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Abstract
The main aim of this paper is to compute the character table ofG2(32n+1) Ì h� i,

where� is the graph automorphism ofG2(32n+1) such that the fixed-point subgroup
G2(32n+1)� is the Ree group of typeG2. As a consequence we explicitly construct a
perfect isometry between the principalp-blocks ofG2(32n+1)� andG2(32n+1)Ì h� i for
prime numbers dividingq2 � q + 1.

1. Introduction

In representation theory, we are interested in irreduciblecharacters of the sim-
ple groups and of their cyclic extensions. For example, the character tables of spo-
radic groups and of their extensions by an automorphism appear in theAtlas of Finite
Groups [5]. The classification of finite simple groups illustrates the importance of the
finite groups of Lie type. Deligne-Lusztig Theory gives manymethods to compute
their character tables [4]. Moreover, we explicitly know theautomorphisms of these
groups; they are mainly of three types: diagram automorphisms, field automorphisms
and diagonal automorphisms [3,§12]. G. Malle studied the cyclic extensions (by a di-
agram automorphism) of some finite groups of Lie type; he interpreted the extension
as a fixed-point subgroup under a Frobenius map of a non-connected algebraic group
and used a theory of Deligne-Lusztig for non-connected reductive groups developed by
F. Digne and J. Michel [7]. More precisely Malle computed in [13]the almost char-
acters (a family of class functions introduced by Lusztig) of extensions by a diagram
automorphism of finite simple groups of typeAl , Dl with l � 5, andE6 (for the twisted
and untwisted cases).

Let G be a finite simple group of typeB2, F4 (over a finite field of order an odd
2-power) or G2 (resp. an odd 3-power). In these cases, the exceptional symmetry of the
Dynkin diagram allows to define an automorphism� of G of order 2 (see [3,§12]).
The fixed-point subgroupG� of G under� is the so-called Suzuki group, Ree group
of type G2 and Ree group of typeF4 respectively. These three families of twisted
groups are still finite simple groups.

2000 Mathematics Subject Classification. 20C15, 20C33.
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We are interested in the character table of the cyclic extension G Ì h� i of the
untwisted simple group by the automorphism defining the twisted group. Letn be a
non-negative integer; in [2] the character table of B2(22n+1) Ì h� i is computed. The
main aim of the present work is to compute the character tableof G̃ = G2(32n+1)Ì h� i.

This paper is organized as follows: in Section 2 we recall some notations. In
Section 3 we give generalities about the conjugacy classes and the character table of
an extension of degree 2 of a finite group. We compute the conjugacy classes of̃G in
Section 4 and its character table in Section 5. The main result of this article is:

Theorem 1.1. Let n be a non-negative integer. We set q= 32n+1 and let � be
the automorphism of order2 of G2(q) such that its fixed-point subgroupR(q) is the
Ree group of typeG2 with parameter q. Then the groupG2(q)Ì h� i has (q + 8) outer
classes(given inTable 2)and (2q+16) outer characters which are extensions of(q+8)
irreducible � -stable characters ofG2(q). These� -stable characters are described in
Section 5and in the equations(8), (9) and (12). The values of the outer characters
on the outer classes are given inTable 11 (with notations inTable 10).

In Section 6 we explicitly construct a perfect isometry between the principalp-blocks
of G̃ and R(q) for a prime divisor ofq2 � q + 1 (that is a prime number that divides
the order of G2(q) and that is prime to the index of R(q) in G2(q)). More precisely
we will prove:

Theorem 1.2. Let n be a non-negative integer; we set� = 3n and q = 3�2. Let
p be a prime divisor of q2 � q + 1 and let (K, O, p) be a p-modular system which is
large enough for bothR(q) and G̃. Then:
– If p is a divisor of(q � 3� + 1), we write q� 3� + 1 = pd�, where� is prime to
p. We define onZ=�Z an equivalence relation by�i � �qi � �q2i (i 2 Z=�Z) and
we denote by<0 its non-zero classes. The principal p-blocks are:

B0(R(q)) = f1, �3, �5, �7, �9, �10, ��k�; k 2 <0g,
B0(G̃) = f1, �̃1, "�̃5, "�̃11, "�̃12(1), "�̃12(�1), "�̃a(�k); k 2 <0g.

There exists a perfect isometry between B0(R(q)) and B0(G̃) defined by:

I =

8>>>>>>>>>>><
>>>>>>>>>>>:

1 1�3 �"�̃5�5 �̃1�7 7! �"�̃11�9 �"�̃12(�1)

�10 �"�̃12(1)

���k �"�̃a(�k)

.
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– If p is a divisor of (q + 3� + 1), we write q+ 3� + 1 = pd�, where� is prime to
p. As above, we denote by<0 the non-trivial classes modulo the equivalence relation
on Z=�Z defined by�i � �qi � �q2i (i 2 Z=�Z). The principal p-blocks are:

B0(R(q)) = f1, �3, �6, �8, �9, �10, �+
k�; k 2 <0g,

B0(G̃) = f1, "�̃1, "�̃5, "�̃11, �̃12(1), �̃12(�1), "�̃ababa(�k); k 2 <0g.
There exists a perfect isometry between B0(R(q)) and B0(G̃) defined by:

I =

8>>>>>>>>>>><
>>>>>>>>>>>:

1 1�3 �"�̃5�6 �"�̃1�8 7! "�̃11�9 �̃12(�1)

�10 �̃12(1)

�+�k �"�̃ababa(�k)

.

2. Notations

Let G be a connected reductive algebraic group of type G2 over F3, an alge-
braic closure of the finite fieldF3. For generalities on algebraic groups, we refer to
[4] or [10]. We denote by ( , ) the canonical scalar product ofR2. We set �1 =
(�1=2,

p
3=2), �2 = (1, 0) and�3 = (�1=2,�p3=2). Let

6 = f��i , �i � � j j 1� i , j � 3, i 6= j g,
be the root system of type G2 (detailed in Fig. 1). We definea = �2, b = �1 � �2

and we choosefa, bg as a fundamental system of roots. We denote by6+ the set of
corresponding positive roots. Precisely, we have6+ = fa, b, a+b, 2a+b, 3a+b, 3a+2bg.

Let r be a root, we denote bywr the reflection in the hyperplane orthogonal tor .
More precisely, for allx 2 R2 we have

wr (x) = x � 2
(r , x)

(r , r )
r .

The Weyl groupW of 6 is the group generated by all thewr (r 2 6).
For every r 2 6, let Xr = fxr (t) j t 2 F3g be the one-parameter subgroup ofG

corresponding tor . The groupG is generated by thexr (t) (r 2 6, t 2 F3) and we
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Fig. 1. Root system of type G2

have the commutator relations (see [3]):

(1)

xa(t)xb(u) = xb(u)xa(t)xa+b(�tu)x3a+b(t3u)x2a+b(�t2u)x3a+2b(t3u2),

xa(t)xa+b(u) = xa+b(u)xa(t)x2a+b(tu),

xb(t)x3a+b(u) = x3a+b(u)xb(t)x3a+2b(tu),

xa+b(t)x3a+b(u) = x3a+b(u)xa+b(t),

xa+b(t)x2a+b(u) = x2a+b(u)xa+b(t),

xa+b(t)x3a+2b(u) = x3a+2b(u)xa+b(t),

x2a+b(t)x3a+b(u) = x3a+b(u)x2a+b(t),

x2a+b(t)x3a+2b(u) = x3a+2b(u)x2a+b(t).

Let P = Z6 and let� be a homomorphism fromP into the multiplicative group

F
�
3 . We setzi = �(�i ), wherei = 1, 2, 3. We havez1z2z3 = 1. Furthermore, the element

h(�) of the Cartan subgroup associated with� will be denoted byh(z1, z2, z3). Let� 2 Hom
�
P, F

�
3

�
, r 2 6 and t 2 F3, we have

(2) h(�)xr (t)h(�)�1 = xr (�(r )t).
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We set

U =
Y

r26+

Xr ,

and we denote byB = NG(U) a Borel subgroup ofG. We haveB = TU, whereH =fh(z1, z2, z3) j zi 2 F3, z1z2z3 = 1g is a maximal torus ofG.
For every r 2 6, there exists a unique homomorphism'r from SL2

�
F3
�

to G
such that

8t 2 F3, 'r

��
1 t
0 1

��
= xr (t), 'r

��
1 0
t 1

��
= x�r (t).

We set

hr (t) = 'r

��
t 0
0 t�1

��
and nr (t) = 'r

��
0 t�t�1 0

��
= xr (t)x�r (�t�1)xr (t).

We havehr (t) = h(�r ,t ), where�r ,t (a) = t2(a,r )=(r ,r ). We put nr = nr (1). For r , s 2 6
and t 2 F3, we have

(3) nr xs(t)n
�1
r = xwtr (s)(�r ,st) and nr nsn

�1
r = hwr (s)(�r ,s)nwr (s),

where the constants�r ,s 2 f�1g are given in Table 1.
Let N be the subgroup ofG generated byH and nr (r 2 6). We denote by�W : N ! W the homomorphism such that ker�W = H and�W(nr ) = wr .
We define a permutation of the root system ofG as follows: for everyr 2 6,

the imager̄ of r is the root in the direction obtained by reflectingr in the line 1
(see Fig. 1). More precisely, we have

�a $ �b,

�(a + b) $ �(3a + b),

�(2a + b) $ �(3a + 2b).

Table 1. The constants�r ,s of G2

�1 �2 �3 �1 � �2 �2 � �3 �3 � �1�1 �1 �1 1 �1 1 1�2 1 �1 �1 1 �1 1�3 �1 1 �1 1 1 �1�1 � �2 �1 1 1 �1 1 �1�2 � �3 1 �1 1 �1 �1 1�3 � �1 1 1 �1 1 �1 �1
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As in [3, §12.4], we associate to this symmetry an automorphism� of G defined
on the generators by

x�a(t) 7! x�b(t3),

x�b(t) 7! x�a(t),

x�(a+b)(t) 7! x�(3a+b)(t
3),

x�(3a+b)(t) 7! x�(a+b)(t),

x�(2a+b)(t) 7! x�(3a+2b)(t
3),

x�(3a+2b)(t) 7! x�(2a+b)(t).

We have in particular�(h(z1, z2, z3)) = h
�
z2z�1

3 , z1z�1
2 , z3z�1

1

�
, �(na) = nb and�(nb) = na.

For every non-negative integerm, the standard Frobenius mapF3m of G is defined
on the generators byxr (t) 7! xr (t3m

) (r 2 6 and t 2 F3).
Let n be a non-negative integer andF = F3n Æ �. The mapF is an endomorphism

of G such thatF2 = F32n+1. That implies thatF is a generalized Frobenius map. We
denote byGF (resp.GF2

) the finite fixed-point subgroup ofG under F (resp. F2).
We setq = 32n+1, R(q) = GF and G2(q) = GF2

. We have R(q) � G2(q). We de-
note by� the restriction ofF to G2(q). It is an automorphism of G2(q) of order 2.
The subgroupsN, B, H and U are F-stable and for allr 2 6, the subgroupXr is
F2-stable; we setN = NF2

, B = BF2
, H = HF2

, U = UF2
and Xr = XF2

r .

3. Generalities on extensions of degree 2

Let G be a finite group. For generalities on representation theory, we refer to
[12]. We denote by C(G) the complex space of class functions ofG and Irr(G) the
set of irreducible characters ofG. The set of characters (resp. generalized characters) is
denoted byN Irr(G) (resp.Z Irr(G)). We denote by Cl(G) the set of conjugacy classes
of G and CG(g) the centralizer of the elementg 2 G. We denote byh , iG the usual
scalar product on C(G). Let H be a subgroup ofG. If ' 2 C(G) we denote by ResG

H '
the restriction of' to H . If � 2 C(H ), we denote by IndGH � the induced class function
of � from H to G.

Let � be an automorphism of order 2 ofG. We setG̃ = G Ì h� i and denote by
(g, x) any element of this group, whereg 2 G and x 2 h� i. We identify G with a
subgroup of index 2 of̃G by g 7! (g, 1).

We are now interested in the character table ofG̃. We suppose that the conjugacy
classes and the irreducible characters ofG are known. What can we deduce on the
conjugacy classes and character table ofG̃? We will see that the Clifford theory allows
to give partial answers. First, we give general results on the conjugacy classes of̃G
and then general results on the irreducible characters.
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3.1. Conjugacy classes of̃G. Since the groupG is a normal subgroup of̃G, a
conjugacy class of̃G is either contained inG, or it does not contain any element ofG.
We say in the first case that the class is an inner class ofG̃ and in the second case,
that it is an outer class. An element (g, � ) (where g 2 G) is called outer element of
G̃. Outer classes only contain outer elements. We notice thattwo outer elements are
conjugate inG̃ if and only if there are conjugate inG. Moreover, for allg, g0 2 G,
we have

(4) (g, � )(g0, 1)(g, � )�1 = (g� (g0)g�1, 1).

Let c̃ be an inner class of̃G, then c̃ is a union of classes ofG. The automorphism�
permutes the classes ofG and relation (4) shows that̃c is either a single class or the
union of two classes ofG. More precisely, if (g, 1) 2 c̃, we denote byc the class of
g in G. If � (g) 2 c, we havec̃ = (c, 1) and jCG̃(g, 1)j = 2jCG(g)j. If � (g) =2 c, we
have c̃ = (c[ � (c), 1) and jCG̃(g, 1)j = jCG(g)j.

This study shows that the inner classes are entirely determined by the classes of
G. That is why the main difficulty is to characterize the outer classes. Clifford theory
allows to evaluate the number of outer classes (see [9, p.64]). We have:

Proposition 3.1. The number of� -stable classes of G is the same as the number
of outer classes ofG̃.

There is no systematic parameterization for the outer classes of G̃. However we
will give in the following a method based on Jordan decomposition of the elements of
a finite group.

3.1.1. Preliminary result. Let p be a prime number. We say that an element
g 2 G is a p-element (resp.p-regular) if its order is a power ofp (resp. prime top).
Let g 2 G. We recall that there exists ap-regular elementg1 and a p-elementg2 such
that g1 and g2 commute andg = g1g2. Moreover, g1 and g2 are unique. Theng1g2

is called thep-decomposition of Jordan ofg. The elementg1 (resp.g2) is the p0-part
(resp. p-part) of g. We define the order of a class by the order of any element in the
class. A class is called ap-regular classif its order is prime top. It is said ap-class
if its order is a power ofp. We have:

Lemma 3.1. Let G be a finite group and p a prime number. Let x1, x2, : : :, xr be
a system of representatives of p-regular classes of G and yi ,1, yi ,2, : : : , yi ,r i a system
of representatives of p-classes ofCG(xi ) (i 2 f1, : : : , r g).
1. Then the set

fxi yi , j j 1� i � r , 1� j � r i g
is a system of representatives of conjugacy classes of G.
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2. Moreover, we have:

CG(xi yi , j ) = CG(xi ) \ CG(yi , j ), i = 1, : : : , r , j = 1, : : : , r i .

3.1.2. Parameterization of outer classes of̃G. Let us go back to our main
problem. We give a method to parameterize the conjugacy classes ofG̃:

METHOD 3.1. The outer classes of̃G can be describe as follows:
• First, we determine representative of the� -stable classes ofG with odd order.
• Then, we determine the centralizers inG̃ of these elements.
• Finally, we determine the outer classes of the 2-elements ofthese centralizers.

Proof. The outer classes of̃G have even order. We apply Lemma 3.1 withp =
2. The 2-regular elements are the elements ofG̃ which have odd order; in this case
they belong toG. If g is a 2-regular part of an outer element, we notice thatg and� (g) are conjugate inG. Thus g belongs to a� -stable class ofG with odd order.
Furthermore, ifh is such that (g, h) is a Jordanp-decomposition, thenh 2 CG̃(g, 1).
Conversely, every element with odd order in a� -stable class ofG forms a Jordan’s
2-decomposition with any 2-element in his centralizer inG̃.

REMARK 3.1. Let g be a� -stable element ofG with odd order. Then CG(g) is� -stable and we have

CG̃(g, 1) = CG(g) Ì h� i.
To finish, we give a result when the centralizer of a� -stable element with odd

order is abelian:

Lemma 3.2. Let g be a� -stable element of G with odd order such thatCG(g)
is abelian. We denote by(x1, � ), : : : , (xr , � ) a system of representatives of the outer
classes of2-elements ofCGÌh� i(g, 1). ThenCGÌh� i(gxi , � ) is abelian and we have

CGÌh� i(gxi , � ) = CG(g)� .h(xi , � )i.
Proof. Sinceg is invariant under� , we haveCGÌh� i(g) = CG(g) Ì h� i. Thus

xi 2 CG(g). Let k 2 CG(g)� . Then k(xi , � )k�1 = (kxi k�� , � ) = (xi , � ) becauseCG(g)
is abelian. This proves thatCG(g)� .h(xi , � )i is abelian and that

CG(g)� .h(xi , � )i � CGÌh� i(gxi , � ).

Conversely, we have two cases:
CASE 1. If (k, 1)2CGÌh� i(gxi ,� ) thenk2CG(g) and (k, 1)(xi ,� )= (xi ,� )(k, 1), i.e.

kxi = xi� (k).



ON A CYCLIC EXTENSION OF G2(32n+1) 981

Therefore,xi 2 CG(g) and � (k) 2 CG(g). SinceCG(g) is abelian, it follows thatk =� (k) (i.e. k 2 CG(g)� ).
CASE 2. If (k, � ) 2 CGÌh� i(gxi , � ) then we have (k, � )(g, 1) = (g, 1)(k, � )

(i.e. k� (g) = gk) andk2CG(g) (because� (g) = g). Furthermore, we have (k, � )(xi , � ) =
(xi , � )(k, � ), i.e. k� (xi ) = xi� (k). Sincek, � (k), xi and � (xi ) commute, and we have

� (kx�1
i ) = kx�1

i .

Hence kx�1
i 2 CG(g)� (i.e. k 2 CG(g)� xi ). Thus there existsh 2 CG(g)� such that

k = hxi . Therefore, (k, � ) = (h, 1)(xi , � ). We have proved that

CGÌh� i(gxi , � ) = CG(g)� h(xi , � )i.
SinceCG(g)� and h(xi , � )i commute, we deduce that

CGÌh� i(gxi , � ) = CG(g)� � h(xi , � )i=CG(g)� \ h(xi , � )i.
3.2. Character table. Let � 2 C(G). We define�� 2 C(G) by �� (g) = �(� (g))

(g 2 G). A class function� 2 C(G) is called� -stable if �� = �. Let " be the linear
character ofG̃ such that ker" = G. By Clifford theory we have (see [9, p.64]):

Proposition 3.2. Let � 2 Irr(G).

– If � 6= �� , then IndG̃
G(�) 2 Irr(G̃). Moreover, we have

8g 2 G, IndG̃
G(�)(g, � ) = 0 and IndG̃

G(�)(g, 1) =�(g) + �� (g).

– If � = �� , then IndG̃
G(�) is the sum of exactly two distinct irreducible characters

of G̃ whose the restriction to G is� . Moreover, if �̃ is a constituent ofIndG̃
G(�), then

we haveIndG̃
G(�) = �̃ + �̃".

This proposition shows that the inner characters ofG̃ are all determined by the
values of the non� -stable characters ofG. These characters are invariant under the
multiplication by ". Every � -stable character ofG has exactly two extensions. We
obtain in this way all the irreducible characters ofG̃. Thus, to compute the character
table of G̃ it suffices to know the values of the extensions of the� -stable characters
of G on the outer classes of̃G.

CONVENTION 3.1. Let 2 Irr(G̃). Then (1, � ) 2 Z. Let � be a� -stable ir-
reducible character ofG such that its extensions tõG is non-zero on (1,� ). Then we
denote by ˜� the extension of� such that ˜� (1, � ) > 0.

We now complete Proposition 3.1. We evaluate the number of� -stable characters of
G̃ (and thus the number of outer irreducible characters ofG̃); see [9, p.65]:
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Proposition 3.3 (bis). The number of� -stable irreducible characters of G is the
number of� -stable classes.

3.2.1. The� -reduction. We are interested in the following problem: suppose a
generalized character of̃G has non-trivial values on the outer classes, is it possibleto
work only on the outer classes? To answer this question, we introduce the notion of� -reduction.

Let  and 0 be two class functions oñG. We set

(5) h ,  0i� =
1jGj
X
g2G

 (g, � ) 0(g, � ).

Let � be a� -stable irreducible character ofG. We denote by�� an extension of� to
G̃. The irreducible characters of̃G are

f� 2 Irr(G̃) j � = �"g [ f�� , ��" j � 2 Irr(G), �� = �g.
We decompose in the basis of irreducible characters:

 =
X
�=�" a�� +

X
�=�� (a ,��� + a ,�"��").

We definethe � -reduction of , denoted by�( ), by

�( ) =
X
�=��

a ,��a ,�"�0

(a ,� � a ,�")�� +
X
�=��

a ,��a ,�"<0

(a ,�" � a ,�)��".

Lemma 3.3. Let  2 C(G̃).
– Then, for every g2 G, we have�( )(g, � ) =  (g, � ). Moreover, we have

h ,  0i� =
X
�=�� (a ,� � a ,�")(a 0,� � a 0,�").

– If  2 Z Irr(G̃) (resp.  2 N Irr(G̃)), then �( ) 2 Z Irr(G̃) (resp. �( ) 2 N Irr(G̃)).

Proof. We have

 =
X
�=�" a�� +

X
�=�� a ,�"(�� + ��") +

X
�=�� (a ,� � a ,�")�� ,

 " =
X
�=�" a�� +

X
�=�� a ,�"(�� + ��") +

X
�=�� (a ,� � a ,�")��".
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Let g 2 G, then

 (g, � ) =
X
�=�� (a ,� � a ,�")��(g, � ).

Since (��")(g, � ) = ���(g, � ), it follows that (g, � ) = �( )(g, � ). We have

 �  " =
X
�=�� (a ,� � a ,�")(�� � ��").

Since

h�� � ��", ��0 � ��0"iG̃ = 2Æ�,�0 ,
we deduce that

h �  ",  0 �  0"iG̃ = 2
X
�=�� (a ,� � a ,�")(a 0,� � a 0,�").

Moreover, we have

h �  ",  0 �  0"iG̃ = 2h ,  0i� .

Finally, we deduce that

h ,  0i� =
X
�=�� (a ,� � a ,�")(a 0,� � a 0,�").

Proposition 3.3. Let � be a character ofG̃.
– If h� , �i� = 1, then �(�) is the extension of� 2 Irr(G) such that



ResG̃G � , ��G � 1 mod 2.

– If h� , �i� = 2, then �(�) is the sum of exactly two distinct irreducible characters.

Moreover� 2 Irr(G) is a constituent of�(�) if and only if


ResG̃G � , ��

G
� 1 mod 2.

Proof. Let� be a character of̃G. For every� 2 Irr(G), we have



ResG̃G � , ��

G
= 2a� ,�" + h� , ��i� .

Thus, if h� ,�i� = 1, then there exists� 2 Irr(G) such thata� ,��a� ,�" =�1 and for all�0 6= �, we havea� ,�0 �a� ,�0" = 0. Thus


ResG̃G � , ��G = 2a� ,�" � 1 and



ResG̃G � , �0�G =

2a� ,�". We argue in a similar way ifh� , �i� = 2. Indeed, in this case, there exists�1

and�2 such thata� ,�1 �a� ,�1" = �1 anda� ,�2 �a� ,�2" = �1 and for all�0 6= �1, �2 we
havea� ,�0 � a� ,�0" = 0.
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3.2.2. Two lemmas. We now give two lemmas that will be useful in the con-
struction of the character table ofG̃. The first one in a consequence of Mackey’s The-
orem (see [12]) and the proof of the second one is immediate.

Lemma 3.4. Let K be a subgroup of G invariant under� . We define the sub-

group K̃ = K Ì h� i of G̃. Let �̃ 2 C(K̃ ) and � = ResG̃G �̃. Then we have

ResG̃G IndG̃
K̃ �̃ = IndG

K �.

Lemma 3.5 (Construction of linear characters).Let � be a� -stable linear char-
acter of G, then

�̃ : G̃! C; (g, x) 7! �(g)

is a linear character ofG̃.

4. Outer classes of G2(q) Ì h� i
We return to the situation in Section 2. LetG be a connected reductive group

of type G2 over F3 with Weyl group W and n 2 N. We setq = 32n+1 and � = 3n.
We denote byF the endomorphism ofG such that the fixed-point subgroup is the
Ree group R(q). Then G2(q) = GF2

is the finite group of Lie type type G2 and the
restriction� of F to G2(q) is an automorphism of order 2. We setG̃ = G2(q) Ì h� i.
We use the notation of Section 2, completed by Enomoto’s [8].The conjugacy classes
of G2(q) (resp. R(q)) are given in [8] (resp. [15]). We recall the classes of G2(q) in
Table 13.

In the general situation whereG is a connected reductive group andF is a map
on G such thatGF and GF2

are finite subgroups, we recall that there exists a corre-
spondence between the conjugacy classes ofGF and the outer classes ofGF2 Ì hFi
(the restriction ofF to GF2

is denoted here by the same symbol); this is the so-called
Shintani correspondence[6]. Since the group R(q) has (q + 8) classes, it then follows
that G̃ has (q + 8) outer classes. In this section, we propose to parameterize these
classes.

4.1. The classes of R(q) and their distribution in G 2(q). In [8], the conju-
gacy classes are parameterized with methods of algebraic groups. Thus, we will give
a parameterization of this type for the classes of R(q), in order to be able to give their
distribution in G2(q).

4.1.1. Semisimple classes of R(q). First, we give representatives of conjugacy
classes of maximal tori of R(q). Since the maximal torusH of G is F-stable, it fol-
lows that F induces an automorphism onW (denoted byF). We say thatw, w0 in W
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are F-conjugate ifw0 = xwF(x�1) for somex 2 W. This defines an equivalence rela-
tion on W; the equivalence classes are calledF-conjugacy classes ofW.There are four
F-conjugacy classes inW, with representatives is 1,wa, wawbwa andwawbwawbwa.
We denote byWF this set.

In [10, §4.3.7], it is shown that there is a 1-1 correspondence between the F-classes
of W and theGF -classes of maximal tori ofG. Let w 2 WF and nw 2 N such that�W(nw) = w. We denote byTw a maximal torus ofG associated tow. Then, we have

(6) T Fw �= H[w] =
�
t 2 H

�� F(t) = n�1w tnw	.
We set CW,F (w) = fx 2 W j x�1wF(x) = wg.

Proposition 4.1. We have:

T F
1
�= �

h
�
z3n+1+1, z, z�(3n+1+2)

� �� zq�1 = 1
	
,

T Fwawbwa
�= �

h
�
z, �z�(3n+1+1)=2, �z(3n+1�1)=2� �� z(q+1)=2 = 1, � = �1

	
,

T Fwa
�= �

h
�
z, z1�3n+1

, z3n+1�2� �� zq�3n+1+1 = 1
	
,

T Fwawbwawbwa
�= �

h
�
z1+3n+1

, z, z�(3n+1+2)� �� zq+3n+1+1 = 1
	
.

Moreover, we have

CW,F (1) = f1, wawbwawbwawbg,
CW,F (wa) = f1, wawb, wawbwawb, wawbwawbwawb, wbwawbwa, wbwag,

CW,F (wawbwa) = CW,F (wa),

CW,F (wawbwawbwa) = CW,F (wa).

Proof. We have:

w n�1w h(z1, z2, z3)nwwa h(z�1
3 , z�1

2 , z�1
1 )wawbwa h(z1, z3, z2)wawbwawbwa h(z�1

2 , z�1
1 , z�1

3 )

Then, by using (6), we computeH[1] , H[wa] , H[wawbwa] and H[wawbwawbwa] .
To computeCW,F (w) (wherew 2 WF ) we use thatW = hwa,wbi and thatF(wa) =wb and F(wb) = wa.

A semisimple elements 2 G is called regular if CG(s) is a maximal torus inG.
Given a regular semisimple elements 2 GF , we say thats is of typew if s is con-
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jugate to an element ofT Fw . Note thatw is unique up toF-conjugation. A class of
R(q) is of typew if it has a representative of typew

Proposition 4.2. The classes of semisimple elements ofR(q) are given as fol-
lows:
• (1=2)(q � 3) regular semisimple conjugacy classes of type1.
• (1=6)(q � 3) regular semisimple conjugacy classes of typewawbwa.
• (1=6)(q � 3n+1) regular semisimple conjugacy classes of typewa.
• (1=6)(q + 3n+1) regular semisimple conjugacy classes of typewawbwawbwa.
• The class with representative J= h(1,�1,�1).
• The class of identity.

Proof. Letw 2 WF . Let g 2 R(q) be a regular semisimple element of typew.
Since g is semisimple, there exists a maximal torusT of G containing g, such that
F(T) = T. Sinceg is regular, it follows that CG(g) = T. ThusT is the unique maximal
torus of G containing g. Moreover T and Tw are conjugate by an element of R(q).
Then, g is conjugate in R(q) to a unique element ofT Fw . Moreover, two elements
of T Fw are conjugate in R(q) if and only if they are conjugate in NG(Tw)F . Indeed,
let h, h0 2 T Fw and g 2 R(q) such thath0 = ghg�1. Then CG(h0) = gCG(h)g�1, that
is Tw = gTwg�1. It follows that g 2 NG(Tw). Since g 2 R(q), then g 2 NG(Tw)F .
Assume now that there existsg, g0 2 NG(Tw)F and h 2 T Fw such thatghg�1 = g0hg0�1.
Then g0�1g 2 CG(h) = Tw. Sinceg, g0 2 R(q), we then haveg = g0T Fw . It follows that
two elements ofT Fw are conjugate in R(q) if and only if they are in the same orbit
for the action of NG(Tw)F=T Fw on T Fw . We have NG(Tw)F=T Fw �= CW,F (w) (see [10,
§4.3.7]) andT Fw �= H[w] (in G). The group CW,F (w) acts onH[w] ; in [10, §4.3.7], it
is proved that two elements ofT Fw are in the same NG(Tw)F=T Fw -orbit if and only if
their conjugate inH[w] are in the same CW,F (w)-orbit. Proposition 4.1 gives the result.
There are two other semisimple classes in R(q), which have 1 andJ = h(1,�1,�1)
as representatives. By using [15], we see thatjCR(q)(J)j = q(q � 1)(q + 1).

4.1.2. Unipotent classes of R(q). For everyt , u, v 2 Fq, we set

�(t) = xa(t� )xb(t)xa+b(t�+1)x2a+b(t2�+1),

�(u) = xa+b(u� )x3a+b(u),


 (v) = x2a+b(v� )x3a+2b(v).

We have (see [3, Prop. 13.6.4]):
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Proposition 4.3. Every element of U� = UF is uniquely written in the form�(t)�(u)
 (v) (t , u, v in Fq) Moreover, we have the relations:

(7)

�(u)�(v) = �(u + v)�(�uv3� )
 (�u2v3� + uv3�+1),

�(u)�(v) = �(v)�(u)
 (�uv),

�(u)�(v) = �(u + v),


 (u)�(v) = �(v)
 (u),


 (u)�(v) = �(v)
 (u),


 (u)
 (v) = 
 (u + v).

We then have:

Lemma 4.1. We have:

�(t)�1 = �(�t)�(�t3�+1)
 (t3�+2),

�(t)�1 = �(�t),


 (t)�1 = 
 (�t),

�(v)�1�(u)�(v) = �(u)�(vu3� � uv3� )
 (�v2u3� � u2v3� � uv3�+1� vu3�+1).

Moreover, for every h(z) = h(z3�+1, z, z�(3�+2)) 2 HF = H� , we have

8u, v, w, z 2 Fq, h(z)�(u)�(v)
 (w)h(z)�1 = �(uz3� )�(vz3�+3)
 (wz6�+3).

Proof. This is consequence of the relations (7). We only prove

�(v)�1�(u)�(v)

= �(v)�1�(u + v)�(�uv3� )
 (�u2v3� + uv3�+1)

= �(�v)�(�v3�+1)
 (v3�+2)�(u + v)�(�uv3� )
 (�u2v3� + uv3�+1)

= �(�v)�(u + v)�(�uv3� � v3�+1)
 (�u2v3� + uv3�+1 + v3�+2 + v3�+1(u + v))

= �(u)�(v(u + v)3� )
 (�v2(u + v)3� � v(u + v)3�+1)

� �(�uv3� � v3�+1)
 (�u2v3� + uv3�+1 + v3�+2 + v3�+1(u + v))

= �(u)�(�uv3� � v3�+1 + v(u + v)3� )
� 
 (�u2v3� + uv3�+1 + v3�+2 + v3�+1(u + v)� v2(u + v)3� � v(u + v)3�+1)

= �(u)�(�uv3� + vu3� )
 (�u2v3� � v2u3� � uv3�+1� vu3�+1).

We set E = ft3 � t j t 2 Fqg. Then E is an additive subgroup ofFq. We denote
by �E : Fq ! Fq=E the homomorphism such that ker�E = E. Let � 2 Fq such that�E(� ) = 1.
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Proposition 4.4. The elements
 (1), �(1), �(�1), �(1), �(1)�(� ) and �(1)�(�� )
are representatives of the unipotent classes ofR(q).

Proof. Using the Bruhat decomposition (see [3, p.117]) we prove that two ele-
ments inU� are conjugate in R(q) if and only if they are conjugate inB� . Moreover
if u 2 U� , then CR(q)(u) is contained inB� . Consequently it is sufficient to deter-
mine the conjugacy classes of elements ofU� in B� . Then, using the Lemma 4.1 and
the fact thatU� is normal in B� , we first prove that the elements 1,
 (1), �(1) and�(�1) are not conjugate. Moreover, ifu 6= 0 we prove that�(u)�(v)
 (w) (v, w 2 Fq)
is conjugate to�(1)�(�E(v)) and the result follows.

REMARK 4.1. The three classes ofR(q) parameterized in [15] byY, Y T and
Y T�1 are the same as the classes in this paper with representatives �(1), �(1)�(� )
and �(1)�(�� ). But we do nota priori make the identification between these two
parameterizations.

4.1.3. Conjugacy classes of R(q). Now, we give the conjugacy classes of the
Ree group.

Theorem 4.1. The Ree groupR(q) has (q + 8) conjugacy classes. The represen-
tatives of the non trivial classes are
• The representatives of classes of typew (with w 2 WF ) with centralizer of or-
der

��T Fw ��.
• The element J= h(1,�1,�1) with centralizer of order q(q � 1)(q + 1).
• The element
 (1) with centralizerUF = U� of order q3.
• The elements�(1) and �(�1) with centralizer(of order 2q2):

hJih�(t), 
 (u) j t , u 2 Fqi.
• The elements�(1), �(1)�(� ) and�(1)�(�� ) with respective centralizer(of order3q):

h�(1)i0, h�(1)�(� )i0 and h�(1)�(�� )i0,

where0 = h
 (t), t 2 Fqi.
• The elements�(1)J and �(�1)J with centralizer(of order 2q):

hJih�(t), t 2 Fqi.
Proof. In [15] it is proved that R(q) has (q+8) classes. It is then sufficient to find

(q + 8) elements that are not conjugate. Proposition 4.2 gives (q� 2) elements. Using
Proposition 4.4, we obtain 6 new elements. These elements have odd order. We find
easily their centralizer. Only the centralizers of�(1) and�(�1) have even order, and
J is a representative of the only 2-semisimple class of this group. By Proposition 3.1,
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we obtain two new classes of R(q), with representatives�(1)J and�(�1)J. The trivial
class gives one more class, thus there is one class missing, with representativeJ.

4.1.4. Distribution of the classes of R(q) in G2(q). We use the notation of Ta-
ble 13. We seth0 = h(�1, 1,�1). We have:

Proposition 4.5. The elements�(1) and �(�1) (resp. �(1)J and�(�1)J) belong
in the class A42 of G2(q) (resp. in B5); see Table 13 for the notations. The other
representatives of classes ofR(q) are not conjugate inG2(q).

Proof. By using Table 13, we show that the elements of typew (w 2 WF ) and the
elements 1,J and
 (1) lie in different classes of G2(q). Moreover, we haveh0�(1)h�1

0 =�(�1) andh0�(1)Jh�1
0 = �(�1)J. By using the Chevalley relations (1), we show that

for everyu, v, w, t 2 Fq, the elementxa(1)xb(1)xa+b(u)x3a+b(v)x2a+b(w)x3a+2b(t) is con-
jugate in G2(q) to

xa(1)xb(1)x3a+b(�E(u + v)).

Therefore, we have

�(1) = xa(1)xb(1)xa+b(1)x2a+b(1),

�(1)�(� ) = xa(1)xb(1)xa+b(1 + � � )x3a+b(� )x2a+b(1),

�(1)�(�� ) = xa(1)xb(1)xa+b(1� � � )x3a+b(�� )x2a+b(1).

Moreover, we have

� � = (� + �3 + � � � + � �=3)3 � (� + �3 + � � � + � �=3) + � .

Then, we have�E(� � ) = �E(� ). It follows that�E(� +� � +1) =�E(1)�1 and�E(�� �� � + 1) = �E(1) + 1. The result is proved.

4.2. Maximal � -stable torus of G2(q) of order (q + 1)2. In this section, we
construct a maximal� -stable torus of order (q + 1)2, which is contained in CG2(q)(J).
We use the same notation as previously. We have

CG2(q)(J) = hH , X�(a+b), X�(3a+b)i.
Let r 2 fa + b, 3a + bg. We setSr = hX�r , Xr i and L = Sa+bS3a+b. For everyx, y, z,
t in Fq such thatxz� yt = 1, we set

'r (x, y, z, t) = 'r

��
x y
t z

��
.

We set�(r ) = 1 if r is short and�(r ) = 3 if r is long.
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Proposition 4.6. We have:
1. The groups Sa+b and S3a+b commute. Then the set L is a subgroup ofCG2(q)(J).
2. Let r 2 fa + b, 3a + bg and x, y, z, t 2 Fq. We have the relations:

'r (x, y, z, t) = xr ((x � 1)t�1)x�r (t)xr ((z� 1)t�1) if t 6= 0.

'r (x, y, z, t) = x�r ((z� 1)y�1)xr (y)x�r ((x � 1)y�1) if y 6= 0.

'r (x, 0, x�1, 0) = hr (x).

3. Moreover, if � 2 P and r, s 2 fa + b, 3a + bg, then we have the relations:

h(�)'r (x, y, z, t)h(�)�1 = 'r (x, �(r )y, z, �(r )�1t),

nr'r (x, y, z, t)n�1
r = 'r (z, �t , x, �y),

ns'r (x, y, z, t)n�1
s = 'r (x, y, z, t) if s 6= r .

4. Finally, if r 2 fa + b, 3a + bg, we have

'r (x, y, z, t)� = 'r̄ (x
�(r̄ )� , y�(r̄ )� , z�(r̄ )� , t�(r̄ )� ).

Proof. This is the a consequence of the relations (1), (2) and(3).

Sinceq is odd, every generator� of F�q is not a square inFq. Let
p� 2 Fq2 be

a square root of�. Thus we have the identification:

K� =

��
x �y
y x

��$ � = x + y
p�,

wherex and y are inFq such thatx2��y2 = 1. It follows thatK� is a cyclic subgroup
of SL2(Fq) with order q + 1.

Let 
 be a generator ofF�q . We fix
p
 a square root of
 in Fq2. Since (q� 1)

is prime to 3, it follows that
 3� is a generator ofF�q and (
p
 )3� is a square root of
 3� . Let x, y 2 Fq such thatx2 � 
 y2 = 1. We setta+b(x, y) = 'a+b(x, 
 y, x, y) and

t3a+b(x, y) = '3a+b(x, 
 3� y, x, y). By using the Proposition 4.6, we show:

Lemma 4.2. We have

tr (x, y)�1 = tr (x, �y),

h(�)tr (x, y)h(�)�1 = tr (x, �(r )y),

tr (x, y)� = tr̄ (x
�(r̄ )� , y�(r̄ )� ).

We set

Ta+b = 'a+b(K
 ),

T3a+b = '3a+b(K
 3� ).
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The subgroupT = Ta+bT3a+b of CG2(q)(J) is abelian andTa+b \ T3a+b = f1, Jg. Thus it
follows that jT j = (1=2)(q + 1)2.

We setT� = fta+b(x, y)t3a+b(x3� , y3� ) j x, y 2 Fqx2 � y2
 = 1g. Let x0 2 T� with
a non-trivial odd order (such an element exists whenq > 3. In the case whereq = 3,
G2(q) has no tori of order (q + 1)2). We setH 0 = CG2(q)(x0).

Proposition 4.7. We have:
• The set T� is an abelian subgroup ofR(q) of order (1=2)(q + 1).
• The element x0 lies in R(q) and is a semisimple regular element of typewawbwa.
• The subgroup H0 is a maximal� -stable torus ofG2(q) of order (q + 1)2, which is
contained inCG2(q)(J).

Proof. Obviously,T� is an abelian subgroup of order (1=2)(q + 1) and we have
T� � R(q). Thus x0 2 R(q). Comparing the order ofx0 and the order of elements in
Theorem 4.1, we see thatx0 is a semisimple regular element of typewawbwa. Thus,
using Table 13, we see that semisimple regular elements of non-trivial odd order di-
viding (q + 1) have a maximal torus of G2(q) of order (q + 1)2 as centralizer. Since� (x0) = x0, it follows that H 0 is � -stable. Moreover, sincex0 2 CG2(q)(J), it follows
that J 2 H 0. But H 0 is abelian, then every elements ofH 0 commute with J. Thus,
H 0 � CG2(q)(J).

We now will describe explicitlyH 0. The elements
�1 and�1 are not square inFq.
It follows that �
�1 is a square. Then there existsa0 2 Fq such thata2

0
 = �1, and
we havea6�

0 
 3� = �1. We set

A0 =

�
1 �
a0

a0 �1

�
and B0 =

�
1 �
 3�a3�

0

a3�
0 �1

�
.

We have det(A0) = det(B0) = 1. We define the element� by

� = h(�1, 1,�1)'a+b(A0)'3a+b(B0).

Let � = x� + y�p
 be a generator ofK
 and ta+b(x� , y� ) its corresponding element in
Ta+b. Then ta+b(x� , y� ) (resp.� (ta+b(x� , y� ))) is a generator ofTa+b (resp.T3a+b). We

set ga+b = ta+b(x� , y� )4, g3a+b = t3a+b
�
x3�� , y3�� �4 and � 0 = t3a+b

�
x3�� , y3�� �(q+1)=4

.

Proposition 4.8. We have

H 0 = h�ga+bi � h� 0g3a+bi.
Moreover we have� (� ) = h(�1,�1, 1)'a+b(A0)'3a+b(B0) = J� . The � -stable elements
of H0 of odd order form a cyclic subgroup of order(1=4)(q + 1) generated by ga+bg3a+b

and denoted by H0� .
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Proof. Since the elements ofT commute withx0, it follows that T is a subgroup
of H 0 with index 2. The element� is not in T , and commutes with the elements of
T . Moreover the order of� is 4 and� 2 6= J. We then have proved the result.

4.3. The� -stable classes of G2(q). We recall that the classes of G2(q) are given
in Table 13. We setX = 
 (1) andT = �(1). Using Proposition 4.1, we see that�(1),�(1)�(� ) and �(1)�(�� ) are not conjugate in G2(q). Their distribution in the classes
of G2(q) depends on the value ofn modulo 3. In the following, we denote byY1,
Y2 and Y3 a permutation of these elements such thatY1 (resp.Y2 and Y3) belongs to
A51 (resp. A52 and A53). We denote byH 00 a maximal� -stable torus ofG of order
(q2 � q + 1).

Proposition 4.9. The groupG2(q) has (q + 8) � -stable classes. More precisely:
• The classes with the� -stable representatives1, X, T , Y1, Y2, Y3, J and J T.
• The classes A41 and B4 (without � -stable representatives).
• The (1=2)(q� 3) classes with� -stable representative x(of type1) in H and such
that CG2(q)(x) = H .
• The (1=6)(q � 3) classes with� -stable representative x(of typewawbwa) in H 0
and such thatCG(x) = H 0.
• The (1=3)q classes with� -stable representative x(of typewa or wawbwawbwa)
in H 00 and such thatCG(x) = H 00.

Proof. Using Proposition 3.1, Shintani correspondence andProposition 4.1, we
show that G2(q) has (q + 8) � -stable classes. Proposition 4.5 gives (q + 6) � -stable
representatives of G2(q). We obtain the two classes without� -stable representatives
by using Table 13).

REMARK 4.2. The fact that G2(q) has� -stable classes wihout� -stable elements
does not contradict Lang’s theorem. Indeed, letC be the class inG which contains
A41 (this is similar to B4). Then C is F-stable. Lang’s theorem only says thatC has
F-stable elements. It follows thatCF2

= A41 [ A42 has F-stable elements. This is
indeed the case:�(1) 2 CF2 \ R(q). But Lang’s theorem does not say thatA41 and
A42 have F-stable elements. In Proposition 4.5, we prove that Cl(�(�1)) � A42 and
Cl(�(1))� A42. ThusCF = Cl(�(�1))[Cl(�(1))� A42. Then, it follows thatA41 has
no F-stable elements.

We denote byL1 and Laba a system of representatives of odd order of classes of type
1 andwawbwa given in Proposition 4.9. We denote byLa and Lababa systems of rep-
resentatives of classes of typewa andwawbwawbwa. We have:

jL1j =
q � 3

4
, jLabaj =

q � 3

24
, jLaj =

q � 3�
6

and jLababaj =
q + 3�

6
.
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We set� = xa+b(1)x3a+b(�1). Consequently, we have:

Corollary 4.1. The elements of L1, La, Laba, Lababa and 1, X, T , Y1, Y2, Y3

and � form a system of representatives of classes ofG2(q) of odd order.

4.4. Outer classes of G2(q)Ìh� i. We now can give the outer classes ofG̃. We
keep the same notation as the preceding sections.

Theorem 4.2. We set S= CG̃(h0, � ). Let H0 (resp. T 0
0) be the subgroup of H�

(resp. H 0) whose elements have odd order. Let x 2 f� 2, J, J� 2g. We set Hx = hT 0
0, xi.

Moreover, we set

Ca+b,2a+b = Xa+bX3a+bX2a+bX3a+2b,

C0
a+b,2a+b = fxa+b(�u)x3a+b(�u3� )x2a+b(�t)x3a+2b(t3� ) j u, t 2 Fqg,

Sa+b,3a+b = fxa+b(t)x3a+b(�t3� ) j t 2 Fqg,
Sa,b = fx2a+b(t)x3a+b(t3� ) j t 2 Fqg.

ThenTable 2gives representatives for the outer classes ofG̃ and their centralizers.

Proof. We essentially apply the method of Method 3.1. The� -stable representa-
tives with odd order are given in Corollary 4.1. Ifg 2 fX, Y1, Y2, Y3g[La[Lababa, then
CG2(q)(g) has odd order. Then C̃G(g) has only one 2-unipotent class with representative� . Let h 2 L1. Then C̃G(h) = H Ì h� i. This group has two 2-unipotent outer classes
with representatives� and (h0, � ). Let h 2 Laba. Then C̃G(h) = H 0 Ì h� i. Representa-
tives of 2-unipotent outer classes of this group are� , (� , � ), (� 0, � ) and (�� 0, � ) (we
use results of Section 4.2). We have CG(T) = Ca+b,2a+b.hJi. Outer 2-unipotent repre-
sentatives of this group are (1,� ) and (J, � ). Finally, CG̃(�) = Ca+b,2a+b Ì h(h0, � )i.
Outer 2-unipotent representatives of this group are (h0, � ) and (Jh0, � ). We obtain in
this way (q + 6) outer classes of̃G. Moreover, by using Shintani correspondence, we
know thatG̃ has (q + 8) outer classes. Elements� and (h0, � ) are 2-unipotent and not
conjugate inG̃. We then obtain representatives of outer classes ofG̃. To compute the
centralizer of these elements, we use Lemma 3.2.

5. Outer characters of G2(q) Ì h� i
We keep the notation of Section 4. We propose in this section to compute the

character table of̃G. In Section 3, we have seen that it is sufficient to determinethe
values of the outer characters on the outer classes ofG̃. The character table of G2(q)
(resp. R(q)) is given in Table 14 (resp. in Table 15). The subgroupsB, H 0 and R(q)
are� -stable. By inducing the characters ofB̃ = BÌ h� i and R(q)�h� i, we obtain the
majority of irreducible outer characters ofG̃. We use modular methods to complement
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Table 2. Outer classes of̃G

Class Representative Number Centralizer Order of Centralizer
C1 (1, � ) 1 R�h� i 2q3(q2�1)(q2�q+1)
C2 (h0, � ) 1 S 2q(q2�1)
D1 (X, � ) 1 U��h� i 2q3

D21 (T , � ) 1 Ca+b,3a+b.hJi�h� i 4q2

D22 (T�1, � ) 1 C0
a+b,3a+b.hJi�h� i 4q2

D31 (�h0, � ) 1 Sa+b,3a+b�h(h0, � )i 4q
D32 (��1h0, � ) 1 Sa+b,3a+b�h(Jh0, � )i 4q
D41 (Y1, � ) 1 hY1iSa,b�h� i 6q
D42 (Y2, � ) 1 hY2iSa,b�h� i 6q
D43 (Y3, � ) 1 hY3iSa,b�h� i 6q

E1(h) (h, � ) h2 L1
q�3

4
H��h� i 2(q�1)

E2(h) (hh0, � ) h2 L1
q�3

4
H�

0 �h(h0, � )i 2(q�1)

F1(h) (h, � ) h2 Laba
q�3

24
T F!a!b!a

�h� i 2(q+1)

F2(h) (h� , � ) h2 Laba
q�3

24
H� 2�h(� , � )i 2(q+1)

F3(h) (h� 0, � ) h2 Laba
q�3

24
HJ�h(� 0, � )i 2(q+1)

F4(h) (h�� 0, � ) h2 Laba
q�3

24
HJ� 2�h(�� 0, � )i 2(q+1)

G1(h) (h, � ) h2 La
q�3�

6
T F!a
�h� i 2(q�3�+1)

H1(h) (h, � ) h2 Lababa
q+3�

6
T F!a!b!a!b!a

�h� i 2(q+3�+1)
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the missing values of one character, and we can then obtain all the missing irreducible
characters ofG̃ by inducing the irreducible characters ofH 0 Ì h� i.

By Proposition 3.1 there are (q + 8) � -stable characters. We use the notation of
appendix. Using the character table of G2(q), we prove that 1,�1, �2, �5, �6, �7, �10,�11, �12(1) and �12(�1) are � -stable. Moreover (1=2)(q � 3) (resp. (1=6)(q � 3) and
(1=6)q) � -stable characters belong to the families�9 (resp.�12 and�14). The notations
will be specified in relations (8), (9) and (12).

5.1. Some irreducible characters obtained by induction from B̃. The classes
of B are given in [8, p.206].

Proposition 5.1. We setB̃ = BÌh� i; the groupB̃ has(q+7) outer classes, given
in Table 3. Moreover, in Table 4we give the induction formula from̃B to G̃.

Proof. Using [8], we prove thatB has (q +7) � -stable classes. Thus, Lemma 3.1
implies that B̃ has (q + 7) outer classes. By using a similar method as in§4.4, we
obtain representatives of outer classes ofB̃ and their distribution in classes of̃G. Then
we immediately deduce the induction formula.

We set

(8) �k = �9(k, (3� � 1)k).

We denote byE0 the setf1, : : : , (1=2)(q � 3)g.
Proposition 5.2. Extensions of�k (k 2 E0) are obtained from the induction of

the linear characters ofB̃. The values of�̃k are given inTable 11.

Proof. SinceU is � -stable, it follows thatUC B̃. Let �U be the projection from
B̃ to B̃=U . The quotient is isomorphic toH Ì h� i. Let � be a linear character of
H Ì h� i. Then� Æ�U is a linear character of̃B. Irreducible characters ofH Ì h� i are
parameterized by�k,l (k, l 2 Z=(q � 1)Z). The values are given by

�k,l (h(
 i , 
 j , 
�i� j )) = 
 ik+ j l
0 .

We have��k,l = �k,l if and only if 
 3n(2 j +i )k+3n(i� j )l
0 = 
 ik+ j l

0 if and only if

�
3n(k + l ) = k
3n(2k� l ) = l

.

Then, we deduce that� -stable characters ofH are the�k,(3n+1�1)k, wherek 2 Z=(q�1)Z.
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Table 3. Outer classes of̃B

Class reprsentative Number Order centraliser

c1 (1, � ) 1 2q3(q � 1)
c2 (h0, � ) 1 2q(q � 1)
d1 (x2a+b(1)x3a+2b(1), � ) 1 2q3

d21 (xa+b(1)x3a+b(1), � ) 1 4q2

d22 (xa+b(1)x3a+b(1)J, � ) 1 4q2

d31 (xa+b(1)x3a+b(�1)h0, � ) 1 4q
d32 (xa+b(1)x3a+b(�1)Jh0, � ) 1 4q
d41 (xa(1)xb(1)u0, � ) 1 6q
d42 (xa(1)xb(1)x3a+b(� )u1, � ) 1 6q
d43 (xa(1)xb(1)x3a+b(�� )u2, � ) 1 6q

e11(h) (h, � ) h 2 L1
1

4
(q � 3) 2(q � 1)

e12(h) (h�1, � ) h 2 L1
1

4
(q � 3) 2(q � 1)

e21(h) (hh0, � ) h 2 L1
1

4
(q � 3) 2(q � 1)

e22(h) (h�1h0, � )h 2 L1
1

4
(q � 3) 2(q � 1)

Table 4. Induction formula for the outer classes ofB̃ to G̃

IndG̃
B̃
�(C1) = (q3 + 1)�(c1)

IndG̃
B̃ �(C2) = (q + 1)�(c2)

IndG̃
B̃ �(D1) = �(d1)

IndG̃
B̃ �(D21) = �(d21)

IndG̃
B̃ �(D22) = �(d22)

IndG̃
B̃ �(D31) = �(d31)

IndG̃
B̃ �(D32) = �(d32)

IndG̃
B̃ �(D41) = �(d41)

IndG̃
B̃ �(D42) = �(d42)

IndG̃
B̃ �(D43) = �(d43)

IndG̃
B̃ �(E1(h)) = �(e11(h)) + �(e12(h))

IndG̃
B̃ �(E2(h)) = �(e21(h)) + �(e22(h))
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By Lemma 3.5, we construct (q�1) irreducible outer characters̃�k,(3n+1�1)k of H Ìh� i.
We denote by

�k = �̃k,(3n+1�1)k Æ �U ,

the (q � 1) linear characters of̃B. We denote byh
 a generator ofH� . The set of� -stable elements ofH with odd order ishh2
 i. For everyi 2 Z=(q�1)Z and � = �1,
we have

�k(h2i
 h�0, � ) = 
 (2i (3n+1+1)+�(q+1)=2)k+2ik(3n+1�1)
0

= (�1)�k
 3n+14ik
0 .

Moreover, since 3n+1 � 1 is even, we have�k(J) = 
 (3n+1�1)k(q�1)=2
0 = 1. Thus, if k =2

f0, (q � 1)=2g, we deduce from Lemma 3.4 that ResG̃
G2(q) IndG̃

B̃
�k = IndG2(q)

B �k is ir-

reducible. It follows that IndG̃
B̃
�k is irreducible. However

IndG2(q)
B �k = �9(k, (3n+1� 1)k).

Moreover, we have ˜�k = �̃�k. Thus we obtain (1=2)(q � 3) outer irreducible character
of G̃.

Proposition 5.3. We have��IndG̃
B̃
�0
�

= 1 + �̃5. The outer values of̃�5 are given

in Table 11. Moreover, ��IndG̃
B̃ �(q�1)=2� is the sum of one extension of�6 and �7.

Proof. Using Table 4, we compute the induction toG̃ of �0 and �(q�1)=2. The
values are given in Table 5. We have



IndG̃

B̃ �0, IndG̃
B̃ �0

�� = 2.

Since


IndG̃

B̃
�0, 1

�
G̃ = 1 and



ResG̃G2(q) IndG̃

B̃
�0, �5

�
G2(q) = 1 are odd, we deduce from Proposi-

tion 3.3 that��IndG̃
B̃�0�1

�
is irreducible. Since its value on (1,� ) is q3, it follows that it is

�̃5. We have


IndG̃

B̃
�(q�1)=2, IndG̃

B̃
�(q�1)=2�� = 2. Moreover,



ResG̃G2(q) IndG̃

B̃
�(q�1)=2, �6

�
G2(q)

and


ResG̃G2(q) IndG̃

B̃ �(q�1)=2, �7
�
G2(q) are odd. Then, we deduce that IndG̃

B̃ �(q�1)=2 is the

sum of one extension of�6 and �7.

5.2. Some irreducible characters obtained by induction from R̃(q). Note that
R̃(q) = R(q) � h� i is a direct product. We immediately deduce its character table by
using the Table 15. We have:

Proposition 5.4. Induction’s formula fromR̃(q) to G̃ are given inTable 6.
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Table 5. Induction of�0 and �(q�1)=2
C1 C2 D1 D21 D22 D31

IndG̃
B̃
�0 (q3 + 1) (q + 1) 1 1 1 1

IndG̃
B̃
�(q�1)=2 (q3 + 1) �(q + 1) 1 1 1 �1

D32 D41 D42 D43 E1(hi ) E2(hi )

IndG̃
B̃
�0 1 1 1 1 2 2

IndG̃
B̃ �(q�1)=2 �1 1 1 1 2 �2

Table 6. Induction’s formula of̃R(q)

IndG̃
R̃(q) �(C1) = �(1) + q2(q2 � q + 1)�(J)

IndG̃
R̃(q) �(D1) = �(
 (1))

IndG̃
R̃(q) �(D21) = �(�(1)) + q�(�(�1)J)

IndG̃
R̃(q) �(D22) = �(�(�1)) + q�(�(1)J)

IndG̃
R̃(q) �(A51) = �(Y1)

IndG̃
R̃(q) �(A52) = �(Y2)

IndG̃
R̃(q) �(A51) = �(Y3)

IndG̃
R̃(q) �(E1(h)) = �(h) + �(h J), h 2 L1

IndG̃
R̃(q) �(F1(h)) = �(h) + �(h J) + �(h� 2) + �(h J� 2), h 2 Laba

IndG̃
R̃(q) �(G1(h)) = �(h), h 2 La

IndG̃
R̃(q) �(H1(h)) = �(h), h 2 Lababa



ON A CYCLIC EXTENSION OF G2(32n+1) 999

Proof. In Theorem 4.1, we have computed the classes of R(q) and their distribu-
tion in G2(q) (see Proposition 4.5). We obtain by Proposition 4.5 the distribution of
the outer classes of̃R(q). Then, we deduce the induction formula.

We denote byE1 (resp. E2) the non zero equivalence classes ofZ=(q � 3� + 1)Z
(resp.Z=(q+3�+1)Z) given by i � j , i =� j , i =�q j or i =�q2 j . In the following,
we denote by

(9)
8k 2 E1, �a,k = �14((q + 3� + 1)k),

8k 2 E2, �ababa,k = �14((q � 3� + 1)k).

The characters�a,k (k 2 E1) and �ababa,k (k 2 E2) are � -stable characters of G2(q).

We set�3 = � (q+3�+1)2

0 and�4 = � (q�3�+1)2

0 . The notation in the Table 15 is chosen
such that the primitive root of unity with order (q � 3� + 1) (resp. (q + 3� + 1)) is �3

(resp.�4). To simplify notations, the induced character from̃R(q) to G̃ of a character� 2 Irr
�
R̃(q)

�
will be always denoted by� .

Proposition 5.5. Characters�(�9), �(�10), �(��k ) (k 2 E1) and �(�+
k ) (k 2 E2)

are irreducible extensions of�12(1), �12(�1), �a,k and �ababa,k respectively. The val-
ues of these characters on outer elements are given inTable 11. Moreover�(�1 + �2),�(�3 + �4), �(�5 + �6) and �(�7 + �8) have two constituents.

Proof. We have

h�1 + �2, �1 + �2i� = 2,

h�3 + �4, �3 + �4i� = 2,

h�5 + �6, �5 + �6i� = 2,

h�7 + �8, �7 + �8i� = 2,

h�9, �9, i� = 1,

h�10, �10i� = 1,

h��k , ��k i� = 1,

h�+
k , �+

k i� = 1.

Thus, we deduce Proposition 3.3 that the characters�(�1 + �2), �(�3 + �4), �(�5 + �6)
and�(�7 + �8) are sums of two irreducible characters and that�(�9), �(�10), �(��k ) and�(�+

k ) are irreducible. Moreover, we have



ResG̃G2(q) �9, �12(1)

�
G2(q) = � � 1 mod 2,


ResG̃G2(q) �10, �12(�1)
�
G2(q) = � � 1 mod 2,
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ResG̃G2(q) ��k , �a(k)

�
G2(q) = 9�4 + 9�3 + 9�2 + 6� + 2� 1 mod 2,


ResG̃G2(q) �+
k , �ababa(k)

�
G2(q) = 9�4 � 9�3 + 9�2 � 6� + 2� 1 mod 2.

We conclude that�(�9), �(�10), �(��k ) and�(�+
k ) are irreducible extensions of�12(1),�12(�1), �a(k) and �ababa(k) respectively. Precisely, since�(�9)(1, � ) = �(�10)(1, � ) =

q3+1> 0, �(��k )(1,� ) = (q�1)(q+3� +1)> 0 and�(��k )(1,� ) = (q�1)(q�3� +1)> 0,
we deduce that̃�12(1) = �(�9), �̃12(�1) = �(�10), �̃a(k) = �(��k ) and �̃ababa(k) = �(�+

k ).

Now, we decompose�(�1 + �2), �(�3 + �4) and �(�5 + �6)

Constituents of�(�1 + �2):

h�1 + �2, 1iGÌh� i = 1,

ResG̃G2(q)(�1 + �2), �6

�
G2(q) = 1.

We deduce from Proposition 3.3 that�(�1 + �2) is the sum of the trivial character and
an extension of�6. The values of this extension on the outer classes are the same as
the one of�1 + �2�1. In particular the value on (1,� ) is q2�q + 1> 0, this extension
is �̃6. The values are given in Table 11.

Constituents of�(�3 + �4):



ResG̃G2(q)(�3 + �4), �5

�
G2(q) = 18�4 + 3�2 + 2� 1 mod 2,


ResG̃G2(q)(�3 + �4), �7
�
G2(q) = 18�4 + 3�2 + 6� 1 mod 2.

Thus�(�3 + �4) is the sum of an extension of�5 and an extension of�7. However,
we have 
�3 + �4, �̃5

�
GÌh� i = 1.

The values of the extension of�7 on the outer classes are the same as�3 + �4 � �̃5.
Since the value on (1,� ) is q(q2 � q + 1) > 0, we deduce that this extension is�̃7.
The values are given in Table 11.

Constituents of�(�5 + �6) and of �(�7 + �8):



ResG̃G2(q)(�5 + �6), �1

�
G2(q) = � � 1 mod 2,


ResG̃G2(q)(�5 + �6), �10
�
G2(q) = � � 1 mod 2,


ResG̃G2(q)(�7 + �8), �1
�
G2(q) = � � 1 mod 2,
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ResG̃G2(q)(�7 + �8), �10

�
G2(q) = � � 1 mod 2,

h�5 + �6, �7 + �8i� = 0.

Thus, �(�5 +�6) and�(�7 +�8) are sums of an extension of�1 and of �10 and they have
a common constituent, indeed

h�(�5 + �6), �(�7 + �8)iGÌh� i =
1

2



ResG̃G2(q) �(�5 + �6), ResG̃G2(q) �(�7 + �8)

�
G2(q)

+
1

2
h�5 + �6, �7 + �8i�

= 1.

Let  be the common constituent and� be another one. We suppose that

�(�5 + �6) =  + � ,

�(�7 + �8) =  + �".
Thus�(�5 + �6) +�(�7 + �8) has the same values as 2 on the outer classes. We obtain
in this way the values of on the outer classes. We then deduce the values of� on
the outer classes. We give the values of and � in Table 7.

We know the values of two new extensions, but we don’t know if is an exten-
sion of �1 or �10. We will show in the section 5.4 that is an extension of�1 and �
of �10. Before, by inducing irreducible characters of CG̃(�h0, � ), we obtain the values
of the extensions of�2.

5.3. Induction from CG̃(�h0,� ). For everyt2Fq, we set�(t)=xa+b(t)x3a+b(�t3� ).
We have established that

CG̃(�h0, � ) = Sa+b,3a+b � h(h0, � )i,
where Sa+b,3a+b = f�(t) j t 2 Fqg.

The groupSa+b,3a+b is abelian and isomorphic to the additive group (Fq, +) by t 7!�(t). It follows that C̃G(�(1)h0, � ) is abelian of order 4q and it is easy to compute
these irreducible characters, which have the form' = ��0, where� is a linear character
of Fq and �0 a linear character of the cyclic group of 4 elements. The elements�(t)
(t 6= 0) are conjugate in G2(q) to �(1) y h(t) = h(t�1, t (1�3�)=2, t (3�+1)=2). Thus, we

Table 7. Values of and �
(1, � ) (
 (1), � ) (�(1), � ) (�(�1), � ) (Y1, � ) (Y2, � ) (Y3, � ) G1(h) H1(h) (q2 � 1)� �� �� �� 2� �� �� �1 1� 0 0 �2

p�3 ��2
p�3 0 �p�3 ��p�3 0 0
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deduce that the elements�(t)J (t 6= 0) are conjugate to�(1)J. Using Method 3.1, we
prove:

Lemma 5.1. Let g be infh0, Jh0g. The elements(�(
 k)g, � ) and (�(1)Jkg, � )
are conjugate inG̃, where
 is a generator ofF�q .

We deduce the distribution of the classes of CG̃(�h0, � ) in G̃ and the induction
formula (given in Table 8).

Proposition 5.6. Let � 2 Irr(Sa+b,3a+b) be non-trivial. Let �0 be the character ofh(h0, � )i such that�0(h0, � ) =
p�1. Then

�̃2 = ��IndG̃
CG̃(�h0,� ) ��0�

is an extension of�2.

Proof. We have�0(J) = �1 and�0(Jh0, � ) = �p�1. By using Table 8, we in-
duce toG̃ the character��0, which has values zero except on the classes (�h0, � ) and
(��1h0, � ). We set�0 = Ind��0. We have

�0(�h0, � ) = ��0(��1h0, � ) =
p�1

 X
t square

�(�(t))� X
t not square

�(�(t))

!
.

Table 8. Induction formula of C̃G(h0, � ) to G̃

x IndG̃
CG̃(�h0,� ) '(x)

1
q5(q6 � 1)(q2 � 1)

2

�(1) q3
X
t 6= 0

�(�(t))

J
q3(q2 � 1)2

2
�0(J)

�(1)J q
X
t 6= 0

�(�(t))�0(J)

(h0, � )
q(q2 � 1)

2
(�0(h0, � ) + �0(h0J, � )

(�(1)h0, � )
X

t square

�(�(t))�0(h0, � ) +
X

t not square

�(�(t))�0(h0J, � )

(�(1)h0J, � )
X

t square

�(�(t))�0(Jh0, � ) +
X

t not square

�(�(t))�0(h0, � )
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Using the known formulas for Gauss sums, we obtain that

X
t square

�(�(t))� X
t not square

�(�(t)) = �p�3.

Moreover, we have

h�0, �0i� = 1 and


ResG̃G2(q) �0, �2

�
G2(q) =

1

4
(q4 + q3 + q � 3).

To determine the parity of the integer (1=4)(q4 + q3 + q� 3), it is sufficient to see that
the numerator is divisible by 8. However,q � 3 mod 8. Then (q4 + q3 + q � 3) � 4

mod 8, and


ResG̃G2(q) �0, �2

�
G2(q) is odd. By Proposition 3.3, we obtain that�(�0) is an

irreducible extension of�2. Since the value on (1,� ) is zero, we can fix the notation
such that

�̃2 = �(�0).

5.4. Modular methods. We recall the definition ofp-blocks and their orthog-
onality relation. For more details, we refer to [11] or [12].Let G be a finite group
and R� C the ring of algebraic integers ofC. Let p be a prime number. We define
an equivalence relation on Irr(G) by

(10) �1 � �2 () jCj�1(C)�1(1)
� jCj�2(C)�2(1)

mod pR,

for all p-regular classesC of G. The equivalence classes are called thep-blocks of
G. The p-block containing the trivial character is called the principal p-block of G
and is denoted byB0(G).

An elementg in G is called p-singular if its order is divisible byp. Let B be a
p-block of G, x a p-singular element andy a p-regular element. Then, we have

(11)
X
�2B

�(x)�(y) = 0.

To finish, let � be in Irr(G). Since jGj=�(1) is an integer, we define the defect
d(�) of � by the p-adic valuation ofjGj=�(1). Let B be a p-block of G, then we
define the defect ofB by d(B) = maxfd(�) j � 2 Bg. We have a characterization of
the p-blocks with defect 0: ap-block B has defect 0 if and only if its cardinal is 1,
that is there exists� 2 Irr(G) such thatB = f�g. Moreover, an irreducible character�
is in a p-block with defect 0 if and only if it vanishes on thep-singular elements.

5.4.1. Extension of�1 and �10. In 5.2, we have seen that the character is an
extension of�1 or �10 (and � is the extension for the other one).
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Proposition 5.7. The character (resp. � ) is �̃1 (resp. �̃10).

Proof. The degree of�1 (resp.�10) is (1=6)q(q + 1)2(q2 + q + 1) (resp. (1=6)q(q�
1)2(q2 � q + 1)). For everyn � 0, we haveq2 � q + 1> 1. Fix p a prime divisor of
(q2� q + 1). Since (q2� q + 1) and 2q6(q2� 1)(q3� 1)(q + 1) are coprime, it follows
that �10 belongs to ap-block of defect 0 and�1 lies in a p-block of maximal defect.
By using the characterization of thep-blocks with defect zero, we conclude that the
extension of�10 is � and that of�1 is  .

5.4.2. Extension of�11. We must compute the extensions of the (1=6)(q � 3)� -
stable characters of degree (q�1)2(q2�q+1)(q3�1) and of�11. The strategy to obtain
the extension of�11 is to find a prime numberp, such that the extension of�11 is the
only unknown character in hisp-block. Thus, by using the orthogonality relation (11)
we determine the values of the extension. We haveq2�q + 1 = (q�3� + 1)(q + 3� + 1),
with q � 3� + 1 andq + 3� + 1 relative prime. By using relation (10), we show:

Proposition 5.8. Let p be a prime number dividing q2 � q + 1.
• If q�3� +1 = pd� with � prime to p, there exists an extension 0 of �11 such that

B0G̃ =
�
1,  0, �̃1, "�̃5, "�̃12(�1), "�̃12(1), "�̃a,k�	.

• If q +3� +1 = pd� with � prime to p, there exists an extension 0 of �11 such that

B0G̃ =
�
1,  0, "�̃1, "�̃5, �̃12(1), �̃12(�1), "�̃ababa,k�	.

We fix p a prime divisor ofq + 3� + 1, and we denote by the extension of�11

contained in the principalp-block of G̃.

Proposition 5.9. The values of on the outer classes are:

(1, � ) (
 (1), � ) (h0, � ) (�(1)h0, � ) (�(1)h0J, � ) (haba�, � ) (ha, � ) (hababa, � ) q(1� q) q q� 1 �1 �1 �2 1 1

Proof. To determine the values of , we use the orthogonality relation of the
principal p-block of G̃. Let x be an element of a� -stable classE6(i ) (see Table 14)
of G2(q) whose order is not prime top. We have

�1(x) = �1, �5(x) = 1, �11(x) = 1, �12(�1) =�1, �12(1) = 1.

Applying the relation (11) with thep-regular elementxa(1)xb(1). We compute:

X
k

�ababa,�k(x) = �1.
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Since the class ofx in G2(q) is � -stable, it follows that the extension tõG of the
character� of G2(q) and � have the same values onx. Let y be an outer element
that does not belong to the classH1(h) (h 2 Lababa). Thus, y is p-regular. If we
set �y =  (y) and apply the relation (11) in the principalp-block, we obtain a linear
equation with one variable�y which is easy to solve. We compute:

�� = q(1� q), �(
 (1),� ) = q, �(h0,� ) = q � 1, �(�(1)h0,� ) = �(�(1)h0 J,� ) = �1,

�(haba�,� ) = �2, �(ha,� ) = 1,

and

�(�(1),� ) = �(�(�1),� ) = �(Y1,� ) = �(Y2,� ) = �(Y3,� ) = �(h1,� ) = 0.

Now, we must determine the values on the classH1(h).
Supposeq > 3. Thenq � 3� + 1> 1. Let p0 be a prime divisor of this number.

By Proposition 5.8, the principalp0-block of G̃ contains an extension 0 of �11. By
using relation (11) in the principalp0-block, we obtain that the value of 0 on (1,� )
is q(1�q). This proves that =  0. However, the elements in the classesH1(h) (h 2
Lababa) are p0-regular and relation (11) shows that (H1(h)) = 1, for all h 2 Lababa.

In the case whereq = 3, there is only one classH1(h). The scalar product relation
shows that the value of on this class is 1.

5.5. Induced characters ofH0 Ì h� i. The maximal� -stable torusH 0 of order
(q+1)2 is described in§4.2. We will induce the irreducible characters ofH̃ 0 = H 0Ì h� i
to G̃. We recall that

H 0 = h� i � h� 0i � hga+bi � hg3a+bi,
with � and � 0 of order 4 andga+b and g3a+b of order (q + 1)=4. We know how�
is acting onH 0. Precisely, we recall that� (� ) = J� , � (� 0) = J� 2� 0, � (ga+b) = g3a+b.
Moreover, we have� 02 = J.

The groupH 0 is abelian and has (q+1) � -stable classes. We deduce from Proposi-
tion 3.1 thatH̃ 0 has (q +1) outer classes with system of representatives (h, � ), (h� , � ),
(h� 0, � ) and (h�� 0, � ), whereh 2 H 0� . The centralizer of these elements inG̃ has order
2(q + 1). The irreducible characters ofH 0 are described by

�k1,k2,k3,k4(� i1� 0i2gi3
a+bgi4

3a+b) = � ((q+1)=4)(i1k1+i2k2)+4(i3k3+i4k4)
0 ,

wherek1, k2 2 Z=4Z and k3, k4 2 Z=(1=4)(q + 1)Z. The � -stable characters ofH 0 are:

�k1,k2,k3 = �2k1,2k2,k3,k3,

wherek1, k2 belong tof0, 1g. The � -stable element ofH 0 are:

� 2i1 J i2(ga+bg3a+b)i3.
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Proposition 5.10. Let h be in Laba, we have:

Cl(1, � ) \ H̃ 0 = Cl(1, � ),

Cl(h0, � ) \ H̃ 0 = Cl(� , � ) [ Cl(� 0, � ) [ Cl(�� 0, � ),

Cl(h, � ) \ H̃ 0 = Cl(h�1, � ) [ Cl(h�(3n+1+1)=2, � ) [ Cl(h�(3n+1�1)=2, � ),

Cl(h� , � ) \ H̃ 0 = Cl(h�1� , � ) [ Cl(h�(3n+1+1)=2�� 0, � ) [ Cl(h�(3n+1�1)=2� 0, � ),

Cl(h� 0, � ) \ H̃ 0 = Cl(h�1� 0, � ) [ Cl(h�(3n+1+1)=2� , � ) [ Cl(h�(3n+1�1)=2�� 0, � ),

Cl(h�� 0, � ) \ H̃ 0 = Cl(h�1�� 0, � ) [ Cl(h�(3n+1+1)=2� 0, � ) [ Cl(h�(3n+1�1)=2� , � ).

Proof. To determine the distribution of the classes ofH̃ 0 in G̃, we use Lemma 3.1.
The subgroupH 0� which consists of� -stable elements ofH 0 with odd order is conju-
gate inG to:

fh(z2, z�(3n+1+1), z(3n+1�1)) j z(q+1)=2 = 1g.
Let x 2 H 0� be a non trivial element. Thenx is conjugate inG to h

�
z2

0,z�(3n+1+1)
0 ,z(3n+1�1)

0

�
for somez0 2 F3 such thatz(q+1)=2

0 = 1. The elements ofH 0� that are conjugate in G2(q)
to x are exactly the elements ofH 0� that are conjugate inG to one of the 6 elements:

h
�
z2

0, z�(3n+1+1)
0 , z(3n+1�1)

0

�
, h

�
z�(3n+1+1)

0 , z(3n+1�1)
0 , z2

0

�
,

h
�
z(3n+1�1)

0 , z2
0, z�(3n+1+1)

0

�
, h

�
z�2

0 , z(3n+1+1)
0 , z�(3n+1�1)

0

�
,

h
�
z(3n+1+1)

0 , z�(3n+1�1)
0 , z�2

0

�
and h

�
z�(3n+1�1)

0 , z�2
0 , z(3n+1+1)

0

�
.

We remark that

h
�
z�(3n+1+1)

0 , z(3n+1�1)
0 , z2

0

�
= h

�
z2

0, z�(3n+1+1)
0 , z(3n+1�1)

0

��(3n+1+1)=2
,

h
�
z(3n+1�1)

0 , z2
0, z�(3n+1+1)

0

�
= h

�
z2

0, z�(3n+1+1)
0 , z(3n+1�1)

0

�(3n+1�1)=2
,

h
�
z�2

0 , z(3n+1+1)
0 , z�(3n+1�1)

0

�
= h

�
z2

0, z�(3n+1+1)
0 , z(3n+1�1)

0

��1
,

h
�
z(3n+1+1)

0 , z�(3n+1�1)
0 , z�2

0

�
= h

�
z2

0, z�(3n+1+1)
0 , z(3n+1�1)

0

�(3n+1+1)=2
,

h
�
z�(3n+1�1)

0 , z�2
0 , z(3n+1+1)

0

�
= h

�
z2

0, z�(3n+1+1)
0 , z(3n+1�1)

0

��(3n+1�1)=2
.

We deduce that the elements ofH 0� conjugate in G2(q) to (ga+bg3a+b)i are:

(ga+bg3a+b)�i , (ga+bg3a+b)�(3n+1+1)i =2, (ga+bg3a+b)�(3n+1�1)i =2.
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This is due to the fact that if two elementsx0 and y0 are conjugate, thenxi
0 is con-

jugate toyi
0. In [15], it is proven that there exists an elementt0 in R(q) with order 3

such that

t�1
0 (ga+bg3a+b)i t0 = (ga+bg3a+b)�(3n+1+1)i =2 and t�1

0 J t0 = � 2.

It follows that

t�2
0 (ga+bg3a+b)i t2

0 = (ga+bg3a+b)(3n+1�1)i =2 and t�2
0 J t20 = J� 2.

We sets0 = h0� 2 R(q). We then have

s0(ga+bg3a+b)i s�1
0 = (ga+bg3a+b)�i .

To know the distribution of (hx, � ), wherex 2 f1, � , � 0, �� 0g, we must determine
the 2-unipotent classes in CG̃(h) = H̃ 0 of t0(x, � )t�1

0 ands0(x, � )s�1
0 . We haves0�s�1

0 =� 3, s0� 0s�1
0 = � 03. This shows thats0(x, � )s�1

0 is conjugate to (x, � ) in H̃ 0. Since

t0 2 R(q), we havet0(x, � )t�1
0 = (t0xt�1

0 , � ). We denote byP = h� , � 0i a 2-Sylow of

H 0. We havet0� t�1
0 2 P and t0� 0t�1

0 2 P. Indeed,

t0(ga+bg3a+b)�(3n+1+1)i =2� t�1
0 = (ga+bg3a+b)i t0� t�1

0

is a 2-decomposition of Jordan. Since CG2(q)((ga+bg3a+b)i ) = H 0� , it follows that t0� t�1
0 2

H 0. Moreover the order oft0� t�1
0 is a power of 2. SinceH 0 has a unique 2-Sylow

(becauseH 0 is abelian), we deducet0� t�1
0 2 P. Similarly, t0� 0t�1

0 2 P. However �
and � 0 generateP. Thus t0 is acting by conjugation onP. Now, we show that:

t0f� , J� , � 3, J� 3gt�1
0 = f� 0, J� 0, J� 0� 2, � 0� 2g,

t0f� 0, J� 0, J� 0� 2, � 0� 2gt�1
0 = f�� 0, J� 0� 3, � 0� 3, J�� 0g,

t0f�� 0, J� 0� 3, � 0� 3, J�� 0gt�1
0 = f� , J� , � 3, J� 3g.

Indeed, sincet0 acts on P by conjugation, it follows thatt0 acts on the cyclic sub-
groups with order 4 ofP. The groupP has 6 cyclic subgroup with order 4. Each
subgroup has a unique element of order 2. Precisely, we have:

4-cyclic subgroup element of order 2h� i, hJ� i  � 2

h� 0i, hJ� 0i  Jh�� 0i, hJ�� 0i  J� 2
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Since t0� 2t�1
0 = J, t0J t�1

0 = J� 2 and t0J� 2t�1
0 = � 2 and the order is preserved by con-

jugacy, we also obtain the result. We recall that the� -classes ofP are

f1, J, � 2, J� , J� 2g,
f� , J� , � 3, J� 3g,

f� 0, J� 0, J� 0� 2, � 0� 2g,
f�� 0, J� 0� 3, � 0� 3, J�� 0g.

Then, we conclude that (t0� t�1
0 , � ) (resp. (t0� 0t�1

0 , � ) and (t0�� 0t�1
0 , � )) is conjugate in

H̃ 0 to (� 0, � ) (resp. (�� 0, � ) and (� , � )). Finally, we deduce that:

conjugate to

(h�(3n+1+1)=2, � ) (h, � )
(h�(3n+1+1)=2� , � ) (h� 0, � )
(h�(3n+1+1)=2� 0, � ) (h�� 0, � )
(h�(3n+1+1)=2�� 0, � ) (h� , � )

(h(3n+1�1)=2, � ) (h, � )
(h(3n+1�1)=2� , � ) (h�� 0, � )
(h(3n+1�1)=2� 0, � ) (h� , � )

(h(3n+1�1)=2�� 0, � ) (h� 0, � )

This completes the proof.

We immediately deduce the induction formula, given in Table9. By Lemma 3.5,
we construct the outer characters ofH̃ 0. Let �k1,k2,k3 be a � -stable character ofH 0.
To simplify, we again denote IndG̃

H̃ 0��̃k1,k2,k3

�
by �k1,k2,k3 the induction fromH̃ 0 to G̃ of

Table 9. Induction fromH̃ 0 to G̃

x IndG̃
H̃ 0 �(x)

(1, � ) q3(q � 1)(q2 � q + 1)�(1, � )
(h0, � ) q(q � 1)(�(� , � ) + �(� 0, � ) + �(�� 0, � ))
(h, � ) �(h�1, � ) + �(h�(3n+1+1)=2, � ) + �(h�(3n+1�1)=2, � )

(h� , � ) �(h�1� , � ) + �(h�(3n+1+1)=2�� 0, � ) + �(h�(3n+1�1)=2� 0, � )
(h� 0, � ) �(h�1� 0, � ) + �(h�(3n+1+1)=2� , � ) + �(h�(3n+1�1)=2�� 0, � )

(h�� 0, � ) �(h�1�� 0, � ) + �(h�(3n+1+1)=2� 0, � ) + �(h�(3n+1�1)=2� , � )
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�̃k1,k2,k3. We remark that�1,0,0 = �0,1,0 = �1,1,0 and we set

 0 = �0,0,0 and  1 = �1,0,0.

We set:

'0,0,k =  0 + "�0,0,k,

'1,0,k =  1 + "�1,0,k,

'0,1,k =  1 + "�0,1,k,

'1,1,k =  1 + "�1,1,k.

There are (1=24)(q�3) distinct characters in each family. Moreover, the characters'0,0,k have� -norm 7 and'1,0,k, '0,1,k are '1,1,k have� -norm 3.
THE CASE OF'0,0,k: we show that

h'0,0,k, 1G̃i� = 1, h'0,0,k, �̃5i� = �1, h'0,0,k, �̃11i� = 2,

and the other outer scalar products are zero. The class function '0,0,k�1G̃� "�̃5�2�̃11

is a character and:

h�('0,0,k � 1G̃ � "�̃5 � 2�̃11), �('0,0,k � 1G̃ � "�̃5 � 2�̃11)i� = 1.

It follows from Proposition 3.3 that�('0,0,k�1G̃�"�̃5�2�̃11) is an irreducible character.
THE CASE OF '1,0,k, '0,1,k, AND '1,1,k: let �, �0 2 f0, 1g be such that� 6= 0 or�0 6= 0. We have

h'�,�0,k, �̃6i� = 1 and h'�,�0,k, �̃7i� = �1.

The class function'�,�0,k � �̃6 � "�̃7 is a character and

h�('�,�0,k � �̃6 � "�̃7), �('�,�0,k � �̃6 � "�̃7)i� = 1.

Then �('�,�0,k � �̃6 � "�̃7) is an irreducible character by Proposition 3.3.
The irreducible characters obtained are distinct. We obtain (1=6)(q� 3) new outer

irreducible characters of̃G. We set

(12)

�aba,0,0(k) = ResG̃G2(q) �('0,0,k � 1G̃ � "�̃5 � 2�̃11),

�aba,1,0(k) = ResG̃G2(q) �('1,0,k � �̃6 � "�̃7),

�aba,0,1(k) = ResG̃G2(q) �('0,1,k � �̃6 � "�̃7),

�aba,1,1(k) = ResG̃G2(q) �('1,1,k � �̃6 � "�̃7).

These characters are the (1=6)(q� 3) irreducible� -stable characters of G2(q) with
degree (q � 1)(q2 � q + 1)(q3 � 1).
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5.6. Character Table of G̃. Let 
0 (resp.�0 and�0) be a (q� 1)-th (resp. (q +
1)-th and (q2�q+1)-th) primitive complex root of 1. We give in Table 10 the notations
and the values of the outer characters ofG̃ on the outer classes in Table 11.

6. Perfect isometry

First, we recall generalities: letG and H be finite groups and (K,O, p) be a
p-modular system large enough for bothG and H . Let � in Z Irr(G� H ). We define
I� : Z Irr(H ) ! Z Irr(G) by

8� 2 Z Irr(H ), g 2 G, I�(� )(g) =
1jH j
X
h2H

�(g, h�1)� (h).

Its adjoint relative to the usual scalar products onG and H is R�: Z Irr(G)! Z Irr(H )
such that

8� 2 Z Irr(G), h 2 H , R�(�)(h) =
1jGj
X
g2G

�(g�1, h)�(g).

The virtual character� of G� H is called perfect if
• For all g 2 G and h 2 H , we have�(g, h)=jCG(g)j 2 O and�(g, h)=jCG(g)j 2 O.
• If �(g, h) 6= 0, g has order prime top if and only if h has order prime top.

Let e (resp. f ) be a central idempotent ofOG (resp.OH ) and A = OGe (resp.B =
OH f ) a block of G (resp. of H ). The blocksA and B are said to be perfectly iso-
metric if there exists a perfect character� of Z Irr(G � H ) such thatI� induces by
restriction a bijective isometry betweenZ Irr(K B) and Z Irr(K A).

Table 10. Notations


i = 
 4.3n+1i
0 + 
�4.3n+1i

0 ,

�3 = � (q+3�+1)2

0 ,

�4 = � (q�3�+1)2

0 ,

Æi = � i
3 + ��i

3 + �qi
3 + ��qi

3 + �q2i
3 + ��q2i

3 ,

Æ0i = � i
4 + ��i

4 + �qi
4 + ��qi

4 + �q2i
4 + ��q2i

4 ,

�i ,0 = � 8i
0 + ��8i

0 + � 4(3n+1+1)i
0 + ��4(3n+1+1)i

0 + � 4(3n+1�1)i
0 + ��4(3n+1�1)i

0 ,

�i ,1 = � 8i
0 + ��8i

0 � � 4(3n+1+1)i
0 � ��4(3n+1+1)i

0 � � 4(3n+1�1)i
0 � ��4(3n+1�1)i

0 ,

�i ,2 = �� 8i
0 � ��8i

0 + � 4(3n+1+1)i
0 + ��4(3n+1+1)i

0 � � 4(3n+1�1)i
0 � ��4(3n+1�1)i

0 ,

�i ,3 = �� 8i
0 � ��8i

0 � � 4(3n+1+1)i
0 � ��4(3n+1+1)i

0 + � 4(3n+1�1)i
0 + ��4(3n+1�1)i

0 .



O
N

A
C

Y
C

L
IC

E
X

T
E

N
S

IO
N

O
F

G
2 (3

2n+
1)

1011

Table 11. (Continued) Outer characters of G2(q) Ì h� i

(1, � ) (X, � ) (T , � ) (T�1, � ) (Y1, � ) (Y2, � ) (Y3, � ) (h0, � ) (�h0, � ) (��1h0, � )

˜�1 � (q2 � 1) �� �� �� 2� �� �� 0 0 0

˜�2 0 0 0 0 0 0 0 0
p

q �pq

˜�5 q3 0 0 0 0 0 0 q 0 0

˜�6 q2 � q + 1 1� q 1 1 1 1 1 �1 �1 �1

˜�7 q(q2 � q + 1) q 0 0 0 0 0 �q 0 0

˜�10 0 0 �2

p�3 ��2

p�3 0 �p�3 ��p�3 0 0 0

˜�11 q(q � 1) �q 0 0 0 0 0 1� q 1 1

˜�12(1) � (q2 � 1) �� �� + �2

p�3 �� � �2

p�3 �� � + �p�3

2
� � �p�3

2
0 0 0

˜�12(�1) � (q2 � 1) �� �� � �2

p�3 �� + �2

p�3 �� � � �p�3

2

� + �p�3

2
0 0 0

˜�1(k) q3 + 1 1 1 1 1 1 1 (�1)k(q + 1) (�1)k (�1)k

˜�aba,0,0(k) (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 3(q � 1) �3 �3

˜�aba,1,0(k) (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 1� q 1 1

˜�aba,0,1(k) (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 1� q 1 1

˜�aba,1,1(k) (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 1� q 1 1

˜�a(k) (q2 � 1)(q + 3� + 1) �q � 1� 3� �3� � 1 �3� � 1 �1 �1 �1 0 0 0

˜�ababa(k) (q2 � 1)(q � 3� + 1) �q � 1 + 3� 3� � 1 3� � 1 �1 �1 �1 0 0 0
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Table 11. Outer characters of G2(q) Ì h� i

(h1, � ) (h1J, � ) (haba, � ) (haba� , � ) (haba� 0, � ) (haba�� 0, � ) (ha, � ) (hababa, � )
˜�1 0 0 0 0 0 0 �1 1
˜�2 0 0 0 0 0 0 0 0
˜�5 1 1 �1 �1 �1 �1 �1 �1
˜�6 1 �1 3 �1 �1 �1 0 0
˜�7 1 �1 �3 1 1 1 0 0
˜�10 0 0 0 0 0 0 0 0
˜�11 0 0 2 2 2 2 �1 �1

˜�12(1) 0 0 0 0 0 0 �1 1
˜�12(�1) 0 0 0 0 0 0 �1 1

˜�1(k) 
ik (�1)k
ik 0 0 0 0 0 0
˜�aba,0,0(k) 0 0 ��k j ,0 ��k j ,0 ��k j ,0 ��k j ,0 0 0
˜�aba,1,0(k) 0 0 ��k j ,0 ��k j ,3 ��k j ,1 ��k j ,2 0 0
˜�aba,0,1(k) 0 0 ��k j ,0 ��k j ,1 ��k j ,2 ��k j ,3 0 0
˜�aba,1,1(k) 0 0 ��k j ,0 ��k j ,2 ��k j ,3 ��k j ,1 0 0

˜�a(k) 0 0 0 0 0 0 �Æk j 0
˜�ababa(k) 0 0 0 0 0 0 0 �Æ0k j
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For generalities on perfect isometries, we refer to [1]. We recall two results used
to establish a perfect isometry between the principal blocks of R(q) andG̃. The proofs
are in [1]:

Proposition 6.1. Any homomorphism J: Z Irr(H ) ! Z Irr(G) is of the form I�,
where� is a virtual character of G� H .

We recall that CK(G, e) is the K-vector space of class functions� : G ! K such
that for everyg 2 G, �(eg) = �(g), and CK(G, e, p) is the subspace of class functions
which vanish onp-singular elements ofG. We define in the same way CO(G, e) and
CO(H , e, p). We have:

Proposition 6.2. The character� is perfect if and only if
1. I� mapsCO(H , f ) into CO(G, e) and R� mapsCO(G, e) into CO(H , f ).
2. I� mapsCK(H , f , p) into CK(G, e, p) and R� mapsCK(G, e, p) into CK(H , f , p).

Now, we will establish a perfect isometry between the principal p-blocks of the
Ree group and̃G. Since a perfect isometry preserves the order of defect groups, we
only consider the prime divisorsp of jG̃j such thatp is prime to the index of R(q) in
G̃ (that is, p is a prime divisor ofq2 � q + 1). We can now prove Theorem 1.2:

Proof of Theorem 1.2. We prove the result only in the case where p is a prime
divisor of (q � 3� + 1). The other case is similar. The principalp-block of B0(G̃)
is given in Propositions 5.8 and 5.9. By using relation (10),we obtain the principal
p-block of R(q). In the following, we putA0 = B0(R(q)) = OR(q)e0 and B0 = B0(G̃) =
OG̃ f0. We define I and R as in the statement of Theorem 1.2. SinceI is a homo-
morphism betweenZ Irr(R(q)) and Z Irr(G̃), it follows by Proposition 6.1 thatI has
the form I�, where� is virtual character ofG̃�R(q). To prove that� is perfect, we
use Proposition 6.2.
(1) Let C be a class of R(q) (resp. G̃). We associate the map�C (resp. �C) in
CO(R(q), e0) (resp. CO(G̃, f0)) defined by�C(h) = 1Ce0(he0) (resp.�C(g) = 1C f0(g f0)).
We define on Cl(R(q)) (resp.G̃) an equivalence relation byC1 being in relation with
C2 if �C1 = �C2 (resp.�C1 = �C2). Let X (resp.Y) the set of classes for this relation.
The family f�CgC2X (resp.�C2Y) is a O-basis of CO(R(q), e0) (resp. CO(G̃, f0)). Let
Irr( A0) (resp. Irr(B0)) be the set of irreducible characters inA0 (resp. B0), which is a
K -basis of CK (R(q), e0) (resp. CK (G̃, f0)). We decompose�C in the K -basis Irr(A0).
We obtain

�C =
jCjjR(q)j

X
�2Irr( A0)

�(C)�.

We now prove thatI�(�C) has values inO.
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If pd divides jCj, since the irreducible characters of R(q) and G̃ have values in
O, it follows that I�(�C) 2 CO(G̃, f0).

Supposepd does not dividejCj (that is p does not dividejCj). We will show
that

P�2Irr( A0) �(C)I�(�) has values inZ, and is divisible bypd. Let Æ1 be a pd-th

root of 1. Let Ed be the non-zero classes ofZ=pdZ for the relation� defined as in

Theorem 1.2. We setÆi = Æi
1 + Æ�i

1 + Æiq
1 + Æ�iq

1 + Æiq2

1 + Æ�iq2

1 . We remark that

(13)
X
i2Ed

Æi = �1 and
X

i , j2Ed

Æi Æ j =

��6 if i 6= j
qd � 6 if i = j

.

By reducing modulop the values of the characters of Irr(A0) on the classesC (wherejCj prime to p) in Table 15, and by using relation (13), it is sufficient to show that
the map

 a = 1 +"�̃5 � �̃1 + "�̃11 + "�̃12(�1) + "�̃12(1) + 6
X
k2<0

"�̃a(�k),

has integer values that are divisible bypd. This can be checked without difficulty by
using the character table of̃G (see Table 11) and we have

I (CO(R(q), e0)) � CO(G̃, f0).

By using relation (13) and Table 12, it is sufficient to prove that the map

9a = 1� �3 � �5 � �7 � �9 � �10� 6
X
k2<0

���k

has integer values divisible bypd. We verify this with the table of R(q) in Table 15.
We have proved

R
�
CO

�
G̃, f0

�� � CO(R(q), e0).

Table 12. Values modulopd of Irr(B0)

1 E6(i ) (1, � ) G1(h)
1 1 1 1 1"�̃1 �1 �1 �1 �1"�̃5 1 1 1 1�̃11 1 1 1 1�̃12(�1) 1 1 1 1

"�̃a(�k) 6 Æ�i
1 + Æ�iq

1 + Æ�iq2

1 6 Æ�i
1 + Æ�iq

1 + Æ�iq2

1
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(2) Recall that ifG is a finite group and� a class function ofG, we denote by�̂ the
restriction of� to the p-regular values ofG. If A is a p-block, we denote bybIrr p(A)
the set of ˆ� , where� belongs toA. The setbIrr p(A) generates CK(G, e0, p).

In our problem, we see that it is sufficient to prove that

I��bIrr( A0)
� � CK(G̃, f0, p) and R��bIrr(B0)

� � CK(R(q), e0, p).

Let  2 Irr( A0). Since ̂ belongs to the K-space with K-basis Irr(A0), we have

 ̂ =
X

�2Irr( A0)

a��.

Let g be a p-singular element of̃G. Thus it belongs to either the classE6(i ) (see
the beginning of§4.4) or to G1(h), whereh 2 La (see Table 2).

First suppose thatg is in E6(i ), then there exists apd-th complex root of 1 and�1 a p-singular element of R(q) such that

�a(�)(g) = Æ�1
1 + Æ�q

1 + Æ�q2

1 = ���� (�1).

It follows that

8k, �a(�k)(g) = Æ�k
1 + Æ�qk

1 + Æ�q2k
1 = ����k(�1).

Moreover, we have

1G̃(g) = 1R(q)(�1), �̃5"(g) = ��3(�1), �̃1 = �5(�1)

and

�̃11" = ��7(�1), �̃12(�1)" = ��9(�1), �̃12(1)" = ��10(�1).

Thus, we deduce that for every� 2 Irr( A0), we haveI�(�)(g) = �(�1). It follows that

I�( ̂)(g) =
X

�2Irr( A0)

a��(�1) =  ̂(�1) = 0.

Supposeg 2 G1(h) for some p-singular elementh in La, then

I�( ̂)(g) =
X

�2Irr( A0)

a� I�(�)(g) =  ̂(h) = 0.

Thus, 8 2 Irr( A0), we haveI�( ̂) 2 CK(G̃, f0, p). We proceed similarly to show that
R��bIrr(B0)

� � CK(R(q), e0, p). We have shown:

I�(CK(R(q), e0, p)) � CK(G̃, f0, p),

R�(CK(G̃, f0, p)) � CK(R(q), e0, p).
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It follows that � is a perfect character and the result is proven.

7. Appendix

7.1. The Group G2(F32n+1). Let n 2 N. We setq = 32n+1. Conjugacy classes
and character Table of G2(q) are described in [8]. LetE = ft3 � t j t 2 Fqg and �E

be the canonical map fromFq to Fq=E. We denote by� 2 Fq an element such that�E(� ) = 1. Let � (resp.�0) be a primitive (q6� 1)-th root of unity inFq (resp. inC).
Let ! be a cubic complex root. We set:

�̃ = � (q+1)(q3�1),

�̃ = � (q�1)(q3+1),

�̃ = �q4+q2+1,

�̃ = �̃q�1,


̃ = �̃q+1.

We denote by�� the isomorphism betweenh�i and h�0i such that�0 = �� (�). For
every � 2 h�i, we set

�0 = �� (� ).

Proposition 7.1. In Table 13,we give the conjugacy classes ofG2(q). We write

�i = 
 i
0 + 
�i

0 and �i = � i
0 + ��i

0 .

Moreover, we set

�i , j ,k,l = �ik+ j l + �i l + jk + �i (k�l )� j l + �i l� j (k�l ) + �i (k�l )+ jk + �ik+ j (k�l ),

�i , j ,k,l = �ik+ j l + �i l + jk + �i (k�l )� j l �i l� j (k�l ) + �i (k�l )+ j l + �ik+ j (k�l ),

�i = � i
0 + ��i

0 + � iq
0 + ��iq

0 + � iq2

0 + ��iq2

0 ,

�0i , j ,k,l = �i (k+l ) + �i (k�2l ) + �i (l�2k),

�00i ,k,l = �ik + �i l + �i (k�l ),

� 0i ,k,l = �i (k+l ) + �i (k�2l ) + �i (l�2k),

� 00i , j ,k,l = (�ik + �i l + �i (k�l )),

�k,l = (�1)k + (�1)l + (�1)k+l .

We give the values ofIrr(G) that are interessting for us in this work inTable 14.
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Table 13. Conjugacy classes of G2(q)

Notation Representative Number Order of Centralizer

A1 h(1, 1, 1) 1 q6(q2 � 1)(q6 � 1)
A2 x3a+2b(1) 1 q6(q2 � 1)
A31 x2a+b(1) 1 q6(q2 � 1)
A32 x2a+b(1)x3a+2b(1) 1 q6

A41 xa+b(1)x3a+b(�1) 1 2q4

A42 xa+b(1)x3a+b(1) 1 2q4

A51 xa(1)xb(1) 1 3q2

A52 xa(1)xb(1)x3a+b(� ) 1 3q2

A53 xa(1)xb(1)x3a+b(�� ) 1 3q2

B1 h(1,�1,�1) 1 q2(q2 � 1)2

B2 h(1,�1,�1)x3a+b(1) 1 q2(q2 � 1)
B3 h(1,�1,�1)xa+b(1) 1 q2(q2 � 1)
B4 h(1,�1,�1)xa+b(1)x3a+b(�1) 1 2q2

B5 h(1,�1,�1)xa+b(1)x3a+b(1) 1 2q2

C11(i ) h
̃ (i , �2i , i )
1

2
(q � 3) q(q � 1)(q2 � 1)

C12(i ) h
̃ (i , �2i , i )x3a+2b(1)
1

2
(q � 3) q(q � 1)

C21(i ) h
̃ (i , �i , 0)
1

2
(q � 3) q(q � 1)(q2 � 1)

C22(i ) h
̃ (i , �i , 0)x2a+b(1)
1

2
(q � 3) q(q � 1)

D11(i ) h�̃(i , �2i , i )
1

2
(q � 1) q(q + 1)(q2 � 1)

D12(i ) h�̃(i , �2i , i )x3a+2b(1)
1

2
(q � 1) q(q + 1)

D21(i ) h�̃(i , �i , 0)
1

2
(q � 1) q(q + 1)(q2 � 1)

D22(i ) h�̃(i , �i , 0)x2a+b(1)
1

2
(q � 1) q(q + 1)

E1(i , j ) h
̃ (i , j , �i � j )
1

12
(q � 3)(q � 5) (q � 1)2

E2(i , j ) h�̃ (i , (q � 1)i , �qi)
1

4
(q � 1)2 q2 � 1

E3(i ) h�̃ (i , q j , �(q + 1)i )
1

4
(q � 1)2 q2 � 1

E4(i , j ) h�̃(i , j , �i � j )
1

12
(q � 1)(q � 3) (q + 1)2

E5(i ) h�̃ (i , qi , q2i )
1

6
q(q + 1) q2 + q + 1

E6(i ) h�̃ (i , �qi , q2i )
1

6
q(q � 1) q2 � q + 1
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A1 A2 A31 A32 A41 A42 A51 A52 A53�1
1
6q(q + 1)2(q2 + q + 1) 1

6q(q + 1)(2q + 1) 1
6q(q + 1)(2q + 1) 1

6q(3q + 1) 1
6q(q + 1) � 1

6q(q � 1) 2
3q � 1

3q � 1
3q�2

1
2q(q + 1)(q3 + 1) 1

2q(q + 1) 1
2q(q + 1) 1

2q(q + 1) � 1
2q(q � 1) 1

2q(q + 1) 0 0 0�5 q6 0 0 0 0 0 0 0 0�6 q4 + q2 + 1 q2 + 1 q2 + 1 q2 + 1 1 1 1 1 1�7 q2(q4 + q2 + 1) q2 q2 q2 0 0 0 0 0�10
1
6q(q � 1)2(q2 � q � 1) 1

6q(q � 1)(2q � 1) 1
6q(q � 1)(2q � 1) � 1

6q(3q � 1) 1
6q(q + 1) � 1

6q(q � 1) 2
3q � 1

3q � 1
3q�11

1
2q(q � 1)(q3 � 1) � 1

2q(q � 1) � 1
2q(q � 1) � 1

2q(q � 1) � 1
2q(q � 1) 1

2q(q + 1) 0 0 0�12(1) 1
3q(q2 � 1)2 � 1

3q(q2 � 1) � 1
3q(q2 � 1) 1

3q 1
3q(q + 1) � 1

3q(q � 1) 1
3q 1

3q + q! 1
3q + q!�1

�12(�1) 1
3q(q2 � 1)2 � 1

3q(q2 � 1) � 1
3q(q2 � 1) 1

3q 1
3q(q + 1) � 1

3q(q � 1) 1
3q 1

3q + q!�1 1
3q + q!�9(k, l ) (q + 1)(q2 + q + 1)(q3 + 1) (q + 1)(q2 + q + 1) (q + 1)(q2 + q + 1) 2q2 + 2q + 1 2q + 1 2q + 1 1 1 1�12(k, l ) (q � 1)(q2 � q + 1)(q3 � 1) �(q � 1)(q2 � q + 1) �(q � 1)(q2 � q + 1) 2q2 � 2q + 1 �(2q � 1) �(2q � 1) 1 1 1�14(k) (q + 1)(q2 � 1)(q3 � 1) �(q + 1)(q3 � 1) �(q + 1)(q3 � 1) �(q2 � q + 1) q + 1 q + 1 1 1 1

B1 B2 B3 B4 B5 C11(i ) C12(i ) C21(i ) C22(i )�1
1
2 (q + 1)2 1

2 (q + 1) 1
2 (q + 1) 1

2 (q + 1) � 1
2 (q � 1) q + 1 1 q + 1 1�2

1
2 (q + 1)2 1

2 (q + 1) 1
2 (q + 1) � 1

2 (q � 1) 1
2 (q + 1) q + 1 1 q + 1 1�5 q2 0 0 0 0 q 0 q 0�6 1� 2q 1� q 1� q 1 1 1 + (q + 1)(�1)i 1 + (�1)i 1 + (q + 1)(�1)i 1 + (�1)i�7 q2 � 2q �q �q 0 0 q + (q + 1)(�1)i (�1)i q + (q + 1)(�1)i (�1)i�10 � 1

3 (q � 1)2 1
2 (q � 1) 1

2 (q � 1) � 1
2 (q + 1) 1

2 (q � 1) 0 0 0 0�11 � 1
2 (q � 1)2 1

2 (q � 1) 1
2 (q � 1) 1

2 (q � 1) � 1
2 (q + 1) 0 0 0 0�12(1) 0 0 0 0 0 0 0 0 0�12(�1) 0 0 0 0 0 0 0 0 0�9(k, l ) (q + 1)2�k,l (q + 1)�k,l (q + 1)�k,l �k,l �k,l (q + 1)�0i ,k,l �0i ,k,l (q + 1)�00i ,k,l �00i ,k,l�12(k, l ) (q � 1)2�k,l �(q � 1)�k,l �(q � 1)�k,l �k,l �k,l 0 0 0 0�14(k) 0 0 0 0 0 0 0 0 0
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Table 14. Character table of G2(q)

D11(i ) D12(i ) D21(i ) D22(i ) E1(i , j ) E2(i ) E3(i ) E4(i , j ) E5(i ) E6(i )�1 0 0 0 0 2 0 0 0 0 �1�2 0 0 0 0 2 0 0 0 �1 0�5 �q 0 �q 0 1 �1 �1 1 1 1�6 1� (q � 1)(�1)i 1 + (�1)i 1� (q � 1)(�1)i 1 + (�1)i �k,l (�1)i (�1)i �k,l 0 0�7 �q � (q � 1)(�1)i (�1)i �q � (q � 1)(�1)i (�1)i �k,l �(�1)i �(�1)i �k,l 0 0�10 q � 1 �1 q � 1 �1 0 0 0 �2 1 0�11 q � 1 �1 q � 1 �1 0 0 0 �2 0 1�12(1) 0 0 0 0 0 0 0 0 �1 1�12(�1) 0 0 0 0 0 0 0 0 �1 1�9(k, l ) 0 0 0 0 �i , j ,k,l 0 0 0 0 0�12(k, l ) �(q � 1)� 0i ,k,l � 0i ,k,l �(q � 1)� 00i ,k,l � 00i ,k,l 0 0 0 �i , j ,k,l 0 0�14(k) 0 0 0 0 0 0 0 0 0 �i
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7.2. The Ree group of type G2. We set� = 3n. The Ree group R(q) is de-
scribed in [14] and its character table is computed in [15]. We recall that the conjugacy
classes of R(q) are given in Theorem 4.1 and that we have:

Proposition 7.2. Let x 2 f1, a, aba, ababag. We denote by hx representatives of
odd order elements of typewx. Let 
i = 
 4.3� i

0 + 
�4.3� i
0 and

Æi = � i
3 +��i

3 +�qi
3 +��qi

3 +�q2i
3 +��q2i

3 and Æ0i = � i
4 +��i

4 +�qi
4 +��qi

4 +�q2i
4 +��q2i

4 ,

with �3 = � (q+3�+1)2

0 and �4 = � (q�3�+1)2

0 . Finally, we set

�i ,0 = � 8i
0 + ��8i

0 + � 4(3�+1)i
0 + ��4(3�+1)i

0 + � 4(3��1)i
0 + ��4(3��1)i

0 ,

�i ,1 = � 8i
0 + ��8i

0 � � 4(3�+1)i
0 � ��4(3�+1)i

0 � � 4(3��1)i
0 � ��4(3��1)i

0 ,

�i ,2 = �� 8i
0 � ��8i

0 + � 4(3�+1)i
0 + ��4(3�+1)i

0 � � 4(3��1)i
0 � ��4(3��1)i

0 ,

�i ,3 = �� 8i
0 � ��8i

0 � � 4(3�+1)i
0 � ��4(3�+1)i

0 + � 4(3��1)i
0 + ��4(3��1)i

0 .

Then the character table ofR(q) is given inTable 15.
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Table 15. Character table of R(q)

1 X T T�1 Y1 Y2 Y3 J�2 q2 � q + 1 1� q 1 1 1 1 1 �1�3 q3 0 0 0 0 0 0 q�4 q(q2 � q + 1) q 0 0 0 0 0 �q

�5
1

2
(q � 1)(q + 3� + 1) �1

2
(q + � )

1

2
(�� + �2

p�3)
1

2
(�� � �2

p�3) � 1

2
(�� � �p�3)

1

2
(�� + �p�3) �1

2
(q � 1)

�6
1

2
(q � 1)(q � 3� + 1)

1

2
(q � � )

1

2
(�� + �2

p�3)
1

2
(�� � �2

p�3) � 1

2
(�� � �p�3)

1

2
(�� + �p�3)

1

2
(q � 1)

�7
1

2
(q � 1)(q + 3� + 1) �1

2
(q + � )

1

2
(�� � �2

p�3)
1

2
(�� + �2

p�3) � 1

2
(�� + �p�3)

1

2
(�� � �p�3) �1

2
(q � 1)

�8
1

2
(q � 1)(q � 3� + 1)

1

2
(q � � )

1

2
(�� � �2

p�3)
1

2
(�� + �2

p�3) � 1

2
(�� + �p�3)

1

2
(�� � �p�3)

1

2
(q � 1)

�9 � (q2 � 1) �� �� + �2

p�3 �� � �2

p�3 �� 1

2
(�� + �p�3)

1

2
(�� � �p�3) 0

�10 � (q2 � 1) �� �� � �2

p�3 �� + �2

p�3 �� 1

2
(�� � �p�3)

1

2
(�� + �p�3) 0

�r q3 + 1 1 1 1 1 1 1 (q + 1)�0r q3 + 1 1 1 1 1 1 1 �(q + 1)�t (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 3(q � 1)�0t ,1 (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 1� q�0t ,2 (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 1� q�0t ,3 (q � 1)(q2 � q + 1) 2q � 1 �1 �1 �1 �1 �1 1� q��k (q2 � 1)(q + 3� + 1) �q � 1� 3� �3� � 1 �3� � 1 �1 �1 �1 0�+
k (q2 � 1)(q � 3� + 1) �q � 1 + 3� 3� � 1 3� � 1 �1 �1 �1 0
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Table 15. Character table of R(q)

J T J T�1 h1 h1J haba haba� 2 habaJ habaJ� 2 ha hababa�2 �1 �1 1 �1 1 �1 �1 �1 0 0�3 0 0 1 1 3 �1 �1 �1 �1 �1�4 0 0 1 �1 �3 1 1 1 0 0

�5
1

2
(1� �p�3)

1

2
(1 + �p�3) 0 0 1 1 1 1 �1 0

�6
1

2
(�1 + �p�3)

1

2
(�1� �p�3) 0 0 �1 �1 �1 �1 0 1

�7
1

2
(1 + �p�3)

1

2
(1� �p�3) 0 0 1 1 1 1 �1 0

�8
1

2
(�1� �p�3)

1

2
(�1 + �p�3) 0 0 �1 �1 �1 �1 0 1

�9 0 0 0 0 0 0 0 0 �1 1�10 0 0 0 0 0 0 0 0 �1 1�r 1 1 
ir 
ir 0 0 0 0 0 0�0r �1 �1 
ir �
ir 0 0 0 0 0 0�t �3 �3 0 0 ��t j ,0 ��t j ,0 ��t j ,0 ��t j ,0 0 0�0t ,1 1 1 0 0 ��t j ,0 ��t j ,3 ��t j ,1 ��t j ,2 0 0

�0t ,2 1 1 0 0 ��t j ,0 ��t j ,1 ��t j ,2 ��t j ,3 0 0

�0t ,3 1 1 0 0 ��t j ,0 ��t j ,2 ��t j ,3 ��t j ,1 0 0

��k 0 0 0 0 0 0 0 0 �Æk j 0

�+
k 0 0 0 0 0 0 0 0 0 �Æ0k j
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