

Title	Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic
Author(s)	Yamamoto, Yoshihiko
Citation	Osaka Journal of Mathematics. 1984, 21(1), p. 1-22
Version Type	VoR
URL	https://doi.org/10.18910/11771
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Yamamoto, Y.
Osaka J. Math.
21 (1984), 1-22

DIVISIBILITY BY 16 OF CLASS NUMBER OF QUADRATIC FIELDS WHOSE 2-CLASS GROUPS ARE CYCLIC

YOSHIHIKO YAMAMOTO*

(Received August 5, 1982)

0. Introduction. Let $K=\mathbb{Q}(\sqrt{D})$ be the quadratic field with discriminant D , and $H(D)$ and $h(D)$ be the ideal class group of K and its class number respectively. The ideal class group of K in the narrow sense and its class number are denoted by $H^+(D)$ and $h^+(D)$ respectively. We have $h^+(D)=2h(D)$, if $D>0$ and the fundamental unit ε_D (>1) has the norm 1, and $h^+(D)=h(D)$, otherwise. We assume, throughout the paper, that $|D|$ has just two distinct prime divisors, written p and q , so that the 2-class group of K (i.e. the Sylow 2-subgroup of $H^+(D)$ because we mean in the narrow sense) is cyclic. Then the discriminant D can be written uniquely as a product of two prime discriminants d_1 and d_2 , $D=d_1d_2$, such that $p|d_1$ and $q|d_2$ (cf. [16], for example).

By Redei and Reichardt [13] (cf. proposition 1.2 below), $h^+(D)$ is divisible by 4 if and only if D belongs to one of the following 6 types:

(R1) $D=pq$, $d_1=p$, $d_2=q$, $p\equiv q\equiv 1 \pmod{4}$, and $\left(\frac{p}{q}\right)=1$ ($=\left(\frac{q}{p}\right)$ by reciprocity);
(R2) $D=8q$, $d_1=8$ ($p=2$), $d_2=q$, and $q\equiv 1 \pmod{8}$;
(I1) $D=-pq$, $d_1=-p$, $d_2=q$, $p\equiv 3 \pmod{4}$, $q\equiv 1 \pmod{4}$, and $\left(\frac{-p}{q}\right)=1$ ($=\left(\frac{q}{p}\right)$ by reciprocity);
(I2) $D=-8p$, $d_1=-p$, $d_2=8$ ($q=2$), and $p\equiv 7 \pmod{8}$;
(I3) $D=-8q$, $d_1=-8$ ($p=2$), $d_2=q$, and $q\equiv 1 \pmod{8}$;
(I4) $D=-4q$, $d_1=-4$ ($p=2$), $d_2=q$, and $q\equiv 1 \pmod{8}$;

where $(-)$ is the Legendre-Jacobi-Kronecker symbol.

Conditions for $h^+(D)$ to be divisible by 8 have been given by several authors for each case or cases ([1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 15]). Some of them are reformulated in section 3. The purpose of this paper is to give some conditions for the divisibility by 16 of $h^+(D)$ for each case (cf. theorems 5.4, 5.5, 5.6, 5.7, 5.8, and 6.7). The main ideas were announced in [18] and [19].

While in preparation of the manuscript P. Kaplan informed me that theorem 6.7 was proved also by K.S. Williams with a different method and furthermore he gave a congruence for $h(-4q)$ modulo 16 ([17]).

* Research supported partly by Grant-in-Aid for Scientific Research.

1. 2-class field; divisibility by 4. Let 2^e be the order of the 2-class group of K , so that $2^e \mid h^+(D)$ ($e \geq 1$). Since the 2-class group of $H^+(D)$ is cyclic, we have the following chain of subgroups:

$$H^+(D) \supset H^+(D)^2 \supset \cdots \supset H^+(D)^{2^e}.$$

Denote by K_{2^k} the class field of K corresponding to the subgroup $H^+(D)^{2^k}$. We have a tower of class fields:

$$K \subset K_2 \subset \cdots \subset K_{2^e}.$$

K_{2^k} is unramified at every finite prime in K and $[K_{2^k}: K] = (H^+(D): H^+(D)^{2^k}) = 2^k$ ($1 \leq k \leq e$).

Proposition 1.1 (Reichardt [14]). *K_{2^k} is normal over \mathbf{Q} . The Galois group $G(K_{2^k}/\mathbf{Q})$ is isomorphic to the dihedral group D_{2^k} of order 2^{k+1} .*

In particular $G(K_2/K) \cong \mathbf{Z}_2 \times \mathbf{Z}_2$, where \mathbf{Z}_2 denotes a cyclic group of order 2. It is well-known and easy to see that

$$K_2 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2}) = AB,$$

where $A = \mathbf{Q}(\sqrt{d_1})$ and $B = \mathbf{Q}(\sqrt{d_2})$.

We write $\mathfrak{a} \sim \mathfrak{b}$ (resp. $\mathfrak{a} \approx \mathfrak{b}$), if ideals $\mathfrak{a}, \mathfrak{b}$ of K are in the same ideal class (resp. in the same narrow ideal class). As p and q are ramified in K , we have $(p) = \mathfrak{p}^2$, $(q) = \mathfrak{q}^2$, where \mathfrak{p} and \mathfrak{q} are prime ideals of K . Denote the narrow ideal class containing \mathfrak{p} (resp. \mathfrak{q}) by $C^+(\mathfrak{p})$ (resp. $C^+(\mathfrak{q})$). Then $C^+(\mathfrak{p})^2 = C^+(\mathfrak{q})^2 = 1$.

It is also well-known that the elementary 2-subgroup of $H^+(D)$, which is isomorphic to \mathbf{Z}_2 in the present case, is generated by $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$. So one of the three alternatives holds:

- (i) $C^+(\mathfrak{p}) = 1$ and $C^+(\mathfrak{q}) \neq 1$,
- (ii) $C^+(\mathfrak{p}) \neq 1$ and $C^+(\mathfrak{q}) = 1$,
- (iii) $C^+(\mathfrak{p}) = C^+(\mathfrak{q}) \neq 1$.

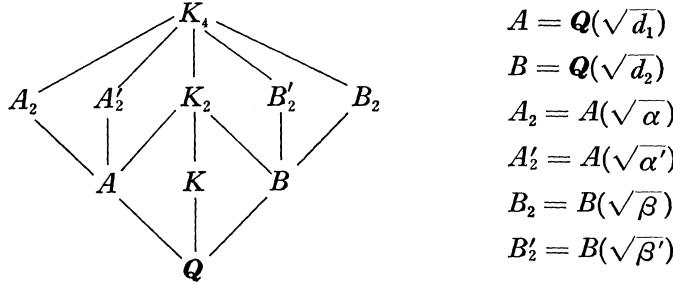
In case $D > 0$ and $d_i \neq -4$ ($i = 1, 2$) we see easily that the condition (iii) holds if and only if $N_K \varepsilon_D = -1$. By class field theory, we get the following proposition which is a special case of a theorem of Redei and Reichardt [13].

Proposition 1.2. *The following assertions are equivalent:*

- (a) $4 \mid h^+(D)$;
- (b) both $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$ belong to $H^+(D)^2$;
- (c) both \mathfrak{p} and \mathfrak{q} split completely in K_2 ;
- (d) p and q split completely in B and A , respectively;
- (e) $\left(\frac{d_1}{q}\right) = \left(\frac{d_2}{p}\right) = 1$.

As a direct consequence of proposition 1.2 we have $4|h^+(D)$ if and only if D belongs to one of the types (R1), (R2), (I1), (I2), (I3), (I4) in section 0.

2. Construction of K_4 . In this section we assume $4|h^+(D)$, so that D belongs to one of (R1), ..., (I4) in section 0. The class field K_4 is normal over \mathbf{Q} and the Galois group $G(K_4/\mathbf{Q})$ is isomorphic to the dihedral group D_4 of order 8. The subfields of K_4 are given as follows:



where $\alpha \in A$, $\beta \in B$, α' (resp. β') is the conjugate of α (resp. β) over \mathbf{Q} , and $\alpha\alpha' \equiv d_2 \pmod{(A^\times)^2}$, $\beta\beta' \equiv d_1 \pmod{(B^\times)^2}$.

From proposition 1.2 it follows that q (resp. p) splits completely in A (resp. B). Let $(p) = \mathfrak{p}_A^2$, $(q) = \mathfrak{q}_A\mathfrak{q}'_A$ (resp. $(q) = \mathfrak{q}_B^2$, $(p) = \mathfrak{p}_B\mathfrak{p}'_B$) be the prime decompositions in A (resp. B) with prime ideals \mathfrak{p}_A , \mathfrak{q}_A , \mathfrak{q}'_A in A (resp. \mathfrak{q}_B , \mathfrak{p}_B , \mathfrak{p}'_B in B).

Let Q (resp. Q') be a prime divisor of \mathfrak{q}_A (resp. \mathfrak{q}'_A) in K_4 . Since the extension K_4/K is unramified at every finite prime the inertia field of Q with respect to K_4/\mathbf{Q} is either A_2 or A'_2 . We may choose A'_2 (resp. A_2) to be the inertia field of Q (resp. Q'). Then we get easily that

(2.1) \mathfrak{q}_A (resp. \mathfrak{q}'_A) is the only finite prime in A which ramifies in A_2 (resp. A'_2).

In the same way, by a suitable choice of B_2 and B'_2 , we have

(2.2) \mathfrak{p}_B (resp. \mathfrak{p}'_B) is the only finite prime in B which ramifies in B_2 (resp. B'_2).

As for the ramification of infinite primes, we can argue in the same way if $D < 0$. Indeed when $D < 0$ (types (I1), (I2), (I3), and (I4)), the infinite prime ∞ of \mathbf{Q} ramifies in A , $\infty = \infty_A$, and splits in B , $\infty = \infty_B\infty'_B$. By a suitable choice of ∞_B and ∞'_B we see that

(2.3) if $D < 0$, then both A_2 and A'_2 are unramified at ∞_A , and B_2 (resp. B'_2) is ramified at ∞_B (resp. ∞'_B) and unramified at ∞'_B (resp. ∞_B).

If $D > 0$, both A and B are real, so that ∞ splits in A and B , $\infty = \infty_A\infty'_A$, $\infty = \infty_B\infty'_B$. To go further, we have to take the absolute class number $h(D)$ into account. If $4 \nmid h(D)$, then $2 \mid h(D)$ and $N_K \varepsilon_D = 1$, so that K_4 is ramified at

every infinite prime of K , which implies that K_2 is the inertia field of ∞ with respect to K_4/\mathbf{Q} , for K_2 is normal over \mathbf{Q} . Hence we have

(2.4) *if $D > 0$ and $2|h(D)$, then every infinite prime of A (resp. B) ramifies in A_2 and A'_2 (resp. B_2 and B'_2).*

If $D > 0$ and $4|h(D)$ then K_4 is unramified at every infinite prime over \mathbf{Q} . Hence we have

(2.5) *if $D > 0$ and $4|h(D)$, then every infinite prime of A (resp. B) does not ramify in A_2 and A'_2 (resp. B_2 and B'_2).*

We denote by O_F the ring of integers of a number field F . Let f_A and χ_A (resp. f_B and χ_B) be the conductor and the Hecke ideal character attached to the quadratic extension A_2/A (resp. B_2/B).

Proposition 2.6. *Suppose D belongs to type (R1). Then*

(a) *if $2|h(d)$, we have*

$$f_A = \mathfrak{q}_A \infty_A \infty'_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A} \right) \operatorname{sgn} N_A \lambda \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B \infty_B \infty'_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B} \right) \operatorname{sgn} N_B \mu \quad (\mu \in O_B - \mathfrak{p}_B);$$

(b) *if $4|h(D)$, we have*

$$f_A = \mathfrak{q}_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A} \right) \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B} \right) \quad (\mu \in O_B - \mathfrak{p}_B);$$

where $\left(\frac{\cdot}{\mathfrak{q}_A} \right)$ (resp. $\left(\frac{\cdot}{\mathfrak{p}_B} \right)$) denotes the quadratic residue symbol modulo \mathfrak{q}_A (resp. \mathfrak{p}_B).

Proof. If $2|h(D)$ then $N_K \varepsilon_D = 1$. It follows from (2.1), (2.2), and (2.4) that the quadratic extension A_2/A (resp. B_2/B) is ramified at $\mathfrak{q}_A, \infty_A, \infty'_A$ (resp. $\mathfrak{p}_B, \infty_B, \infty'_B$) and unramified outside them. Hence

$$\begin{aligned} \chi_A((\lambda)) &= \left(\frac{\lambda, A_2/A}{\mathfrak{q}_A} \right) \left(\frac{\lambda, A_2/A}{\infty_A} \right) \left(\frac{\lambda, A_2/A}{\infty'_A} \right) \quad (\text{norm-residue symbol}) \\ &= \left(\frac{\lambda, \alpha}{\mathfrak{q}_A} \right) \left(\frac{\lambda, \alpha}{\infty_A} \right) \left(\frac{\lambda, \alpha}{\infty'_A} \right) \quad (\text{Hilbert symbol}) \\ &= \left(\frac{\lambda}{\mathfrak{q}_A} \right) (\operatorname{sgn} \lambda) (\operatorname{sgn} \lambda') \\ &= \left(\frac{\lambda}{\mathfrak{q}_A} \right) \operatorname{sgn} N_A \lambda \quad (\lambda \in O_A - \mathfrak{q}_A), \end{aligned}$$

which implies $f_A = \mathfrak{q}_A \infty_A \infty'_A$. We have $\chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B}\right) \operatorname{sgn} N_B \mu$ and $f_B = \mathfrak{p}_B \infty_B \infty'_B$ in the same way.

If $4|h(D)$, then, from (2.1), (2.2), and (2.5), it follows that A_2/A (resp. B_2/B) is ramified only at \mathfrak{q}_A (resp. \mathfrak{p}_B). Hence the assertion (b) follows in the same way. Q.E.D.

Proposition 2.7. *Suppose D is of type (R2). Then*

(a) *if $2|h(D)$, we have*

$$f_A = \mathfrak{q}_A \infty_A \infty'_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A}\right) \operatorname{sgn} N_A \lambda \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B^3 \infty_B \infty'_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B}\right) \operatorname{sgn} N_B \mu \quad (\mu \in O_B - \mathfrak{p}_B);$$

(b) *if $4|h(D)$, we have*

$$f_A = \mathfrak{q}_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A}\right) \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B^3, \quad \chi_B((\mu)) = \left(\frac{\mu, 2}{\mathfrak{p}_B}\right) \quad (\mu \in O_B - \mathfrak{p}_B);$$

where $\left(\frac{\mu, 2}{\mathfrak{p}_B}\right) = \begin{cases} 1 & \text{if } \mu \equiv 1, 7 \pmod{\mathfrak{p}_B^3}, \\ -1 & \text{if } \mu \equiv 3, 5 \pmod{\mathfrak{p}_B^3}. \end{cases}$

Proof. If $2|h(D)$ then $N_K \mathfrak{e}_D = 1$. It follows from (2.1), (2.2), and (2.4) that the quadratic extension A_2/A (resp. B_2/B) is ramified only at $\mathfrak{q}_A, \infty_A, \infty'_A$ (resp. $\mathfrak{p}_B, \infty_B, \infty'_B$). We have $\chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A}\right) \operatorname{sgn} N_A \lambda$ in the same way as in the proof of proposition 2.6, while $\left(\frac{\mu, \beta}{\mathfrak{p}_B}\right) = \left(\frac{\mu, 2}{\mathfrak{p}_B}\right)$, which implies (a). Assertion (b) is proved similarly. Q.E.D.

We obtain the corresponding results for the other types similarly.

Proposition 2.8. *Suppose D is of type (I1), then*

$$f_A = \mathfrak{q}_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A}\right) \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B}\right) \left(\frac{\mu, \beta}{\infty_B}\right) \quad (\mu \in O_B - \mathfrak{p}_B).$$

Proposition 2.9. *Suppose D is of type (I2), then*

$$f_A = \mathfrak{q}_A^3, \quad \chi_A((\lambda)) = \left(\frac{\lambda, 2}{\mathfrak{q}_A}\right) \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B} \right) \left(\frac{\mu, \beta}{\infty_B} \right) \quad (\mu \in O_B - \mathfrak{p}_B).$$

Proposition 2.10. *Suppose D is of type (I3), then*

$$f_A = \mathfrak{q}_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A} \right) \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B^3 \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu, -2}{\mathfrak{p}_B} \right) \left(\frac{\mu, \beta}{\infty_B} \right) \quad (\mu \in O_B - \mathfrak{p}_B),$$

$$\text{where } \left(\frac{\mu, -2}{\mathfrak{p}_B} \right) = \begin{cases} 1 & \text{if } \mu \equiv 1, 3 \pmod{\mathfrak{p}_B^2}, \\ -1 & \text{if } \mu \equiv 5, 7 \pmod{\mathfrak{p}_B^2}. \end{cases}$$

Proposition 2.11. *Suppose D is of type (I4), then*

$$f_A = \mathfrak{q}_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A} \right) \quad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B^2 \infty_B, \quad \chi_B((\mu)) = \left(\frac{\mu, -1}{\mathfrak{p}_B} \right) \left(\frac{\mu, \beta}{\infty_B} \right) \quad (\mu \in O_B - \mathfrak{p}_B),$$

$$\text{where } \left(\frac{\mu, -1}{\mathfrak{p}_B} \right) = \begin{cases} 1 & \text{if } \mu \equiv 1 \pmod{\mathfrak{p}_B^2}, \\ -1 & \text{if } \mu \equiv -1 \pmod{\mathfrak{p}_B^2}. \end{cases}$$

In propositions 2.8 to 2.11 the infinite prime ∞_B is defined by $\left(\frac{\beta, \beta}{\infty_B} \right) = -1$, so that $\left(\frac{\mu, \beta}{\infty_B} \right)$ is the sign of μ with respect to ∞_B .

Proposition 2.12. *For each D , α and β can be taken so that they satisfy the following conditions:*

- (a) $\alpha \in O_A$, $\beta \in O_B$, $(\alpha, \alpha') = 1$, $(\beta, \beta') = 1$;
- (b)

$$(R1): \begin{cases} \alpha\alpha' = q^{h(p)}, \\ \alpha^3 \equiv 1 \pmod{4}, \end{cases} \quad \begin{cases} \beta\beta' = p^{h(q)}, \\ \beta^3 \equiv 1 \pmod{4}; \end{cases}$$

$$(R2): \begin{cases} \alpha\alpha' = q, \\ \alpha \equiv 1 \text{ or } 3+2\sqrt{-2} \pmod{4}, \end{cases} \quad \begin{cases} \beta\beta' = 2^{h(q)}, \\ \beta+\beta' \equiv 2^{h(q)}+1 \pmod{4}; \end{cases}$$

$$(I1): \begin{cases} \alpha\alpha' = q^{h(-p)}, \\ \alpha^3 \equiv 1 \pmod{4}, \end{cases} \quad \begin{cases} \beta\beta' = -p^{h(q)}, \\ \beta^3 \equiv 1 \pmod{4}; \end{cases}$$

$$(I2): \begin{cases} \alpha\alpha' = 2^{h(-p)}, \\ \alpha+\alpha' \equiv 2^{h(-p)}+1 \pmod{4}, \end{cases} \quad \begin{cases} \beta\beta' = -p, \\ \beta \equiv 1 \text{ or } 3+2\sqrt{-2} \pmod{4}; \end{cases}$$

$$(I3): \begin{cases} \alpha\alpha' = q, \\ \alpha \equiv 1 \text{ or } 3+2\sqrt{-2} \pmod{4}, \end{cases} \quad \begin{cases} \beta\beta' = -2^{h(q)}, \\ \beta+\beta' \equiv -2^{h(q)}+1 \pmod{4}; \end{cases}$$

$$(I4) : \begin{cases} \alpha\alpha' = q, & \beta\beta' = -1, \\ \alpha \equiv \pm 1 \pmod{4}, & \beta + \beta' \equiv 0 \pmod{4}. \end{cases}$$

Conversely, for each α (resp. β) satisfying (a) and (b) the field A_2 (resp. B_2) is the field $A(\sqrt{\beta})$ (resp. $B(\sqrt{\alpha})$).

We remark that the condition $\alpha^3 \equiv 1 \pmod{4}$ (resp. $\beta^3 \equiv 1 \pmod{4}$) is equivalent to $\alpha \equiv 1 \pmod{4}$ (resp. $\beta \equiv 1 \pmod{4}$) if $p \equiv 1 \pmod{8}$ (resp. $q \equiv 1 \pmod{8}$).

Proof. Since \mathfrak{q}_A is the unique finite prime which is ramified in $A_2 = A(\sqrt{\alpha})$ and $\alpha\alpha' \equiv d_2 \pmod{(A^\times)^2}$, we have $(\alpha) = \mathfrak{q}_A\mathfrak{a}^2$ with an ideal \mathfrak{a} in A . It is well-known that the class number $h(d_1)$ is odd. Put $\mathfrak{a}^{h(d_1)} = (\gamma)$. We may replace α by $\alpha^{h(d_1)}\gamma^{-2}$, then $(\alpha) = \mathfrak{q}_A^{h(d_1)}$, so that $\alpha \in O_A$, $(\alpha, \alpha') = 1$, and $\alpha\alpha' = \pm N_A \mathfrak{q}_A^{h(d_1)} = \pm q^{h(d_1)}$. The sign of the right hand side is determined by the multiplicative congruence $\alpha\alpha' \equiv d_2 \pmod{(A^\times)^2}$. Let \mathfrak{r}_A be a prime ideal in A such that $\mathfrak{r}_A \mid (2)$ and $\mathfrak{r}_A \neq \mathfrak{q}_A$. The ideal \mathfrak{r}_A is unramified in A_2 if and only if there exists an integer $\delta \in O_A$ such that $\alpha \equiv \delta^2 \pmod{\mathfrak{r}_A^{2e}}$, where e is the index of ramification of \mathfrak{r}_A with respect to A/\mathbb{Q} , that is, $\mathfrak{r}_A^e \mid (2)$. Hence we have

$$\begin{aligned} \alpha^3 &\equiv 1 \pmod{4} & \text{if } p \neq 2 \text{ and } q \neq 2; \\ \alpha &\equiv \text{a square} \pmod{4} & \text{if } p = 2 \text{ and } q \neq 2; \\ \alpha &\equiv 1 \pmod{\mathfrak{q}_A^2} & \text{if } p \neq 2 \text{ and } q = 2. \end{aligned}$$

In the last case ($p \neq 2, q = 2$), it follows from $\alpha' \equiv 1 \pmod{\mathfrak{q}_A^2}$ that $(\alpha-1)(\alpha'-1) = 2^{h(d_1)} - \alpha - \alpha' + 1 \equiv 0 \pmod{4}$. We can argue similarly for β except in the case (I4), in which we may proceed as follows. Since $\beta\beta' \equiv -4 \pmod{(B^\times)^2}$, we have $\beta \in O_B$ and $\beta\beta' = -1$, that is, β is a unit, by a suitable choice of representative β modulo $(B^\times)^2$. As $B(\sqrt{\beta})/B$ is ramified at \mathfrak{p}_B and unramified at \mathfrak{p}'_B , we have $\beta \equiv -1 \pmod{\mathfrak{p}_B^2}$ and $\beta \equiv 1 \pmod{\mathfrak{p}'_B^2}$. Hence $\beta - 1 \equiv 0 \pmod{\mathfrak{p}_B \mathfrak{p}'_B^2}$ and $(\beta - 1)(\beta' - 1) = -\beta - \beta' \equiv 0 \pmod{8}$, which implies $\beta + \beta' \equiv 0 \pmod{8}$. Conversely, if we take α, β satisfying conditions (a) and (b) then it is easily seen that $A(\sqrt{\alpha}, \sqrt{\alpha'})$ (resp. $B(\sqrt{\beta}, \sqrt{\beta'})$) is a Galois extension of \mathbb{Q} with Galois group isomorphic to D_4 and it is a cyclic extension of K unramified at every finite prime. Hence it must be K_4 by class field theory. So we have $A_2 = A(\sqrt{\alpha})$ and $B_2 = B(\sqrt{\beta})$. Q.E.D.

We remark that in case (I4) we may take $\beta = T + U\sqrt{-q} = \varepsilon_q$, the fundamental unit of B ($T, U \in \mathbb{Z}$, $T > 0$, $U > 0$), in which case $T \equiv 0 \pmod{4}$ follows as a corollary.

Putting, for each D , respectively:

$$(R1)^*: \quad \alpha = \frac{x + y\sqrt{p}}{2}, \quad \beta = \frac{z + w\sqrt{-q}}{2};$$

$$(R2)^*: \quad \alpha = x + y\sqrt{-2}, \quad \beta = \frac{z + w\sqrt{q}}{2};$$

$$(I1)^*: \quad \alpha = \frac{x + y\sqrt{-p}}{2}, \quad \beta = \frac{z + w\sqrt{q}}{2};$$

$$(I2)^*: \quad \alpha = \frac{x + y\sqrt{-p}}{2}, \quad \beta = z + w\sqrt{-2};$$

$$(I3)^*: \quad \alpha = x + y\sqrt{-2}, \quad \beta = \frac{z + w\sqrt{q}}{2};$$

$$(I4)^*: \quad \alpha = x + y\sqrt{-1}, \quad \beta = z + w\sqrt{q};$$

$(x, y, z, w \in \mathbb{Z})$, it is easy to see

Proposition 2.13. *The conditions (a), (b) of proposition 2.12 is equivalent to the following conditions:*

(c) $x, y, z, w \in \mathbb{Z}$ and $q \nmid (x, y), p \nmid (z, w)$;
 (d)

$$\begin{aligned} (R1)^{**}: & \begin{cases} x^2 - py^2 = 4q^{h(p)}, \\ \left(\frac{x+y\sqrt{-p}}{2}\right)^3 \equiv 1 \pmod{4}, \end{cases} & z^2 - qw^2 = 4p^{h(q)}, \\ & \left(\frac{z+w\sqrt{q}}{2}\right)^3 \equiv 1 \pmod{4}; \\ (R2)^{**}: & \begin{cases} x^2 - 2y^2 = q, \\ (x, y) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}, \end{cases} & z^2 - qw^2 = 2^{h(q)+2}, \\ & z \equiv 2^{h(q)} + 1 \pmod{4}; \\ (I1)^{**}: & \begin{cases} x^2 + py^2 = 4q^{h(-p)}, \\ \left(\frac{x+y\sqrt{-p}}{2}\right)^3 \equiv 1 \pmod{4}, \end{cases} & z^2 - qw^2 = -4p^{h(q)}, \\ & \left(\frac{z+w\sqrt{q}}{2}\right)^3 \equiv 1 \pmod{4}; \\ (I2)^{**}: & \begin{cases} x^2 + py^2 = 4q^{h(-p)}, \\ x \equiv 2^{h(-p)} + 1 \pmod{4}, \end{cases} & z^2 - 2w^2 = -p, \\ & (z, w) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}; \\ (I3)^{**}: & \begin{cases} x^2 + 2y^2 = q, \\ (x, y) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}, \end{cases} & z^2 - qw^2 = -2^{h(q)+2}, \\ & z \equiv -2^{h(q)} + 1 \pmod{4}; \\ (I4)^{**}: & \begin{cases} x^2 + y^2 = q, \\ y \equiv 0 \pmod{4}, \end{cases} & z^2 - qw^2 = -1, \\ & z \equiv 0 \pmod{4}. \end{aligned}$$

We remark that $\left(\frac{x+y\sqrt{-d}}{2}\right)^3 \equiv 1 \pmod{4}$ if and only if

$$(x, y) \equiv (2, 0) \text{ or } (6, 4) \pmod{8} \quad \text{if } d \equiv 1 \pmod{8},$$

$$(x, y) \equiv (2, 0), (6, 4), (3, 1), (3, 7), (7, 3), \text{ or } (7, 5) \pmod{8}$$

$$\quad \text{if } d \equiv 5 \pmod{16},$$

$$(x, y) \equiv (2, 0), (6, 4), (3, 3), (3, 5), (7, 1), \text{ or } (7, 7) \pmod{8}$$

$$\quad \text{if } d \equiv 13 \pmod{16}.$$

3. Divisibility by 8. Assume $4|h^+(D)$, then, in the same way as in section 1, we have the following criterion for the class number $h^+(D)$ to be divisible by 8:

Proposition 3.1. *The following conditions are equivalent:*

- (a) $8|h^+(D)$;
- (b) both $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$ belong to $H^+(D)^4$;
- (c) both \mathfrak{p} and \mathfrak{q} split completely in K .

Using the notation of section 2, we obtain easily:

Lemma 3.2. *The following conditions are equivalent:*

- (a) $C^+(\mathfrak{p}) \in H^+(D)^4$ (resp. $C^+(\mathfrak{q}) \in H^+(D)^4$);
- (b) \mathfrak{p} (resp. \mathfrak{q}) splits completely in K_4/K ;
- (c) \mathfrak{p}_A (resp. \mathfrak{q}_B) splits completely in A_2/A (resp. B_2/B);
- (d) \mathfrak{p}'_B (resp. \mathfrak{q}'_A) splits completely in B_2/B (resp. A_2/A);
- (e) $\chi_A(\mathfrak{p}_A) = 1$ (resp. $\chi_B(\mathfrak{q}_B) = 1$);
- (f) $\chi_B(\mathfrak{p}'_B) = 1$ (resp. $\chi_A(\mathfrak{q}'_A) = 1$).

Proposition 3.3 (cf. [12] [3] [9]). *Suppose D is of type (R1). Then we have*

- (a) $2|h(D)$ if and only if $\left(\frac{p}{q}\right)_4 \left(\frac{q}{p}\right)_4 = -1$;
if $\left(\frac{2}{q}\right)_4 = -1$ and $\left(\frac{q}{2}\right)_4 = 1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;
if $\left(\frac{2}{q}\right)_4 = 1$ and $\left(\frac{q}{2}\right)_4 = -1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;
- (b) $4|h(D)$ and $N_K \varepsilon_D = -1$ if and only if $\left(\frac{p}{q}\right)_4 = \left(\frac{q}{p}\right)_4 = -1$;
- (c) $8|h^+(D)$ if and only if $\left(\frac{p}{q}\right)_4 = \left(\frac{q}{p}\right)_4 = 1$;
- (d) $\left(\frac{p}{q}\right)_4 = (-1)^{h(D)/2} \left(\frac{z}{p}\right)$ and $\left(\frac{q}{p}\right)_4 = (-1)^{h(D)/2} \left(\frac{x}{q}\right)$,

where x, z are rational integers satisfying the conditions (c), (d) (R1)** of proposition 2.13.

Proof. Assume $2|h(D)$. Since $N_K \varepsilon_D = 1$ we have $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$ or $\mathfrak{p} \not\approx 1$ and $\mathfrak{q} \approx 1$ alternatively. In the first case we have $C^+(\mathfrak{p}) \in H^+(D)^4$ and $C^+(\mathfrak{q}) \notin H^+(D)^4$, hence, by proposition 2.6 (a) and lemma 3.2,

$$1 = \chi_A(\mathfrak{p}_A) = \chi_A((\sqrt{p})) = \left(\frac{\sqrt{p}}{\mathfrak{q}_A}\right) \operatorname{sgn} N_A \sqrt{p} = -\left(\frac{p}{q}\right)_4,$$

$$-1 = \chi_B(q_B) = \chi_B((\sqrt{q})) = \left(\frac{\sqrt{q}}{p_B}\right) sgn N_B \sqrt{q} = -\left(\frac{q}{p}\right)_4.$$

In the same way we have $\left(\frac{p}{q}\right)_4 = 1$ and $\left(\frac{q}{p}\right)_4 = -1$ for the latter case.

Next, assume $4|h(D)$, then, by proposition 2.6 (b), we have $\chi_A(p_A) = \left(\frac{\sqrt{p}}{q_A}\right) = \left(\frac{p}{q}\right)_4$ and $\chi_B(q_B) = \left(\frac{\sqrt{q}}{p_B}\right) = \left(\frac{q}{p}\right)_4$. If $8 \nmid h^+(D)$ then $4|h(D)$ and $N_K \varepsilon_D = -1$, hence $p \approx q \approx 1$ and we see, by proposition 3.1 and lemma 3.2, $C^+(\mathfrak{p}) = C^+(\mathfrak{q}) \in H^+(D)^4$ and $\chi_A(p_A) = \chi_B(q_B) = -1$. If $8|h^+(D)$, then we get $\chi_A(p_A) = \chi_B(q_B) = 1$ in the same way. To sum up, we get the assertions (a), (b), (c), and that

$$\chi_A(p_A) = (-1)^{h(D)/2} \left(\frac{p}{q}\right)_4 \text{ and } \chi_B(q_B) = (-1)^{h(D)/2} \left(\frac{q}{p}\right)_4.$$

On the other hand, since $h(d_1)$ and $h(d_2)$ are odd,

$$\begin{aligned} \chi_A(p_A) &= \chi_B(p'_B) && \text{(lemma 3.2)} \\ &= \chi_B(p'_B)^{h(d_2)} = \chi_B((\beta')) \\ &= \left(\frac{\beta'}{p_B}\right) && \text{(proposition 2.6, proposition 2.12)} \\ &= \left(\frac{\beta + \beta'}{p_B}\right) = \left(\frac{z}{p}\right) && \text{(by (R1)*)} \end{aligned}$$

and similarly $\chi_B(q_B) = \left(\frac{x}{q}\right)$, which imply the assertion (d). Q.E.D.

Proposition 3.4 (cf. [12] [3] [9]). *Suppose D is of type (R2). Then we have*

(a) $2|h(D)$ if and only if $\left(\frac{2}{q}\right)_4 \left(\frac{q}{2}\right)_4 = -1$;

if $\left(\frac{p}{q}\right)_4 = -1$ and $\left(\frac{q}{p}\right)_4 = 1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;

if $\left(\frac{p}{q}\right)_4 = 1$ and $\left(\frac{q}{p}\right)_4 = -1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;

(b) $4|h(D)$ and $N_K \varepsilon_D = -1$ if and only if $\left(\frac{2}{q}\right)_4 = \left(\frac{q}{2}\right)_4 = -1$;

(c) $8|h^+(D)$ if and only if $\left(\frac{2}{q}\right)_4 = \left(\frac{q}{2}\right)_4 = 1$;

(d) $\left(\frac{2}{q}\right)_4 = \left(\frac{z-2^{h(q)}}{2}\right)$ and $\left(\frac{q}{2}\right)_4 \left(\frac{x}{q}\right)_4$,

where x, z are rational integers satisfying the conditions (c), (d) (R2)** of proposition 2.13 and

$$\begin{aligned} \left(\frac{a}{2}\right) &= 1 \text{ if } a \equiv 1 \pmod{8}, \quad \left(\frac{a}{2}\right) = -1 \text{ if } a \equiv 5 \pmod{8}; \\ \left(\frac{a}{2}\right)_4 &= 1 \text{ if } a \equiv 1 \pmod{16}, \quad \left(\frac{a}{2}\right)_4 = -1 \text{ if } a \equiv 9 \pmod{16}. \end{aligned}$$

Proof. Using the following:

$$(3.5) \quad \begin{cases} \left(\frac{\sqrt{q}}{\mathfrak{p}_B}, 2\right) = \left(\frac{q}{2}\right)_4, \\ \left(\frac{\beta', 2}{\mathfrak{p}_B}\right) = \left(\frac{z-2^{h(q)}}{2}\right), \end{cases}$$

we can argue in the same way as in the proof of proposition 3.3. The first equality of (3.5) is checked straightforwardly. Since $\beta' \equiv 1 \pmod{\mathfrak{p}_B^2}$, we see $\left(\frac{\beta', 2}{\mathfrak{p}_B}\right) = 1$ if and only if $\beta' \equiv 1 \pmod{\mathfrak{p}_B^3}$, that is, if and only if $(\beta-1)(\beta'-1) \equiv 0 \pmod{\mathfrak{p}_B^3}$, for $\beta \not\equiv 1 \pmod{\mathfrak{p}_B}$; on the other hand $(\beta-1)(\beta'-1) = \beta\beta' - \beta - \beta' + 1 = 2^{h(q)} - z + 1$; so we get the latter equality of (3.5). Q.E.D.

Proposition 3.5 (cf. [12] [9]). *Suppose D is of type (I1), then*

$$\left(\frac{-p}{q}\right)_4 = \left(\frac{x}{q}\right) = \left(\frac{z}{p}\right) = (-1)^{h(D)/4} \text{ and } \left(\frac{w}{p}\right) = \operatorname{sgn} w,$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I1)** of proposition 2.13.

Proof. Since $\mathfrak{p}\mathfrak{q} = (\sqrt{-pq}) \approx 1$, we have $\mathfrak{p} \approx \mathfrak{q} \not\approx 1$. It follows from proposition 3.1 and lemma 3.2 that $\chi_A(\mathfrak{p}_A) = \chi_B(\mathfrak{q}_B) = \chi_B(\mathfrak{p}'_B) = \chi_A(\mathfrak{q}'_A) = (-1)^{h^+(D)/4}$. By proposition 2.8 we have

$$\begin{aligned} \chi_A(\mathfrak{p}_A) &= \left(\frac{\sqrt{-p}}{\mathfrak{q}_A}\right) = \left(\frac{-p}{\mathfrak{q}_A}\right)_4 = \left(\frac{-p}{q}\right)_4, \\ \chi_A(\mathfrak{q}'_A) &= \chi_A(\mathfrak{q}'_A)^{h(-p)} = \chi_A((\alpha')) = \left(\frac{\alpha'}{\mathfrak{q}_A}\right) = \left(\frac{\alpha + \alpha'}{\mathfrak{q}_A}\right) = \left(\frac{x}{q}\right), \\ \chi_B(\mathfrak{p}'_B) &= \chi_B(\mathfrak{p}'_B)^{h(q)} = \chi_B((\beta')) = \left(\frac{\beta'}{\mathfrak{p}_B}\right) \left(\frac{\beta', \beta}{\infty_B}\right) = \left(\frac{z}{p}\right), \\ \chi_B(\mathfrak{q}_B) &= \chi_B((\sqrt{-q})) = \left(\frac{\sqrt{-q}}{\mathfrak{p}_B}\right) \left(\frac{\sqrt{-q}, \beta}{\infty_B}\right). \end{aligned}$$

It follows from $\left(\frac{\beta, \beta}{\infty_B}\right) = -1$ that $\left(\frac{\sqrt{-q}, \beta}{\infty_B}\right) = -\operatorname{sgn} w$. Since $\beta = \frac{z + w\sqrt{-q}}{2}$

$\equiv 0 \pmod{\mathfrak{p}_B}$, we have $\sqrt{-q} \equiv -\frac{z}{w} \pmod{\mathfrak{p}_B}$, so that $\chi_B(\mathfrak{q}_B) = \left(\frac{-z/w}{p}\right) (-\operatorname{sgn} w) = \left(\frac{zw}{p}\right) \operatorname{sgn} w$, which implies $\left(\frac{w}{p}\right) = \operatorname{sgn} w$. Q.E.D.

Proposition 3.6 (cf. [9]). *Suppose D is of type (I2), then*

$$\left(\frac{-p}{2}\right)_4 = \left(\frac{x-2^{h(-p)}}{2}\right) = \left(\frac{z}{p}\right) = (-1)^{h(D)/4} \text{ and } \left(\frac{w}{p}\right) = \operatorname{sgn} w,$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I2)** of proposition 2.13.

Proof. Since $\mathfrak{p}\mathfrak{q} = (\sqrt{-2p}) \approx 1$, we see that $\mathfrak{p} \approx \mathfrak{q} \not\approx 1$. By proposition 3.1 and lemma 3.2 we have $\chi_A(\mathfrak{p}_A) = \chi_B(\mathfrak{q}_B) = \chi_A(\mathfrak{q}'_A) = \chi_B(\mathfrak{p}'_B) = (-1)^{h(D)/4}$. By proposition 2.9 we have

$$\begin{aligned} \chi_A(\mathfrak{p}_A) &= \chi_A((\sqrt{-p})) = \left(\frac{\sqrt{-p}, 2}{\mathfrak{q}_A}\right) = \left(\frac{-p}{2}\right)_4, \\ \chi_A(\mathfrak{q}'_A) &= \chi_A((\alpha')) = \left(\frac{\alpha', 2}{\mathfrak{q}_A}\right) = \left(\frac{x-2^{h(-p)}}{2}\right), \\ \chi_B(\mathfrak{p}'_B) &= \chi_B((\beta')) = \left(\frac{\beta'}{\mathfrak{p}_B}\right) \left(\frac{\beta'}{\infty_B}\right) = \left(\frac{z}{p}\right), \\ \chi_B(\mathfrak{q}_B) &= \chi_B((\sqrt{-2})) = \left(\frac{\sqrt{-2}}{\mathfrak{p}_B}\right) \left(\frac{\sqrt{-2}, \beta}{\infty_B}\right) = \left(\frac{zw}{p}\right) \operatorname{sgn} w, \end{aligned}$$

in the same way as in the proof of proposition 3.3, proposition 3.4, and proposition 3.5. Q.E.D.

Proposition 3.7 (cf. [9]). *Suppose D is of type (I3), then*

$$\left(\frac{-2}{q}\right)_4 = \left(\frac{x}{q}\right) = \left(\frac{z+2^{h(q)}}{2}\right) = \left(\frac{q}{2}\right)_4 (-\operatorname{sgn} w) = (-1)^{h(D)/4},$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I3)** with $z+w \equiv 0 \pmod{4}$.

Proof. Since $\mathfrak{p}\mathfrak{q} = (\sqrt{-2q}) \approx 1$, we have $\mathfrak{p} \approx \mathfrak{q} \not\approx 1$. By proposition 3.1 and lemma 3.2 we have

$$\chi_A(\mathfrak{p}_A) = \chi_B(\mathfrak{q}_B) = \chi_A(\mathfrak{q}'_A) = \chi_B(\mathfrak{p}'_B) = (-1)^{h(D)/4}.$$

By proposition 2.10, we have

$$\chi_A(\mathfrak{p}_A) = \chi_A((\sqrt{-2}) = \left(\frac{\sqrt{-2}}{\mathfrak{q}_A}\right)_4 = \left(\frac{-2}{q}\right)_4,$$

$$\begin{aligned}\chi_A(\mathfrak{q}'_A) &= ((\alpha')) = \left(\frac{\alpha'}{\mathfrak{q}_A}\right) = \left(\frac{x}{q}\right), \\ \chi_B(\mathfrak{p}'_B) &= \chi_B((\beta')) = \left(\frac{\beta', -2}{\mathfrak{p}_B}\right) \left(\frac{\beta', \beta}{\infty_B}\right) = \left(\frac{\beta', -2}{\mathfrak{p}_B}\right) = \left(\frac{z+2^{h(d)}}{2}\right), \\ \chi_B(\mathfrak{q}_B) &= \chi_B((\sqrt{-q})) = \left(\frac{\sqrt{-q}, -2}{\mathfrak{p}_B}\right) \left(\frac{\sqrt{-q}, \beta}{\infty_B}\right).\end{aligned}$$

We may safely assume $\sqrt{-q} \equiv 1 \pmod{\mathfrak{p}_B^2}$, by transposing \mathfrak{p}_B and \mathfrak{p}'_B if necessary, obtaining $\left(\frac{\sqrt{-q}, -2}{\mathfrak{p}_B}\right) = \left(\frac{q}{2}\right)_4$ and $2\beta \equiv z+w\sqrt{-q} \equiv z+w \pmod{\mathfrak{p}_B^2}$. Hence we have $z+w \equiv 0 \pmod{4}$, which determines the sign of w . It follows from $\beta < 0$ and $\beta' > 0$ with respect to ∞_B that $w\sqrt{-q} < 0$ with respect to ∞_B , which implies $\left(\frac{\sqrt{-q}, \beta}{\infty_B}\right) = -\text{sgn } w$. Q.E.D.

Proposition 3.8 (cf. [11] [4] [10]). *Suppose D is of type (I4), then*

$$\begin{aligned}\left(\frac{2}{q}\right)_4 \left(\frac{q}{2}\right)_4 &= (-1)^{z/4} = (-1)^{h(d)/4}, \\ \left(\frac{x}{q}\right) &= 1, \quad \text{and} \quad w \equiv 1 \pmod{4},\end{aligned}$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I4)** of proposition 2.13.

Proof. Since $\mathfrak{q} = (\sqrt{-q}) \approx 1$, we get $\mathfrak{p} \not\approx 1$, so that, by proposition 3.1 and lemma 3.2, we have $\chi_A(\mathfrak{p}_A) = \chi_B(\mathfrak{p}'_B) = (-1)^{h(d)/4}$ and $\chi_A(\mathfrak{q}'_A) = \chi_B(\mathfrak{q}_B) = 1$. By proposition 2.11, we have

$$\begin{aligned}\chi_A(\mathfrak{p}_A) &= \chi_A((1+\sqrt{-1})) = \left(\frac{1+\sqrt{-1}}{\mathfrak{q}_A}\right) = \left(\frac{2\sqrt{-1}}{\mathfrak{q}_A}\right)_4 \\ &= \left(\frac{2}{q}\right)_4 \left(\frac{q}{2}\right)_4.\end{aligned}$$

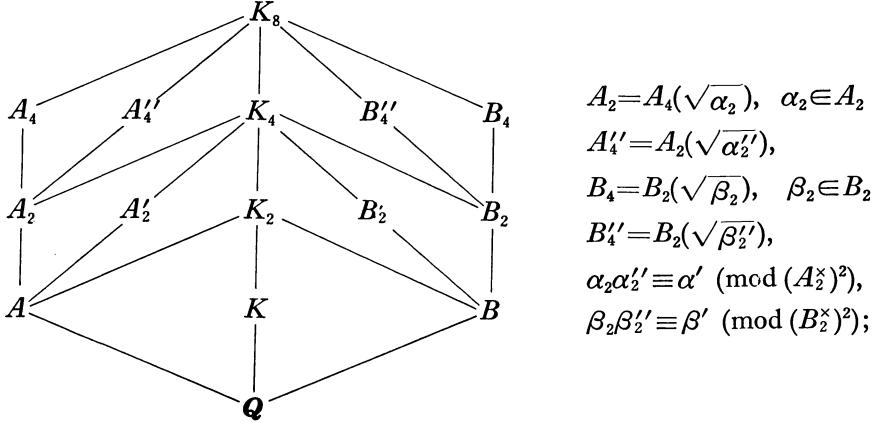
Since $B_2 = B(\sqrt{-\beta})$ and $\beta \equiv 1 \pmod{\mathfrak{p}'_B^2}$, we have $\chi_B(\mathfrak{p}'_B) = 1$ if and only if $\beta \equiv 1 \pmod{\mathfrak{p}'_B^3}$. As $\mathfrak{p}_B \mid (\beta-1)$, we have $\beta \equiv 1 \pmod{\mathfrak{p}'_B^3}$ if and only if $(\beta-1)(\beta'-1) = -2z \equiv 0 \pmod{16}$. On the other hand,

$$\begin{aligned}\chi_A(\mathfrak{q}'_A) &= \chi_A((\alpha')) = \left(\frac{\alpha'}{\mathfrak{q}_A}\right) = \left(\frac{x}{q}\right) = 1, \\ \chi_B(\mathfrak{q}_B) &= \chi_B((\sqrt{-q})) = \left(\frac{\sqrt{-q}, -1}{\mathfrak{p}_B}\right) \left(\frac{\sqrt{-q}, \beta}{\infty_B}\right) = 1.\end{aligned}$$

Since $\sqrt{-q} \equiv \pm 1 \pmod{\mathfrak{p}_B^2}$, we have $\left(\frac{\sqrt{-q}, \beta}{\infty_B}\right) = \pm 1$, which implies $w \leq 0$,

while $\beta' = z - w\sqrt{-q} \equiv \mp w \equiv 1 \pmod{\mathfrak{p}_B^2}$. Hence $|w| \equiv 1 \pmod{4}$. Q.E.D.

4. Construction of K_8 . We assume $8|h^+(D)$ throughout the rest of this paper. By proposition 1.2, K_8 is a dihedral extension of \mathbf{Q} and both $G(K_8/A_2)$ and $G(K_8/B_2)$ are isomorphic to $Z_2 \times Z_2$. The intermediate fields of K_8/A_2 and K_8/B_2 are given in the following diagram:



where α_2'' (resp. β_2'') denotes the conjugates of α_2 over A (resp. of β_2 over B). By proposition 3.1, both \mathfrak{p}_A and \mathfrak{q}'_A (resp. both \mathfrak{p}'_B and \mathfrak{q}_B) split completely in A_2 (resp. in B_2) and \mathfrak{q}_A (resp. \mathfrak{p}_B) is ramified in A_2 (resp. in B_2). We put

$$\begin{aligned} \mathfrak{p}_A &= P_A P'_A, & \mathfrak{q}_A &= \hat{Q}_A^2, & \mathfrak{q}'_A &= Q_A Q'_A, \\ \mathfrak{p}_B &= \hat{P}_B^2, & \mathfrak{p}'_B &= P_B P'_B, & \mathfrak{q}_B &= Q_B Q'_B, \end{aligned}$$

with prime ideals $P_A, P'_A, \hat{Q}_A, Q_A, Q'_A$ in A_2 (resp. $\hat{P}_B, P_B, P'_B, Q_B, Q'_B$ in B_2).

Since K_8/K is unramified at every finite prime, Q_A (resp. P_B) ramifies in either A_4 or A''_4 (resp. B_4 or B''_4). By a suitable choice, we may suppose that:

(4.1) *Q_A (resp. P_B) is the only finite prime of A_2 (resp. B_2), which is ramified in A_4 (resp. B_4).*

Arguing the ramification of the infinite primes in A_2 (resp. B_2) as in section 2, we obtain:

(4.2) *If $D < 0$, then there is no (resp. only one (denoted by V_B)) infinite prime in A_2 (resp. B_2) which is ramified in A_4 (resp. B_4).*

(4.3) *If $D > 0$, $4|h(D)$, and $N_K \varepsilon_D = 1$, then every infinite prime in A_2 (resp. B_2) is ramified in A_4 (resp. B_4).*

(4.4) *If $D > 0$ and $8|h(D)$, then every infinite prime in A_2 (resp. B_2) is unramified in A_4 (resp. B_4).*

Let ψ_A (resp. ψ_B) be the Hecke character of A_2 (resp. B_2) which is attached to the quadratic extension A_4/A_2 (resp. B_4/B_2). By (4.1), (4.2), (4.3), and (4.4) we determine ψ_A and ψ_B as follows:

Proposition 4.5. *Suppose D is of type (R1) and $8|h^+(D)$. Then*

(a) *if $4|h(D)$, we have*

$$\begin{aligned}\psi_A((\lambda)) &= \left(\frac{\lambda}{Q_A}\right) \operatorname{sgn} N_{A_2} \lambda \quad (\lambda \in O_{A_2} - Q_A); \\ \psi_B((\mu)) &= \left(\frac{\mu}{P_B}\right) \operatorname{sgn} N_{B_2} \mu \quad (\mu \in O_{B_2} - P_B);\end{aligned}$$

(b) *if $8|h(D)$, we have*

$$\begin{aligned}\psi_A((\lambda)) &= \left(\frac{\lambda}{Q_A}\right) \quad (\lambda \in O_{A_2} - Q_A); \\ \psi_B((\mu)) &= \left(\frac{\mu}{P_B}\right) \quad (\mu \in O_{B_2} - P_B).\end{aligned}$$

Proof. (a) By (4.3) the primes of A_2 which ramify in A_4 consist of Q_A and all of the four infinite primes, so that

$$\psi_A((\lambda)) = \left(\frac{\lambda, A_4/A_2}{Q_A}\right) \prod_{v \mid \infty} \left(\frac{\lambda, A_4/A_2}{v}\right).$$

We have

$$\left(\frac{\lambda, A_4/A_2}{Q_A}\right) = \left(\frac{\lambda, \alpha_2}{Q_A}\right) = \left(\frac{\lambda}{Q_A}\right)^{\operatorname{ord}(\alpha_2)} = \left(\frac{\lambda}{Q_A}\right),$$

where $\operatorname{ord}(\alpha_2)$ is the order of α_2 with respect to Q_A , and

$$\prod_{v \mid \infty} \left(\frac{\lambda, A_4/A_2}{v}\right) = \prod_{v \mid \infty} \operatorname{sgn} \lambda^v = N_{A_2} \lambda.$$

This complete the proof of the first part of (a). The second part is obtained in the same way.

(b) The only prime of A_2 which ramifies in A_4 in this case is Q_A . Hence we have $\psi_A((\lambda)) = \left(\frac{\lambda, A_4/A_2}{Q_A}\right) = \left(\frac{\lambda}{Q_A}\right)$. We can calculate $\psi_B((\mu))$ similarly.

Q.E.D.

Proposition 4.6. *Suppose D is of type (R2) and $8|h^+(D)$. Then*

(a) *if $4|h(D)$, we have*

$$\psi_A((\lambda)) = \left(\frac{\lambda}{Q_A}\right) \operatorname{sgn} N_{A_2} \lambda \quad (\lambda \in O_{A_2} - Q_A);$$

$$\psi_B((\mu)) = \left(\frac{\mu, 2}{P_B} \right) \operatorname{sgn} N_{B_2} \mu \quad (\mu \in O_{B_2} - P_B);$$

(b) if $8|h(D)$, we have

$$\begin{aligned} \psi_A((\lambda)) &= \left(\frac{\lambda}{Q_A} \right) & (\lambda \in O_{A_2} - Q_A); \\ \psi_B((\mu)) &= \left(\frac{\mu, 2}{P_B} \right) & (\mu \in O_{B_2} - P_B). \end{aligned}$$

Proof. Since $B'_4 = B_2(\sqrt{\beta'_2})$ is unramified at P_B ,

$$\begin{aligned} \left(\frac{\mu, B_4|B_2}{P_B} \right) &= \left(\frac{\mu, \beta_2}{P_B} \right) = \left(\frac{\mu, \beta_2 \beta'_2}{P_B} \right) = \left(\frac{\mu, \beta'}{P_B} \right) \\ &= \left(\frac{\mu, \beta \beta'}{P_B} \right) = \left(\frac{\mu, 2}{P_B} \right). \end{aligned}$$

The rest of the proof is the same as that of proposition 4.5.

Q.E.D.

In the same way we have:

Proposition 4.7. Suppose D is of type (I1) and $8|h(D)$, then

$$\begin{aligned} \psi_A((\lambda)) &= \left(\frac{\lambda}{Q_A} \right) & (\lambda \in O_{A_2} - Q_A); \\ \psi_B((\mu)) &= \left(\frac{\mu}{P_B} \right) \left(\frac{\mu, \beta_2}{V_B} \right) & (\mu \in O_{B_2} - P_B). \end{aligned}$$

Proposition 4.8. Suppose D is of type (I2) and $8|h(D)$, then

$$\begin{aligned} \psi_A((\lambda)) &= \left(\frac{\lambda, 2}{Q_A} \right) & (\lambda \in O_{A_2} - Q_A); \\ \psi_B((\mu)) &= \left(\frac{\mu}{P_B} \right) \left(\frac{\mu, \beta_2}{V_B} \right) & (\mu \in O_{B_2} - P_B). \end{aligned}$$

Proposition 4.9. Suppose D is of type (I3) and $8|h(D)$, then

$$\begin{aligned} \psi_A((\lambda)) &= \left(\frac{\lambda}{Q_A} \right) & (\lambda \in O_{A_2} - Q_A); \\ \psi_B((\mu)) &= \left(\frac{\mu, -2}{P_B} \right) \left(\frac{\mu, \beta_2}{V_B} \right) & (\mu \in O_{B_2} - P_B). \end{aligned}$$

Proposition 4.10. Suppose D is of type (I4) and $8|h(D)$, then

$$\psi_A((\lambda)) = \left(\frac{\lambda}{Q_A} \right) \quad (\lambda \in O_{A_2} - Q_A);$$

$$\psi_B((\mu)) = \left(\frac{\mu, -1}{P_B} \right) \left(\frac{\mu, \beta_2}{V_B} \right) \quad (\mu \in O_{B_2} - P_B).$$

5. Divisibility by 16. We assume $8|h^+(D)$ in this section and obtain a criterion for $h^+(D)$ to be divisible by 16 in the same way as in section 3:

Proposition 5.1. *The following conditions are equivalent:*

- (a) $16|h^+(D)$;
- (b) both $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$ belong to $H^+(D)^8$;
- (c) both \mathfrak{p} and \mathfrak{q} split completely in K_8 .

Using the notation of previous sections, we obtain easily:

Lemma 5.2. *The following conditions are equivalent:*

- (a) $C^+(\mathfrak{p}) \in H^+(D)^8$ (resp. $C^+(\mathfrak{q}) \in H^+(D)^8$);
- (b) \mathfrak{p} (resp. \mathfrak{q}) splits completely in K_8 ;
- (c) \hat{P}_B (resp. \hat{Q}_A) splits completely in B_4 (resp. A_4);
- (d) $\psi_B(\hat{P}_B) = 1$ (resp. $\psi_A(\hat{Q}_A) = 1$).

If $d_1 \neq -4$, we can set

$$(\alpha) = \mathfrak{q}_A^{h(d_1)} = \hat{Q}_A^{2h(d_1)}, \quad (\beta) = \mathfrak{p}_B^{h(d_2)} = \hat{P}_B^{2h(d_2)}.$$

Hence we have:

Lemma 5.3. *If $d_1 \neq -4$, then*

$$\hat{Q}_A^{h(d_1)} = (\sqrt{\alpha}) \quad \text{and} \quad \hat{P}_B^{h(d_2)} = (\sqrt{\beta}).$$

Theorem 5.4. *Suppose D is of type (R1) and $8|h^+(D)$. Then we have*

- (a) $4|h(D)$ if and only if $\left(\frac{z}{p} \right)_4 \left(\frac{x}{q} \right)_4 = -1$;
 $\left(\frac{z}{p} \right)_4 = 1$ and $\left(\frac{x}{q} \right)_4 = -1$ if and only if $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;
 $\left(\frac{z}{p} \right)_4 = -1$ and $\left(\frac{x}{q} \right)_4 = 1$ if and only if $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;
- (b) $8|h(D)$ and $N_K \varepsilon_D = -1$ if and only if $\left(\frac{z}{p} \right)_4 = \left(\frac{x}{q} \right)_4 = -1$;
- (c) $16|h^+(D)$ if and only if $\left(\frac{z}{p} \right)_4 = \left(\frac{x}{q} \right)_4 = 1$;

where x, z are rational integers satisfying the conditions (c), (d) (R1)** of proposition 2.13.

Proof. Assume first that $4|h(D)$. Then, by proposition 4.5 and lemma 5.3, we have

$$\begin{aligned}\psi_B(\hat{P}_B) &= \psi_B(\hat{P}_B)^{h(q)} = \psi_B((\sqrt{\beta})) = \left(\frac{\sqrt{\beta}}{P_B}\right) \operatorname{sgn} N_{B_2} \sqrt{\beta}, \\ \left(\frac{\sqrt{\beta}}{P_B}\right) &= \left(\frac{\beta}{P_B}\right)_4 = \left(\frac{\beta}{\mathfrak{p}'_B}\right)_4 = \left(\frac{\beta+\beta'}{\mathfrak{p}'_B}\right)_4 = \left(\frac{z}{p}\right)_4, \quad \text{and} \\ N_{B_2} \sqrt{\beta} &= N_B(-\beta) = \beta\beta' = p^{h(q)} > 0.\end{aligned}$$

Hence $\psi_B(\hat{P}_B) = \left(\frac{z}{p}\right)_4$. We obtain $\psi_A(\hat{Q}_A) = \left(\frac{x}{q}\right)_4$ similarly. On the other hand, as $N_K \varepsilon_D = 1$, we have either $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$ or $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$. By lemma 5.2, we have $\psi_B(\hat{P}_B) = 1$ and $\psi_A(\hat{Q}_A) = -1$ in the first case and $\psi_B(\hat{P}_B) = -1$ and $\psi_A(\hat{Q}_A) = 1$ in the latter case.

Next, we assume that $8|h(D)$. By proposition 4.5 (b), we have

$$\begin{aligned}\psi_B(\hat{P}_B) &= \psi_B((\sqrt{\beta})) = \left(\frac{\sqrt{\beta}}{P_B}\right) = \left(\frac{\beta}{P_B}\right)_4 = \left(\frac{z}{p}\right)_4, \\ \psi_A(\hat{Q}_A) &= \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}}{Q_A}\right) = \left(\frac{\alpha}{Q_A}\right)_4 = \left(\frac{x}{q}\right)_4.\end{aligned}$$

If $8|h(D)$ and $N_K \varepsilon_D = -1$, we have $\mathfrak{p} \approx \mathfrak{q} \approx 1$, hence $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = -1$ by lemma 5.2. If $16|h^+(D)$, then, by proposition 5.1 and lemma 5.2, we have $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = 1$. Q.E.D.

Theorem 5.5. Suppose D is of type (R2) and $8|h^+(D)$. Then we have

- (a) $4|h(D)$ if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_4 \left(\frac{x}{q}\right)_4 = -1$;
- $\left(\frac{z-2^{h(q)}}{2}\right)_4 = 1$ and $\left(\frac{x}{q}\right)_4 = -1$ if and only if $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;
- $\left(\frac{z-2^{h(q)}}{2}\right)_4 = -1$ and $\left(\frac{x}{q}\right)_4 = 1$ if and only if $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;
- (b) $8|h(D)$ and $N_K \varepsilon_D = -1$ if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_4 = \left(\frac{x}{q}\right)_4 = -1$;
- (c) $16|h^+(D)$ if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_4 = \left(\frac{x}{q}\right)_4 = 1$;

where x, z are rational integers satisfying the conditions (c), (d) (R2)** of proposition 2.13.

Proof. If $4|h(D)$, then, by proposition 4.6 (a), we have

$$\begin{aligned}\psi_B(\hat{P}_B) &= \psi_B((\sqrt{\beta})) = \left(\frac{\sqrt{\beta}, 2}{P_B}\right) \operatorname{sgn} N_{B_2} \sqrt{\beta} \\ &= \left(\frac{\sqrt{\beta}, 2}{P_B}\right) = \left(\frac{\beta}{\mathfrak{p}'_B}\right)_4,\end{aligned}$$

where $\left(\frac{\beta}{p'_B}\right)_4 = 1$ if $\beta \equiv 1 \pmod{p'_B^4}$ and $\left(\frac{\beta}{p'_B}\right)_4 = -1$ if $\beta \equiv 9 \pmod{p'_B^4}$. Since $\beta \equiv 1 \pmod{p'_B^3}$ and $\beta' \not\equiv 1 \pmod{p'_B}$, we see that $\beta \equiv 1 \pmod{p'_B^4}$ if and only if $(\beta-1)(\beta'-1) = 2^{h(q)} - z + 1 \equiv 0 \pmod{16}$, so that $\psi_B(\hat{P}_B) = \left(\frac{z-2^{h(q)}}{2}\right)_4$. The rest of the proof can be done in the same way as in theorem 5.4. Q.E.D.

Theorem 5.6. Suppose D is of type (I1) and $8|h(D)$, then

$$\left(\frac{x}{q}\right)_4 = (-1)^{h(D)/8},$$

where x is a rational integer satisfying the conditions (c), (d) (I1)** of proposition 2.13.

Proof. Since $p \approx q \approx 1$, it follows from proposition 5.1 and lemma 5.2 that $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = (-1)^{h(D)/8}$. By proposition 4.7 and lemma 5.3, $\psi_A(\hat{Q}_A) = \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}}{Q_A}\right) = \left(\frac{\alpha}{Q_A}\right)_4 = \left(\frac{x}{q}\right)_4$. Q.E.D.

Theorem 5.7. Suppose D is of type (I2) and $8|h(D)$, then

$$\left(\frac{x-2^{h(-p)}}{2}\right)_4 = (-1)^{h(D)/8},$$

where x is a rational integer satisfying the conditions (c), (d) (I2)** of proposition 2.13.

Proof. Since $p \approx q \approx 1$, it follows from proposition 5.1 and lemma 5.2 that $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = (-1)^{h(D)/8}$. By proposition 4.8 and lemma 5.3, we have $\psi_A(\hat{Q}_A) = \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}}{Q_A}, 2\right)$, and we deduce that $\left(\frac{\sqrt{\alpha}}{Q_A}, 2\right) = \left(\frac{x-2^{h(-p)}}{2}\right)_4$ as in the proof of theorem 5.5. Q.E.D.

Theorem 5.8. Suppose D is of type (I3) and $8|h(D)$, then

$$\left(\frac{2x}{q}\right)_4 = (-1)^{h(D)/8},$$

where x is a rational integer satisfying the conditions (c), (d) (I3)** of proposition 2.13.

Proof. Since $p \approx q \approx 1$, we have $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = (-1)^{h(D)/8}$. By proposition 4.9, we have $\psi_A(\hat{Q}_A) = \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}}{Q_A}\right) = \left(\frac{\alpha}{Q_A}\right) = \left(\frac{2x}{q}\right)_4$. Q.E.D.

For discriminants of type (I4), the above argument does not work well.

An alternative method is therefore given in the next section.

6. D of type (I4). We assume that D is of type (I4) and $8|h(D)$ in this section. It is easy to see that

$$K_4 = K_2(\sqrt{\varepsilon_q}) = \mathbf{Q}(\sqrt{-1}, \sqrt{\varepsilon_q}),$$

where $\varepsilon_q = T + U\sqrt{q} > 1$ is the fundamental unit of B . The field K_8 has been explicitly constructed by H. Cohn and G. Cooke [4] (cf. also [10]):

Lemma 6.1 (Cohn-Cooke).

$$K_8 = K_4(\sqrt{(f + \sqrt{-q})(1 + \sqrt{-1})\sqrt{\varepsilon_q}}),$$

where e and f are rational integral solutions of

$$(6.2) \quad -q = f^2 - 2e^2; \quad e > 0, \quad f \equiv -1 \pmod{4}.$$

We let $\lambda = (f + \sqrt{-q})(1 + \sqrt{-1})\sqrt{\varepsilon_q}$, so that $K_8 = K_4(\sqrt{\lambda})$. As P_B is ramified in K_4 , we have $P_B = \mathcal{P}^2$ where \mathcal{P} is a prime ideal of K_4 . It is easy to see that the completion of K_4 at \mathcal{P} is isomorphic to $\mathbf{Q}_2(\sqrt{-1})$ and we may fix the isomorphism by taking

$$(6.3) \quad \sqrt{-q} \equiv \frac{q+1}{2} \pmod{\mathfrak{p}'_B^3} \quad \text{and} \quad \sqrt{\varepsilon_q} \equiv \frac{\varepsilon_q+1}{2} \pmod{P_B^3}.$$

We remark that $\mathcal{P}^2 | P_B | \mathfrak{p}'_B | (2)$. Denote by $\mathcal{O}_{\mathcal{P}}$ the ring of \mathcal{P} -adic integers, then $\pi = 1 - \sqrt{-1}$ is a prime element of $\mathcal{O}_{\mathcal{P}}$ and its maximal ideal is $\pi \mathcal{O}_{\mathcal{P}}$, which is also denoted by \mathcal{P} . Since the ramification index of \mathcal{P} is 2, we obtain easily:

Lemma 6.4. *Let the \mathcal{P} -adic units be denoted by $\mathcal{O}_{\mathcal{P}}^\times$. Then*

$$\mu \in \mathcal{O}_{\mathcal{P}}^{\times 2} \text{ if and only if } \mu \equiv \pm 1 \pmod{\mathcal{P}^5}.$$

As $\lambda/\pi^2 \in \mathcal{O}_{\mathcal{P}}^\times$, we have

Lemma 6.5. *The following conditions are equivalent:*

- (a) $16|h(D)$;
- (b) \mathcal{P} splits completely in K_8 ;
- (c) $\lambda/\pi^2 \equiv \pm 1 \pmod{\mathcal{P}^5}$.

By simple calculations we have:

Lemma 6.6. (a) $f \equiv -\frac{q+1}{2} \pmod{8}$;

(b) $\frac{f + \sqrt{-q}}{\pi} \equiv -\frac{q+1}{2} \pmod{\mathcal{P}^5}$.

Theorem 6.7 (Williams [17]). *Suppose D is of type (I4) and $8|h(D)$. Then $16|h(D)$ if and only if $T \equiv q-1 \pmod{16}$, equivalently, $(-1)^{T/8} \left(\frac{q}{2}\right)_4 = (-1)^{h(D)/8}$, where $\varepsilon_q = T + U\sqrt{q} > 1$ is the fundamental unit of $\mathbf{Q}\sqrt{q}$.*

Proof. By (6.3) and lemma 6.6, we have

$$\lambda/\pi^2 = \frac{f + \sqrt{-q}}{\pi} \sqrt{\varepsilon_q} \equiv -\frac{q+1}{2} \frac{\varepsilon_q + 1}{2} \pmod{\mathcal{P}^5},$$

and so $\lambda/\pi^2 \equiv \pm 1 \pmod{\mathcal{P}^5}$ if and only if

$$(6.8) \quad \frac{\varepsilon_q + 1}{2} \equiv \pm \frac{q+1}{2} \pmod{\mathcal{P}^5}.$$

As $q \equiv 1 \pmod{8}$ and $\varepsilon_q \equiv 1 \pmod{\mathfrak{p}_B^3}$, that is, $q \equiv \varepsilon_q \equiv 1 \pmod{\mathcal{P}^6}$, we obtain (6.8) if and only if $\varepsilon_q \equiv q \pmod{\mathcal{P}^7}$, that is, if and only if $\varepsilon_q \equiv q \pmod{\mathfrak{p}_B^4}$. It follows from lemma 6.5 that $16|h(D)$ if and only if $\varepsilon_q \equiv q \pmod{\mathfrak{p}_B^4}$. Since $\varepsilon_q \equiv 1 \pmod{\mathfrak{p}_B^3}$ and $\varepsilon_q \equiv -1 \pmod{\mathfrak{p}_B^2}$, we have $\varepsilon_q \equiv 1 \pmod{\mathfrak{p}_B^4}$ if and only if $(\varepsilon_q - 1)(\varepsilon_q' - 1) = 2T \equiv 0 \pmod{32}$. Hence we deduce $\varepsilon_q - 1 \equiv T \pmod{\mathcal{P}_B'^4}$.

Q.E.D.

References

- [1] P. Barrucand and H. Cohn: *Note on primes of type $x^2 + 32y^2$, class number, and residuacity*, J. Reine Angew. Math. **238** (1969), 67–70.
- [2] E. Brown: *The class number of $\mathbf{Q}(\sqrt{-p})$, for $p \equiv 1 \pmod{8}$ a prime*, Proc. Amer. Math. Soc. **31** (1972), 381–383.
- [3] J. Bucher: *Neues über die Pell'schen Gleichung*, Naturforschende Gesellschaft Mitteilungen Luzern **14** (1943), 1–18.
- [4] H. Cohn and G. Cooke: *Parametric form of an eight class field*, Acta Arith. **30** (1976), 367–377.
- [5] H. Hasse: *Über die Klassenzahl des Körpers $\mathbf{P}(\sqrt{-2p})$ mit einer Primzahl $p \neq 2$* , J. Number Theory **1** (1969), 231–234.
- [6] H. Hasse: *Über die Klassenzahl des Körpers $\mathbf{P}(\sqrt{-p})$ mit einer Primzahl $p \equiv 1 \pmod{2^3}$* , Aequationes Math. **3** (1969), 165–169.
- [7] H. Hasse: *Über die Teilbarkeit durch 2^3 der Klassenzahl imaginär-quadratischer Zahlkörper mit genau zwei verschiedenen Diskriminantenteilern*, J. Reine Angew. Math. **241** (1970), 1–6.
- [8] H. Hasse: *Über die Teilbarkeit durch 2^3 der Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenteilern*, Math. Nachr. **46** (1970), 61–70.
- [9] P. Kaplan: *Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique*, J. Math. Soc. Japan **25** (1973), 596–608.

- [10] P. Kaplan: *Unité de norme -1 du $\mathbf{Q}(\sqrt{-p})$ et corps de classes de degré 8 de $\mathbf{Q}(\sqrt{-p})$ où p est un nombre premier congru à 1 modulo 8* , Acta Arith. **32** (1977), 239–243.
- [11] E. Lehmer: *On the quadratic character of some quadratic surds*, J. Reine Angew. Math. **250** (1971), 42–48.
- [12] L. Rédei: *Über die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klasseengruppe im quadratischen Zahlkörper*, J. Reine Angew. Math. **171** (1934), 131–148.
- [13] L. Rédei und H. Reichardt: *Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers*, J. Reine Angew. Math. **170** (1933), 69–74.
- [14] H. Reichardt: *Zur Struktur der absoluten Idealklassengruppe im quadratischen Zahlkörper*, J. Reine Angew. Math. **170** (1933), 75–82.
- [15] H. Reichardt: *Über die 2-Klassengruppe gewisser quadratischer Zahlkörper*, Math. Nachr. **46** (1970), 71–80.
- [16] C.L. Siegel: *Lectures on advanced analytic number theory*, Bombay, 1961.
- [17] K.S. Williams: *On the class number of $\mathbf{Q}(\sqrt{-p})$ modulo 16 , for $p \equiv 1 \pmod{8}$ a prime*, Acta Arith. **34** (1981), 381–398.
- [18] Y. Yamamoto: *16-divisibilities of class numbers of quadratic fields*, RIMS Kokyuroku **378** (1980), 82–87. (in Japanese)
- [19] Y. Yamamoto: *On the 2-parts of class numbers of quadratic fields*, Report of symposium on group theory and its applications held at Osaka Univ. (1981), 66–74. (in Japanese)

Department of Mathematics
 Osaka University
 Toyonaka, Osaka 560, Japan