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1. Introduction

Throughout this paper G always denotes a compact Lie group and G-
manifolds are smooth manifolds with smooth G-actions. In this paper we
will give a necessary and sufficient condition for the existence of non-singular
G-vector fields on closed G-manifolds.

Let E—X be a G-vector bundle. After choosing a G-invariant Riemannian
metric on E, we denote by S(E)— X the associated G-sphere bundle of E. We
abbreviate continuous G-equivariant cross section of E to G-cross section of E.

Let M be a compact G-manifold, and s: M—7(M) a G-cross section of the
tangent bundle (M) of M. s is called a non-singular G-vector field on M, if s is
not zero at each point of M. For a positive integer k, by a G-k-field on M we
will mean k& G-cross sections of 7(M) which are linearly independent at each
point of M.

For a closed subgroup H of G we set

where G, is the isotropy group at x. Let N(H) be the normalizer of H in G.
Then My is an N(H)-manifold and also a free N(H)/H-manifold.

For a topological space X we define |X[(X) to be the sum =y |[X(Y)/|, where
X(Y) is the Euler characteristic of ¥ and Y runs over the connected components
of X.

In this paper we will obtain the following results:

Theorem 1.1. Let M be a compact G-manifold. Let s: OM—S(T(0M)) be
a G-cross section of S(T(0M)). Then s is extendible to a G-cross section of S(T(M))
if and only if

|X|(Mg,/N(G,)) =0, or dim N(G,)—dim G,>0
for all xe M.
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From this theorem we immediately obtain the main result of this paper:

Corollary 1.2. A closed G-manifold M admits a non-singular G-vector field
if and only if

[X|(Mg,/N(G,))=0, or dimN(G,)—dim G,>0
Jor all xe M.
We also obtain the following corollary:

Corollary 1.3. Let M be a compact G-manifold, F the stationary point
set of M, and k a positive integer. We suppose that

dim N(G,)—dim G, >k
for all x e M—F. Then M admits a G-k-field if and only if F admits a k-field.

Note. The existence of a non-singular comtinuous G-vector field on a
compact G-manifold implies the existence of a non-singular smooth G-vector
field. This fact is assured by the differentiable approximation theorem
[3; (6.7)] and the usual process of averaging cross sections.

2. Preliminaries

(2-1) For a closed subgroup H of G let (H) be the conjugacy class of H in
G. If H is an isotropy group occuring on a G-manifold M, (H) is called an
isotropy type on M.

Set

My= {xeM|G,= H}
My, = {(xeM|(G,) = (H)} .

Then My and M g, are submanifolds of M, but, in general, not compact. If
(H) is a maximal isotropy type on a compact G-manifold M, Mg and M g, are
compact.

(2-2) Let =»: E—»X, n’: E'-X’ be G-fibre bundles, and f: E—E’ a G-
bundle map covering f: X—X’. Let s’: X’—E’ be a G-cross section of E’. s
induces a G-cross section

s: X—>f*E' = {(x, )€ X X E’| f(x) = ='(e)}

of the induced G-fibre bundle f*E” which sends x€ X to (x, s'f(x))EX X E’. E

is canonically isomorphic to f*E”. So s induces a G-cross section of E. We

denote this G-cross section by f*s’, and call induced G-cross section from s’ by f.
(2-3) Recall known results:
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Proposition 2.1 (Segal [2; Proposition 1.3]). Let X, Y be G-spaces, and X
compact. If f,, fi: X—Y are G-homotopic G-maps, and E—Y is a G-vector
bundle, then there is a G-bundle isomorphism

@ fYE~f¥E.

From this proposition we easily obtain the following. I denotes the in-
terval [0,1] with trivial G-action.

Proposition 2.2. If X is a compact G-space, then any G-vector bundle E over
X X I is isomorphic to (E| X X {0}) X I as G-vector bundles.

Proposition 2.1 may be stated in a more precise form as the following:
If fo, f1 are G-homotopic relative to a closed G-invariant subspace A of X, and if
we consider [¥E, f¥E subspaces of X X E, then the G-bundle isomorphism ¢ satisfies
@(x, e)=(x, €) for all x€ A and e E.

From this fact we obtain

Proposition 2.3. Let E;—X;, i=1,2, be G-vector bundles with X, compact.
Let f: X, xI—X, be a G-homotopy which is constant on a closed G-invariant sub-
space A of X,. Let f,: E,—~E, be a G-bundle map over f,=f|X,x {0}. Then
there is a G-bundle map f: E, X I>E, over f which is a homotopy of f, and is
constant on E,| A.

Corollary 2.4. Let E—X be a G-vector bundle with X compact, A a closed
G-invariant subspace of X, and i: A—X the inclusion map. Let f: X—A be a
G-map such that if is G-homotopic to the identity of X relative to A. Then there
is a G-bundle map f: E—E | A over f which is the identity on E| A.

(2-4) The following result has been obtained by U. Koschorke in his
paper [1; §1].

Proposition 2.5. Let M be a compact manifold, and s: 9M—S(t(0M)) a
cross section of S(T(0M)). Then s is extendible to a cross section of S(T(M)) if and
only if |X|(M)=0.

3. Proof of Theorem 1.1

The proof will proceed by an induction for the number of isotropy types
on M.

(3-1) In the first place, let M be of one isotropy type, and let (H) be
the isotropy type on M.

“if” part: My is a compact N(H)-manifold with boundary MyN0M.
Consider the sphere bundle
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S((Mg))/N(H)—>M u/N(H) .
The G-cross section s induces a cross section
82 0(M g/ N(H))—S(m(M 5))/N(H) | 9(M 1/ N(H)) .
This is assured by the G-equivariancy of s and the fact
O(My/N(H)) = 0My/N(H) = MyNOM|N(H) .
We may extend s, to a cross section of S(T(M y))/N(H) as follows. If
dim N(H)—dim H>0,

then the dimension as a cell complex of M /N(H)=M y/(N(H)/H) is less than or
equal to the dimension of fibre of S(7(M))/N(H). Therefore the obstruction
to extending s, over M y/N(H) vanishes. If

dim N(H)—dim H =0,
then

|X|(Mu/N(H)) =0
by the assumption, and then

S((M n))[N(H) = S(r(M u/N(H)))

for N(H)/H is a finite group and M yz/N(H)=M y4/(N(H)/H). The image of s,
isin S(7(0M g))/N(H). Then s, can be extended over M y,/N(H) by Proposi-
tion 2.5.

Let

82 M u|N(H)—S(1(Mn))/N(H)
be an extension of 5s,. Let
72 S(T(M g1))—>S(7(M )/ N(H)
be the canonical projection, and let
w¥s,: M yg—S(7(M g))

be the induced N(H)-cross section. z*s, may be considered an N(H)-cross
section of S(7(M))| My, since S(7(M g)) is a subbundle of S(7(M))| M. More-
over z*s, is an extension of s|0My. Since M is of one isotropy type, the
G-action

GX(S(7(M)) | M g)—S(7(M))

induces a G-bundle isomorphism
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GX yan(S(T(M)) | M p) = S(m(M)) .
Then z*s, induces a G-cross section
$30 M—S(7(M))
which is an extension of s.

“only if” part: Let
t: M—S(7(M))

be an extension of s. By the G-equivariancy of ¢, ¢ is restricted to an N(H)-
cross section

ti: My—S(7(Mp)) .
t, induces a cross section

t;: My/N(H)—S(T(Mg))/N(H) .

If
dim N(H)—dim H =0,
then
S(T(Mu))/N(H) = S(7(Mu|N(H))),
and
£(0(M u/ N(H)))  S(7(0(M n/N(H)))) -
Therefore
dim N(H)—dim H =0
implies
IX|(Ma/N(H)) = 0
by Proposition 2.5.

This completes the proof for the case in which M is of one isotropy type.

(3-2) Let the theorem be true for the case in which the number of iso-
tropy types is k—1. Let M be a compact G-manifold with k isotropy types.

“gf” part: Let (H) be a maximal isotropy type on M. Then My, is a
compact G-submanifold of M with one isotropy type. From the preceding
argument we obtain a G-cross section

82 Mgy—>S(7(M)) | M (g1,

such that the image of s, is in S(7(Mz,)) and s,|0M gr,=s|0M (g,.
Let T(M ) be a closed G-invariant tubular neighborhood of M g, in M.
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By Corollary 2.4 we obtain a-G-bundle map
w: S(T(M)) | T(M cz,)—>S(m(M)) | M cx,

such that 7 covers the canonical projection of T(M g,) to My, and 7 is the
identity on S(7(M))| M g,. = induces a G-cross section

w¥sy: T(Meay)—=>S(7(M)) | T(M cxr)

from s, such that z*s, | M g,=s,.
To obtain a G-cross section

Ly, = 0M U T(M )~ S((M))| L,

extending s, we may apply Lemma 5.1 (stated in the last section) as follows.
Apply E—~X, 4, B,D,s, and sz in Lemma 5.1 to 7(M)—M, T(M,),
OM, OM g, w*s, and s, respectively. So, in this case,

C= ANB = T(Mcp)N0M = T(Mr)|0Mem, ,
and this is compact. Moreover this is equivariantly deformable to M 4, and
75, | OM g, = §|0M gy, .

Let K be a closed G-invariant collar of dM y, in M y,. By Proposition 2.2,
T(M )| K has the desired property as U in Lemma 5.1. Therefore we can
apply Lemma 5.1 to this case. So we obtain a G-cross section

5,0 Li—>S(7(M))| L,

extending s.
Let T°(M ) be the part of T(M g,) corresponding to the open disc bundle.
Set

L=M—T(Mu).

Then L is a compact G-manifold with cormer. Smoothing the corner of L,
let L’ be the resulting smooth G-manifold. Note that L and L’ are the same
topological space. Let

@: 0L’ x[0, 1]—-L’
be a G-invariant collar of 0L’ in L’ such that
@(OL'x {0}) =0oL’.

Identify 0L’x[0, 1] with the image of . By Proposition 2.2 there is a G-
bundle isomorphism

S(r(M))|0L' X [0, 1] = (S(r(M))[8L)x [0, 1] .
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S(T(M))| 0L’ admits a G-cross section s, wihch is a restriction of s, From s, the
above isomorphism induces a G-cross section
s,: OL'x [0, 1]—-S(7(M))|0L'x [0, 1] .
Set
L,=L—oL'x][0, 1).

L, is a compact G-manifold with 2—1 isotropy types. S(7(M))|L, admits a G-
cross section s; on dL,=0L’X {1} which is the restriction of s,. S(7(M))|L, and
S(7(L,)) are identical, since the smoothing process of the corner of L does not
change the differentiable structure outside the corner. By careful consideration

we see that the image of s; is in S(7(3L,)). So, by the hypothesis of the induc-
tion, s, is extendible to a G-cross section

ss: L,—>S(1(L,)) = S(T(M))| L, .
Then s,, s, and s, give a G-cross section of S(7(M)) extending s.
“only if” part: It suffices to show that, for each isotropy type (H) on
M, if
dim N(H)—dim H =0
then
|X|(Mu/N(H)) = 0.
Let (H) be a maximal isotropy type on M. As in the “only if” part for
the case of one isotropy type, we see that
dim N(H)—dim H =0
implies
IX|(Mu/NH))=0.
Let (H’) be another isotropy type on M. Consider L’ys where L’ is the
compact G-manifold in the previous “if” part. Since L’is of k—1 isotropy types,
dim N(H’)—dim H’ = 0
implies
|X|(L'w[N(H)) = 0
by the hypothesis of the induction. Furthermore L’z is equivariantly homotopy
equivalent to M. Then
dim N(H')—dim H' = 0
implies
[ X|(Mg|NH')=0.
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Thus Theorem 1.1 is completely proved.

4. Proof of Corollary 1.3

If M admits a G-k-field, then the k-field is tangent to F' by equivariancy.
So the “only if” part is trivial.

Now we assume that F admits a k-field. Then there are k cross sections
$1, S35 ***, § of 7(F) which are linearly independent at each point of F. Since
7(F) is a subvector bundle of 7(M)|F, we may regard s, ::-, s, as G-cross sections
of 7(M)|F. As in the proof of Theorem 1.1 we may extend s, to a nowhere
vanishing G-cross section s,” of 7(M). Choosing a G-invariant Riemannian
metric on 7(M), let E be the G-invariant subvector bundle of 7(M) which is
orthogonal to the image of s,”. The assumption

dim N(G,)—dim G, >k

enables us to extend s, to a nowhere vanishing G-cross section s,” of E by the
same method in the proof of Theorem 1.1. By repeating this process we may
extend s, +:-, 5, to a G-cross sections s, -+-, 5" of 7(M) such that s, -, 5’ are
linearly independent at each point of /. So we obtain a G-k-field on M.

5. Concluding lemma

We will conclude this paper by proving the following lemma which was
used in the proof of Theorem 1.1. G acts trivially on intervals considered.

Lemma 5.1. Let E—X be a G-vector bundle. Let A, B be G-invariant
subspaces with C=AN B compact. We assume that there is a G-invariant subspace
D of C such that C is equivariantly deformable to D, i.e., there is a G-homotopy

F: Cx[0, 1]-C

such that F(x, 0)=x and F(x, 1)YED for all x€C. We also assume that there is a
G-invariant neighborhood U of C in A such that there is a G-homeomorphism

@: Cx[0,3]~U
with ¢(x, 0)=x for all x&€C. Let
sa: A—-S(E) |4

and
sg: B—>S(E)|B

be G-cross sections which agree on D. Then there is a G-cross section

s: AUB—S(E)|AUB
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which agrees with s, on A—U and sz on B.
Proof. By Proposition 2.3 there is a G-bundle map
F: (S(E)|C)x[0, 11-S(E)|C

which covers F and is the identity on (S(E)|C)x {0}, and also there is a G-
bundle isomorphism

P: (S(B)| C)[0, 3] = S(E)| U
which covers @ and is the identity on (S(E)|C)x {0}. We define a G-bundle

map
K: (S(E)|C)x [0, 2]-S(E)|C
by
F(v, t) if 0<t<1

K =
(@ 1) {F(v, 28 if 1<i<2

for v&S(E)|C and t€[0, 2]. Then we may define a G-cross section
5,0 C [0, 2]1—(S(E)| C)x[O0, 2]
of the G-bundle (S(E)|C)x [0, 2] by
{K*sB(x, t) if 0<i<1
s(%, t) = )
K*s4(x, t) if 1<t<2.

This is well-defined since K*s, and K*sg agree on CX {1}. s, satisfies the
following equations for all x&C

si(x, 0) = (sp(*), 0)
and

$i(%, 2) = (sa(*); 2) -
We define a map
e [2, 3110, 3]

by M#)=3¢—6 for t=[2, 3]. We denote by s, the G-cross section of (S(E)|C) X
[2, 3] which is induced from the G-cross section s,| U by the composition

(S(E)|C)X [2, 3] (ud, ) (S(E)|C)x [0, 3] -2 S(E)| U.

s, satisfies the following equations for all x&C

5%, 2) = (sa(%), 2)
and
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s, 3) = P54, 3).
Since s, and s, agree on C'X {2}, we obtain a G-cross section
530 CX[0, 3]=(S(E)| C)x [0, 3]
from s, and 5,. Then the induced G-cross section
(F)*s: U—S(E)| U
satisfies the following equations

(P7)*s5(x) = sp(x) for all x&C
(P7Y)*sy(x) = s4(x)  forallx€p™(C X {3}).

So we obtain a G-cross section

s: AUB—S(E)|AUB

defined by
$4(x) if x€d-U
s(x) = { (@7 *sy(x) if x€U
sp(x) if x€B.
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