

Title	Asymptotic properties of posterior distributions in a truncated case
Author(s)	Matsuda, Tadayuki
Citation	Osaka Journal of Mathematics. 20(2) P.307-P.320
Issue Date	1983
Text Version	publisher
URL	https://doi.org/10.18910/11763
DOI	10.18910/11763
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Matsuda, T. Osaka J. Math. 20 (1983), 307-320

ASYMPTOTIC PROPERTIES OF POSTERIOR DISTRIBUTIONS IN A TRUNCATED CASE

TADAYUKI MATSUDA

(Received September 21, 1981)

1. Introduction

Let X_1, \dots, X_n be independent random variables with common density $f(x-\theta), -\infty < x, \theta < \infty$, where θ is an unknown translation parameter. We shall consider here the case that f(x) is a uniformly continuous density which vanishes on the interval $(-\infty, 0]$ and is positive on the interval $(0, \infty)$ and particularly

 $f(x) \sim \alpha x$ as $x \to +0$

with $0 < \alpha < \infty$.

Let $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ denote the maximum likelihood estimate of θ for the sample size *n*. Takeuchi [4] and Woodroofe [7] showed that $\sqrt{\frac{1}{2}\alpha n \log n} (\hat{\theta}_n - \theta)$ has an asymptotic standard normal distribution. The speed of convergence to the standard normal distribution has been given as $O((\log n)^{s-1})$ for every fixed $s \in (0, 1)$ by the author [2] (see Theorem 1 below). Moreover, it was shown by Takeuchi [4] and Weiss and Wolfowitz [6] that $\hat{\theta}_n$ is an asymptotically efficient estimator of θ .

Woodroofe [7] also showed that if θ is regarded as a random variable with a prior density, then the posterior probability that $\sqrt{\frac{1}{2}\alpha n \log n} (\theta - \hat{\theta}_n) \in J$ converges to normality $\Phi\{J\}$ in probability for every finite interval J. The purpose of the present paper is to give a refinement of his result. It is shown that the variational distance between the posterior distribution and the standard normal distribution decreases of the order $(\log n)^{-s}$ with probability $1 - O((\log n)^{s-1})$ for every $s \in (0, 1)$. Similar result for minimum contrast estimates in the regular case was given by Strasser [3].

2. Conditions and the main result

We shall impose the following Condition A on f(x) and Condition B on a prior distribution λ .

Condition A

(i) f(x) is a uniformly continuous density which vanishes on $(-\infty, 0]$ and is positive on $(0, \infty)$.

(ii) f(x) is twice continuously differentiable on $(0, \infty)$ with derivatives f'(x) and f''(x). Moreover f''(x) is absolutely continuous on every compact subinterval of $(0, \infty)$ with derivative f'''(x).

(iii) For some $\alpha \in (0, \infty)$ and some $r \in (0, \infty)$

$$f'(x) = \alpha + O(x^r)$$
, $f''(x) = O(x^{r-1})$ and $f'''(x) = o(x^{-2})$ as $x \to +0$.

Let $g(x) = \log f(x)$ for x > 0. Then the second derivative g''(x) of g(x) is absolutely continuous on every compact subinterval of $(0, \infty)$ with derivative $g''' = f''' f^{-1} - 3f' f'' f^{-2} + 2(f' f^{-1})^3$. Under conditions (i) and (ii), condition (iii) is equivalent to the following condition (iii)'.

(iii)' For some $\alpha \in (0, \infty)$ and some $r \in (0, \infty)$

$$\begin{aligned} f(x) &= \alpha x + O(x^{1+r}), \quad g'(x) = x^{-1} + O(x^{r-1}), \quad g''(x) = -x^{-2} + O(x^{r-2}) \\ \text{and} \quad g'''(x) &= 2x^{-3} + o(x^{-3}) \quad \text{as} \quad x \to +0. \end{aligned}$$

(iv) For every $t \ge 0$

$$\int_0^\infty \{g(x+t)\}^2 f(x) dx < \infty .$$

(v) For every a > 0, there is a $\delta > 0$, for which

(a)
$$\int_a^{\infty} \sup_{|u| \leq \delta} |g'(x+u)|^3 f(x) dx < \infty,$$

(b)
$$\int_a^{\infty} \sup_{|u| \leq \delta} \{g''(x+u)\}^2 f(x) dx < \infty,$$

(c)
$$\int_a^\infty \sup_{|u| \leq \delta} \{g^{\prime\prime\prime}(x+u)\}^2 f(x) dx < \infty.$$

Let $(\mathbf{R}, \mathcal{B})$ be a parameter space, where \mathbf{R} is the real line and \mathcal{B} is the Borel σ -algebra of \mathbf{R} . Moreover, let λ be a prior distribution on $(\mathbf{R}, \mathcal{B})$. The following Condition \mathbf{B} is owed to Strasser [3].

Condition B

(j) For every
$$\eta > 0$$
 and every compact $K \subset \mathbf{R}$

$$\inf_{\boldsymbol{A}\in\boldsymbol{\kappa}}\lambda\{t\in\boldsymbol{R}; |t-\theta|<\eta\}>0.$$

(jj) λ has a continuous and positive density p on \mathbf{R} with respect to the Lebesgue measure satisfying the following condition: For every compact $K \subset \mathbf{R}$ there exist constants $c_K > 0$ and $d_K > 0$ such that $t \in \mathbf{R}$, $\theta \in K$ and $|t-\theta| \leq d_K$ imply

$$|p(t)-p(\theta)| \leq c_{\kappa} p(\theta) |t-\theta|.$$

Obviously condition (jj) implies condition (j).

Let P_{θ} denote the conditional probability of (X_1, \dots, X_n) given θ and define

$$\Phi \{B\} = \int_B \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$
, $B \in \mathcal{B}$.

The following theorem is often needed in the sequel.

Theorem 1 (Matsuda [2]). Suppose that Condition A holds. Then for every $s \in (0, 1)$ there exists a positive constant c such that for all θ , $t \in \mathbf{R}$ and $n \ge 1$

$$|P_{\theta}\{a_n(\hat{\theta}_n-\theta)\leq t\}-\Phi\{(-\infty,t]\}|\leq c(\log n)^{s-1},$$

where $2a_n^2 = \alpha n(\log n + \log \log n)$ and the constant c tends to infinity as $s \rightarrow 0$.

It is remarked that the upper bound $(\log n)^{s-1}$ in Theorem 1 is replaced by a better bound $(\log n)^{-1}$, provided t is restricted to $(-\infty, M)$ with $0 < M < \infty$. But, using $\sqrt{\frac{1}{2}\alpha n \log n}$ instead of a_n , the upper bound in Theorem 1 becomes $(\log \log n) (\log n)^{-1}$ which is worse than the order $(\log n)^{-1}$. Thus we use a_n rather than $\sqrt{\frac{1}{2}\alpha n \log n}$.

Let R_n denote the conditional distribution of θ given X_1, \dots, X_n and define a probability measure Q_n by

$$Q_n\{B\} = R_n\{\theta \in \mathbf{R}; a_n(\theta - \hat{\theta}_n) \in B\}, \qquad B \in \mathcal{B}.$$

Theorem 2. Suppose that Condition A and condition (jj) hold. Then for every $s \in (0, 1)$ and every compact $K \subset \mathbb{R}$ there exist constants $c_1 > 0$ and $c_2 > 0$ such that for all $n \ge 1$

$$\sup_{\theta\in K} P_{\theta}\{||Q_n - \Phi|| \ge c_1(\log n)^{-s}\} \le c_2(\log n)^{s-1},$$

where $||\cdot||$ means the totally variation of a measure.

For the proof of Theorem 2 we need several lemmas and propositions.

3. Auxiliary results

In this section, $\theta=0$ will be chosen for simplicity and write P instead of P_0 . Let E be the expectation with respect to P. The following Lemma 1 and Lemma 2 are closely related to Lemma 1 and Lemma 2 in Strasser [3], respectively.

Lemma 1. Let conditions (i) and (iv) be satisfied. Then for every $\varepsilon > 0$

there exists d > 0 such that

$$P\{\sup_{i\leq -n} n^{-1} \sum_{i=1}^{n} g(X_i - t) \ge E\{g(X)\} - d\} = O(n^{-1}).$$

Proof. Let M be a positive number chosen such that

$$E\{\sup_{t<-\mathcal{M}}g(X-t)\} < E\{g(X)\}.$$

For every $t \in [-M, -\varepsilon]$ there exists an open neighborhood U_t of t such that

$$E\{\sup_{u\in\sigma}g(X-u)\} < E\{g(X)\}$$

The existence of such a positive number M and that of such a U_t follow from Wald [5] (see Woodroofe [7] and also [2]). As $\{U_t; t \in [-M, -\varepsilon]\}$ covers the compact set $[-M, -\varepsilon]$, there exists a finite subcover of this set $[-M, -\varepsilon]$ determined by $t_j \in [-M, -\varepsilon]$, $j=1, \dots, m$. For notational convenience, let $U_0 = (-\infty, -M)$ and $U_j = U_{t_j}, j=1, \dots, m$. Write

$$d_j = E\{g(X)\} - E\{\sup_{t \in \sigma_j} g(X-t)\} > 0, \quad j = 0, \dots, m$$

and let $2d = \min \{d_j; j=0, \dots, m\} > 0$. Then

$$\sup_{t \leq -e} n^{-1} \sum_{i=1}^{n} g(X_i - t) \geq E\{g(X)\} - d$$

implies

$$n^{-1}\sum_{i=1}^{n}\sup_{t\in\mathcal{T}_{j}}g(X_{i}-t)-E\{\sup_{t\in\mathcal{T}_{j}}g(X-t)\}\geq d$$

for some $j \in \{0, \dots, m\}$. Hence we have

$$P\{\sup_{t \leq -\mathfrak{e}} n^{-1} \sum_{i=1}^{n} g(X_{i} - t) \geq E\{g(X)\} - d\}$$

$$\leq \sum_{i=0}^{m} P\{|n^{-1} \sum_{j=1}^{n} \sup_{t \in U_{j}} g(X_{i} - t) - E\{\sup_{t \in U_{j}} g(X - t)\}| \geq d\}.$$

Now the assertion of Lemma 1 follows from Chebyshev's inequality because of conditions (i) and (iv).

Lemma 2. Let conditions (i)–(iv) and (v) (a) be satisfied. Then for every d>0 there exists $\eta>0$ such that

$$P\{\inf_{-\eta < t < 0} n^{-1} \sum_{i=1}^{n} g(X_i - t) \leq E\{g(X)\} - d\} = O(n^{-1}).$$

Proof. Let a>0 be so small that g'(x)>0 for 0 < x < 2a. Next choose

 $\delta > 0$ to satisfy condition (v) (a). Then for $\eta < \delta$ we have

$$n^{-1} \sum_{i=1}^{n} g(X_{i}-t) = n^{-1} \sum_{i=1}^{n} g(X_{i}) - n^{-1}t \sum_{i=1}^{n} g'(X_{i}-t^{*})$$
$$\geq n^{-1} \sum_{i=1}^{n} g(X_{i}) + n^{-1}t \sum_{a}^{\infty} \sup_{|u| \leq \delta} |g'(X_{i}+u)|$$

for some $t^* \in (-\eta, 0)$. Here and in what follows, \sum_{u}^{v} denotes summation over $i \leq n$ for which $u \leq X_i < v$. Hence

$$|n^{-1}\sum_{i=1}^{n}g(X_{i})-E\{g(X)\}| < \frac{d}{3}$$

and

$$|n^{-1}\sum_{a}^{\infty} \sup_{|u| \leq \delta} |g'(X_{i}+u)| - \int_{a}^{\infty} \sup_{|u| \leq \delta} |g'(x+u)| f(x) dx| < \frac{d}{3}$$

imply

$$n^{-1}\sum_{i=1}^{n} g(X_{i}-t) \geq E\{g(X)\} - \frac{d}{3} + t\left\{\frac{d}{3} + \int_{a}^{\infty} \sup_{\|u\| \leq \delta} |g'(x+u)| f(x) dx\right\}.$$

Choosing $\eta < \min\left\{1, \delta, \frac{d}{3}\left[\int_a^\infty \sup_{|u| \leq \delta} |g'(x+u)| f(x) dx\right]^{-1}\right\}$, we obtain

$$\inf_{-\eta < t < 0} n^{-1} \sum_{i=1}^{n} g(X_i - t) > E\{g(X)\} - d.$$

Lemma 2 follows from Chebyshev's inequality because of conditions (iv) and (v)(a).

Lemma 3. Let conditions (i)-(iii) and (v)(b) be satisfied. Then for every $s \in (0, 1)$

$$P\{|a_n^{-2}\sum_{i=1}^n g''(X_i)+1| \ge (\log n)^{-s}\} = O((\log n)^{s-1}).$$

Proof. According to condition (iii)' choose a > 0 and c > 0 such that $|f(x) - \alpha x| \leq cx^{1+r}$ and $|g''(x) + x^{-2}| \leq cx^{r-2}$ for 0 < x < a. For $i \leq n$ let

$$\begin{aligned} Y_{ni} &= g''(X_i), & \text{if } b_n \leq X_i < a, \\ &= 0, & \text{if } X_i < b_n \text{ or } a \leq X_i, \end{aligned}$$

where $b_n = a_n^{-1} (\log n)^{s/2}$. Since $E\{Y_{n1}^2\} = O(b_n^{-2}) = O(n(\log n)^{1-s})$, it follows from Chebyshev's inequality that

$$P\{|a_n^{-2}\sum_{i=1}^n (Y_{ni}-E\{Y_{ni}\})| \ge \frac{1}{4}(\log n)^{-s}\} = O((\log n)^{s-1}).$$

Considering $E\{Y_{n1}\} = -\alpha \log a_n + O(\log \log n)$, this leads to

$$P\{|a_n^{-2}\sum_{i=1}^n Y_{ni}+1| \ge \frac{1}{2}(\log n)^{-s}\} = O((\log n)^{s-1}).$$

Moreover, using $P\{\sum_{i=1}^{n} Y_{ni} \neq \sum_{0}^{a} g''(X_i)\} = O((\log n)^{s-1})$, we obtain

$$P\{|a_n^{-2}\sum_{0}^{a}g''(X_i)+1| \geq \frac{1}{2}(\log n)^{-s}\} = O((\log n)^{s-1}).$$

Since also

$$P\{|a_n^{-2}\sum_a^{\infty}g''(X_i)| \ge \frac{1}{2}(\log n)^{-s}\} = O(n^{-1})$$

by Chebyshev's inequality, the proof is completed.

Let $M_n = \min(X_1, \dots, X_n)$ and let $b_n = a_n^{-1}(\log n)^{s/2}$ with $s \in (0, 1)$ as in the proof of Lemma 3.

Lemma 4. Let conditions (i), (ii) and (iii) be satisfied. Then for every $s \in (0, 1)$ and sufficiently small a > 0

$$P\{|a_n^{-3}\sum_{0}^{a}(X_i-2b_n)^{-3}| \ge (\log n)^{-(3/2)s}, M_n > 2b_n\} = O((\log n)^{s-1}).$$

Proof. Let a>0 be so small that $f(x)<2\alpha x$ for 0< x< a. Then define $\{Y_{ni}; i=1, \dots, n\}$ by

Since $E\{Y_{n1}^2\}=O(b_n^{-4})$, it follows from Chebyshev's inequality that

$$P\{|a_n^{-3}\sum_{i=1}^n (Y_{ni}-E\{Y_{ni}\})| \ge \frac{1}{2}(\log n)^{-(3/2)s}\} = O((\log n)^{s-1}).$$

Moreover, using $a_n^{-3} \sum_{i=1}^n E\{Y_{ni}\} = O((\log n)^{-1-s/2})$ we obtain

$$P\{|a_n^{-3}\sum_{i=1}^n Y_{ni}| \ge (\log n)^{-(3/2)s}\} = O((\log n)^{s-1}),$$

which leads to the desired result.

For notational convenience define

$$G_n(t) = \sum_{i=1}^n g(X_i - t), \quad \text{if } t < M_n,$$

= $-\infty$, $\quad \text{if } t \ge M_n.$

The following Lemma 5 and Lemma 6 refine Lemma 3.4 and Lemma 4.1 in Woodroofe [7], respectively.

Lemma 5. Let conditions (i)–(iii), (v)(b) and (v)(c) be satisfied. Then for every $s \in (0, 1)$ there exists c > 0 such that

$$P\{\sup_{|t|\leq 2b_n} |a_n^{-2}G_n'(t)+1| \geq c(\log n)^{-s}\} = O((\log n)^{s-1})$$

Proof. Since $P\{M_n \leq 2b_n\} = O((\log n)^{s-1})$, we can assume that $M_n > 2b_n$. Then $G''_n(t) = \sum_{i=1}^n g''(X_i - t)$ for $|t| \leq 2b_n$. Using the equality

$$a_n^{-2}\sum_{i=1}^n g''(X_i-t) = a_n^{-2}\sum_{i=1}^n g''(X_i) - a_n^{-2}\sum_{i=1}^n \int_0^t g'''(X_i-u)du$$

we have

$$\sup_{\substack{|t| \leq 2b_n \\ |t| > 2b_n$$

Here we used the fact that $|g'''(x)| \leq 3x^{-3}$ for 0 < x < 2a with sufficiently small a > 0. Now the assertion follows from Lemma 3 and Lemma 4.

Lemma 5, together with Theorem 1, yields the following lemma.

Lemma 6. Let Condition A be satisfied. Then for every $s \in (0, 1)$ there exists c > 0 such that

$$P\{\sup_{|t|\leq b_n} |a_n^{-2}G_n''(\hat{\theta}_n+t)+1| \geq c(\log n)^{-s}\} = O((\log n)^{s-1}),$$

where $b_n = a_n^{-1} (\log n)^{s/2}$.

Lemma 7 (Lemma 2 in [2]). Let conditions (i)–(iii) and (iv) be satisfied. Then for every $\varepsilon > 0$

$$P\{|\hat{\theta}_n|\geq \varepsilon\}=O(n^{-1}).$$

Lemma 8 (Lemma 1 in [2]). Let conditions (i)–(iii) and (v) (b) be satisfied. Then for sufficiently small $\varepsilon > 0$, there are events D_n , $n \ge 1$, for which $P\{D_n^c\} = O(n^{-1})$ and D_n implies $\sup_{-\varepsilon \le t \le M_n} n^{-1}G''_n(t) < -1$.

The following lemma also may be proved analogously to Lemma 8.

Lemma 9. Let conditions (i)–(iii) and (v)(c) be satisfied. Then for sufficiently small $\varepsilon > 0$, there are events F_n , $n \ge 1$, for which $P\{F_n^c\} = O(n^{-1})$ and F_n implies $\sup_{-\varepsilon \le t \le t \le n} n^{-1}G'''_n(t) < -1$.

Lemma 10. Let conditions (i), (ii) and (iii) be satisfied. Then for every

 $s \in (0, 1)$, every b > 0 and sufficiently small a > 0

$$P\{|a_n^{-2}\sum_{0}^{a} (X_i+2bd_n)^{-2}-1| \ge (\log n)^{-(1+s)/2}\} = O((\log n)^{s-1}),$$

where $d_n = a_n^{-1} (\log n)^{1/2}$.

We shall omit the proof since Lemma 10 may be proved analogously to Lemma 4.

4. Estimation of the speed of convergence

For each $n \ge 1$ and each $s \in (0, 1)$, let $H_n(s) = [-(\log n)^{s/2}, (\log n)^{s/2}]$. In this section, we shall estimate the speed with which $Q_n \{H_n(s)^c\}$ converges to 0. For the convenience of calculation, we shall divide $H_n(s)^c$ into five parts as follows:

$$I_n(\mathcal{E}) = (-\infty, -a_n \mathcal{E}],$$

$$I_n(\mathcal{E}, b) = (-a_n \mathcal{E}, -b(\log n)^{1/2}],$$

$$J_n(b, s) = (-b(\log n)^{1/2}, -(\log n)^{s/2}),$$

$$J_n(s) = ((\log n)^{s/2}, \log n),$$

$$J_n = [\log n, \infty)$$

and

with $\varepsilon > 0$ and b > 0. We first show the following proposition which is similar to Theorem 1 in Strasser [3].

Proposition 1. Let conditions (i)–(v)(a) and (j) be satisfied. Then for every $\varepsilon > 0$ there exists c > 0 such that for every compact $K \subset \mathbf{R}$

$$\sup_{\theta \in K} P_{\theta} \{ R_n \{ t \in \mathbf{R}; |t-\theta| \ge \varepsilon \} > \exp(-cn) \} = O(n^{-1}).$$

Proof. Since θ is a translation parameter, it is easily seen that $\sup_{\theta \in \mathbb{R}} P_{\theta}\{M_n - \theta \ge \varepsilon\} = P\{M_n \ge \varepsilon\} = o(n^{-1})$. Therefore, we shall assume that $M_n - \theta < \varepsilon$. Then we have

$$R_{n}\{|t-\theta| \geq \varepsilon\} = \frac{\int_{|t-\theta| \geq \varepsilon} \exp \{G_{n}(t)\} \lambda(dt)}{\int_{R} \exp \{G_{n}(t)\} \lambda(dt)}$$
$$\leq \frac{\int_{t \leq \theta-\varepsilon} \exp \{G_{n}(t)\} \lambda(dt)}{\int_{\theta-\eta < t < \theta} \exp \{G_{n}(t)\} \lambda(dt)}$$
$$\leq \exp \{-n[\inf_{-\eta < t < \theta} n^{-1}G_{n}(\theta+t) - \sup_{t \leq -\varepsilon} n^{-1}G_{n}(\theta+t) + n^{-1}\log \lambda \{-\eta < t - \theta < 0\}]\}$$

for
$$\eta > 0$$
. By Lemma 1 there exists $d > 0$ (depending on ε) such that

$$\sup_{t\leq -\mathfrak{e}} n^{-1}G_n(\theta+t) < E_{\theta}\{g(X-\theta)\} - d$$

with probability $1-O(n^{-1})$, where $O(n^{-1})$ is uniform in θ for $\theta \in \mathbf{R}$. Also, by Lemma 2 there exists $\eta > 0$ (depending on ε) such that

$$\inf_{\eta < t < 0} n^{-1} G_n(\theta + t) > E_{\theta} \{ g(X - \theta) \} - \frac{d}{4}$$

with probability $1-O(n^{-1})$ as just stated. Since $-\infty <\beta \equiv \inf_{\theta \in K} \log \lambda \{-\eta < t-\theta < 0\} \le 0$ by condition (j), for any $0 < c < \frac{d}{2}$ we have

$$\inf_{-\eta < t < 0} n^{-1}G_n(\theta+t) - \sup_{t \leq -2} n^{-1}G_n(\theta+t) + n^{-1}\beta > c$$

for all sufficiently large n. This completes the proof of Proposition 1.

The following result immediately follows from Proposition 1 and Lemma 7.

Proposition 2. Let conditions (i)–(v)(a) and (j) be satisfied. Then for every $\varepsilon > 0$ there exists c > 0 such that for every compact $K \subset \mathbf{R}$

$$\sup_{\theta \in K} P_{\theta} \{ Q_n \{ I_n(\varepsilon) \} > \exp(-cn) \} = O(n^{-1}) \,.$$

Easy computations show that condition (jj) and Lemma 7 imply that for every compact $K \subset \mathbb{R}$ there exist $c_1, c_2, 0 < c_1 < c_2 < \infty$, and $c_3 > 0$ such that

(4.1)
$$\inf_{\theta \in K} P_{\theta} \{ c_1 \eta_n \leq \lambda \{ | t - \hat{\theta}_n | \leq \eta_n \} \leq c_2 \eta_n \} \geq 1 - c_3 n^{-1}$$

for all $n \ge 1$ and for every positive sequence $\{\eta_n\}$ with $\eta_n \rightarrow 0$ as $n \rightarrow \infty$.

Proposition 3. Let Condition A and condition (jj) be satisfied. Then for every $s \in (0, 1)$, every b > 0, every k > 0 and every compact $K \subset \mathbf{R}$

$$\sup_{\theta \in K} P_{\theta} \{ Q_n \{ J_n(b, s) \} \ge (\log n)^{-k} \} = O((\log n)^{s-1}) \, .$$

Proof. Lemma 8 implies that, with probability $1-O(n^{-1})$, $G_n(t)$ is a concave function in $t \in [\theta - 2\varepsilon, M_n)$, if $\varepsilon > 0$ is a sufficiently small number. Using Lemma 7 we can assume that $|\hat{\theta}_n - \theta| < \varepsilon$. Hence for all sufficiently large n we have

$$\sup \{G_n(t); \hat{\theta}_n - ba_n^{-1}(\log n)^{1/2} < t < \hat{\theta}_n - b_n\} \leq G_n(\hat{\theta}_n - b_n)$$
$$\leq G_n(\hat{\theta}_n) + \frac{b_n^2}{2} \sup_{|t| \leq b_n} G''_n(\hat{\theta}_n + t)$$
$$\leq G_n(\hat{\theta}_n) - \frac{1}{4} (\log n)^s.$$

The last inequality follows from Lemma 6. A similar argument will show that

$$\inf \{G_{n}(t); |t - \hat{\theta}_{n}| \leq a_{n}^{-1}\} \geq \min \{G_{n}(\hat{\theta}_{n} - a_{n}^{-1}), G_{n}(\hat{\theta}_{n} + a_{n}^{-1})\}$$
$$\geq G_{n}(\hat{\theta}_{n}) + \frac{a_{n}^{-2}}{2} \inf_{|t| \leq a_{n}^{-1}} G_{n}''(\hat{\theta}_{n} + t)$$
$$\geq G_{n}(\hat{\theta}_{n}) - \frac{3}{4}.$$

Therefore, for $\theta \in K$

$$Q_{n}\{J_{n}(b, s)\} \leq \frac{\int_{\hat{\theta}_{n}-ba_{n}^{-1}(\log n)^{1/2}}^{\hat{\theta}_{n}-ba_{n}^{-1}(\log n)^{1/2}} \exp\{G_{n}(t)\}\lambda(dt)}{\int_{\hat{\theta}_{n}-a_{n}^{-1}}^{\hat{\theta}_{n}+a_{n}^{-1}} \exp\{G_{n}(t)\}\lambda(dt)}$$
$$\leq \frac{\exp\{G_{n}(\hat{\theta}_{n})-\frac{1}{4}(\log n)^{s}\}\lambda\{|t-\hat{\theta}_{n}|\leq ba_{n}^{-1}(\log n)^{/2}\}}{\exp\{G_{n}(\hat{\theta}_{n})-\frac{3}{4}\}\lambda\{|t-\hat{\theta}_{n}|\leq a_{n}^{-1}\}}$$

Taking account of (4.1), we obtain

$$Q_n\{J_n(b, s)\} \leq cb(\log n)^{1/2} \exp \{-\frac{1}{4}(\log n)^s\} < (\log n)^{-k}$$

for all sufficiently large n, where c is a real number depending on K. Thus the proof is completed.

The following Proposition 4 may be proved similarly to Proposition 3, and so the proof will be omitted here.

Proposition 4. Let Condition A and condition (jj) be satisfied. Then for every $s \in (0, 1)$, every k > 0 and every compact $K \subset \mathbf{R}$

$$\sup_{\theta\in K} P_{\theta}\{Q_n\{J_n(s)\} \geq (\log n)^{-k}\} = O((\log n)^{s-1}).$$

Proposition 5. Let Condition A be satisfied. Then for every $s \in (0, 1)$

$$\sup_{\theta\in \mathbf{R}} P_{\theta} \{Q_n \{J_n\} > 0\} = O((\log n)^{s-1}).$$

Proof. It is easily seen that $\sup_{\theta \in \mathbb{R}} P_{\theta} \{ M_n - \theta \ge \frac{1}{2} a_n^{-1} \log n \} = O(n^{-c})$ for some c > 0. Theorem 1 implies that

$$\sup_{\theta\in R} P_{\theta}\{|\hat{\theta}_n-\theta|\geq b_n\}=O((\log n)^{s-1}).$$

Therefore, we may assume that

Asymptotic Properties of Posterior Distributions

$$M_n - \theta < \frac{1}{2} a_n^{-1} \log n \text{ and } |\hat{\theta}_n - \theta| < b_n.$$

Then $t \ge \hat{\theta}_n + a_n^{-1} \log n$ implies $t > M_n$ for sufficiently large *n*. Since $R_n \{t > M_n\}$ =0, the assertion of the proposition holds.

Proposition 6. Let Condition A and condition (jj) be satisfied. Then for every $s \in (0, 1)$, every k > 0, every compact $K \subset \mathbf{R}$ and sufficiently small $\varepsilon > 0$ there exists b > 0 such that

$$\sup_{\theta \in \mathcal{K}} P_{\theta} \{ Q_n \{ I_n(\varepsilon, b) \} \geq n^{-k} \} = O((\log n)^{s-1}) \, .$$

Proof. By Theorem 1 we can assume that $|\hat{\theta}_n - \theta| < bd_n$ where $d_n = a_n^{-1}(\log n)^{1/2}$. Since $G_n(t)$ is concave on $[\theta - 2\varepsilon, M_n)$ with sufficiently small $\varepsilon > 0$, Lemma 9 implies

$$\sup \{G_n(t); -\varepsilon < t - \hat{\theta}_n < -bd_n\} \leq G_n(\hat{\theta}_n - bd_n)$$
$$\leq G_n(\hat{\theta}_n) + \frac{b^2 d_n^2}{2} G_n''(\hat{\theta}_n - bd_n)$$

for all sufficiently large *n*.

Let a>0 be so small that $g''(x)<-\frac{1}{2}x^{-2}$ for 0< x<2a and choose $\delta>0$ to satisfy condition (v)(b). Then, it follows from Lemma 10 that

$$\begin{split} \sum_{\theta}^{\theta+a} g^{\prime\prime}(X_i - \hat{\theta}_n + bd_n) &\leq -\frac{1}{2} \sum_{\theta}^{\theta+a} (X_i - \hat{\theta}_n + bd_n)^{-2} \\ &\leq -\frac{1}{2} \sum_{\theta}^{\theta+a} (X_i - \theta + 2bd_n)^{-2} \\ &\leq -\frac{1}{4} a_n^2 \,. \end{split}$$

Since $|\sum_{\theta=a}^{\infty} g''(X_i - \hat{\theta}_n + bd_n)| \leq \sum_{\theta=a}^{\infty} \sup_{\|u\| \leq \delta} |g''(X_i - \theta + u)|$ for all sufficiently large *n*, we have $\sum_{\theta=a}^{\infty} g''(X_i - \hat{\theta}_n + bd_n) = O(n)$ from Chebyshev's inequality. Hence, there is L > 0 such that

$$\sup \{G_n(t); -\varepsilon < t - \hat{\theta}_n < -bd_n\} \leq G_n(\hat{\theta}_n) - \frac{b^2}{8} \log n + L$$

for all sufficiently large n. Thus it follows from (4.1) that

$$Q_n\{I_n(\varepsilon, b)\} \leq \frac{\exp\left\{G_n(\hat{\theta}_n) - \frac{b^2}{8}\log n + L\right\}}{\exp\left\{G_n(\hat{\theta}_n) - \frac{3}{4}\right\} \lambda\{|t - \hat{\theta}_n| \leq a_n^{-1}\}} \leq ca_n n^{-b^2/8},$$

where c is a real number depending on K. Choosing $b^2 = 8(1+k)$, it can be easily seen that $Q_n\{I_n(\varepsilon, b)\} < n^{-k}$. This completes the proof.

Now we are able to estimate the speed of convergence in the following proposition.

Proposition 7. Let Condition A and condition (jj) be satisfied. Then for every $s \in (0, 1)$, every k > 0 and every compact $K \subset \mathbf{R}$ there exists c > 0 such that

$$\sup_{\theta\in K} P_{\theta}\{Q_n\{H_n(s)^c\} \ge c(\log n)^{-k}\} = O((\log n)^{s-1}).$$

5. Proof of Theorem 2

According to Proposition 7, it is enough to see that for every $s \in (0, 1)$ and every compact $K \subset \mathbb{R}$ there exists c > 0 such that

$$\sup_{\theta\in\mathcal{K}}P_{\theta}\{\sup_{B\in\mathcal{B}}|Q_{n}\{B\cap H_{n}(s)\}-\Phi\{B\}|\geq c(\log n)^{-s}\}=O((\log n)^{s-1}).$$

This implies that we need only to show

$$\sup_{\theta \in \mathcal{K}} P_{\theta} \{ \sup_{B \in \mathcal{B}} | \tilde{Q}_n \{B\} - \Phi \{B\} | \geq c (\log n)^{-s} \} = O((\log n)^{s-1}),$$

where

$$\tilde{Q}_n\{B\} = \frac{Q_n\{B \cap H_n(s)\}}{Q_n\{H_n(s)\}}, \qquad B \in \mathcal{B}.$$

Since $\sup_{\theta \in R} P_{\theta}\{|\hat{\theta}_n - \theta| \ge 1\} = O(n^{-1})$ by Lemma 7, we shall assume that $|\hat{\theta}_n - \theta| < 1$. Let $\tilde{K} = \{t; \inf_{v \in K} |t-v| \le 1\}$. Then $\theta \in K$ implies $\hat{\theta}_n \in \tilde{K}$. Applying condition (jj) to \tilde{K} , we have

$$|p(\hat{\theta}_n + a_n^{-1}u) - p(\hat{\theta}_n)| \leq n^{-1/2} p(\hat{\theta}_n)$$

for $u \in H_n(s)$ and all sufficiently large *n*. From Lemma 6 we obtain

$$-\frac{u^2}{2}(1+L_1(\log n)^{-s}) \leq G_n(\hat{\theta}_n+a_n^{-1}u)-G_n(\hat{\theta}_n) \leq -\frac{u^2}{2}(1-L_1(\log n)^{-s})$$

for all $u \in H_n(s)$, where L_1 is a positive real number. Hence, for all sufficiently large *n*, we have the upper bound of $\tilde{Q}_n\{B\}$ as follows:

$$\tilde{Q}_{n}\{B\} = \frac{\int_{B\cap H_{n}(s)} \exp \{G_{n}(\hat{\theta}_{n} + a_{n}^{-1}u)\} p(\hat{\theta}_{n} + a_{n}^{-1}u) du}{\int_{H_{n}(s)} \exp \{G_{n}(\hat{\theta}_{n} + a_{n}^{-1}u)\} p(\hat{\theta}_{n} + a_{n}^{-1}u) du}$$
$$\leq (1+3n^{-1/2}) \frac{\int_{B\cap H_{n}(s)} \exp \{-\frac{u^{2}}{2}(1-L_{1}(\log n)^{-s})\} du}{\int_{H_{n}(s)} \exp \{-\frac{u^{2}}{2}(1+L_{1}(\log n)^{-s})\} du}$$

Asymptotic Properties of Posterior Distributions

$$\leq \frac{(1+3n^{-1/2}) \left[\int_{B} \exp\left(-\frac{u^{2}}{2}\right) du + L_{2}(\log n)^{-s} \right]}{\sqrt{2\pi} - L_{3}(\log n)^{-s}}$$

$$\leq \Phi \{B\} + L_{4}(\log n)^{-s},$$

where $L_2 \sim L_4$ are positive constants. A similar argument shows that the lower bound of $\tilde{Q}_n\{B\}$ is $\Phi\{B\} - L_5(\log n)^{-s}$. This completes the proof of Theorem 2.

REMARK. Easy computations show that the distribution of $\{n^{-1}\sum_{i=1}^{\alpha} X_{i}^{-2} - \frac{\alpha}{2} \log n\}$ converges weakly to a stable law V(x) with characteristic exponent 1. It is well known that

$$\lim_{x\to\infty} x\left\{1-V(x)+V(-x)\right\}=c,$$

where c is a positive constant (see Gnedenko and Kolmogorov [1]). If the distribution of $\{n^{-1}\sum_{i=1}^{\alpha} X_i^{-2} - \frac{\alpha}{2} \log n\}$ is replaced by the limiting distribution V(x), then we obtain

$$P\{|a_n^{-2} \sum_{0}^{a} X_i^{-2} - 1| \ge (\log n)^{-s}\}$$

$$\ge P\{|n^{-1} \sum_{0}^{a} X_i^{-2} - \frac{\alpha}{2} \log n| \ge \alpha (\log n)^{1-s}\}$$

$$\ge \frac{c}{2\alpha} (\log n)^{s-1}$$

for sufficiently large n. Thus it seems to be impossible to improve Lemma 3 and consequently Theorem 2.

Acknowledgment. The author wishes to express his hearty thanks to Professor Hirokichi Kudō for his valuable comments.

References

- [1] B.V. Gnedenko and A.N. Kolmogorov: Limit distributions for sums of independent random variables, Reading, Massachusetts, 1954.
- [2] T. Matsuda: The Berry-Esseen bound for maximum likelihood estimates of translation parameter of truncated distribution, Osaka J. Math. 20 (1983), 185–195.
- [3] H. Strasser: Asymptotic properties of posterior distributions, Z. Wahrsch. verw. Gebiete 35 (1976), 269-282.
- [4] K. Takeuchi: Tôkei-teki suitei no Zenkinriron (Asymptotic Theory of Statistical estimation). (in Japanese) Kyôiku-Shuppan, Tokyo, 1974.
- [5] A. Wald: Note on the consistency of the maximum likelihood estimate, Ann. Math. Statist. 20 (1949), 595-601.

- [6] L. Weiss and J. Wolfowitz: Maximum likelihood estimation of a translation parameter of a truncated distribution, Ann. Statist. 1 (1973), 944–947.
- [7] M. Woodroofe: Maximum likelihood estimation of a translation parameter of a truncated distribution, Ann. Math. Statist. 43 (1972), 113-122.

Faculty of Economics Wakayama University Nishi-takamatsu Wakayama 641, Japan