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1. Introduction

This paper studies two kinds of linear random difference equations
1) axe) = —p, (KOO 1im g, A X) @)+at(n)
as.(neZ),
(12 ax@) = —8 (XOTXOD) _tim. o, eaX) @)+l ()
as. (neZ)
with infinite delays. Here
(1.3) AX(n) = X(n)—X(n—1) (neZ),

a; and B;(j=1, 2) are positive constants and, for j=1,2 and £>0, v, is de-
fined by

1=
(14) Tat) = X m®) | 7 p,d) (1€2)
with a bounded Borel measure p; on [—1, 1] such that
(1.5) p(-1,1 =0, | +1 p(dN)<1 .

E=(&(n);ne Z)in (1.1) is a normalized Gaussian white noise or a sequence
of independent Gaussian random variables with mean 0 and variance 1. I=
(I(n); ne Z) in (1.2) is a real stationary Gaussian process named the Kubo noise
associated with the solution X=(X(n); ne Z) of (1.2). The Kubo noise I is
related to X through the following relation

1
V2

(Theorem 4.1 in [11]), where R, is the correlation function of X. For the

(1.6) X(n)= 2 R(n—m)I(m) as. (neZ)
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precise definition of Kubo noise, see [11] as well as section 2. The equation
(1.1) (resp. (1.2)) is a slight modification of the first (resp. second) KMO-Langevin
equation of Okabe [10,11]. We call (1.1) (resp. (1.2)) the modified first (resp.
second) KMO-Langevin equation.

In [13] and [4], the Alder-Wainwright effect or the long time behavior of
the correlation function was studied in the case of continuous time and it was
shown that the Alder-Wainwright effect can be characterized completely in
terms of the decay of the delay coefficient ¥ of KMO-Langevin equations.
On the other hand, Okabe [10, 11, 12], as a discrete analogue of [8, 9], developed
the theory of KMO-Langevin equations for a class of discrete-time real sta-
tionary Gaussian processes with reflection positivity. In particular, he showed
that the time evolution of such a process X can be described in terms of two
kinds of linear random difference equations named the first and the second dis-
crete KMO-Langevin equations. Then it seems to be natural to expect a
discrete analogue to the Alder-Wainwright effect for continuous KMO-Langevin
equations and that is what we show in this paper.

In so doing, we encounter two problems to be considered. The first problem
is that, to state the Alder-Wainwright effect, the KMO-Langevin equations of
Okabe [10, 11] are a little inconvenient. Therefore we modify them as (1.1) and
(1.2). It seems to be interesting to see that, for this modified second KMO-
Langevin equation, the Einstein relation

— R(0)
. D ===\
(1.7) s,

holds, where D is the diffusion constant of X defined by
— Lim L B 2 — 5 R —RO)
(1.8) D = lim -1 E(S X)) = 5 R "D

The second problem is that, in contrast with the continuous case, the cor-
relation function R;(j=1, 2) and the delay coefficient 7;(j=1, 2) are not neces-
sarily monotone in the discrete case. Since the Tauberian theorem, which is
our main tool to show the Alder-Wainwright effect, needs some monotonicity,
we have to suppose a condition. Let X,=(X,(n);neZ) (resp. X,=(X\(n);
ne Z)) be the unique real stationary Gaussian solution of the equation (1.1) (resp.
(1.2)) with mean 0 and covariance R, (resp. R,;) of the form

(1.9) R/(n) = sl 19 o (dt) (neZ) (j=1,2).
-1
Here o;(j=1, 2) is a non-zero bounded Borel measure on [—1, 1] such that

(1.10) oi({—1,1}) =0, J" <_1~

1
o 1+t+m)o‘j(dt)< .
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The property (1.9) is called the reflection positivity. Our assumption for p=p;
is

ASSUMPTION A.

supp pc[0, 1].
We note that Assumption A for p; does not necessarily imply
(1.11) supp o;C[0, 1]

but we can show that o; is “almost” of the form (1.11). This observation is
essential in our argument and once this correspondence is established, the char-
acterization of the long time tail of R; in terms of v, is proved almost in parallel
with the continuous case.

Give a slowly varying function L at infinity. For j=1, 2, we define

1

(112) 7) = X || 7 i) (ne2).
The following two theorems are our main results.

Theorem 1.1. Suppose that p, satisfies Assumption A. Let 0<p<<oo.
Then the following (1.13) and (1.14) are equivalent:

(1.13) ¥ (n) ~n~? L(n) (n—>o0),
(1.14) Ry(n) NOg_f 20D Lin) (n—>o0) .

Theorem 1.2. Suppose that p, satisfies Assumption A. Let 0<p<<oo.
Then the following (1.15) and (1.16) are equivalent:

(1.15) Vo) ~n~? L(n) (n—>o0),
(1.16) Rﬂ;p% n=0D L) (n—>oo).

Theorems 1.1 and 1.2 show that quite a good analogue holds between the
continuous and the discrete case if we consider the equations (1.1) and (1.2)
under the Assumption A.

This paper is organized as follows. In section 2, we rewrite the KMO-
Langevin equations of Okabe [10, 11] in a form which is suitable to the Alder-
Wainwright effect. Sections 3 and 4 characterize Assumption A for p, in
terms of o,. This characterization is used when we apply a Tauberian theorem
in section 6. Section 5 is a miscellaneous preliminary of the proof of Theorems
1.1 and 1.2. In section 6, we prove Theorems 1.1 and 1.2. The last proofs
are parallel with the continuous case but we include them for completeness.
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The problem studied here was proposed by Professor Yasunori Okabe.
The author is grateful to him for his valuable advices.

2. The modified KMO-Langevin equations

The main purpose of this section is to rewrite the discrete KMO-Langevin
equations of Okabe [10, 11] in a form which is suitable to state the Alder-Wain-
wright effect. In what follows A stands for the difference operator

Af(n) = f(m)—f(n—1).

We define
(2.1) 2 = {o; o is a bounded Borel measure on [—1, 1] such that
1
o({—1,1})=0 and S m+_) o(df)< oo}
(2.2) L= {(a; B, p); >0, 8>0 and p is a bounded Borel

measure on [—1, 1] such that
|
—1,1})=0 and —— p(dt)<1} .
PU=11)=0 and | o p@n<ty

Let 0 €= and X=(X(n); nE Z) be a real stationary Gaussian process with mean
zero and covariance function R of the form

2.3) R(n) = Sl_l 19 o(dt) (neZ).

The condition ¢ €% implies that R€/(Z). We define a function [R](2) on
Uy(0)=1{zeC; |2| <1} by

2.4) [R](2) = - SRm) & = =

Theorem 2.1. The relation

1

25 2z I l—tz o(dr)

B, (1+Z)+1 —ata(l— z)s lz pz(dt))-l

- \/ = (
defines a bijection o—>@,()=(aty, Bs, p2) from = onto L.
Proof. By Theorem 3.1 in [11], the relation
1
27 12 l—tz

B (Bt 1= (- [ L)

—— o(dt)
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defines a bijection o—@,(a")=(&,, B,, ,) from = onto L, where z& U,(0) and

(2.6) L= {@,B,p);a>0,>0 and pisa bounded
Borel measure on [—1, 1] such that g({—1, 1}) = 0} .

Then the theorem follows easily if we consider the bijection (&, B, p2)—
(atz) Ba, ps) from L onto £ defined by

a 28 . 1+¢ 5
PR QR S N— - — -
AL T AL T AL
We recall the definition of Kubo noise according to [10, 11]. Let A, &
and E be the spectral density, outer function and canonical representation
kernel of X respectively:

2.8) R(n) = S; " AB)dO (neZ),

2.9) h(z) = exp (i [~ z:i % log A(6) a0) (€ Uy0),
(2.10) h(e®) = 1}?11 h(re®) a.e. 06(—‘7:', 7)),

2.11) E(n) = h(n) = S: " h(e0) d (neZ).

Then we know that E< /¥ Z), E(n)=0 (n=—1, —2, ---) and there exists a nor-
malized Gaussian white noise &=(E(n); nE€ Z) such that

(2.12) X(n)—\/—z 33 E(r—m)E(m) in IXQ,9,P),

(2.13) a(X(m); m<n) = o (E(m); m<n) (neZ).

The Kubo noise I=(I(n); n€ Z) associated with X is the stationary Gaussian
process defined by

(2.14) I(n) = _E_}“E,(n m)E(m) as. (neZ),
where
(2.15) Eyn) = hy(z) = Si " b9 do (neZ),
1 A=) ST
(2.16) M) = 5 eGSO

By Theorem 4.1 in [11] we see that I has the following properties:
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2.17) X(n) = \/—12_; 31 Ro—-m) I(m) as. (n€2),

(2.18) o(X(m); m<n) = o(I(m); m<n) (n€Z).
Now for any £>0 we define

(219) Toelt) = X ) | 7 pildt) (ne2),

(2.20) 7An) = Too(n) (REZ).

By using the Kubo noise I and the triple (&, B,, p;), the time evolution of X is
described as follows.

Theorem 2.2.

2.21)
AX(n) = —8, ( X (”)+§f (n—1) >—1.£.31. (Yot AX) (W) Fapl(n) as. (nEZ)

Proof. Let (&, B2, p2) be an element of _£ defined by (2.7). We put for
any €0,

n=—1,-2..),

" p(df) (n=0,1), y Ton)=Fpo(m) (n€2).

0 (
‘72,& (n) = S-1+e
S::., (t”—t”-z) ﬁz(dt) (n=2, 3 =),
Then we have
¥2,2(0) X (1) +7,,.(1) X (n—1)
= (147,(0)) Av,,o(1) X (n—1)1%,,,(0) AX(m)
(2.23) Fo,e(l) = (14%(0)) Ay o(l) (1=2,3, ).

On the other hand, by Theorem 5.1 in [11], we know that the time evolution
of X is governed by the following second KMO-Langevin equation

(2.24) AX(n) = —B(X(0)+X(n—1))—(F*X) (n)+&I(n) as.(nEZ).

(2.22)

Since we have for any €0,
1
|7 *")'SL [£]"-2(1—2) p(dt) (I=2,3,-)
and

S 11—y = | a1 pdn<eo,

=2
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it follows that
o 2
(225)  E[|@:+X) ()~ X) @ 1<RO) (D50~ 7,001 ) =0 (610).

From (2.22), (2.23) and (2.25) we have
(7;%X) () = (1+7,(0)) Lim (7, #AX) (1) +7,(0) AX (m) .
Then the theorem follows from (2.24) and the above. M

DrerFiniTION 2.3. We call the stochastic difference equation (2.21) the
modified second KMO-Langevin equation and the triple (o, B,, p;) or (@, B2, 72)
the modified second KMO-Langevin data.

In the next theorem we express @, and B, in terms of o=@z (a3, B, p2))-

Theorem 2.6.

) = V —%— o([—1,1]) Sl_l ﬁ o(d?) (gl_l %f_% o (df) )'1 .
@  g=200-11)(] o).

Proof. By substituting =0 into (2.5) we have
J— -1
(=1, 1) = (v 2 G41)
27 2
and making z 1 1 in (2.5) we obtain
1 (* 1 5=
—\ ——o(d) = 2 -t
2r S-l 1—12 o(dl) = a(/ 2 5;)
The theorem follows from these two equalities. Wl

Let D be the diffusion constant of X defined by (1.8). By Theorem 6.1
(iii) in [11] and (2.7), we see that the Einstein relation

(2.26) p=RO
B2

holds between D and 8,. We remark that for the second KMO-Langevin data

of Okabe [11] there is a deviation from the Einstein relation.

Next, according to the above modification of the second KMO-Langevin
equation, we rewrite the first KMO-Langevin equation of Okabe [10]. Let
(@, Bys p)e-L be the first KMO-Langevin data of [10] characterized by the
relation

) = (Bt+2)+1-z+01—3) |

4

pd) " EUO),

1
-11—t2
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where 4 is the outer function of X. In the same way as Theorem 2.1, by ap-
plying a similar substitution

a, _ 28, _ 14-¢ ~
14+p([—1,1]) b a0~ 1) " T Tha—L )™

to (&, By, pr) E-L, we obtain from Theorem 4.1 in [10] the following theorem.

227) a =

Theorem 2.5. The relation

228)  hz)=-%_(g, (1;2)+1_z+z(1—z)§

S ( ()"

1
-1 11—tz
defines a bijection oc—@,(a)=(a;, By, p) from 3. onto L.

For any £>0 we define

1-¢
(229) Tadlt) = Xal) | 0 p(d) (@ 2),
(2.30) 7)) = 71,in) (nEZ).
Then the time evolution of X is described by using the triple («;, By, p;) and the
white noise & in (2.14) and (2.15) as follows.

Theorem 2.6.
2.31)
AX(n) = — B, (X(—”)t;ﬁ'i—_l))—l.g.f?. (v #AX) () Lay E(n) as. (nEZ).

Since Theorem 2.6 follows from Theorem 6.1 in Okabe [10] almost in the
same way with Theorem 2.2, we omit the proof.

DerFiNiTION 2.7. We call the stochastic difference equation (2.31) the
modified first KMO-Langevin equation and the triple (o, 5y, py) or (¢, By, 7;) the
modified first KMO-Langevin data.

ExampLE 2.8. For any p>0, we put
1 1
2.32 p=Xeop»(t) == -——(—logt)?~tdt,
( ) P (0'1)()F(1))1+t( og t)
where dt is the Lebesgue measure on [0,1]. We define
14+
(2.33) p=—"1——p.
1+4((0, 11)

Then for any @>0 and B8>0, we see that («, B, p)-L. By a direct calcula-
tion, we obtain

1 1

234) (1) = Xy u(n) &’) o pl) = Xt () g
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ExampLE 2.9. For any p>0, we put
1 t
2.35 p = X, (t) — ——(—log t)*~* dt,
(235) p=Xan® 5 7 (o8 )
and define p by (2.33). Then we have

1 1
+4([0, 1]) (n+1)*”

(236) (1) = Xao) {177 pldt) = X () 5

3. Relation between the supports of measures (1)

In this and next sections we characterize Assumption A in section 1 for
p in terms of o=g3'((at, 8, p)). The main results are Theorem 3.1 and Corol-
lary 3.2 below.

We define

3.1) Lt ={(a,B, p)s-L;supp pc|0, 1]},
(2) Lt ={(a,B,p)ELT; p({0}) =0, —°°<%——1—|—S:—1—p(dt)<0} ,
(3.3) Lt = (B p)ELT; p({0}) =0, %—I—I—S:%p(dt) — 0},

(B4) L= (e, B, p)eL; p({0}) =0, 0<§—1+S: 1_ p(dt) <o},

(3.5) Li={(a B p)ELs; SM% p(dt) — + o0} .

We note that L+¥=_LT U L3 UL3 UL{ (disjoint union). Next we define

(3.6) St— {oeS;suppoc(0,1], ({0})=0, S:—i—o-(dt)<0°},

(37) St ={oeZiswppocl0l], | T old)=+eo),

(3.8) S0 ={0cE€3;0 =008, 0,>0, —1<p,<0},
(3.9) St ={ocEZ;0=0_-+40o,, o_-E35, oc.,EZ},

(3.10) i = {oezi; _°°<S %a-(dt)<0} ,

1
-1

1
Gl 3= {o‘EES‘iS

%o-(dt) — 0},
1
(312) I*=31USfUSIUS?,

(313) == {cE€Z;0=0-+0,, o-=038p, 0,20,
—1<p<0 and o,eZfUZ3}.
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Note that St*c3*~. In (3.5) and (3.7), the integrand ¢! is assumed to be
+-o0 at 0.

Theorem 3.1.
(i) Let ce=fUS? and (a, B, p) = @s(c). Then

1 :8 1 1 -1
ey o[ et =% (514 4 @)
Corollary 3.2.
(3.15) Po3) = L+

Before going into the details, we make several comments on the method
of the proof. We show Theorem 3.1 first for discrete measures and in the
general case by approximation by discrete measures. Originally this approxima-
tion method was used in Okabe [7] for the continuous case. The results of
[7] were applied to the discrete case in Okabe [10,11]. It should be noted that
though we use some results in [10, 11], which were proved by reducing to the
continuous case, we can also prove them by this approximation method. It
means that if we wish, we can develope the theory of the discete case inde-
pendently of the continuous case.

Theorem 3.1 is proved finally in the next section. In this section, as a
first step, we prove it for discrete measures. We define

3B.16) Lii=A{(a,B,p)eLi;p= g‘{ p» 8, forsome NEN,

where p,>0(n =1, -+, N), 0<q,<q,<---<qy<1}
(f=1or3),

(.17)  Sti={o€3f; o= ”E:)a',, 5, forsome NEN, where
o, >0(n=0,--,N) and 0<p,<p,<---<py<l},

(3.18) Sty={o€3i; o= f} o, 8, forsome NEN, where
6,>0(n=0,-,N), —1<p,<0<p,<--<py<l1} .

Lemma 3.2.
(1) @Zfa) =Lta, @iZ30) = L.
(i) Let c€St,USt, and (a, B, p) = @y(c’). Then

(3.19) 31;5_170((1:): \/0; (ﬂ +S_p(dt))
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Proof. Step 1. First we assume that (a, 8, p)€-Li{,ULs, Then p is
of the form 33 p, 8,,. By Theorem 2.1 we see that

R (s) = @ TTs(1—g, %)
[R] () = @Dt ),

¢ = (8 LE41-2) [ (1—g 9 +2(1—2) 1 pu 1T (101 )

= ("1)1\’<"i§[l qx ) (—IZQ—-I +S: % p(dt)) Nt ...
and so

o)) = —sgn(B—14+( 1 1) =
sgn (g(—0)) = —sgn (5—1+ L p@n), sen(g(~1) =1,
(3.20) 4 sgn(g(1)) =1, sgn(g(g")) = (—1)”':"“l (n=1,--,N),
00)) — (— B 1411
sgn (g(+2)) = (~1)" sgn (£ —1+{ 2 p(an).
In view of (3.20) there are N+1 numbers p,(n = 0, ---, N) and a positive con-
stant ¢, such that

2 =& 11 (1—p, %),

0<py<qi<pi<---<gy<py<l if (a,B,p)Lis,
—1<P0<0<q1<1’1<"’<qN<PN<1 if (0{, G, p)E.f;_d .

Therefore we can expand [R] (2) as

_lE 1
(3'21) [R](z) - 27’ 'g)o-n l—p,,z ’
(3.22) oy = V2o llia(=atih) o g .. N).

a Hk#:n(l'_.pk P;l)
(3.21) and (3.22) show that e=33"' o, 8,,=@z'((a, B, p)). From (2.5) we have

:-11: ql)—l

1 X o a ( 271 ¥
3.23) — L. . —1 .
(3.23) anz‘l—p” T I¢] 3 +3 +2p
and letting z—co we obtain (3.19). Thus L, C@,(=7,) and L3, C@,(34).
Step 2. Conversely we assume o=>" 00, 0,,€E314UZ54. By (2.4) we
have

[R](2) = f@) I (1 %),

i‘. ang’(l—h %) = % <£[op”) (S;%G(dt» 2V

f(z)=~21;”
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and so

(3.24) sen (f(pi)) = (—1)¥* (n=0,--,N) if oceSt,
sgn (f(pr)) = (=¥ (n=1, -, N) |

3.25 if oc€37%,.

(3:23) {sgn(f(+°°))=(—1)” ==

By (3.24) and (3.25) we see that there are N numbers ¢,(n=1, ---, N) and a
positive constant ¢, such that

&) = 1T (1-g,2),

{Po<ql<P1<“'<QN<PN if o&3{,,
0<g<p<g<--<gv<py if oc€EZi,.

We put
(1 1\
(3.26) a=+/7x (m 2[R](1)) :
3.27 - %
(327 B = Uz R
_ 1 2w [B(+42)
(3.28) ) = i) a”{ 2 41 z}

Since [R](0)= (2z) o([—1, 1])>0, [R] (1) = (2)" S (1—#)" o (dt)>0 and
2[R] (1)—[R] (0)=(27)"* S (14-£) (1—#)~* o(dt)>0, we see that >0 and 8>0.

Furthermore since a(0)= a(l) 0, there is a polynomial b(2) of degree <N—
such that

\/ 27 3(1—2) b(z)
3.29 a(z
(3.29) (2) = Ta(—g,2)
Substituting (3.29) into (3.28), we obtain
0(1 —Pa ,2’) ,8(1+2) N _
330 M=) = cz\/ T w(1—3) {22(1 T } T=¢=2).

By (3.30) we see that if we define positive constants p,(k=1, -+, N) by
. B o T2 o(1—py i)
La(1=0.0") &V 2 45" (1—¢7") Tl — 4, ¢7)
then the following polynomial

1
l_qn

<ﬁ(1—qn z))ﬁ
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of degree <N—1 coincides with 5(z) at each value ¢z'(k=1, ---, N). Therefore
we have

(3:31) o) = (11 (1-0,9) 3 por——

_an.
By (3.28), (3.29) and (3.31), we obtain
[R(e) = 2 (B 1—ata1—) [ @) o = S pu 0

which shows that @,(c)=(a, B, p)=-L". Again by (3.23) we have (3.19). Thus
@a)eLT if cEeZT, and @y(c)eL74 if c€X3,. This completes the proof
of the lemma. W

4. Relation between the supports of measures (2)

In this section we complete the proof of Theorem 3.1. First we prepare
two lemmas.

Lemma 4.1. Let (a, 8, p)E-L*. Then p([0, 1])<2.

Proof. The lemma follows from the estimate
2
P10, < 2 plan<2.

|
Lemma 4.2 Let 3. Let >0, 3>0 and p be a bounded Bore! measure

on [—1, 1] such that supp pC[0, 1], p({1})=0 and (2.5) hold. Then Sl (14
p(dt)<1 and so .L*>(a, B, p)=@u(c).

Proof. The lemma follows easily by letting 2 | —1 in (2.5). W
Proof of Theorem 3.1. Step 1. Let s=3. Then ¢ is of the form

4.1) c=o0-tF0,, o-=030,)€EZ5. o-EZY.
We put

_ 1
(4.2) Gy = -1 o4

Since &.([0, 1])=f1ou(t"'+(1—1)™) o (dt)<oo, &, is a bounded Borel measure
on [0,1]. We choose 69’ €31 4(n=1, 2, ) so that w-lim,,,.. #{’=¢, on [0, 1].
We put e P=t(1—1) 6, s =0_+0c and (a™, B™, p™)=g, (™). Since

i 1 <n>dt—j 1 <o
(4.3) llmg[_“]t @=|_ o=,

nyoo
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we may assume from the beginning that [_, ;3¢ ¢®(dt)<<0 for all n. Thus
c®e&3{, and, by Lemma 3.2, (@™, 8™, p™)e_L3,. By Lemma 4.1, we have
sup, p™([0, 1])<2. Therefore there exist a subsequence n,<m,<<--- and a
bounded Borel measure p’ on [0, 1] such that w-lim,,.. p®¥=p" on [0,1]. By
Theorem 2.4, ¢"# and B"¥ converge to o and B as k— oo respectively, where
a and @ are positive constants given by (i) and (ii) in Theorem 2.3. Then it
follows from Theorem 2.1 that for any 2 U,(0),

44)

1 ¢ 1
—\ ——(dt

2 S-l gz "= \/2 (
If we put c=1—p’({1})/2 and define a bounded Borel measure p” on [0, 1] by
p’(A)=p'(ANIO, 1)), then the right hand side of (4.4) is equal to

alc +o'({1 142 ”
\(/g <(B pc( 2 2 D 1-sta(—) S[ 111 P t))
and therefore Lemma 4.2 yields @,(0)=(a/c, (B+p'( {1}))/c, p” jeyeL*. Here
we note that, by Theorem 2.4, c¢=1 and p’({1})=0. Anyway we obtain
@y(a)E-LT; so that @,(Z3)C L.

In the same way, by approximating any element ¢ €3} by elements of =7 ,,
we can show that @,(Z1)CL*.

Step 2. Let c=X=3. We put for any n=1, 2, ---,

oM = x[l/ﬂ,l](t) 0‘—|—O’( {0}) 81/:: ) (a(”)) ﬁ(”)’ P(")) = ¢2(d(”)) .

Since [t o™(dt)<oo, it follows from Step 2 that (a™, 8™, pM)e_L*.
Then Theorem 2.3 and the monotone convergence theorem yield lim, .. a™=a
and lim,, .. 8"=g, where ¢ and B are positive constants given by (i) and (ii) in
Theorem 2.4 respectively. On the other hand, by the Lebesgue’s convergence
theorem, we have lim,,. [f1(1—22)"! ¢®(dt)=[p11(1—22)" o(dt). Then in
the same way as Step 1, we obtain @,(¢) €L and so @,(Z5) CL*.

Step 3. Letc&Z;. Then ¢ is of the form (4.1). We put

R R G L) I

0'(:)2(0'0'["‘%)8»0’ c”=e"+4e, (n=12,-).

Since [r-;1t7 ¢™(dt)<0, we have o™ &7 and so, by Step 1, @,(c™)EL*.
Then in the same way as Step 1, we obtain ¢(o) €-L7; so that (=) L+,

By Steps 1-3, we conclude that @,(3+)C_L+.

Step 4. Let (a, B, p)e-L3. With p({0})=0 in mind, we put p=t""p.
Then p is 2 bounded Borel measure on [0, 1]. We choose g &3 4(n=1, 2, ---)
so that w-lim,,.. 5™ =p on [0 1]. We put p™=tp™ . Since

lim(é——H—S

e ) ‘"’(dt)> ——1+$ - p(dt)>0,

[o,11 t
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we may assume from the beginning that (a, 8, p™)e L3 4(n=1,2, ---). We put
c"=@7'((a, B, p™)). By Lemma 3.2, ¢ is of the form

o™ = 0'9)+0'S:), a.gl)ezib’ o™ — g ap(,,)’ 0<s(”)<oo, .__.1<P(ﬂ)<0 .
By (2.5), it holds that
a¥([0, 1]), s <o ™[0, 1]) = v/ 27 a(B[2+1)"".

Therefore there exist a subsequence n,<<n,<<:--, a bounded Borel measure o,
on [0, 1], py&[—1, 0] and s,&[0, /27 a@(B/2-+1)""] such that

#5)  wlimof® =g, on [0,1] lim p™ = p, lim 5™ =,

Then it follows from (2.5) that for any 2 U,(0),

1 s 1 1
2r l—poz 2n S[O,l] 1—itz d+(dt)
(4.6) R 1 o
- \/ﬁ (7 (1 —l—z)—l—l—z—}—z(l—z) S[o,ﬂ 1—t=2 p(dt)) '
We note that
11—z _ (1—¢ -1
4.7) L=E (—1_z+t) 10 (211).

Hence, by letting 2 1 1 in (4.6), we have o, ({1})=0 and g, ,;3(1—%)"! 4(dt) < oo,
which show that o, €2 USS. If 5,30, by letting 2 | —1 in (4.6), we see that
PoF—1. Thus we obtain @z'((a, B, p))=> 8,10+ EZ""; so that p;(L3)C
=t

Almost in the same way, we can show that @7 (-LT)C=f U 3.

Step 5. Let (a, B, p)=-L5. We put

89 =8(1-1), 00 =g, 8, p) 1 =2,3,).

n

Since 8™ [2—14 15,1117 p(dt)<0, we have, by Step 4, c™&3f U=3 Then, by
using these sequences, we obtain @;'((@, B, p)) €=t UZ; in the same way as
Step 4; so that @3 (L3)C={ UZ3.

Step 6. Let (a, B, p)e-Li. We put

P(”) = x[l/u,l](t) P+a'( {O}) 81/;: .
1
By the monotone convergence theorem, we have lim,,. S 7! pM(dt)=+oo.
0

Hence we see that, for sufficiently large », (a, 8, p™)=-L7 and so, by Step 4,
o7((a0, B, p™))E=*". Then in the same way as Step 4, we see that @7’

((et, B, p))E=*"; so that 3 (L) T+
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Step 7. Let (@, B, p)e-L" and o=@z (o, B, p))- Then by Steps 4-6,
ceE3.
By substituting z in (2.5) by w

(4.8) f(w) g(w) = —5“”— (lw|>1),

-1 we obtain

where

fw) = 5 [ Lo,

g(@) =B (Z%l)—l—zo——l-}—(l—l—w) S: 2”170 ().

Since f(w) and g(w) are both holomorphic on the domain D=C\({p,} U [0, 1]),
(4.8) holds also on D. Then by letting w 1 0 in (4.8), we see that

——= é_ li ™ + +
1 \/Z(z 1+So ; PW)) if €(a,B, peLiULt,

L |
27 S_J )=\ Lo if (a8 p)ELS,
0 if (a,8,p)ELi.
Thus we obtain
P (L)Y, @i (L3)CZF, @' (L3) T2, @' (Li)C=h .
Since @,(ST)CL*, this completes the proof of Theorem 3.1. W

ExampLE 4.3. We consider the triple («, 8, p) in Example 2.8. Since

1 1 T GO
SoTp(dt)_l—}—p([O, 1) T(p) So Wodr = oo,

we have (a, B, p)E-L7.

ExampLe 4.4. We consider the triple (a, B, p) in Example 2.9. With
Sl t™! p(dt)<1 in mind, we define
0

1
(4.9) B, =2 (1—50 - p(dt))>0 .
Then we have

L i 0<B<pB,,

(a’ByP)E —C; if ﬁ:Bc,
Li i B<B<oo.

5. Preliminaries

In this section, we prepare some facts which are used when we prove The-
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orems 1.1 and 1.2 in the next section.

Lemma 5.1. Suppose that a real sequence (y(n))y-o converges to 0. Then

(5.1) lim (1—¢™") Ste ™ () =0.
n n=0

The proof of Lemma 5.1 is pallarel to Lemma 3.4 in [4], so that we omit
it.

Let NeZ. A real sequence (a(n)),-y is called slowly increasing if it holds
that
(5.2) l}\im lim sup sup (a(m)—a(n))<0 (hence = 0)

31 n<m<An

nroo

(see [3]). We need the following Tauberian condition.
(5.3)  (a(m)) is eventually positive and (log a(n)) is slowly increasing.

Lemma 5.2. Let (a(n)) be a positive non-increasing sequence. Let p>0.
Then (n° a(n)) staisfies the Tauberian condition (5.3).

The proof of Lemma 5.2 is parallel to Lemma 3.6 in [4], so that we omit
it.

The following Karamata’s Tauberian Theorem for sequences plays a
crucial role in our proof of Theorems 1.1 and 1.2 in the next section.

Theorem 5.3. (A discrete version of Theorem 1.7.6 in [3]) Assume that
(a(n))m-o is eventually positive, p>—1, L is slowly varying at infinity and

(5.4) 4(s): = s >§ e~ a(n)

is convergent for s>0. Then

(5.5) a(n) ~n" L(n)[T(1+p) (n— o)
implies

(5.6) d(s)~s~" L(1/s) (s} 0).

Conversely, (5.6) implies (5.5) if (a(n)) satisfies the Tauberian condition (5.3).

Theorem 5.3 is reduced to Theorem 1.7.6 in [3] (or Theorem 3.7 in [4])
by the following lemma.

Lemma 5.4. Let (a(n)) be a slowly increasing sequence. We define f(x)=
a([x]), where [x] is the greatest integer not greater than x. Then f is a slowly
increasing function.

Proof. For any A>1, choose M >0 so large that #>M implies (z+1)/n<
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VA, Leta>M+1,0M"e(1,4/ ) and t<[l,A]. Then since
[tx] <te<A'([x]4-1)<N[#],

we have
ftx)—f(x)< sup (a(m)—a([x])).
[#1<m<A[#]
Therefore it follows that

lim lim sup sup (f(tx)—f(x))<lim sup sup (a(m)—a([x]))
te[1,A] >0 [2]<m<A[#]

PXEAT 2>
=lim sup sup (a(m)—a(n)).
nyro n<m<An
Since A is arbitrary, we obtain the lemma. M

Lemma 5.5. Let peR,£>0,9>0 and L be a slowly varying function at
infinity. We assume q—p—E<—1 and the sequence (a(n))ys-o satisfies

(5.7) a(n) ~n=? L(n) (n—> o).

Then

(5.8) lim ¢ 31 e~ n a(n) = 0.
730 2=0

The proof of Lemma 5.5 is almost the same with Lemma 3.5 in [4], so
that we omit it.

Lemma 5.6. Let o be a bounded Borel measure on [0, 1] such that sup
{t; tesuppa}=1. We put

(5.9) Un) = S: ' o(dl) (n=0,1,-).
Then for any M &N,

. Un+M) _
(5.10) lim A = 1.

Proof. First we note that U(n4+M)<U(n) (n=1, 2, --+).
Let 0<é<1. Since o((1—¢, 1])>0, we have

Osf[o,l—e] t: O'(dt)
Sa-en 1" o(dt)

<o([0, 1—¢]) (Su_m] (ﬁ) o-(dt))_l S0 (n—> oo).

(5.11)

Furthermore we have

(5.12) U(n+M)>(1—g) S RICO¥

(1-¢,
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It follows from (5.11) and (5.12) that
. Um+M) Joa-at’ o(dt)
1 f T >1lim (1—&)M ( 1421 1—e™.
m i Sy 2hm (=0 (L=l ZE)” — -
Since £€(0, 1) is arbitrary, we have
lim YO +M) _ ¢
npoo n)
This completes the proof. M

Lemma 5.7. Let (E(n))s.o be a real summable sequence and (U (n))r-o be a
real positive non-increasing sequence. Assume that (U(n)) satisfies (5.10). We put

(5.13) R@) =3 Un+m) E(m) (n=0,1, ),
(5.14) c= ij.o E(m).

Then

(5.15) R(n)~cU(n) (n—> o).

Proof. Without loss of generality, we may assume that E (n) >0(r=0, 1, --+).
Since U is non-increasing, it follows that for any =0, 1, --.- and M €N,

(5.16) R(m)<cU(n)
(5.17) R(w)2 (3] E(m) Un-+M) .
By (5.10), (5.16) and (5.17), we have
,,,E‘:oE (m) <111;I_1) inf IIQJE ;Sllrg sup 1:} En;
and making //— oo we obtain
imR® _
= Un)

This completes the proof. W

6. Proof of Theorems 1.1 and 1.2
In this section, we complete the proof of Theorems 1.1 and 1.2.
Theorem 6.1. Let a>0,83>0,p>0 and L be a slowly varying function at

infinity. Let (y(n))y-1 be a positive non-increasing sequence which tends to zero
as n—oo. Let (U(n))n-o be a sequence of the form
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(6.1) Un) = Uy(n)+epi (n=0,1,--),

where ¢,>0, —1<p,<0 and (U.(n));-o s a positive, non-increasing and sum-
mable sequence. We assume that, for any >0, U and « satisfy

1
B U_sz‘ﬂ+1—e-ﬂ+(1—e-") e (n)

(6.2) i‘a e Um) = 2ra

Then

(6.3) y(n) ~n~? L(n) (n— o)

if and only if

(6.4) U (n) N\/_Z—B@ n=0D L(n) (n— o).

Proof. We put d=[p], where [p] is the greatest integer not greater than
p. We divide the proof into two steps.

Step 1. We first assume (6.3). The fundamental idea of our proof is to
differentiate both sides of (6.2) d+1 times with respect to 5 so that we can
apply Theorem 5.3. By Lemma 3.2 in [4], we obtain

(6.5) ;]:()e-"ln nd+l U+(n) — (_1)d+1\/ga {_f(]i::)(zﬂ)_]_?g;;gzz)}_R(d+1)(,7) ,

where

Rp)=_ %
(n) pe’

fo =8I 1o (e 5 e ata)

and F,,,(») is a polynomial in {f®(5); =0, 1, ---,d}. On the right hand side
of (6.5), the first term turns out to be the main term. For each I=1,2, .-,
the I-th derivative of f() is given by

FO) = Ai(n)+Bi(n)+Ci(n)+Di(n) ,

where

A = (—1) B er—(=1y e,

Biz) = (—1) (1—e™) 33 ™ n' o(n),
Ci(n) = (—1) 1 e 'g e 01 o (n)

/ l o
D=1y () e S an o).
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Since d+1—p>0 and

P y(n) 7 L), oy(m) ~nd=? L) (n— o0),
Theorem 5.3 yields
(6.6)  Bui(n)+Casa(n) ~(— 1) T(d+-1—p) p~ @2 L(1/) (11 0).

Furthermore, since (d+1—m)—p—2"Y(d+1—p)<—1(m=2, ---, d+1), it follows
from Lemma 5.5 that

lim 764479 Dy () = 0.

Hence we have

(6.7) lim Aii(n)+Dgsa(n) = lim Wllz.(dﬂ_p) (Aas(n)+Dy1y(n)) =0.

@I L(y) e R (1]
By (6.6) and (6.7), we see that f©@*V(y) decays as
(6.8) fEP ) ~(=1) T(d+1=p) pr~ """ L(1[5) (2 0).

On the other hand, it follows from Lemma 5.5 that for any £>0,

lim ﬂef(l)("?) =0 (l = 11 "ty d) s

ny0

and hence

(6.9) lim %* Fyyy() = 0.
730

Furthermore, by Lemma 5.1, we have

(6.10) ' lim f(n) = B.

740

It is clear that for any £>0,

(6.11) lim »* R4™(5) = 0.
140

Now we return to (6.5). From (6.8), (6.9), (6.10) and (6.11) we conclude

(612) 7 5 e nn Uy~ é;arfe‘i+1_P)Pn"d"’L(1/n) (210).

Noting d—p>—1 we apply Lemma 5.2 and Theorem 5.3 to (6.12) and obtain
n**t U, (n) NL/_%B”;LP n®~? L(n) (n— o0).
Thus (6.4) follows.
Step 2. Next, to prove another half, we assume (6.4). By (6.2) and (6.10),
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we have
(6.13) $1 Uy = V272
=0 :8
Using (6.13), we transform (6.2) as
1 g () — B Dm0 € S0 UR) _ B _
(6.14) "gle ¥(n) = S e Un) 5 1.

The fundamental idea of the proof below is similar to Step 1. This time we
differentiate both sides of (6.14) d times with respect to ». Then, by Lemma
3.3 in [4], we obtain

Y =t ,d _ d h(d)("?) Gd("]) B
6.15 e " = (=1 {g—24 +1)8u¢,
(¢4) 2 e = { OO ( 2 ) }

where

o) =™ Um), hn) =3 e ST UK)
and G, is a polynomial in {#¥(5); /=0, 1, ---, d—1} and {g®(y); =0, 1, -, d}.
On the right hand side of (6.15), the first term turns out to be the main term.

(6.13) shows that
(6.16) lim g() = Y27 &
For each /=0, 1, -+, the I-th derivatives of f(3) and g() are gievn by
g(n) = (=1 e a' Um), hx)=(—1)Ze™n UK.
From the equality
SUm=PB+ B U0

and the monotone density theorem (c.f Theorem 1.7.2 in [3] and its remark), we
have

(6.17) g: U(k)~%? n~? L(n) (n—> o).

Since d—p>—1 and U(n) is eventually positive, it follows from (6.17) and
Theorem 5.3 that

(6.18) h<d><n)~(—1)”2”“1;9(?‘*”“)771’-4-1L(1/n) (110).
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On the other hand, for any £>0 and /=0, 1, ---, d—1, Lemma 5.5 yields

(6.19) lim »* A%(5) = 0.
140
In the same way, for any £>0 and /=0, 1, --+, d, we have
(6.20) lim »* g® () = 0.
740
By (6.19) and (6.20), we obtain for any £>0,
(6.21) lim %° Gy(n) = 0.
740

Now we return to (6.15). In view of (6.16), (6.18) and (6.21), we derive
7 36w oylm) ~T(d—p+1) 7 L(1}r) (240).
Then, by Lemma 5.2 and Theorem 5.3, we obtain
nt y(n) ~n*=? L(n) (n— o).
This shows (6.3) and completes the proof of Theorem 6.1. MW

Proof of Theorem 1.2. Let (@, By p)E-LY and let o=@z (a2 Ba) p2))-
We consider the correlation function R, of the form (1.9) and the delay coefficient
7, of the form (1.13). By Corollary 3.2, we have o,&3*, so that R, is of the
form (6.1). Furthermore, by (2.5), R, and (a;, B;, 7.) satisfy for any >0,

51 e R = v 2 e {8, U 1o (1) S )

Then Theorem 1.2 follows from Theorem 6.1 immediately. W

Proof of Theorem 1.1. Let (e, By, p,)E-L* and let o,=@7((at), By, py))-
We consider the correlation function R, of the form (1.9) and the delay coefficient
v, of the form (1.13). Let X be the solution of (1.1). Let E, be the canonical
representation kernel of X and let /(2) be the outer function of X. We put
v=@7((ay, By, p1))- Then, by (2.34), we have

R

LRt GEUO),

and hence, by Theorems 4.2 and 4.3 in [10],
1
En) = Xomim) | 1'v(d) (1€2).
Therefore, by Theorem 1.2, (1.13) is equivalent to

(6.22) E,(n) N‘/sz‘i’ w0 Lin) (- o).
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On the other hand, we note that since v€3*, E, is of the form
(6.23) E\(n) = E,(n)+c,ps (n=0,1,-),

where ¢,>0, 1—<p,<<0 and (E,(n));.o is a positive, non-increasing and sum-
mable sequence. In the same way with (6.13), we can show

V2% oy .
B

In view of (2.13) in [10] and (6.23), we see that

IACES

Rifo) = 5 3 E(m) Eym) -2 (3305 Ex(m)) 25

Then, it follows from Lemma 5.7 that (6.22) is equivalent to (1.14). This com-
pletes the proof of Theorem 1.1. W
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