<table>
<thead>
<tr>
<th>Title</th>
<th>Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamamoto, Yoshihiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 21(1) P.1-P.22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/11771</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/11771</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Yamamoto, Y.
Osaka J. Math.
21 (1984), 1-22

DIVISIBILITY BY 16 OF CLASS NUMBER OF QUADRATIC
FIELDS WHOSE 2-CLASS GROUPS ARE CYCLIC

YOSHIHIKO YAMAMOTO*

(Received August 5, 1982)

0. Introduction. Let \(K = \mathbb{Q}(\sqrt{D}) \) be the quadratic field with discriminant \(D \), and \(H(D) \) and \(h(D) \) be the ideal class group of \(K \) and its class number respectively. The ideal class group of \(K \) in the narrow sense and its class number are denoted by \(H^+(D) \) and \(h^+(D) \) respectively. We have \(h^+(D) = 2h(D) \), if \(D > 0 \) and the fundamental unit \(\varepsilon_D (> 1) \) has the norm 1, and \(h^+(D) = h(D) \), otherwise. We assume, throughout the paper, that \(|D| \) has just two distinct prime divisors, written \(p \) and \(q \), so that the 2-class group of \(K \) (i.e. the Sylow 2-subgroup of \(H^+(D) \) because we mean in the narrow sense) is cyclic. Then the discriminant \(D \) can be written uniquely as a product of two prime discriminants \(d_1 \) and \(d_2 \), \(D = d_1d_2 \), such that \(p|d_1 \) and \(q|d_2 \) (cf. [16], for example).

By Redei and Reichardt [13] (cf. proposition 1.2 below), \(h^+(D) \) is divisible by 4 if and only if \(D \) belongs to one of the following 6 types:

(R1) \(D = pq, \ d_1 = p, \ d_2 = q, \ p \equiv q \equiv 1 \pmod{4}, \) and \(\left(\frac{p}{q} \right) = 1 \) (by reciprocity);
(R2) \(D = 8q, \ d_1 = 8, \ d_2 = q, \) and \(q \equiv 1 \pmod{8}; \)
(I1) \(D = -pq, \ d_1 = -p, \ d_2 = q, \ p \equiv 3 \pmod{4}, \) and \(\left(\frac{-p}{q} \right) = 1 \)
(= \(\left(\frac{q}{p} \right) \) by reciprocity);
(I2) \(D = -8p, \ d_1 = -p, \ d_2 = 8, \) and \(q \equiv 7 \pmod{8}; \)
(I3) \(D = -8q, \ d_1 = -8, \) and \(p \equiv 2, \) and \(q \equiv 1 \pmod{8}; \)
(I4) \(D = -4q, \ d_1 = -4, \) and \(p \equiv 2, \) and \(q \equiv 1 \pmod{8}; \)

where \((-) \) is the Legendre-Jacobi-Kronecker symbol.

Conditions for \(h^+(D) \) to be divisible by 8 have been given by several authors for each case or cases ([1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 15]). Some of them are reformulated in section 3. The purpose of this paper is to give some conditions for the divisibility by 16 of \(h^+(D) \) for each case (cf. theorems 5.4, 5.5, 5.6, 5.7, 5.8, and 6.7). The main ideas were announced in [18] and [19].

While in preparation of the manuscript P. Kaplan informed me that theorem 6.7 was proved also by K.S. Williams with a different method and furthermore he gave a congruence for \(h(-4q) \) modulo 16 ([17]).

* Research supported partly by Grant-in-Aid for Scientific Research.
1. 2-class field; divisibility by 4. Let \(2' \) be the order of the 2-class group of \(K \), so that \(2'|h^+(D) (\epsilon \geq 1) \). Since the 2-class group of \(H^+(D) \) is cyclic, we have the following chain of subgroups:

\[
H^+(D) \supset H^+(D)^2 \supset \cdots \supset H^+(D)^{2^z}.
\]

Denote by \(K_{2^z} \) the class field of \(K \) corresponding to the subgroup \(H^+(D)^{2^z} \). We have a tower of class fields:

\[
K \subset K_2 \subset \cdots \subset K_{2^z}.
\]

\(K_{2^z} \) is unramified at every finite prime in \(K \) and \([K_{2^z}: K] = (H^+(D): H^+(D)^{2^z}) = 2^z \) (\(1 \leq k \leq \epsilon \)).

Proposition 1.1 (Reichardt [14]). \(K_{2^z} \) is normal over \(\mathbb{Q} \). The Galois group \(G(K_{2^z}/\mathbb{Q}) \) is isomorphic to the dihedral group \(D_{2^k} \) of order \(2^{k+1} \).

In particular \(G(K_{2}/K) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \), where \(\mathbb{Z}_2 \) denotes a cyclic group of order 2. It is well-known and easy to see that

\[
K_2 = \mathbb{Q} (\sqrt{d_1}, \sqrt{\frac{d_2}{d_1}}) = AB,
\]

where \(A = \mathbb{Q} (\sqrt{d_1}) \) and \(B = \mathbb{Q} (\sqrt{d_2}) \).

We write \(\alpha \sim \beta \) (resp. \(\alpha \approx \beta \)), if ideals \(\alpha, \beta \) of \(K \) are in the same ideal class (resp. in the same narrow ideal class). As \(p \) and \(q \) are ramified in \(K \), we have \((p) = \mathfrak{p}^2 \), \((q) = q^2 \), where \(\mathfrak{p} \) and \(q \) are prime ideals of \(K \). Denote the narrow ideal class containing \(\mathfrak{p} \) (resp. \(\mathfrak{q} \)) by \(C^+(\mathfrak{p}) \) (resp. \(C^+(\mathfrak{q}) \)). Then \(C^+(\mathfrak{p})^2 = C^+(\mathfrak{q})^2 = 1 \).

It is also well-known that the elementary 2-subgroup of \(H^+(D) \), which is isomorphic to \(\mathbb{Z}_2 \) in the present case, is generated by \(C^+(\mathfrak{p}) \) and \(C^+(\mathfrak{q}) \). So one of the three alternatives holds:

(i) \(C^+(\mathfrak{p}) = 1 \) and \(C^+(\mathfrak{q}) \neq 1 \),
(ii) \(C^+(\mathfrak{p}) \neq 1 \) and \(C^+(\mathfrak{q}) = 1 \),
(iii) \(C^+(\mathfrak{p}) = C^+(\mathfrak{q}) \neq 1 \).

In case \(D > 0 \) and \(d_i \equiv -4 \) \((i = 1, 2) \) we see easily that the condition (iii) holds if and only if \(N_{K_2} \epsilon_D = -1 \). By class field theory, we get the following proposition which is a special case of a theorem of Redei and Reichardt [13].

Proposition 1.2. The following assertions are equivalent:

(a) \(4 | h^+(D) \);
(b) both \(C^+(\mathfrak{p}) \) and \(C^+(\mathfrak{q}) \) belong to \(H^+(D)^2 \);
(c) both \(\mathfrak{p} \) and \(\mathfrak{q} \) split completely in \(K_{2^z} \);
(d) \(p \) and \(q \) split completely in \(B \) and \(A \), respectively;
(e) \(\left(\frac{d_1}{q} \right) = \left(\frac{d_2}{p} \right) = 1 \).
As a direct consequence of proposition 1.2 we have \(4|h^+(D)\) if and only if \(D\) belongs to one of the types (R1), (R2), (I1), (I2), (I3), (I4) in section 0.

2. Construction of \(K_4\). In this section we assume \(4|h^+(D)\), so that \(D\) belongs to one of (R1), \(\cdots\), (I4) in section 0. The class field \(K_4\) is normal over \(\mathbb{Q}\) and the Galois group \(G(K_4/\mathbb{Q})\) is isomorphic to the dihedral group \(D_8\) of order 8. The subfields of \(K_4\) are given as follows:

\[
\begin{align*}
A &= \mathbb{Q}(\sqrt{d_1}) \\
B &= \mathbb{Q}(\sqrt{d_2}) \\
A_2 &= A(\sqrt{\alpha}) \\
A_2' &= A(\sqrt{\alpha'}) \\
B_2 &= B(\sqrt{\beta}) \\
B_2' &= B(\sqrt{\beta'})
\end{align*}
\]

where \(\alpha \in A, \beta \in B, \alpha'\) (resp. \(\beta'\)) is the conjugate of \(\alpha\) (resp. \(\beta\)) over \(\mathbb{Q}\), and \(\alpha \alpha' \equiv d_2 \pmod{(A^*)^2}, \beta \beta' \equiv d_1 \pmod{(B^*)^2}\).

From proposition 1.2 it follows that \(q\) (resp. \(p\)) splits completely in \(A\) (resp. \(B\)). Let \((p) = \mathfrak{p}_A, (q) = \mathfrak{q}_A\) (resp. \((q) = \mathfrak{q}_B, (p) = \mathfrak{p}_B\)) be the prime decompositions in \(A\) (resp. \(B\)) with prime ideals \(\mathfrak{p}_A, \mathfrak{q}_A, \mathfrak{q}'_A\) in \(A\) (resp. \(\mathfrak{q}_B, \mathfrak{p}_B, \mathfrak{p}'_B\) in \(B\)).

Let \(Q\) (resp. \(Q'\)) be a prime divisor of \(\mathfrak{q}_A\) (resp. \(\mathfrak{q}'_A\)) in \(K_4\). Since the extension \(K_4/K\) is unramified at every finite prime the inertia field of \(Q\) with respect to \(K_4/Q\) is either \(A_2\) or \(A_2'\). We may choose \(A_2'\) (resp. \(A_2\)) to be the inertia field of \(Q\) (resp. \(Q'\)). Then we get easily that

\[(2.1) \quad q_A\) (resp. \(q'_A) is the only finite prime in \(A\) which ramifies in \(A_2\) (resp. \(A'_2)\).
\]

In the same way, by a suitable choice of \(B_2\) and \(B'_2\), we have

\[(2.2) \quad \mathfrak{p}_B \) (resp. \(\mathfrak{p}'_B) is the only finite prime in \(B\) which ramifies in \(B_2\) (resp. \(B'_2)\).
\]

As for the ramification of infinite primes, we can argue in the same way if \(D < 0\). Indeed when \(D < 0\) (types (I1), (I2), (I3), and (I4)), the infinite prime \(\infty\) of \(\mathbb{Q}\) ramifies in \(A\), \(\infty = \mathfrak{a}_A\), and splits in \(B\), \(\infty = \mathfrak{b}_B\). By a suitable choice of \(\mathfrak{a}_B\) and \(\mathfrak{b}_B\) we see that

\[(2.3) \quad \text{if } D < 0, \text{ then both } A_2 \text{ and } A'_2 \text{ are unramified at } \mathfrak{a}_A, \text{ and } B_2 \text{ (resp. } B'_2) \text{ is ramified at } \mathfrak{b}_B \text{ (resp. } \mathfrak{b}'_B) \text{ and unramified at } \infty_B \text{ (resp. } \infty_B').\]

If \(D > 0\), both \(A\) and \(B\) are real, so that \(\infty\) splits in \(A\) and \(B\), \(\infty = \mathfrak{a}_A \mathfrak{a}'_A, \infty = \mathfrak{b}_B \mathfrak{b}'_B\). To go further, we have to take the absolute class number \(h(D)\) into account. If \(4\nmid h(D)\), then \(2||h(D)\) and \(N_D e_D = 1\), so that \(K_4\) is ramified at
every infinite prime of K, which implies that K_2 is the inertia field of ∞ with respect to K_2/Q, for K_2 is normal over Q. Hence we have

(2.4) if $D>0$ and $2|\h(D)$, then every infinite prime of A (resp. B) ramifies in A_2 and A_2^\prime (resp. B_2 and B_2^\prime).

If $D>0$ and $4|\h(D)$ then K_4 is unramified at every infinite prime over Q. Hence we have

(2.5) if $D>0$ and $4|\h(D)$, then every infinite prime of A (resp. B) does not ramify in A_2 and A_2^\prime (resp. B_2 and B_2^\prime).

We denote by O_F the ring of integers of a number field F. Let f_A and χ_A (resp. f_B and χ_B) be the conductor and the Hecke ideal character attached to the quadratic extension A_2/A (resp. B_2/B).

Proposition 2.6. Suppose D belongs to type (R1). Then
(a) if $2|\h(D)$, we have

$$f_A = q_A A\infty A, \; \chi_A((\lambda)) = \left(\frac{\lambda}{q_A}\right) \text{ sgn } N_A \lambda \quad (\lambda \in O_A - q_A);$$

$$f_B = p_B B\infty B, \; \chi_B((\mu)) = \left(\frac{\mu}{p_B}\right) \text{ sgn } N_B \mu \quad (\mu \in O_B - p_B);$$

(b) if $\h(D)$, we have

$$f_A = q_A, \; \chi_A((\lambda)) = \left(\frac{\lambda}{q_A}\right) \quad (\lambda \in O_A - q_A);$$

$$f_B = p_B, \; \chi_B((\mu)) = \left(\frac{\mu}{p_B}\right) \quad (\mu \in O_B - p_B);$$

where \left(\frac{\cdot}{q_A}\right) (resp. \left(\frac{\cdot}{p_B}\right)) denotes the quadratic residue symbol modulo q_A (resp. p_B).

Proof. If $2|\h(D)$ then $N_E = 1$. It follows from (2.1), (2.2), and (2.4) that the quadratic extension A_2/A (resp. B_2/B) is ramified at q_A, ∞A, ∞A^\prime (resp. p_B, ∞B, ∞B^\prime) and unramified outside them. Hence

$$\chi_A((\lambda)) = \left(\frac{\lambda, A_2/A}{q_A}\right) \left(\frac{\lambda, A_2/A}{\infty A}\right) \left(\frac{\lambda, A_2/A}{\infty A^}\right) \quad \text{(norm-residue symbol)}$$

$$= \left(\frac{\lambda, A_2/A}{q_A}\right) \left(\frac{\lambda, A_2/A}{\infty A}\right) \left(\frac{\lambda, A_2/A}{\infty A^}\right) \quad \text{(Hilbert symbol)}$$

$$= \left(\frac{\lambda}{q_A}\right) \text{ sgn } \lambda \text{ sgn } \lambda^\prime$$

$$= \left(\frac{\lambda}{q_A}\right) \text{ sgn } N_A \lambda \quad (\lambda \in O_A - q_A),$$
which implies \(f_A = q_A \infty_A \infty_A \). We have \(\chi_B((\mu)) = \left(\frac{\mu}{p_B}\right) \text{sgn} N_B \mu \) and \(f_B = p_B \infty_B \infty_B \) in the same way.

If \(4|\h(D) \), then, from (2.1), (2.2), and (2.5), it follows that \(A_2/A \) (resp. \(B_2/B \)) is ramified only at \(q_A \) (resp. \(p_B \)). Hence the assertion (b) follows in the same way.

Proposition 2.7. Suppose \(D \) is of type \((R2) \). Then

(a) if \(2|\h(D), we have

\[
\begin{align*}
f_A &= q_A \infty_A \infty_A, \quad \chi_A(\lambda) = \left(\frac{\lambda}{q_A}\right) \text{sgn} N_A \lambda \quad (\lambda \in O_A - q_A); \\
f_B &= p_B \infty_B \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{p_B}\right) \text{sgn} N_B \mu \quad (\mu \in O_B - p_B);
\end{align*}
\]

(b) if \(4|\h(D), we have

\[
\begin{align*}
f_A &= q_A, \quad \chi_A(\lambda) = \left(\frac{\lambda}{q_A}\right) \quad (\lambda \in O_A - q_A); \\
f_B &= p_B, \quad \chi_B((\mu)) = \left(\frac{\mu, 2}{p_B}\right) \quad (\mu \in O_B - p_B);
\end{align*}
\]

where \(\left(\frac{\mu, 2}{p_B}\right) = \begin{cases} 1 & \text{if } \mu \equiv 1, 7 \pmod{p_B^3}, \\ -1 & \text{if } \mu \equiv 3, 5 \pmod{p_B^3}. \end{cases} \)

Proof. If \(2|\h(D) \), then \(N_K = 1 \). It follows from (2.1), (2.2), and (2.4) that the quadratic extension \(A_2/A \) (resp. \(B_2/B \)) is ramified only at \(q_A, \infty_A, \infty_A \) (resp. \(p_B, \infty_B, \infty_B \)). We have \(\chi_A(\lambda) = \left(\frac{\lambda}{q_A}\right) \text{sgn} N_A \lambda \) in the same way as in the proof of proposition 2.6, while \(\left(\frac{\mu, \beta}{p_B}\right) = \left(\frac{\mu, 2}{p_B}\right) \), which implies (a). Assertion (b) is proved similarly. Q.E.D.

We obtain the corresponding results for the other types similarly.

Proposition 2.8. Suppose \(D \) is of type \((II) \), then

\[
\begin{align*}
f_A &= q_A, \quad \chi_A(\lambda) = \left(\frac{\lambda}{q_A}\right) \quad (\lambda \in O_A - q_A); \\
f_B &= p_B \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu, \beta}{p_B}\right) \quad (\mu \in O_B - p_B).
\end{align*}
\]

Proposition 2.9. Suppose \(D \) is of type \((12) \), then

\[
\begin{align*}
f_A &= q_A^3, \quad \chi_A(\lambda) = \left(\frac{\lambda, 2}{q_A}\right) \quad (\lambda \in O_A - q_A); \\
f_B &= q_B, \quad \chi_B(\lambda) = \left(\frac{\lambda}{q_B}\right)
\end{align*}
\]
\[f_B = \varphi_B \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{\varphi_B} \right)_{\infty_B} (\mu \in O_B - \varphi_B). \]

Proposition 2.10. Suppose \(D \) is of type (I3), then
\[f_A = q_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{q_A} \right) (\lambda \in O_A - q_A); \]
\[f_B = \varphi_B^3 \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu, -2}{\varphi_B} \right)_{\infty_B} (\mu \in O_B - \varphi_B), \]
where \(\left(\frac{\mu, -2}{\varphi_B} \right) = \begin{cases} 1 & \text{if } \mu \equiv 1, 3 \pmod{\varphi_B}, \\ -1 & \text{if } \mu \equiv 5, 7 \pmod{\varphi_B}. \end{cases} \]

Proposition 2.11. Suppose \(D \) is of type (I4), then
\[f_A = q_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{q_A} \right) (\lambda \in O_A - q_A); \]
\[f_B = \varphi_B^3 \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu, -1}{\varphi_B} \right)_{\infty_B} (\mu \in O_B - \varphi_B), \]
where \(\left(\frac{\mu, -1}{\varphi_B} \right) = \begin{cases} 1 & \text{if } \mu \equiv 1 \pmod{\varphi_B}, \\ -1 & \text{if } \mu \equiv -1 \pmod{\varphi_B}. \end{cases} \]

In propositions 2.8 to 2.11 the infinite prime \(\infty_B \) is defined by \((\beta, \beta')_{\infty_B} = -1 \), so that \((\beta, \beta')_{\infty_B} \) is the sign of \(\mu \) with respect to \(\infty_B \).

Proposition 2.12. For each \(D \), \(\alpha \) and \(\beta \) can be taken so that they satisfy the following conditions:
(a) \(\alpha \in O_A, \beta \in O_B, (\alpha, \alpha') = 1, (\beta, \beta') = 1; \)
(b)

(R1): \[
\begin{align*}
\alpha \alpha' &= q^{h(\delta)}, \\
\alpha^3 &\equiv 1 \pmod{4}, \\
\beta \beta' &= p^{h(\delta)}, \\
\beta^3 &\equiv 1 \pmod{4};
\end{align*}
\]

(R2): \[
\begin{align*}
\alpha \alpha' &= q, \\
\alpha &\equiv 1 \text{ or } 3 + 2\sqrt{2} \pmod{4}, \\
\beta + \beta' &\equiv 2^{h(\delta)} + 1 \pmod{4};
\end{align*}
\]

(I1): \[
\begin{align*}
\alpha \alpha' &= q^{h(-p)}, \\
\alpha^3 &\equiv 1 \pmod{4}, \\
\beta \beta' &\equiv -p^{h(\delta)}, \\
\beta^3 &\equiv 1 \pmod{4};
\end{align*}
\]

(I2): \[
\begin{align*}
\alpha \alpha' &= 2^{h(-p)}, \\
\alpha + \alpha' &\equiv 2^{h(-p)} + 1 \pmod{4}, \\
\beta &\equiv 1 \text{ or } 3 + 2\sqrt{2} \pmod{4};
\end{align*}
\]

(I3): \[
\begin{align*}
\alpha \alpha' &= q, \\
\alpha &\equiv 1 \text{ or } 3 + 2\sqrt{2} \pmod{4}, \\
\beta + \beta' &\equiv -2^{h(\delta)} + 1 \pmod{4};
\end{align*}
\]
DIVISIBILITY BY 16 OF CLASS NUMBER

\(y \equiv J_x \alpha = \pm 1 \pmod{4}, \quad \beta + \beta' \equiv 0 \pmod{4}. \)

Conversely, for each \(\alpha \) (resp. \(\beta \)) satisfying (a) and (b) the field \(A_2 \) (resp. \(B_2 \)) is the field \(A(\sqrt{\beta}) \) (resp. \(B(\sqrt{\alpha}) \)).

We remark that the condition \(\alpha^3 \equiv 1 \pmod{4} \) (resp. \(\beta^3 \equiv 1 \pmod{4} \)) is equivalent to \(\alpha \equiv 1 \pmod{4} \) (resp. \(\beta \equiv 1 \pmod{4} \)) if \(p \equiv 1 \pmod{8} \) (resp. \(q \equiv 1 \pmod{8} \)).

Proof. Since \(q_A \) is the unique finite prime which is ramified in \(A_2 = A(\sqrt{a}) \) and \(\alpha = a_2 \pmod{(A^2)^2} \), we have \(\alpha = q_A a^2 \) with an ideal \(a \) in \(A \). It is well-known that the class number \(h(d) \) is odd. Put \(a = \alpha a_2 \) with an ideal \(a \) in \(A \).

We remark that in case (14) we can take \(\beta = T + U \sqrt{q} = \epsilon_q \), the fundamental unit of \(B \) (\(T, U \in \mathbb{Z}, T > 0, U > 0 \)), in which case \(T \equiv 0 \pmod{4} \) follows as a corollary.

Putting, for each \(D \), respectively:

\[(R1)^*:\]
\[
\alpha = \frac{x + y \sqrt{p}}{2}, \quad \beta = \frac{x + \omega \sqrt{q}}{2};
\]
(R2)*: \[\alpha = x + y \sqrt{2}, \quad \beta = \frac{z + w \sqrt{q}}{2}; \]

(II)* : \[\alpha = \frac{x + y \sqrt{-p}}{2}, \quad \beta = \frac{z + w \sqrt{q}}{2}; \]

(I2)* : \[\alpha = \frac{x + y \sqrt{-p}}{2}, \quad \beta = z + w \sqrt{2}; \]

(I3)* : \[\alpha = x + y \sqrt{-2}, \quad \beta = \frac{z + w \sqrt{q}}{2}; \]

(I4)* : \[\alpha = x + y \sqrt{-1}, \quad \beta = z + w \sqrt{q}; \]

(x, y, z, w \in \mathbb{Z}), it is easy to see

Proposition 2.13. The conditions (a), (b) of proposition 2.12 is equivalent to the following conditions:

(c) \(x, y, z, w \in \mathbb{Z} \) and \(q \not| (x, y), p \not| (z, w); \)

(d) \[
\begin{align*}
(x^2 - py^2 &= 4q^{h(p)}, \\
\left(\frac{x + y \sqrt{p}}{2}\right)^3 &\equiv 1 \pmod{4}, \\
z^2 - qw^2 &= 4p^{h(q)};
\end{align*}
\]

(R1)**: \[
\begin{align*}
(x^2 - 2y^2 &= q, \\
\left(\frac{x + y \sqrt{2}}{2}\right)^3 &\equiv 1 \pmod{4}, \\
z^2 - qw^2 &= 2^{h(q)} + 1 \pmod{4};
\end{align*}
\]

(R2)**: \[
\begin{align*}
(x, y) &\equiv (1, 0) \text{ or } (3, 2) \pmod{4}, \\
(x^2 + py^2 &= 4q^{h(-p)}, \\
\left(\frac{x + y \sqrt{-p}}{2}\right)^3 &\equiv 1 \pmod{4}, \\
z^2 - qw^2 &= -4p^{h(q)};
\end{align*}
\]

(I1)**: \[
\begin{align*}
(x^2 + 2y^2 &= q, \\
\left(\frac{x + \sqrt{2}}{2}\right)^3 &\equiv 1 \pmod{4}, \\
z^2 - 2w^2 &= -p,
\end{align*}
\]

(I2)**: \[
\begin{align*}
(x, y) &\equiv (1, 0) \text{ or } (3, 2) \pmod{4}, \\
x &\equiv 2^{h(-p)} + 1 \pmod{4}, \\
(x^2 + py^2 &= 4q^{h(-p)}, \\
z^2 - qw^2 &= -2^{h(q)} + 1 \pmod{4};
\end{align*}
\]

(I3)**: \[
\begin{align*}
(x, y) &\equiv (1, 0) \text{ or } (3, 2) \pmod{4}, \\
(y &\equiv 0 \pmod{4}, \\
(x^2 + y^2 &= q, \\
z^2 - qw^2 &= -1.
\end{align*}
\]

We remark that \(\left(\frac{x + y \sqrt{d}}{2}\right)^3 \equiv 1 \pmod{4} \) if and only if

\[
\begin{align*}
(x, y) &\equiv (2, 0) \text{ or } (6, 4) \pmod{8}, \quad \text{if } d \equiv 1 \pmod{8}, \\
(x, y) &\equiv (2, 0), (6, 4), (3, 1), (3, 7), (7, 3), \text{ or } (7, 5) \pmod{8}, \quad \text{if } d \equiv 5 \pmod{16}, \\
(x, y) &\equiv (2, 0), (6, 4), (3, 3), (3, 5), (7, 1) \text{, or } (7, 7) \pmod{8}, \quad \text{if } d \equiv 13 \pmod{16}.
\end{align*}
\]
3. Divisibility by 8. Assume $4|h^+(D)$, then, in the same way as in section 1, we have the following criterion for the class number $h^+(D)$ to be divisible by 8:

Proposition 3.1. The following conditions are equivalent:

(a) $8|h^+(D)$;
(b) both $C^+(p)$ and $C^+(q)$ belong to $H^+(D)^4$;
(c) both p and q split completely in K_4.

Using the notation of section 2, we obtain easily:

Lemma 3.2. The following conditions are equivalent:

(a) $C^+(p)\in H^+(D)^4$ (resp. $C^+(q)\in H^+(D)^4$);
(b) p (resp. q) splits completely in K_4/K;
(c) p_A (resp. q_A) splits completely in A_2/A (resp. B_2/B);
(d) p_6 (resp. q_6) splits completely in B_2/B (resp. A_2/A);
(e) $\chi_A(p_A)=1$ (resp. $\chi_B(q_B)=1$);
(f) $\chi_B(p_6)=1$ (resp. $\chi_A(q_6)=1$).

Proposition 3.3 (cf. [12] [3] [9]). Suppose D is of type (R1). Then we have

(a) $2|h(d)$ if and only if $\left(\frac{p}{q}\right)_4\left(\frac{q}{p}\right)_4=-1$;

if $\left(\frac{2}{q}\right)_4=-1$ and $\left(\frac{q}{2}\right)_4=1$ then $p\equiv 1$ and $q\equiv 1$;

if $\left(\frac{2}{q}\right)_4=1$ and $\left(\frac{q}{2}\right)_4=-1$ then $p\equiv 1$ and $q\equiv 1$;

(b) $4|h(d)$ and $N_{K}\varepsilon_D=-1$ if and only if $\left(\frac{p}{q}\right)_4=(\frac{q}{p})_4=-1$;

(c) $8|h^+(D)$ if and only if $\left(\frac{p}{q}\right)_4=(\frac{q}{p})_4=1$;

(d) $\left(\frac{p}{q}\right)_4=(-1)^{h(D)/2}\left(\frac{x}{p}\right)_4$ and $\left(\frac{q}{p}\right)_4=(-1)^{h(D)/2}\left(\frac{x}{q}\right)_4$,

where x, z are rational integers satisfying the conditions (c), (d) (R1)** of proposition 2.13.

Proof. Assume $2|h(d)$. Since $N_{K}\varepsilon_D=-1$ we have $p\equiv 1$ and $q\equiv 1$ or $p\equiv 1$ and $q\equiv 1$ alternatively. In the first case we have $C^+(p)\in H^+(D)^4$ and $C^+(q)\in H^+(D)^4$, hence, by proposition 2.6 (a) and lemma 3.2,

$$1 = \chi_A(p_A) = \chi_A((\sqrt{p})) = \left(\frac{\sqrt{p}}{q_A}\right)_4 \text{ sgn } N_A \sqrt{p} = -\left(\frac{p}{q}\right)_4,$$
\[-1 = \chi_B(q_B) = \chi_B((\sqrt{q})) = \left(\frac{\sqrt{q}}{p_B} \right) \text{sgn } N_B \sqrt{q} = -\left(\frac{q}{p} \right)_4. \]

In the same way we have \(\left(\frac{p}{q} \right)_4 = 1 \) and \(\left(\frac{q}{p} \right)_4 = -1 \) for the latter case.

Next, assume \(4 \mid h(D) \), then, by proposition 2.6 (b), we have
\[
\chi_A(p_A) = \left(\frac{\sqrt{q}}{p_A} \right)_4 = \left(\frac{p}{q} \right)_4 \text{ and } \chi_B(q_B) = \left(\frac{\sqrt{q}}{p_B} \right)_4 = \left(\frac{q}{p} \right)_4. \]
If \(8 \nmid h(D) \) then \(4 \mid h(D) \) and \(N_k^{(2)} = -1 \), hence \(v \approx q \not\approx 1 \) and we see, by proposition 3.1 and lemma 3.2, \(C^+(p) = C^+(q) \in H^+(D)^4 \) and \(\chi_A(p_A) = \chi_B(q_B) = -1 \). If \(8 \mid h(D) \), then we get \(\chi_A(p_A) = \chi_B(q_B) = 1 \) in the same way. To sum up, we get the assertions (a), (b), (c), and that
\[
\chi_A(p_A) = (-1)^{h(D)/2} \left(\frac{p}{q} \right)_4 \text{ and } \chi_B(q_B) = (-1)^{h(D)/2} \left(\frac{q}{p} \right)_4. \]

On the other hand, since \(h(d_1) \) and \(h(d_2) \) are odd,
\[
\chi_A(p_A) = \chi_B(p_B) \quad \text{(lemma 3.2)}
\]
\[
= \chi_B(p_A h(d_2) = \chi_B((\beta'))) = \left(\frac{\beta'}{p_B} \right)_4 \quad \text{(proposition 2.6, proposition 2.12)}
\]
\[
= \left(\frac{\beta + \beta'}{p_B} \right)_4 = \left(\frac{x}{p} \right)_4 \quad \text{(by (R1)*)}
\]
and similarly \(\chi_B(q_B) = \left(\frac{x}{q} \right)_4 \), which imply the assertion (d).

Q.E.D.

Proposition 3.4 (cf. [12] [3] [9]). Suppose \(D \) is of type (R2). Then we have

(a) \(2 \mid h(D) \) if and only if \(\left(\frac{2}{q} \right)_4 = -1 \);

if \(\left(\frac{p}{q} \right)_4 = -1 \) and \(\left(\frac{q}{p} \right)_4 = 1 \) then \(v \approx 1 \) and \(q \not\approx 1 \);

if \(\left(\frac{p}{q} \right)_4 = 1 \) and \(\left(\frac{q}{p} \right)_4 = -1 \) then \(v \not\approx 1 \) and \(q \approx 1 \);

(b) \(4 \mid h(D) \) and \(N_k^{(2)} = -1 \) if and only if \(\left(\frac{2}{q} \right)_4 = \left(\frac{q}{2} \right)_4 = -1 \);

(c) \(8 \mid h(D) \) if and only if \(\left(\frac{2}{q} \right)_4 = \left(\frac{q}{2} \right)_4 = 1 \);

(d) \(\left(\frac{2}{q} \right)_4 = \left(\frac{x - 2^{h(D)}}{2} \right)_4 \) and \(\left(\frac{q}{2} \right)_4 \left(\frac{x}{q} \right)_4 \),
where \(x, z \) are rational integers satisfying the conditions (c), (d) (R2)** of proposition 2.13 and

\[
\left(\frac{a}{2} \right) = 1 \text{ if } a \equiv 1 \pmod{8}, \quad \left(\frac{a}{2} \right) = -1 \text{ if } a \equiv 5 \pmod{8};
\]

\[
\left(\frac{a}{2} \right)_4 = 1 \text{ if } a \equiv 1 \pmod{16}, \quad \left(\frac{a}{2} \right)_4 = -1 \text{ if } a \equiv 9 \pmod{16}.
\]

Proof. Using the following:

\[
\begin{cases}
\left(\frac{\sqrt{q}}{p_B} \right) = \left(\frac{q}{2} \right), \\
\left(\frac{\beta', 2}{p_B} \right) = \left(\frac{z - 2^{k(q)}}{2} \right),
\end{cases}
\]

we can argue in the same way as in the proof of proposition 3.3. The first equality of (3.5) is checked straightforwardly. Since \(\beta' \equiv 1 \pmod{p_B^2} \), we see \(\left(\frac{\beta', 2}{p_B} \right) = 1 \) if and only if \(\beta' \equiv 1 \pmod{p_B^3} \), that is, if and only if \((\beta - 1)(\beta' - 1) \equiv 0 \pmod{p_B^3} \), for \(\beta \equiv 1 \pmod{p_B} \); on the other hand \((\beta - 1)(\beta' - 1) = \beta \beta' - \beta - \beta' + 1 = 2^{k(q)} - z + 1 \); so we get the latter equality of (3.5). \(\Box \)

Proposition 3.5 (cf. [12] [9]). Suppose \(D \) is of type (II), then

\[
\left(\frac{-p}{q} \right)_4 = \left(\frac{x}{q} \right)_4 = \left(\frac{z}{p} \right)_4 = (-1)^{k(D)/4} \quad \text{and} \quad \left(\frac{w}{p} \right)_4 = \text{sgn } w,
\]

where \(x, z, w \) are rational integers satisfying the conditions (c), (d) (II)** of proposition 2.13.

Proof. Since \(p q = (\sqrt{-p q}) \approx 1 \), we have \(p \approx q + 1 \). It follows from proposition 3.1 and lemma 3.2 that \(\chi_A(p_A) = \chi_B(q_B) = \chi_B(p_B) = \chi_A(q_A) = (-1)^{k(D)/4} \).

By proposition 2.8 we have

\[
\begin{align*}
\chi_A(p_A) &= \left(\frac{\sqrt{-p}}{q_A} \right)_4 = \left(\frac{-p}{q} \right)_4, \\
\chi_A(q_A') &= \chi_A(q_A')^{k(-p)} = \chi_A((\alpha')) = \left(\frac{\alpha'}{q_A} \right)_4 = \left(\frac{x}{q} \right), \\
\chi_B(p_B') &= \chi_B(p_B')^k = \chi_B((\beta')) = \left(\frac{\beta'}{p_B} \right)_4 = \left(\frac{x}{p} \right), \\
\chi_B(q_B) &= \chi_B((\sqrt{q})) = \left(\frac{\sqrt{q}}{p_B} \right)_4 = \left(\frac{\sqrt{q}, \beta}{q_B} \right).
\end{align*}
\]

It follows from \(\left(\frac{\beta}{q_B} \right) = -1 \) that \(\left(\frac{\sqrt{q}, \beta}{q_B} \right) = -\text{sgn } w \). Since \(\beta = \frac{x + w \sqrt{q}}{2} \)}
\[\equiv 0 \pmod{p_B}, \text{we have} \ \sqrt{q} \equiv -\frac{x}{w} \pmod{p_B}, \text{so that} \ \chi_B(q_B) = \left(-\frac{x}{w} \right)_{p_B} (-\text{sgn } w) \]
\[= \left(\frac{xw}{p} \right) \text{sgn } w, \text{which implies} \ \left(\frac{w}{p} \right) = \text{sgn } w. \]

Proposition 3.6 (cf. [9]). Suppose \(D \) is of type \((I2)\), then
\[\left(-\frac{p}{q} \right)_q = \left(\frac{x-2k((-1)^{2^{k(q-k)}}}{2} \right)_q = \left(\frac{x}{p} \right) = (-1)^{k(q-k)} \text{ and} \ \left(\frac{w}{p} \right) = \text{sgn } w, \]
where \(x, x, w \) are rational integers satisfying the conditions \((c), (d) (I2)** of proposition 2.13.

Proof. Since \(pq = (\sqrt{-2p}) \equiv 1 \), we see that \(p \approx q \equiv 1 \). By proposition 3.1 and lemma 3.2 we have \(\chi_A(p_A) = \chi_B(q_B) = \chi_A(q'_A) = \chi_B(p'_B) = (-1)^{k(q-k)} \). By proposition 2.9 we have
\[\chi_A(p_A) = \chi_A((\sqrt{-p})) = \left(\frac{\sqrt{-p}, 2}{q_A} \right)_A = \left(-\frac{p}{2} \right)_A, \]
\[\chi_A(q'_A) = \chi_A((\alpha')) = \left(\frac{\alpha', 2}{q_A} \right) = \left(\frac{x-2k((-1)^{2^{k(q-k)}}}{2} \right), \]
\[\chi_B(p'_B) = \chi_B((\beta')) = \left(\frac{\beta'_B}{p'_B} \right) = \left(\frac{x}{p} \right), \]
\[\chi_B(q_B) = \chi_B((\sqrt{2})) = \left(\frac{\sqrt{2}}{p_B} \right) = \left(\frac{\sqrt{2}}{p} \right) \text{sgn } w, \]
in the same way as in the proof of proposition 3.3, proposition 3.4, and proposition 3.5. Q.E.D.

Proposition 3.7 (cf. [9]). Suppose \(D \) is of type \((I3)\), then
\[\left(-\frac{2}{q} \right)_q = \left(\frac{x}{q} \right) = \left(\frac{x-2k((-1)^{2^{k(q-k)}}}{2} \right) = \left(\frac{q}{2} \right)_q (-\text{sgn } w) = (-1)^{k(q-k)} \]
where \(x, x, w \) are rational integers satisfying the conditions \((c), (d) (I3)** with \(x+w \equiv 0 \pmod{4} \).

Proof. Since \(pq = (\sqrt{-2q}) \equiv 1 \), we have \(p \approx q \equiv 1 \). By proposition 3.1 and lemma 3.2 we have
\[\chi_A(p_A) = \chi_B(q_B) = \chi_A(q'_A) = \chi_B(p'_B) = (-1)^{k(q-k)}. \]
By proposition 2.10, we have
\[\chi_A(p_A) = \chi_A((\sqrt{-2}) = \left(\frac{\sqrt{-2}}{q_A} \right)_A = \left(-\frac{2}{q} \right)_A, \]
We may safely assume \(\sqrt{q} \equiv 1 \pmod{\psi_B^2} \), by transposing \(\psi_B \) and \(\psi_B' \) if necessary, obtaining \(\left(\frac{q}{2} \right) = \left(\frac{q}{4} \right) \) and \(2\beta \equiv z + w\sqrt{q} \equiv z + w \pmod{\psi_B^2} \). Hence we have \(z + w \equiv 0 \pmod{4} \), which determines the sign of \(w \). It follows from \(\beta < 0 \) and \(\beta' > 0 \) with respect to \(\infty_B \) that \(w\sqrt{q} < 0 \) with respect to \(\infty_B \), which implies \(\left(\frac{q}{2} \right) = -\text{sgn } w \). Q.E.D.

Proposition 3.8 (cf. [11] [4] [10]). Suppose \(D \) is of type \((14)\), then

\[
\left(\frac{2}{q} \right) \left(\frac{q}{2} \right) = (-1)^{\delta^4} = (-1)^{\kappa(\delta^4/4)},
\]

\[
\left(\frac{x}{q} \right) = 1, \text{ and } w \equiv 1 \pmod{4},
\]

where \(x, z, w \) are rational integers satisfying the conditions (c), (d) \((14)\)** of proposition 2.13.

Proof. Since \(q = (\sqrt{-q}) \approx 1 \), we get \(\psi \neq 1 \), so that, by proposition 3.1 and lemma 3.2, we have \(\chi_A(\psi_A) = \chi_b(\psi_B') = (-1)^{\delta^4/4} \) and \(\chi_A(q_A') = \chi_b(q_B) = 1 \). By proposition 2.11, we have

\[
\chi_A(q_A) = \chi_A((1 + \sqrt{-1})) = \left(\frac{1 + \sqrt{-1}}{q_A} \right) = \left(\frac{2\sqrt{-1}}{q_A} \right) = \left(\frac{2}{q} \right) \left(\frac{q}{2} \right).
\]

Since \(B_2 = B(\sqrt{\beta}) \) and \(\beta \equiv 1 \pmod{\psi_B^2} \), we have \(\chi_B(\psi_B') = 1 \) if and only if \(\beta \equiv 1 \pmod{\psi_B^2} \). As \(\psi_B || (\beta - 1) \), we have \(\beta \equiv 1 \pmod{\psi_B^2} \) if and only if \((\beta - 1)(\beta' - 1) = -2z \equiv 0 \pmod{16} \). On the other hand,

\[
\chi_A(q_A') = \chi_A((\alpha')) = \left(\frac{\alpha'}{q_A} \right) = \left(\frac{x}{q} \right) = 1,
\]

\[
\chi_B(q_B) = \chi_B((\sqrt{q})) = \left(\frac{\sqrt{q}, -1}{\psi_B} \right) \left(\frac{\sqrt{q}}{\infty_B} \right) = 1.
\]

Since \(\sqrt{q} \equiv \pm 1 \pmod{\psi_B^2} \), we have \(\left(\frac{\sqrt{q}}{\infty_B} \right) = \pm 1 \), which implies \(w \equiv 0 \),
while \(\beta' = z - w\sqrt{q} \equiv \mp w \equiv 1 \pmod{p_B^2} \). Hence \(|w| \equiv 1 \pmod{4} \). Q.E.D.

4. **Construction of \(K_8 \).** We assume \(8 | h^*(D) \) throughout the rest of this paper. By proposition 1.2, \(K_8 \) is a dihedral extension of \(Q \) and both \(G(K_8/A_2) \) and \(G(K_8/B_2) \) are isomorphic to \(Z_2 \times Z_2 \). The intermediate fields of \(K_8/A_2 \) and \(K_8/B_2 \) are given in the following diagram:

\[
\begin{array}{ccc}
A_2 & A_2' & K_4 \\
A_4 & \alpha_{2}' & K_4 \\
B_4 & B_4' & \\
A & K & B \\
Q & & \end{array}
\]

where \(\alpha_2' \) (resp. \(\beta_2' \)) denotes the conjugae of \(\alpha_2 \) over \(A \) (resp. of \(\beta_2 \) over \(B \)).

By proposition 3.1, both \(p_A \) and \(q_A' \) (resp. both \(p_B \) and \(q_B \)) split completely in \(A_2 \) (resp. in \(B_2 \)) and \(q_A \) (resp. \(p_B \)) is ramified in \(A_2 \) (resp. in \(B_2 \)).

We put

\[
\begin{align*}
p_A &= P_A P_A', \\
q_A &= Q_A Q_A', \\
p_B &= P_B P_B', \\
q_B &= Q_B Q_B',
\end{align*}
\]

with prime ideals \(P_A, P_A', Q_A, Q_A', P_B, P_B', Q_B, Q_B' \) in \(A_2 \) (resp. \(B_2 \)).

Since \(K_8/K \) is unramified at every finite prime, \(Q_A \) (resp. \(P_B \)) ramifies in either \(A_4 \) or \(A_4' \) (resp. \(B_4 \) or \(B_4' \)).

By a suitable choice, we may suppose that:

1. \(Q_A \) (resp. \(P_B \)) is the only finite prime of \(A_2 \) (resp. \(B_2 \)), which is ramified in \(A_4 \) (resp. \(B_4 \)).

Arguing the ramification of the infinite primes in \(A_2 \) (resp. \(B_2 \)) as in section 2, we obtain:

1. If \(D < 0 \), then there is no (resp. only one (denoted by \(V_B \)) infinite prime in \(A_2 \) (resp. \(B_2 \)) which is ramified in \(A_4 \) (resp. \(B_4 \)).

1. If \(D > 0 \), \(4 | h(D) \), and \(N_E \equiv 1 \pmod{2} \), then every infinite prime in \(A_2 \) (resp. \(B_2 \)) is ramified in \(A_4 \) (resp. \(B_4 \)).

1. If \(D > 0 \) and \(8 | h(D) \), then every infinite prime in \(A_2 \) (resp. \(B_2 \)) is unramified in \(A_4 \) (resp. \(B_4 \)).
Let ψ_A (resp. ψ_B) be the Hecke character of A_2 (resp. B_2) which is attached to the quadratic extension A_4/A_2 (resp. B_4/B_2). By (4.1), (4.2), (4.3), and (4.4) we determine ψ_A and ψ_B as follows:

Proposition 4.5. Suppose D is of type $(R1)$ and $8 \mid h^+(D)$. Then

(a) if $4 \mid h(D)$, we have

$$\psi_A(\lambda) = \left(\frac{\lambda}{Q_A}\right) sgn N_{A_2}\lambda \quad (\lambda \in O_{A_2} - Q_A);$$

$$\psi_B(\mu) = \left(\frac{\mu}{P_B}\right) sgn N_{B_2}\mu \quad (\mu \in O_{B_2} - P_B);$$

(b) if $8 \mid h(D)$, we have

$$\psi_A(\lambda) = \left(\frac{\lambda}{Q_A}\right) \quad (\lambda \in O_{A_2} - Q_A);$$

$$\psi_B(\mu) = \left(\frac{\mu}{P_B}\right) \quad (\mu \in O_{B_2} - P_B).$$

Proof. (a) By (4.3) the primes of A_2 which ramify in A_4 consist of Q_A and all of the four infinite primes, so that

$$\psi_A(\lambda) = \left(\frac{\lambda, A_4/A_2}{Q_A}\right) \prod_{\eta \in \mathfrak{m}} \left(\frac{\eta, A_4/A_2}{v}\right).$$

We have

$$\left(\frac{\lambda, A_4/A_2}{Q_A}\right) = \left(\frac{\lambda, \alpha_2}{Q_A}\right) = \left(\frac{\lambda}{Q_A}\right)^{ord(\alpha_2)} = \left(\frac{\lambda}{Q_A}\right),$$

where $ord(\alpha_2)$ is the order of α_2 with respect to Q_A, and

$$\prod_{\eta \in \mathfrak{m}} \left(\frac{\eta, A_4/A_2}{v}\right) = \prod_{\eta \in \mathfrak{m}} sgn \lambda' = N_{A_2}\lambda'.$$

This complete the proof of the first part of (a). The second part is obtained in the same way.

(b) The only prime of A_2 which ramifies in A_4 in this case is Q_A. Hence we have $\psi_A(\lambda) = \left(\frac{\lambda, A_4/A_2}{Q_A}\right) = \left(\frac{\lambda}{Q_A}\right)$. We can calculate $\psi_B(\mu)$ similarly.

Q.E.D.

Proposition 4.6. Suppose D is of type $(R2)$ and $8 \mid h^+(D)$. Then

(a) if $4 \mid h(D)$, we have

$$\psi_A(\lambda) = \left(\frac{\lambda}{Q_A}\right) sgn N_{A_2}\lambda \quad (\lambda \in O_{A_2} - Q_A);$$
\[\psi_B(\mu) = \left(\frac{\mu, 2}{P_B} \right) \text{sgn } N_{B_2} \mu \quad (\mu \in \mathcal{O}_{B_2} - P_B); \]

(b) if \(8|\text{h}(D) \), we have

\[\psi_A(\lambda) = \left(\frac{\lambda}{Q_A} \right) \quad (\lambda \in \mathcal{O}_{A_2} - Q_A); \]

\[\psi_B(\mu) = \left(\frac{\mu}{P_B} \right) \quad (\mu \in \mathcal{O}_{B_2} - P_B). \]

Proof. Since \(B_4' = B_4(\sqrt{\beta_2''}) \) is unramified at \(P_B \),

\[\left(\frac{\mu, B_4}{P_B} \right) = \left(\frac{\mu, \beta_2}{P_B} \right) = \left(\frac{\mu, \beta_2'}{P_B} \right) = \left(\frac{\mu, 2}{P_B} \right). \]

The rest of the proof is the same as that of proposition 4.5. Q.E.D.

In the same way we have:

Proposition 4.7. Suppose \(D \) is of type (11) and \(8|\text{h}(D) \), then

\[\psi_A(\lambda) = \left(\frac{\lambda}{Q_A} \right) \quad (\lambda \in \mathcal{O}_{A_2} - Q_A); \]

\[\psi_B(\mu) = \left(\frac{\mu}{P_B} \right) \left(\frac{\mu, \beta_2}{P_B} \right) \quad (\mu \in \mathcal{O}_{B_2} - P_B). \]

Proposition 4.8. Suppose \(D \) is of type (12) and \(8|\text{h}(D) \), then

\[\psi_A(\lambda) = \left(\frac{\lambda, 2}{Q_A} \right) \quad (\lambda \in \mathcal{O}_{A_2} - Q_A); \]

\[\psi_B(\mu) = \left(\frac{\mu}{P_B} \right) \left(\frac{\mu, \beta_2}{P_B} \right) \quad (\mu \in \mathcal{O}_{B_2} - P_B). \]

Proposition 4.9. Suppose \(D \) is of type (13) and \(8|\text{h}(D) \), then

\[\psi_A(\lambda) = \left(\frac{\lambda}{Q_A} \right) \quad (\lambda \in \mathcal{O}_{A_2} - Q_A); \]

\[\psi_B(\mu) = \left(\frac{\mu, -2}{P_B} \right) \left(\frac{\mu, \beta_2}{P_B} \right) \quad (\mu \in \mathcal{O}_{B_2} - P_B). \]

Proposition 4.10. Suppose \(D \) is of type (14) and \(8|\text{h}(D) \), then

\[\psi_A(\lambda) = \left(\frac{\lambda}{Q_A} \right) \quad (\lambda \in \mathcal{O}_{A_2} - Q_A); \]
We assume S^+ in this section and obtain a criterion for $h^+(D)$ to be divisible by 16 in the same way as in section 3:

Proposition 5.1. The following conditions are equivalent:
(a) $16|h^+(D)$;
(b) both $C^+(p)$ and $C^+(q)$ belong to $H^+(D)^8$;
(c) both p and q split completely in K_S.

Using the notation of previous sections, we obtain easily:

Lemma 5.2. The following conditions are equivalent:
(a) $C^+(p)^H + (D) = C^+(q)$;
(b) p (resp. q) splits completely in K_S;
(c) \hat{P}_B (resp. \hat{Q}_A) splits completely in B_4 (resp. A_4);
(d) $\psi_B(\hat{P}_B) = 1$ (resp. $\psi_A(\hat{Q}_A) = 1$).

If $d_1 = -4$, we can set

$$(\alpha) = q_A^{2d_1} = \hat{Q}_A^{2d_2} , \quad (\beta) = \psi_B^{2d_2} = \hat{P}_B^{2d_2} .$$

Hence we have:

Lemma 5.3. If $d_1 = -4$, then

$$\hat{Q}_A^{2d_1} = (\sqrt{\alpha}) \quad \text{and} \quad \hat{P}_B^{2d_2} = (\sqrt{\beta}) .$$

Theorem 5.4. Suppose D is of type (R1) and $8|h^+(D)$. Then we have

(a) $4|h(D)$ if and only if $\left(\frac{x}{p}\right)_4 \left(\frac{x}{q}\right)_4 = -1$;

(b) $8|h(D)$ and $N_x \in \mathbb{D} = -1$ if and only if $\frac{x}{p} \equiv 1$ and $\frac{x}{q} \equiv 1$;

(c) $16|h^+(D)$ if and only if $\left(\frac{x}{p}\right)_4 \left(\frac{x}{q}\right)_4 = -1$;

where x, z are rational integers satisfying the conditions (c), (d) (R1)** of proposition 2.13.

Proof. Assume first that $4|h(D)$. Then, by proposition 4.5 and lemma 5.3, we have
\[\psi_B(\hat{P}_B) = \psi_B((\sqrt{\beta})) = \left(\frac{\sqrt{\beta}}{P_B} \right) \text{sgn } N_B \sqrt{\beta}, \]
\[\left(\frac{\sqrt{\beta}}{P_B} \right) = \left(\frac{\beta}{P_B} \right)_4 = \left(\frac{\beta+\beta'}{P_B} \right)_4 = \left(\frac{z}{p} \right)_4, \text{ and } \]
\[N_B \sqrt{\beta} = N_B(-\beta) = \beta \beta' = p^{h(q)} > 0. \]

Hence \(\psi_B(\hat{P}_B) = \left(\frac{x}{p} \right)_4 \). We obtain \(\psi_A(\hat{Q}_A) = \left(\frac{x}{q} \right)_4 \) similarly. On the other hand, as \(N_K e_B = 1 \), we have either \(p \equiv 1 \) and \(q \neq 1 \) or \(p \neq 1 \) and \(q \equiv 1 \). By lemma 5.2, we have \(\psi_B(\hat{P}_B) = 1 \) and \(\psi_A(\hat{Q}_A) = -1 \) in the first case and \(\psi_B(\hat{P}_B) = -1 \) and \(\psi_A(\hat{Q}_A) = 1 \) in the latter case.

Next, we assume that \(8|g(D) \). By proposition 4.5 (b), we have

\[\psi_B(\hat{P}_B) = \psi_B((\sqrt{\beta})) = \left(\frac{\sqrt{\beta}}{P_B} \right) = \left(\frac{\beta}{P_B} \right)_4 = \left(\frac{z}{p} \right)_4, \]
\[\psi_A(\hat{Q}_A) = \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}}{Q_A} \right) = \left(\frac{\alpha}{Q_A} \right)_4 = \left(\frac{x}{q} \right)_4. \]

If \(8|g(D) \) and \(N_K e_B = -1 \), we have \(p \equiv q \equiv 1 \), hence \(\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = -1 \) by lemma 5.2. If \(16|h^*(D) \), then, by proposition 5.1 and lemma 5.2, we have \(\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = 1 \).

Theorem 5.5. Suppose \(D \) is of type \((R_2) \) and \(8|h^*(D) \). Then we have

(a) \(4||g(D) \) if and only if \(\left(\frac{z-2^{h(q)}}{2} \right)_4 \left(\frac{x}{q} \right)_4 = -1; \)
\[\left(\frac{z-2^{h(q)}}{2} \right)_4 = 1 \text{ and } \left(\frac{x}{q} \right)_4 = -1 \text{ if and only if } p \equiv 1 \text{ and } q \neq 1; \]
\[\left(\frac{z-2^{h(q)}}{2} \right)_4 = -1 \text{ and } \left(\frac{x}{q} \right)_4 = 1 \text{ if and only if } p \neq 1 \text{ and } q \equiv 1; \]

(b) \(8||g(D) \) and \(N_K e_B = -1 \) if and only if \(\left(\frac{z-2^{h(q)}}{2} \right)_4 \left(\frac{x}{q} \right)_4 = -1; \)
\[\left(\frac{z-2^{h(q)}}{2} \right)_4 = \left(\frac{x}{q} \right)_4 = -1; \]

(c) \(16|h^*(D) \) if and only if \(\left(\frac{z-2^{h(q)}}{2} \right)_4 \left(\frac{x}{q} \right)_4 = 1; \)

where \(x, z \) are rational integers satisfying the conditions (c), (d) \((R_2)\)** of proposition 2.13.

Proof. If \(4||g(D) \), then, by proposition 4.6 (a), we have

\[\psi_B(\hat{P}_B) = \psi_B((\sqrt{\beta})) = \left(\frac{\sqrt{\beta}}{P_B} \right)^2 \text{sgn } N_B \sqrt{\beta} \]
\[= \left(\frac{\sqrt{\beta}}{P_B} \right)_4 = \left(\frac{\beta}{P_B} \right)_4, \]
where \(\left(\frac{\beta}{\beta'} \right) = 1 \) if \(\beta \equiv 1 \pmod{p'_\beta} \) and \(\left(\frac{\beta}{\beta'} \right) = -1 \) if \(\beta \equiv 9 \pmod{p'_\beta} \). Since \(\beta \equiv 1 \pmod{p'_\beta} \) and \(\beta' \equiv 1 \pmod{p'_\beta} \), we see that \(\beta \equiv 1 \pmod{p'_\beta} \) if and only if \((\beta-1)(\beta'-1)=2^{k(\phi)}-z+1 \equiv 0 \pmod{16}\), so that \(\psi_B(\tilde{p}_B) = \left(\frac{x-2^{k(\phi)}}{2} \right)_4 \). The rest of the proof can be done in the same way as in theorem 5.4. Q.E.D.

Theorem 5.6. Suppose \(D \) is of type (I1) and \(8 \mid h(D) \), then

\[
\left(\frac{x}{q} \right)_4 = (-1)^{h(D)/8},
\]

where \(x \) is a rational integer satisfying the conditions (c), (d) (I1)** of proposition 2.13.

Proof. Since \(p \approx q \approx 1 \), it follows from proposition 5.1 and lemma 5.2 that \(\psi_B(\tilde{p}_B) = \psi_A(\tilde{Q}_A) = (-1)^{h(D)/8} \). By proposition 4.7 and lemma 5.3, \(\psi_A(\tilde{Q}_A) = \psi_A(\sqrt{\alpha}) = \left(\frac{\sqrt{\alpha}}{Q_A} \right)_4 = \left(\frac{x}{q} \right)_4 \). Q.E.D.

Theorem 5.7. Suppose \(D \) is of type (I2) and \(8 \mid h(D) \), then

\[
\left(\frac{x-2^{k(\phi)}}{2} \right)_4 = (-1)^{h(D)/8},
\]

where \(x \) is a rational integer satisfying the conditions (c), (d) (I2)** of proposition 2.13.

Proof. Since \(p \approx q \approx 1 \), it follows from proposition 5.1 and lemma 5.2 that \(\psi_B(\tilde{p}_B) = \psi_A(\tilde{Q}_A) = (-1)^{h(D)/8} \). By proposition 4.8 and lemma 5.3, we have \(\psi_A(\tilde{Q}_A) = \psi_A(\sqrt{\alpha}) = \left(\frac{\sqrt{\alpha}}{Q_A} \right)_2 = \left(\frac{x-2^{k(\phi)}}{2} \right)_4 \), and we deduce that \(\left(\frac{\sqrt{\alpha}}{Q_A} \right)_2 = \left(\frac{x}{q} \right)_4 \) as in the proof of theorem 5.5. Q.E.D.

Theorem 5.8. Suppose \(D \) is of type (I3) and \(8 \mid h(D) \), then

\[
\left(\frac{2x}{q} \right)_4 = (-1)^{h(D)/8},
\]

where \(x \) is a rational integer satisfying the conditions (c), (d) (I3)** of proposition 2.13.

Proof. Since \(p \approx q \approx 1 \), we have \(\psi_B(\tilde{p}_B) = \psi_A(\tilde{Q}_A) = (-1)^{h(D)/8} \). By proposition 4.9, we have \(\psi_A(\tilde{Q}_A) = \psi_A(\sqrt{\alpha}) = \left(\frac{\sqrt{\alpha}}{Q_A} \right)_4 = \left(\frac{2x}{q} \right)_4 \). Q.E.D.

For discriminants of type (I4), the above argument does not work well.
An alternative method is therefore given in the next section.

6. D of type (I4). We assume that D is of type (I4) and $8|h(D)$ in this section. It is easy to see that

$$K_4 = K_2(\sqrt{\varepsilon_q}) = \mathbb{Q}(\sqrt{-1}, \sqrt{\varepsilon_q}),$$

where $\varepsilon_q = T + U\sqrt{q} > 1$ is the fundamental unit of B. The field K_8 has been explicitly constructed by H. Cohn and G. Cooke [4] (cf. also [10]):

Lemma 6.1 (Cohn-Cooke).

$$K_8 = K_4(\sqrt{(f + \sqrt{-q})(1 + \sqrt{-1})\sqrt{\varepsilon_q}}),$$

where e and f are rational integral solutions of

$$-q = f^2 - 2e^2; e > 0, f \equiv -1 \pmod{4}.$$

We let $\lambda = (f + \sqrt{-q})(1 + \sqrt{-1})\sqrt{\varepsilon_q}$, so that $K_8 = K_4(\sqrt{\lambda})$. As P_B is ramified in K_4, we have $P_B = \mathfrak{P}^2$ where \mathfrak{P} is a prime ideal of K_4. It is easy to see that the completion of K_4 at \mathfrak{P} is isomorphic to $\mathbb{Q}_2(\sqrt{-1})$ and we may fix the isomorphism by taking

$$\sqrt{q} \equiv q + 1/2 \pmod{\mathfrak{P}^2}, \quad \sqrt{\varepsilon_q} \equiv \varepsilon_q + 1/2 \pmod{P_B^2}.$$

We remark that $\mathfrak{P}^2 | P_B | \mathfrak{P}^3$. Denote by $O_{\mathfrak{P}}$ the ring of \mathfrak{P}-adic integers, then $\pi = 1 - \sqrt{-1}$ is a prime element of $O_{\mathfrak{P}}$ and its maximal ideal is $\pi O_{\mathfrak{P}}$, which is also denoted by \mathfrak{P}. Since the ramification index of \mathfrak{P} is 2, we obtain easily:

Lemma 6.4. Let the \mathfrak{P}-adic units be denoted by $O_{\mathfrak{P}}^\times$. Then

$$\mu \in O_{\mathfrak{P}}^\times \text{ if and only if } \mu \equiv \pm 1 \pmod{\mathfrak{P}^3}.$$

As $\lambda/\pi^2 \in O_{\mathfrak{P}}^\times$, we have

Lemma 6.5. The following conditions are equivalent:

(a) $16|h(D)$;
(b) \mathfrak{P} splits completely in K_8;
(c) $\lambda/\pi^2 \equiv \pm 1 \pmod{\mathfrak{P}^3}$.

By simple calculations we have:

Lemma 6.6. (a) $f \equiv -q + 1/2 \pmod{8}$;

(b) $f + \sqrt{-q}/\pi \equiv -q + 1/2 \pmod{\mathfrak{P}^3}$.

Theorem 6.7 (Williams [17]). Suppose D is of type (14) and $8|h(D)$. Then $16|h(D)$ if and only if $T \equiv q-1 \pmod{16}$, equivalently, $(-1)^{T/8} \left(\frac{q}{2} \right) = (-1)^{h(D)/8}$, where $e_q = T + U\sqrt{q} > 1$ is the fundamental unit of $\mathbb{Q}\sqrt{q}$.

Proof. By (6.3) and lemma 6.6, we have

$$\lambda/\pi^2 = \frac{f + \sqrt{-q}}{\pi} \sqrt{e_q} \equiv \frac{-q + 1}{2} \frac{e_q + 1}{2} (\text{mod } \mathbb{P}^8),$$

and so $\lambda/\pi^2 \equiv \pm 1 \pmod{\mathbb{P}^8}$ if and only if

(6.8) $$\frac{e_q + 1}{2} \equiv \frac{-q + 1}{2} (\text{mod } \mathbb{P}^8).$$

As $q \equiv 1 \pmod{8}$ and $e_q \equiv 1 \pmod{\mathbb{P}^8}$, that is, $q \equiv e_q \equiv 1 \pmod{\mathbb{P}^8}$, we obtain (6.8) if and only if $e_q \equiv q \pmod{\mathbb{P}^7}$, that is, if and only if $e_q \equiv q \pmod{\mathbb{P}^7}$. It follows from lemma 6.5 that $16|h(D)$ if and only if $e_q \equiv q \pmod{\mathbb{P}^7}$. Since $e_q \equiv 1 \pmod{\mathbb{P}^7}$ and $e_q \equiv -1 \pmod{\mathbb{P}^7}$, we have $e_q \equiv 1 \pmod{\mathbb{P}^7}$ if and only if $(e_q - 1)(e_q + 1) = 2T \equiv 0 \pmod{32}$. Hence we deduce $e_q - 1 \equiv T \pmod{\mathbb{P}^7}$.

Q.E.D.

References

[2] E. Brown: *The class number of $\mathbb{Q}(\sqrt{-p})$, for $p \equiv 1 \pmod{8}$ a prime*, Proc. Amer. Math. Soc. 31 (1972), 381–383.

[10] P. Kaplan: *Unité de norme −1 du \(\mathbb{Q}(\sqrt{-p}) \) et corps de classes de degré 8 de \(\mathbb{Q}(\sqrt{-p}) \) ou \(p \) est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239–243.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan