \} \\ M_{(H)} &= \{x \! \in \! M \, | \, (G_{x}) = (H) \} \; . \end{split}$$

Then M_H and $M_{(H)}$ are submanifolds of M, but, in general, not compact. If (H) is a maximal isotropy type on a compact G-manifold M, M_H and $M_{(H)}$ are compact.

(2-2) Let $\pi: E \to X$, $\pi': E' \to X'$ be G-fibre bundles, and $f: E \to E'$ a G-bundle map covering $f: X \to X'$. Let $s': X' \to E'$ be a G-cross section of E'. s' induces a G-cross section

$$s: X \rightarrow f^*E' = \{(x, e) \in X \times E' | f(x) = \pi'(e)\}$$

of the induced G-fibre bundle f^*E' which sends $x \in X$ to $(x, s'f(x)) \in X \times E'$. E is canonically isomorphic to f^*E' . So s induces a G-cross section of E. We denote this G-cross section by f^*s' , and call induced G-cross section from s' by f.

(2-3) Recall known results:

Proposition 2.1 (Segal [2; Proposition 1.3]). Let X, Y be G-spaces, and X compact. If $f_0, f_1: X \rightarrow Y$ are G-homotopic G-maps, and $E \rightarrow Y$ is a G-vector bundle, then there is a G-bundle isomorphism

$$\varphi: f_0^* E \simeq f_1^* E \, .$$

From this proposition we easily obtain the following. I denotes the interval [0,1] with trivial G-action.

Proposition 2.2. If X is a compact G-space, then any G-vector bundle E over $X \times I$ is isomorphic to $(E | X \times \{0\}) \times I$ as G-vector bundles.

Proposition 2.1 may be stated in a more precise form as the following: If f_0 , f_1 are G-homotopic relative to a closed G-invariant subspace A of X, and if we consider f_0^*E , f_1^*E subspaces of $X \times E$, then the G-bundle isomorphism φ satisfies $\varphi(x, e) = (x, e)$ for all $x \in A$ and $e \in E$.

From this fact we obtain

Proposition 2.3. Let $E_i \rightarrow X_i$, i=1,2, be G-vector bundles with X_1 compact. Let $f: X_1 \times I \rightarrow X_2$ be a G-homotopy which is constant on a closed G-invariant subspace A of X_1 . Let $f_0: E_1 \rightarrow E_2$ be a G-bundle map over $f_0 = f | X_1 \times \{0\}$. Then there is a G-bundle map $f: E_1 \times I \rightarrow E_2$ over f which is a homotopy of f_0 and is constant on $E_1 | A$.

Corollary 2.4. Let $E \to X$ be a G-vector bundle with X compact, A a closed G-invariant subspace of X, and i: $A \to X$ the inclusion map. Let $f: X \to A$ be a G-map such that if is G-homotopic to the identity of X relative to A. Then there is a G-bundle map $f: E \to E | A$ over f which is the identity on E | A.

(2-4) The following result has been obtained by U. Koschorke in his paper [1; §1].

Proposition 2.5. Let M be a compact manifold, and $s: \partial M \rightarrow S(\tau(\partial M))$ a cross section of $S(\tau(\partial M))$. Then s is extendible to a cross section of $S(\tau(M))$ if and only if |X|(M)=0.

3. Proof of Theorem 1.1

The proof will proceed by an induction for the number of isotropy types on M.

(3-1) In the first place, let M be of one isotropy type, and let (H) be the isotropy type on M.

"*if*" part: M_H is a compact N(H)-manifold with boundary $M_H \cap \partial M$. Consider the sphere bundle К. Коміча

$$S(\tau(M_H))/N(H) \rightarrow M_H/N(H)$$
.

The G-cross section s induces a cross section

 $s_1: \partial(M_H/N(H)) \rightarrow S(\tau(M_H))/N(H) | \partial(M_H/N(H)).$

This is assured by the G-equivariancy of s and the fact

$$\partial(M_H/N(H)) = \partial M_H/N(H) = M_H \cap \partial M/N(H)$$

We may extend s_i to a cross section of $S(\tau(M_H))/N(H)$ as follows. If

 $\dim N(H) - \dim H > 0$,

then the dimension as a cell complex of $M_H/N(H) = M_H/(N(H)/H)$ is less than or equal to the dimension of fibre of $S(\tau(M_H))/N(H)$. Therefore the obstruction to extending s_1 over $M_H/N(H)$ vanishes. If

 $\dim N(H) - \dim H = 0,$

then

 $|\chi|(M_H/N(H)) = 0$

by the assumption, and then

$$S(\tau(M_H))/N(H) \simeq S(\tau(M_H/N(H)))$$

for N(H)/H is a finite group and $M_H/N(H) = M_H/(N(H)/H)$. The image of s_1 is in $S(\tau(\partial M_H))/N(H)$. Then s_1 can be extended over $M_H/N(H)$ by Proposition 2.5.

Let

$$s_2: M_H/N(H) \rightarrow S(\tau(M_H))/N(H)$$

be an extension of s_1 . Let

 $\pi \colon S(\tau(M_H)) \to S(\tau(M_H))/N(H)$

be the canonical projection, and let

$$\pi^*s_2: M_H \rightarrow S(\tau(M_H))$$

be the induced N(H)-cross section. $\pi^* s_2$ may be considered an N(H)-cross section of $S(\tau(M))|M_H$, since $S(\tau(M_H))$ is a subbundle of $S(\tau(M))|M_H$. Moreover $\pi^* s_2$ is an extension of $s|\partial M_H$. Since M is of one isotropy type, the G-action

$$G \times (S(\tau(M)) | M_H) \rightarrow S(\tau(M))$$

induces a G-bundle isomorphism

G-VECTOR FIELDS ON G-MANIFOLDS

$$G \times_{N(H)} (S(\tau(M)) | M_H) \simeq S(\tau(M))$$
.

Then π^*s_2 induces a G-cross section

$$s_3: M \rightarrow S(\tau(M))$$

which is an extension of s.

"only if" part: Let

$$t: M \rightarrow S(\tau(M))$$

be an extension of s. By the G-equivariancy of t, t is restricted to an N(H)cross section

$$t_1: M_H \to S(\tau(M_H)) .$$

 t_1 induces a cross section

 $t_2: M_H/N(H) \rightarrow S(\tau(M_H))/N(H)$.

If

 $\dim N(H) - \dim H = 0,$

then

$$S(\tau(M_H))/N(H) \simeq S(\tau(M_H/N(H))),$$

and

$$t_2(\partial(M_H/N(H))) \subset S(\tau(\partial(M_H/N(H))))$$

Therefore

 $\dim N(H) - \dim H = 0$

implies

 $|\chi|(M_H/N(H)) = 0$

by Proposition 2.5.

This completes the proof for the case in which M is of one isotropy type.

(3-2) Let the theorem be true for the case in which the number of isotropy types is k-1. Let M be a compact G-manifold with k isotropy types.

"if" part: Let (H) be a maximal isotropy type on M. Then $M_{(H)}$ is a compact G-submanifold of M with one isotropy type. From the preceding argument we obtain a G-cross section

$$s_1: M_{(H)} \rightarrow S(\tau(M)) \mid M_{(H)}$$

such that the image of s_1 is in $S(\tau(M_{(H)}))$ and $s_1 | \partial M_{(H)} = s | \partial M_{(H)}$.

Let $T(M_{(H)})$ be a closed G-invariant tubular neighborhood of $M_{(H)}$ in M.

By Corollary 2.4 we obtain a G-bundle map

$$\pi: S(\tau(M)) \mid T(M_{(H)}) \to S(\tau(M)) \mid M_{(H)}$$

such that π covers the canonical projection of $T(M_{(H)})$ to $M_{(H)}$ and π is the identity on $S(\tau(M))|M_{(H)}$. π induces a G-cross section

 $\pi^* s_1: T(M_{(H)}) \rightarrow S(\tau(M)) \mid T(M_{(H)})$

from s_1 such that $\pi^* s_1 | M_{(H)} = s_1$.

To obtain a G-cross section

$$L_1 = \partial M \cup T(M_{(H)}) \rightarrow S(\tau(M)) | L_1$$

extending s, we may apply Lemma 5.1 (stated in the last section) as follows. Apply $E \to X$, A, B, D, s_A and s_B in Lemma 5.1 to $\tau(M) \to M$, $T(M_{(H)})$, ∂M , $\partial M_{(H)}$, π^*s_1 and s, respectively. So, in this case,

$$C = A \cap B = T(M_{(H)}) \cap \partial M = T(M_{(H)}) |\partial M_{(H)},$$

and this is compact. Moreover this is equivariantly deformable to $\partial M_{(H)}$, and

$$\pi^* s_1 |\partial M_{(H)} = s |\partial M_{(H)}.$$

Let K be a closed G-invariant collar of $\partial M_{(H)}$ in $M_{(H)}$. By Proposition 2.2, $T(M_{(H)})|K$ has the desired property as U in Lemma 5.1. Therefore we can apply Lemma 5.1 to this case. So we obtain a G-cross section

$$s_2: L_1 \rightarrow S(\tau(M)) | L_1$$

extending s.

Let $T^{\circ}(M_{(H)})$ be the part of $T(M_{(H)})$ corresponding to the open disc bundle. Set

$$L = M - T^{\circ}(M_{(H)}).$$

Then L is a compact G-manifold with corner. Smoothing the corner of L, let L' be the resulting smooth G-manifold. Note that L and L' are the same topological space. Let

$$\varphi: \partial L' \times [0, 1] \rightarrow L'$$

be a G-invariant collar of $\partial L'$ in L' such that

$$\varphi(\partial L' \times \{0\}) = \partial L'.$$

Identify $\partial L' \times [0, 1]$ with the image of φ . By Proposition 2.2 there is a G-bundle isomorphism

$$S(\tau(M))|\partial L' \times [0, 1] \simeq (S(\tau(M))|\partial L') \times [0, 1].$$

 $S(\tau(M))|\partial L'$ admits a G-cross section s_3 with is a restriction of s_2 . From s_3 the above isomorphism induces a G-cross section

$$s_4: \partial L' \times [0, 1] \rightarrow S(\tau(M)) | \partial L' \times [0, 1].$$

Set

 $L_2 = L' - \partial L' \times [0, 1].$

 L_2 is a compact G-manifold with k-1 isotropy types. $S(\tau(M))|L_2$ admits a Gcross section s_5 on $\partial L_2 = \partial L' \times \{1\}$ which is the restriction of s_4 . $S(\tau(M))|L_2$ and $S(\tau(L_2))$ are identical, since the smoothing process of the corner of L does not change the differentiable structure outside the corner. By careful consideration we see that the image of s_5 is in $S(\tau(\partial L_2))$. So, by the hypothesis of the induction, s_5 is extendible to a G-cross section

$$s_6: L_2 \rightarrow S(\tau(L_2)) = S(\tau(M)) | L_2.$$

Then s_2 , s_4 and s_6 give a G-cross section of $S(\tau(M))$ extending s.

"only if" part: It suffices to show that, for each isotropy type (H) on M, if

 $\dim N(H) - \dim H = 0$

then

$$|\chi|(M_H/N(H))=0.$$

Let (H) be a maximal isotropy type on M. As in the "only if" part for the case of one isotropy type, we see that

 $\dim N(H) - \dim H = 0$

implies

 $|\chi|(M_H/N(H)) = 0.$

Let (H') be another isotropy type on M. Consider $L'_{H'}$ where L' is the compact G-manifold in the previous "if" part. Since L' is of k-1 isotropy types,

$$\dim N(H') - \dim H' = 0$$

implies

$$|\chi|(L'_{H'}/N(H'))=0$$

by the hypothesis of the induction. Furthermore $L'_{H'}$ is equivariantly homotopy equivalent to $M_{H'}$. Then

 $\dim N(H') - \dim H' = 0$

implies

$$|\chi|(M_{H'}/N(H')) = 0.$$

Thus Theorem 1.1 is completely proved.

4. Proof of Corollary 1.3

If M admits a G-k-field, then the k-field is tangent to F by equivariancy. So the "only if" part is trivial.

Now we assume that F admits a k-field. Then there are k cross sections s_1, s_2, \dots, s_k of $\tau(F)$ which are linearly independent at each point of F. Since $\tau(F)$ is a subvector bundle of $\tau(M)|F$, we may regard s_1, \dots, s_k as G-cross sections of $\tau(M)|F$. As in the proof of Theorem 1.1 we may extend s_1 to a nowhere vanishing G-cross section s_1' of $\tau(M)$. Choosing a G-invariant Riemannian metric on $\tau(M)$, let E be the G-invariant subvector bundle of $\tau(M)$ which is orthogonal to the image of s_1' . The assumption

$$\dim N(G_x) - \dim G_x \ge k$$

enables us to extend s_2 to a nowhere vanishing *G*-cross section s_2' of *E* by the same method in the proof of Theorem 1.1. By repeating this process we may extend s_3, \dots, s_k to a *G*-cross sections s_3', \dots, s_k' of $\tau(M)$ such that s_1', \dots, s_k' are linearly independent at each point of *M*. So we obtain a *G*-*k*-field on *M*.

5. Concluding lemma

We will conclude this paper by proving the following lemma which was used in the proof of Theorem 1.1. G acts trivially on intervals considered.

Lemma 5.1. Let $E \rightarrow X$ be a G-vector bundle. Let A, B be G-invariant subspaces with $C = A \cap B$ compact. We assume that there is a G-invariant subspace D of C such that C is equivariantly deformable to D, i.e., there is a G-homotopy

$$F: C \times [0, 1] \rightarrow C$$

such that F(x, 0)=x and $F(x, 1)\in D$ for all $x\in C$. We also assume that there is a G-invariant neighborhood U of C in A such that there is a G-homeomorphism

$$\varphi: C \times [0, 3] \approx U$$

with $\varphi(x, 0) = x$ for all $x \in C$. Let

$$s_A: A \rightarrow S(E) | A$$

and

$$s_B: B \rightarrow S(E) \mid B$$

be G-cross sections which agree on D. Then there is a G-cross section

 $s: A \cup B \rightarrow S(E) \mid A \cup B$

which agrees with s_A on A - U and s_B on B.

Proof. By Proposition 2.3 there is a G-bundle map

$$\overline{F}: (S(E) | C) \times [0, 1] \rightarrow S(E) | C$$

which covers F and is the identity on $(S(E)|C) \times \{0\}$, and also there is a G-bundle isomorphism

$$\bar{\varphi}: (S(E) | C) \times [0, 3] \cong S(E) | U$$

which covers φ and is the identity on $(S(E)|C) \times \{0\}$. We define a G-bundle map

$$K: (S(E) | C) \times [0, 2] \rightarrow S(E) | C$$

by

$$K(v, t) = \begin{cases} F(v, t) & \text{if } 0 \le t \le 1\\ F(v, 2-t) & \text{if } 1 \le t \le 2 \end{cases}$$

for $v \in S(E) | C$ and $t \in [0, 2]$. Then we may define a G-cross section

 $s_1: C \times [0, 2] \rightarrow (S(E) | C) \times [0, 2]$

of the G-bundle $(S(E)|C) \times [0, 2]$ by

$$s_1(x, t) = \begin{cases} K^* s_B(x, t) & \text{if } 0 \le t \le 1 \\ K^* s_A(x, t) & \text{if } 1 \le t \le 2 \end{cases}$$

This is well-defined since K^*s_A and K^*s_B agree on $C \times \{1\}$. s_1 satisfies the following equations for all $x \in C$

 $s_1(x, 0) = (s_B(x), 0)$

and

$$s_1(x, 2) = (s_A(x), 2)$$
.

We define a map

 λ : [2, 3] \rightarrow [0, 3]

by $\lambda(t)=3t-6$ for $t \in [2, 3]$. We denote by s_2 the G-cross section of $(S(E)|C) \times [2, 3]$ which is induced from the G-cross section $s_A|U$ by the composition

$$(S(E)|C)\times[2, 3] \xrightarrow{(id, \lambda)} (S(E)|C)\times[0, 3] \xrightarrow{\overline{\varphi}} S(E)|U.$$

 s_2 satisfies the following equations for all $x \in C$

$$s_2(x, 2) = (s_A(x), 2)$$

and

K. Komiya

$$s_2(x, 3) = \overline{\varphi}^{-1} s_A \varphi(x, 3) \, .$$

Since s_1 and s_2 agree on $C \times \{2\}$, we obtain a G-cross section

 $s_3: C \times [0, 3] \rightarrow (S(E) | C) \times [0, 3]$

from s_1 and s_2 . Then the induced G-cross section

$$(\bar{\varphi}^{-1})^*s_3: U \rightarrow S(E) \mid U$$

satisfies the following equations

$$(\overline{\varphi}^{-1})^* s_3(x) = s_B(x) \quad \text{for all } x \in C$$

$$(\overline{\varphi}^{-1})^* s_3(x) = s_A(x) \quad \text{for all } x \in \varphi^{-1}(C \times \{3\}).$$

So we obtain a G-cross section

$$s: A \cup B \rightarrow S(E) \mid A \cup B$$

defined by

$$s(x) = \begin{cases} s_A(x) & \text{if } x \in A - U \\ (\bar{\varphi}^{-1})^* s_3(x) & \text{if } x \in U \\ s_B(x) & \text{if } x \in B. \end{cases}$$

YAMAGUCHI UNIVERSITY

References

- [1] U. Koschorke: Concordance and bordism of line fields, Invent. Math. 24 (1974), 241-268.
- [2] G. Segal: Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151.
- [3] N. Steenrod: The Topology of Fibre Bundles, Princeton Univ. Press, 1951.