<table>
<thead>
<tr>
<th>Title</th>
<th>A necessary and sufficient condition for the existence of non-singular G-vector fields on G-manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Komiya, Katsuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 13(3) P.537-P.546</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1976</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11745</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11745</td>
</tr>
<tr>
<td>rights</td>
<td>publisher</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF NON-SINGULAR G-VECTOR FIELDS ON G-MANIFOLDS

KATSUHIRO KOMIYA

(Received July 30, 1975)

1. Introduction

Throughout this paper G always denotes a compact Lie group and G-manifolds are smooth manifolds with smooth G-actions. In this paper we will give a necessary and sufficient condition for the existence of non-singular G-vector fields on closed G-manifolds.

Let $E \rightarrow X$ be a G-vector bundle. After choosing a G-invariant Riemannian metric on E, we denote by $S(E) \rightarrow X$ the associated G-sphere bundle of E. We abbreviate continuous G-equivariant cross section of E to G-cross section of E.

Let M be a compact G-manifold, and $s: M \rightarrow \tau(M)$ a G-cross section of the tangent bundle $\tau(M)$ of M. s is called a non-singular G-vector field on M, if s is not zero at each point of M. For a positive integer k, by a G-k-field on M we will mean k G-cross sections of $\tau(M)$ which are linearly independent at each point of M.

For a closed subgroup H of G we set $M_H = \{ x \in M | G_x = H \}$, where G_x is the isotropy group at x. Let $N(H)$ be the normalizer of H in G. Then M_H is an $N(H)$-manifold and also a free $N(H)/H$-manifold.

For a topological space X we define $|\chi|(X)$ to be the sum $\sum \chi(Y)$, where $\chi(Y)$ is the Euler characteristic of Y and Y runs over the connected components of X.

In this paper we will obtain the following results:

Theorem 1.1. Let M be a compact G-manifold. Let $s: \partial M \rightarrow S(\tau(\partial M))$ be a G-cross section of $S(\tau(\partial M))$. Then s is extendible to a G-cross section of $S(\tau(M))$ if and only if

$$|\chi|(M_{G_x} N(G_x)) = 0, \quad \text{or} \quad \dim N(G_x) - \dim G_x > 0$$

for all $x \in M$.
From this theorem we immediately obtain the main result of this paper:

Corollary 1.2. A closed G-manifold M admits a non-singular G-vector field if and only if

$$|\chi|(M_{G_x}N(G_x)) = 0, \quad \text{or} \quad \dim N(G_x) - \dim G_x > 0$$

for all $x \in M$.

We also obtain the following corollary:

Corollary 1.3. Let M be a compact G-manifold, F the stationary point set of $M,$ and k a positive integer. We suppose that

$$\dim N(G_x) - \dim G_x \geq k$$

for all $x \in M - F$. Then M admits a G-k-field if and only if F admits a k-field.

Note. The existence of a non-singular continuous G-vector field on a compact G-manifold implies the existence of a non-singular smooth G-vector field. This fact is assured by the differentiable approximation theorem [3; (6.7)] and the usual process of averaging cross sections.

2. Preliminaries

(2-1) For a closed subgroup H of G let (H) be the conjugacy class of H in G. If H is an isotropy group occurring on a G-manifold M, (H) is called an isotropy type on M.

Set

$$M_H = \{x \in M | G_x = H\}$$

$$M_{(H)} = \{x \in M | (G_x) = (H)\}.$$

Then M_H and $M_{(H)}$ are submanifolds of M, but, in general, not compact. If (H) is a maximal isotropy type on a compact G-manifold M, M_H and $M_{(H)}$ are compact.

(2-2) Let $\pi: E \to X$, $\pi': E' \to X'$ be G-fibre bundles, and $f: E \to E'$ a G-bundle map covering $f: X \to X'$. Let $s': X' \to E'$ be a G-cross section of E'. s' induces a G-cross section

$$s: X \to f^*E' = \{(x, e) \in X \times E' | f(x) = \pi'(e)\}$$

of the induced G-fibre bundle f^*E' which sends $x \in X$ to $(x, s'f(x)) \in X \times E'$. E' is canonically isomorphic to f^*E'. So s induces a G-cross section of E. We denote this G-cross section by f^*s', and call induced G-cross section from s' by f.

(2-3) Recall known results:
Proposition 2.1 (Segal [2; Proposition 1.3]). Let X, Y be G-spaces, and X compact. If $f_0, f_1: X \to Y$ are G-homotopic G-maps, and $E \to Y$ is a G-vector bundle, then there is a G-bundle isomorphism

$$\varphi: f_*^*E \cong f_1^*E.$$

From this proposition we easily obtain the following. I denotes the interval $[0,1]$ with trivial G-action.

Proposition 2.2. If X is a compact G-space, then any G-vector bundle E over $X \times I$ is isomorphic to $(E | X \times \{0\}) \times I$ as G-vector bundles.

Proposition 2.1 may be stated in a more precise form as the following: If f_0, f_1 are G-homotopic relative to a closed G-invariant subspace A of X, and if we consider f_0^*E, f_1^*E subspaces of $X \times E$, then the G-bundle isomorphism φ satisfies $\varphi(x, e) = (x, e)$ for all $x \in A$ and $e \in E$.

From this fact we obtain

Proposition 2.3. Let $E_i \to X_i$, $i=1,2$, be G-vector bundles with X_1 compact. Let $f: X_1 \times I \to X_2$ be a G-homotopy which is constant on a closed G-invariant subspace A of X_1. Let $f_0: E_1 \to E_2$ be a G-bundle map over $f_0 = f | X_1 \times \{0\}$. Then there is a G-bundle map $f: E_1 \times I \to E_2$ over f which is a homotopy of f_0 and is constant on $E_1 \times A$.

Corollary 2.4. Let $E \to X$ be a G-vector bundle with X compact, A a closed G-invariant subspace of X, and $i: A \to X$ the inclusion map. Let $f: X \to A$ be a G-map such that f is G-homotopic to the identity of X relative to A. Then there is a G-bundle map $\tilde{f}: E \to E \mid A$ over f which is the identity on $E \mid A$.

(2-4) The following result has been obtained by U. Koschorke in his paper [1; §1].

Proposition 2.5. Let M be a compact manifold, and $s: \partial M \to S(\tau(\partial M))$ a cross section of $S(\tau(\partial M))$. Then s is extendible to a cross section of $S(\tau(M))$ if and only if $|X\mid(M) = 0$.

3. Proof of Theorem 1.1

The proof will proceed by an induction for the number of isotropy types on M.

(3-1) In the first place, let M be of one isotropy type, and let (H) be the isotropy type on M.

"if" part: M_H is a compact $N(H)$-manifold with boundary $M_H \cap \partial M$. Consider the sphere bundle
The G-cross section s induces a cross section

$$s_1: \partial(M_H/N(H)) \to S(\tau(M_H))/N(H) \mid \partial(M_H/N(H)).$$

This is assured by the G-equivariancy of s and the fact

$$\partial(M_H/N(H)) = \partial M_H/N(H) = M_H \cap \partial M/N(H).$$

We may extend s_1 to a cross section of $S(\tau(M_H))/N(H)$ as follows. If

$$\dim N(H) - \dim H > 0,$$

then the dimension as a cell complex of $M_H/N(H) = M_H/(N(H)/H)$ is less than or equal to the dimension of fibre of $S(\tau(M_H))/N(H)$. Therefore the obstruction to extending s_1 over $M_H/N(H)$ vanishes. If

$$\dim N(H) - \dim H = 0,$$

then

$$|\chi(M_H/N(H))| = 0$$

by the assumption, and then

$$S(\tau(M_H))/N(H) \cong S(\tau(M_H/N(H)))$$

for $N(H)/H$ is a finite group and $M_H/N(H) = M_H/(N(H)/H)$. The image of s_1 is in $S(\tau(\partial M_H))/N(H)$. Then s_1 can be extended over $M_H/N(H)$ by Proposition 2.5.

Let

$$s_2: M_H/N(H) \to S(\tau(M_H))/N(H)$$

be an extension of s_1. Let

$$\pi: S(\tau(M_H)) \to S(\tau(M))/N(H)$$

be the canonical projection, and let

$$\pi^*s_2: M_H \to S(\tau(M_H))$$

be the induced $N(H)$-cross section. π^*s_2 may be considered an $N(H)$-cross section of $S(\tau(M))/M_H$, since $S(\tau(M_H))$ is a subbundle of $S(\tau(M))/M_H$. Moreover π^*s_2 is an extension of $s \mid \partial M_H$. Since M is of one isotropy type, the G-action

$$G \times (S(\tau(M))/M_H) \to S(\tau(M))$$

induces a G-bundle isomorphism
Then π^*s_2 induces a G-cross section

$$s_2: M \to S(\tau(M))$$

which is an extension of s.

"only if" part: Let

$$t: M \to S(\tau(M))$$

be an extension of s. By the G-equivariancy of t, t is restricted to an $N(H)$-cross section

$$t_1: M_H \to S(\tau(M_H)) .$$

t_1 induces a cross section

$$t_2: M_H/N(H) \to S(\tau(M_H))/N(H) .$$

If

$$\dim N(H) - \dim H = 0 ,$$

then

$$S(\tau(M_H))/N(H) \simeq S(\tau(M_H)/N(H)) ,$$

and

$$t_2(\partial(M_H/N(H))) \subset S(\tau(\partial(M_H/N(H)))) .$$

Therefore

$$\dim N(H) - \dim H = 0$$

implies

$$|X|(M_H/N(H)) = 0$$

by Proposition 2.5.

This completes the proof for the case in which M is of one isotropy type.

(3-2) Let the theorem be true for the case in which the number of isotropy types is $k - 1$. Let M be a compact G-manifold with k isotropy types.

"if" part: Let (H) be a maximal isotropy type on M. Then $M_{(H)}$ is a compact G-submanifold of M with one isotropy type. From the preceding argument we obtain a G-cross section

$$s_1: M_{(H)} \to S(\tau(M))|_{M_{(H)}}$$

such that the image of s_1 is in $S(\tau(M_{(H)}))$ and $s_1|_{\partial M_{(H)}} = s|_{\partial M_{(H)}}$.

Let $T(M_{(H)})$ be a closed G-invariant tubular neighborhood of $M_{(H)}$ in M.
By Corollary 2.4 we obtain a G-bundle map
$$
\pi : S(\tau(M))| T(M_{(H)}) \to S(\tau(M))| M_{(H)}
$$
such that π covers the canonical projection of $T(M_{(H)})$ to $M_{(H)}$ and π is the identity on $S(\tau(M))| M_{(H)}$. π induces a G-cross section
$$
\pi* s_1 : T(M_{(H)}) \to S(\tau(M))| T(M_{(H)})
$$
from s_1 such that $\pi* s_1| M_{(H)} = s_1$.

To obtain a G-cross section
$$
L_i = \partial M \cup T(M_{(H)}) \to S(\tau(M))| L_i
$$
extending s, we may apply Lemma 5.1 (stated in the last section) as follows. Apply $E \to X, A, B, D, S\ A$ and $S\ B$ in Lemma 5.1 to $\tau(M) \to M, T(M_{(H)}), \partial M, \partial M_{(H)}, \pi* s_1$ and s, respectively. So, in this case,
$$
C = A \cap B = T(M_{(H)}) \cap \partial M = T(M_{(H)})| \partial M_{(H)},
$$
and this is compact. Moreover this is equivariantly deformable to $\partial M_{(H)}$, and
$$
\pi* s_1| \partial M_{(H)} = s| \partial M_{(H)}.
$$
Let K be a closed G-invariant collar of $\partial M_{(H)}$ in $M_{(H)}$. By Proposition 2.2, $T(M_{(H)})| K$ has the desired property as U in Lemma 5.1. Therefore we can apply Lemma 5.1 to this case. So we obtain a G-cross section
$$
s_2 : L_i \to S(\tau(M))| L_i
$$
extending s.

Let $T'(M_{(H)})$ be the part of $T(M_{(H)})$ corresponding to the open disc bundle. Set
$$
L = M - T'(M_{(H)}).
$$
Then L is a compact G-manifold with corner. Smoothing the corner of L, let L' be the resulting smooth G-manifold. Note that L and L' are the same topological space. Let
$$
\varphi : \partial L' \times [0, 1] \to L'
$$
be a G-invariant collar of $\partial L'$ in L' such that
$$
\varphi(\partial L' \times \{0\}) = \partial L'.
$$
Identify $\partial L' \times [0, 1]$ with the image of φ. By Proposition 2.2 there is a G-bundle isomorphism
$$
S(\tau(M))| \partial L' \times [0, 1] \cong (S(\tau(M))| \partial L') \times [0, 1].
$$
$S(\tau(M)) | \partial L'$ admits a G-cross section s_3 which is a restriction of s_2. From s_3 the above isomorphism induces a G-cross section

$$s_4 : \partial L' \times [0, 1] \to S(\tau(M)) | \partial L' \times [0, 1].$$

Set

$$L_2 = L' - \partial L' \times [0, 1].$$

L_2 is a compact G-manifold with $k - 1$ isotropy types. $S(\tau(M)) | L_2$ admits a G-cross section s_4 on $\partial L_2 = \partial L' \times \{1\}$ which is the restriction of s_3. $S(\tau(M)) | L_2$ and $S(\tau(L_2))$ are identical, since the smoothing process of the corner of L does not change the differentiable structure outside the corner. By careful consideration we see that the image of s_4 is in $S(\tau(\partial L_2))$. So, by the hypothesis of the induction, s_4 is extendible to a G-cross section

$$s_5 : L_2 \to S(\tau(L_2)) = S(\tau(M)) | L_2.$$

Then s_2, s_4 and s_5 give a G-cross section of $S(\tau(M))$ extending s.

"only if" part: It suffices to show that, for each isotropy type (H) on M, if

$$\dim N(H) - \dim H = 0$$

then

$$|\chi|(M_H|N(H)) = 0.$$

Let (H) be a maximal isotropy type on M. As in the "only if" part for the case of one isotropy type, we see that

$$\dim N(H) - \dim H = 0$$

implies

$$|\chi|(M_H|N(H)) = 0.$$

Let (H') be another isotropy type on M. Consider $L'_{H'}$ where L' is the compact G-manifold in the previous "if" part. Since L' is of $k - 1$ isotropy types,

$$\dim N(H') - \dim H' = 0$$

implies

$$|\chi|(L'_{H'}|N(H')) = 0$$

by the hypothesis of the induction. Furthermore $L'_{H'}$ is equivariantly homotopy equivalent to $M_{H'}$. Then

$$\dim N(H') - \dim H' = 0$$

implies

$$|\chi|(M_{H'}|N(H')) = 0.$$
Thus Theorem 1.1 is completely proved.

4. Proof of Corollary 1.3

If M admits a G-k-field, then the k-field is tangent to F by equivariancy. So the "only if" part is trivial.

Now we assume that F admits a k-field. Then there are k cross sections s_1, s_2, \ldots, s_k of $\tau(F)$ which are linearly independent at each point of F. Since $\tau(F)$ is a subvector bundle of $\tau(M)|F$, we may regard s_1, \ldots, s_k as G-cross sections of $\tau(M)|F$. As in the proof of Theorem 1.1 we may extend s_1 to a nowhere vanishing G-cross section s_1' of $\tau(M)$. Choosing a G-invariant Riemannian metric on $\tau(M)$, let E be the G-invariant subvector bundle of $\tau(M)$ which is orthogonal to the image of s_1'. The assumption

$$\dim N(G_x) - \dim G_x \geq k$$

enables us to extend s_2 to a nowhere vanishing G-cross section s_2' of E by the same method in the proof of Theorem 1.1. By repeating this process we may extend s_3, \ldots, s_k to a G-cross sections s_3', \ldots, s_k' of $\tau(M)$ such that s_1', \ldots, s_k' are linearly independent at each point of M. So we obtain a G-k-field on M.

5. Concluding lemma

We will conclude this paper by proving the following lemma which was used in the proof of Theorem 1.1. G acts trivially on intervals considered.

Lemma 5.1. Let $E \to X$ be a G-vector bundle. Let A, B be G-invariant subspaces with $C = A \cap B$ compact. We assume that there is a G-invariant subspace D of C such that C is equivariantly deformable to D, i.e., there is a G-homotopy $F: C \times [0, 1] \to C$ such that $F(x, 0) = x$ and $F(x, 1) \in D$ for all $x \in C$. We also assume that there is a G-invariant neighborhood U of C in A such that there is a G-homeomorphism $\varphi: C \times [0, 3] \approx U$ with $\varphi(x, 0) = x$ for all $x \in C$. Let

$$s_A: A \to S(E)|A$$

and

$$s_B: B \to S(E)|B$$

be G-cross sections which agree on D. Then there is a G-cross section

$$s: A \cup B \to S(E)|A \cup B$$
which agrees with s_A on $A - U$ and s_B on B.

Proof. By Proposition 2.3 there is a G-bundle map

$$F: (S(E) \mid C) \times [0, 1] \to S(E) \mid C$$

which covers F and is the identity on $(S(E) \mid C) \times \{0\}$, and also there is a G-bundle isomorphism

$$\varphi: (S(E) \mid C) \times [0, 3] \cong S(E) \mid U$$

which covers φ and is the identity on $(S(E) \mid C) \times \{0\}$.

We define a G-bundle map

$$K: (S(E) \mid C) \times [0, 2] \to S(E) \mid C$$

by

$$K(v, t) = \begin{cases} F(v, t) & \text{if } 0 \leq t \leq 1 \\ F(v, 2-t) & \text{if } 1 \leq t \leq 2 \end{cases}$$

for $v \in S(E) \mid C$ and $t \in [0, 2]$. Then we may define a G-cross section

$$s_1: C \times [0, 2] \to (S(E) \mid C) \times [0, 2]$$

of the G-bundle $(S(E) \mid C) \times [0, 2]$ by

$$s_1(x, t) = \begin{cases} K^*s_B(x, t) & \text{if } 0 \leq t \leq 1 \\ K^*s_A(x, t) & \text{if } 1 \leq t \leq 2 \end{cases}.$$

This is well-defined since K^*s_A and K^*s_B agree on $C \times \{1\}$. s_1 satisfies the following equations for all $x \in C$

$$s_1(x, 0) = (s_B(x), 0)$$

and

$$s_1(x, 2) = (s_A(x), 2).$$

We define a map

$$\lambda: [2, 3] \to [0, 3]$$

by $\lambda(t) = 3t - 6$ for $t \in [2, 3]$. We denote by s_2 the G-cross section of $(S(E) \mid C) \times [2, 3]$ which is induced from the G-cross section $s_A \mid U$ by the composition

$$(S(E) \mid C) \times [2, 3] \xrightarrow{(id, \lambda)} (S(E) \mid C) \times [0, 3] \xrightarrow{\varphi} S(E) \mid U.$$

s_2 satisfies the following equations for all $x \in C$

$$s_2(x, 2) = (s_A(x), 2)$$

and
\(s_\beta(x, 3) = \phi^{-1} s_\alpha \phi(x, 3) \).

Since \(s_1 \) and \(s_2 \) agree on \(C \times \{2\} \), we obtain a \(G \)-cross section
\[
s_\gamma: C \times [0, 3] \to (S(E) \mid C) \times [0, 3]
\]
from \(s_1 \) and \(s_2 \). Then the induced \(G \)-cross section
\[
(\phi^{-1})^* s_\gamma: U \to S(E) \mid U
\]
satisfies the following equations
\[
(\phi^{-1})^* s_\gamma(x) = s_B(x) \quad \text{for all } x \in C
\]
\[
(\phi^{-1})^* s_\gamma(x) = s_A(x) \quad \text{for all } x \in \phi^{-1}(C \times \{3\}) .
\]

So we obtain a \(G \)-cross section
\[
s: A \cup B \to S(E) \mid A \cup B
\]
defined by
\[
s(x) = \begin{cases}
 s_A(x) & \text{if } x \in A - U \\
 (\phi^{-1})^* s_\gamma(x) & \text{if } x \in U \\
 s_B(x) & \text{if } x \in B .
\end{cases}
\]

References