

Title	Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic
Author(s)	Yamamoto, Yoshihiko
Citation	Osaka Journal of Mathematics. 1984, 21(1), p. 1– 22
Version Type	VoR
URL	https://doi.org/10.18910/11771
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

DIVISIBILITY BY 16 OF CLASS NUMBER OF QUADRATIC FIELDS WHOSE 2-CLASS GROUPS ARE CYCLIC

YOSHIHIKO YAMAMOTO*

(Received August 5, 1982)

0. Introduction. Let $K = Q(\sqrt{D})$ be the quadratic field with discriminant D, and H(D) and h(D) be the ideal class group of K and its class number respectively. The ideal class group of K in the narrow sense and its class number are denoted by $H^+(D)$ and $h^+(D)$ respectively. We have $h^+(D)=2h(D)$, if D>0 and the fundamental unit $\mathcal{E}_{D}(>1)$ has the norm 1, and $h^{+}(D) = h(D)$, otherwise. We assume, throughout the paper, that |D| has just two distinct prime divisors, written p and q, so that the 2-class group of K (i.e. the Sylow 2-subgroup of $H^+(D)$ because we mean in the narrow sense) is cyclic. Then the discriminant D can be written uniquely as a product of two prime discriminants d_1 and d_2 , $D=d_1d_2$, such that $p|d_1$ and $q|d_2$ (cf. [16], for example).

By Redei and Reichardt [13] (cf. proposition 1.2 below), $h^+(D)$ is divisible by 4 if and only if D belongs to one of the following 6 types:

(R1) D = pq, $d_1 = p$, $d_2 = q$, $p \equiv q \equiv 1 \pmod{4}$, and $\left(\frac{p}{q}\right) = 1 \left(=\left(\frac{q}{p}\right) by$ reciprocity);

(R2) $D=8q, d_1=8 (p=2), d_2=q, and q \equiv 1 \pmod{8};$

(I1) D=-pq, $d_1=-p$, $d_2=q$, $p\equiv 3 \pmod{4}$, $q\equiv 1 \pmod{4}$, and $\left(\frac{-p}{q}\right)=1$ $\left(=\left(\frac{q}{p}\right)$ by reciprocity);

(I2) $D=-8p, d_1=-p, d_2=8 (q=2), and p \equiv 7 \pmod{8};$

- (I3) D = -8q, $d_1 = -8$ (p = 2), $d_2 = q$, and $q \equiv 1 \pmod{8}$;
- (I4) D = -4q, $d_1 = -4$ (p = 2), $d_2 = q$, and $q \equiv 1 \pmod{8}$;

where (---) is the Legendre-Jacobi-Kronecker symbol.

Conditions for $h^+(D)$ to be divisible by 8 have been given by several authors for each case or cases ([1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 15]). Some of them are reformulated in section 3. The purpose of this paper is to give some conditions for the divisibility by 16 of $h^+(D)$ for each case (cf. theorems 5.4, 5.5, 5.6, 5.7, 5.8, and 6.7). The main ideas were announced in [18] and [19].

While in preparation of the manuscript P. Kaplan informed me that theorem 6.7 was proved also by K.S. Williams with a different method and furthermore he gave a congruence for h(-4q) modulo 16 ([17]).

^{*} Reseach supported partly by Grant-in-Aid for Scientific Research.

1. 2-class field; divisibility by 4. Let 2^e be the order of the 2-class group of K, so that $2^e ||h^+(D)(e \ge 1)$. Since the 2-class group of $H^+(D)$ is cyclic, we have the following chain of subgroups:

$$H^+(D) \supset H^+(D)^2 \supset \cdots \supset H^+(D)^{2^e}.$$

Denote by K_{2^k} the class field of K corresponding to the subgroup $H^+(D)^{2^k}$. We have a tower of of class fields:

$$K \subset K_2 \subset \cdots \subset K_{2^e}.$$

 K_{2^k} is unramified at every finite prime in K and $[K_{2^k}: K] = (H^+(D): H^+(D)^{2^k}) = 2^k (1 \le k \le e).$

Proposition 1.1 (Reichardt [14]). K_{2^k} is normal over Q. The Galois group $G(K_{2^k}/Q)$ is isomorphic to the dihedral group D_{2^k} of order 2^{k+1} .

In particular $G(K_2/K) \cong Z_2 \times Z_2$, where Z_2 denotes a cyclic group of order 2. It is well-known and easy to see that

$$K_2 = oldsymbol{Q}(\sqrt{\,d_1},\,\sqrt{\,d_2}) = AB$$
 ,

where $A = Q(\sqrt{d_1})$ and $B = Q(\sqrt{d_2})$.

We write $\mathfrak{a} \sim \mathfrak{b}$ (resp. $\mathfrak{a} \approx \mathfrak{b}$), if ideals \mathfrak{a} , \mathfrak{b} of K are in the same ideal class (resp. in the same narrow ideal class). As p and q are ramified in K, we have $(p) = \mathfrak{p}^2$, $(q) = \mathfrak{q}^2$, where \mathfrak{p} and \mathfrak{q} are prime ideals of K. Denote the narrow ideal class containing \mathfrak{p} (resp. \mathfrak{q}) by $C^+(\mathfrak{p})$ (resp. $C^+(\mathfrak{q})$). Then $C^+(\mathfrak{p})^2 = C^+(\mathfrak{q})^2 = 1$.

It is also well-known that the elementary 2-subgroup of $H^+(D)$, which is isomorphic to Z_2 in the present case, is generated by $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$. So one of the three alternatives holds:

- (i) $C^+(\mathfrak{p})=1$ and $C^+(\mathfrak{q})\neq 1$,
- (ii) $C^+(\mathfrak{p}) \neq 1$ and $C^+(\mathfrak{q}) = 1$,
- (iii) $C^{+}(p) = C^{+}(q) \neq 1.$

In case D>0 and $d_i \neq -4$ (i=1, 2) we see easily that the condition (iii) holds if and only if $N_{\kappa} \varepsilon_{D} = -1$. By class field theory, we get the following proposition which is a special case of a theorem of Redei and Reichardt [13].

Proposition 1.2. The following assertions are equivalent:

(a) $4|h^+(D);$

- (b) both $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$ belong to $H^+(D)^2$;
- (c) both \mathfrak{p} and \mathfrak{q} split completely in K_2 ;
- (d) p and q split completely in B and A, respectively;
- (e) $\left(\frac{d_1}{q}\right) = \left(\frac{d_2}{p}\right) = 1.$

As a direct consequence of proposition 1.2 we have $4|h^+(D)$ if and only if D belongs to one of the types (R1), (R2), (I1), (I2), (I3), (I4) in section 0.

2. Construction of K_4 . In this section we assume $4|h^+(D)$, so that D belongs to one of (R1), ..., (I4) in section 0. The class field K_4 is normal over Q and the Galois group $G(K_4|Q)$ is isomorphic to the dihedral group D_4 of order 8. The subfields of K_4 are given as follows:

where $\alpha \in A$, $\beta \in B$, α' (resp. β') is the conjugate of α (resp. β) over Q, and $\alpha \alpha' \equiv d_2 \pmod{(A^{\times})^2}$, $\beta \beta' \equiv d_1 \pmod{(B^{\times})^2}$.

From proposition 1.2 it follows that q (resp. p) splits completely in A (resp. B). Let $(p) = \mathfrak{p}_A^2$, $(q) = \mathfrak{q}_A \mathfrak{q}'_A$ (resp. $(q) = \mathfrak{q}_B^2$, $(p) = \mathfrak{p}_B \mathfrak{p}'_B$) be the prime decompositions in A (resp. B) with prime ideals \mathfrak{p}_A , \mathfrak{q}_A , \mathfrak{q}'_A in A (resp. \mathfrak{q}_B , \mathfrak{p}_B , \mathfrak{p}'_B in B).

Let Q (resp. Q') be a prime divisor of \mathfrak{q}_A (resp. \mathfrak{q}'_A) in K_4 . Since the extension K_4/K is unramified at every finite prime the inertia field of Q with respect to K_4/Q is either A_2 or A'_2 . We may choose A'_2 (resp. A_2) to be the inertia field of Q (resp. Q'). Then we get easily that

(2.1) q_A (resp. q'_A) is the only finite prime in A which ramifies in A_2 (resp. A'_A).

In the same way, by a suitable choice of B_2 and B'_2 , we have

(2.2) \mathfrak{p}_B (resp. \mathfrak{p}'_B) is the only finite prime in B which ramifies in B_2 (resp. B'_2).

As for the ramification of infinite primes, we can argue in the same way if D < 0. Indeed when D < 0 (types (I1), (I2), (I3), and (I4)), the infinite prime ∞ of Q ramifies in A, $\infty = \infty_A^2$, and splits in B, $\infty = \infty_B \infty_B'$. By a suitable choice of ∞_B and ∞_B' we see that

(2.3) if D < 0, then both A_2 and A'_2 are unramified at ∞_A , and B_2 (resp. B'_2) is ramified at ∞_B (resp. ∞'_B) and unramified at ∞'_B (resp. ∞_B).

If D>0, both A and B are real, so that ∞ splits in A and B, $\infty = \infty_A \infty'_A$, $\infty = \infty_B \infty'_B$. To go further, we have to take the absolute class number h(D) into account. If $4 \not\mid h(D)$, then $2 \mid \mid h(D)$ and $N_K \varepsilon_D = 1$, so that K_4 is ramified at

every infinite prime of K, which implies that K_2 is the inertia field of ∞ with respect to K_4/Q , for K_2 is normal over Q. Hence we have

(2.4) if D>0 and 2||h(D), then every infinite prime of A (resp. B) ramifies in A₂ and A'₂ (resp. B₂ and B'₂).

If D>0 and 4|h(D) then K_4 is unramified at every infinite prime over Q. Hence we have

(2.5) if D>0 and 4|h(D), then every infinite prime of A (resp. B) does not ramify in A_2 and A'_2 (resp. B_2 and B'_2).

We denote by O_F the ring of integers of a number field F. Let f_A and χ_A (resp. f_B and χ_B) be the conductor and the Hecke ideal character attached to the quadratic extension A_2/A (resp. B_2/B).

Proposition 2.6. Suppose D belongs to type (R1). Then (a) if 2||h(d), we have

$$\begin{split} f_A &= \mathfrak{q}_A \infty_A \infty'_A , \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A}\right) \operatorname{sgn} N_A \lambda \qquad (\lambda \in O_A - \mathfrak{q}_A); \\ f_B &= \mathfrak{p}_B \infty_B \infty'_B , \quad \chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B}\right) \operatorname{sgn} N_B \mu \qquad (\mu \in O_B - \mathfrak{p}_B); \end{split}$$

(b) if $4 \mid h(D)$, we have

$$egin{aligned} &f_A = \mathfrak{q}_A\,, & \chi_A((\lambda)) = \left(rac{\lambda}{\mathfrak{q}_A}
ight) & (\lambda \in O_A - \mathfrak{q}_A); \ &f_B = \mathfrak{p}_B\,, & \chi_B((\mu)) = \left(rac{\mu}{\mathfrak{p}_B}
ight) & (\mu \in O_B - \mathfrak{p}_B); \end{aligned}$$

where $\left(\frac{1}{\mathfrak{q}_A}\right)$ (resp. $\left(\frac{1}{\mathfrak{p}_B}\right)$) denotes the quadratic residue symbol modulo \mathfrak{q}_A (resp. \mathfrak{p}_B).

Proof. If 2||h(D) then $N_K \varepsilon_D = 1$. It follows from (2.1), (2.2), and (2.4) that the quadratic extension A_2/A (resp. B_2/B) is ramified at $\mathfrak{q}_A, \infty_A, \infty'_A$ (resp. $\mathfrak{p}_B, \infty_B, \infty'_B$) and unramified outside them. Hence

$$egin{aligned} &\chi_A((\lambda)) = \Big(rac{\lambda,\,A_2/A}{\mathfrak{q}_A}\Big) \Big(rac{\lambda,\,A_2/A}{\infty_A}\Big) \Big(rac{\lambda,\,A_2/A}{\infty_A'}\Big) & ext{ (norm-residue symbol)} \ &= \Big(rac{\lambda,\,lpha}{\mathfrak{q}_A}\Big) \Big(rac{\lambda,\,lpha}{\infty_A}\Big) \Big(rac{\lambda,\,lpha}{\infty_A'}\Big) & ext{ (Hilbert symbol)} \ &= \Big(rac{\lambda}{\mathfrak{q}_A}\Big)(sgn\,\lambda)(sgn\,\lambda') \ &= \Big(rac{\lambda}{\mathfrak{q}_A}\Big)sgn\,N_A\lambda & (\lambda {\in} O_A {-} \mathfrak{q}_A)\,, \end{aligned}$$

which implies $f_A = \mathfrak{q}_A \infty_A \infty'_A$. We have $\chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B}\right) \operatorname{sgn} N_B \mu$ and $f_B = \mathfrak{p}_B \infty_B \infty'_B$ in the same way.

If 4|h(D), then, from (2.1), (2.2), and (2.5), it follows that A_2/A (resp. B_2/B) is ramified only at q_A (resp. \mathfrak{P}_B). Hence the assertion (b) follows in the same way. Q.E.D.

Proposition 2.7. Suppose D is of type (R2). Then (a) if 2||h(D), we have

$$f_A = \mathfrak{q}_A \infty_A \infty'_A, \quad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A}\right) \operatorname{sgn} N_A \lambda \qquad (\lambda \in O_A - \mathfrak{q}_A);$$

$$f_B = \mathfrak{p}_B^3 \infty_B \infty'_B, \quad \chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B}\right) \operatorname{sgn} N_B \mu \qquad (\mu \in O_B - \mathfrak{p}_B);$$

(b) if 4|h(D), we have

$$egin{aligned} &f_A = \mathfrak{q}_A\,, & \chi_A((\lambda)) = \left(rac{\lambda}{\mathfrak{q}_A}
ight) & (\lambda \in O_A - \mathfrak{q}_A); \ &f_B = \mathfrak{p}_B^3\,, & \chi_B((\mu)) = \left(rac{\mu,\,2}{\mathfrak{p}_B}
ight) & (\mu \in O_B - \mathfrak{p}_B); \end{aligned}$$

where $\left(\frac{\mu, 2}{\mathfrak{p}_B}\right) = \begin{cases} 1 \text{ if } \mu \equiv 1, 7 \pmod{\mathfrak{p}_B^3}, \\ -1 \text{ if } \mu \equiv 3, 5 \pmod{\mathfrak{p}_B^3}. \end{cases}$

Proof. If 2||h(D) then $N_{\kappa}\varepsilon_{D}=1$. It follows from (2.1), (2.2), and (2.4) that the quadratic extension A_{2}/A (resp. B_{2}/B) is ramified only at q_{A} , ∞_{A} , ∞'_{A} (resp. $\mathfrak{p}_{B}, \infty_{B}, \infty'_{B}$). We have $\chi_{A}((\lambda)) = \left(\frac{\lambda}{q_{A}}\right) sgn N_{A}\lambda$ in the same way as in the proof of proposition 2.6, while $\left(\frac{\mu, \beta}{\mathfrak{p}_{B}}\right) = \left(\frac{\mu, 2}{\mathfrak{p}_{B}}\right)$, which implies (a). Assertion (b) is proved similarly. Q.E.D.

We obtain the corresponding results for the other types similarly.

Proposition 2.8. Suppose D is of type (I1), then

$$egin{aligned} &f_A = \mathfrak{q}_A\,, & \chi_A((\lambda)) = \left(rac{\lambda}{\mathfrak{q}_A}
ight) & (\lambda \in O_A - \mathfrak{q}_A); \ &f_B = \mathfrak{p}_B & \sim_B\,, & \chi_B((\mu)) = \left(rac{\mu}{\mathfrak{p}_B}
ight) & \left(rac{\mu \,,\,eta}{\infty_B}
ight) & (\mu \in O_B - \mathfrak{p}_B)\,. \end{aligned}$$

Proposition 2.9. Suppose D is of type (I2), then

$$f_A = \mathfrak{q}_A^3$$
, $\chi_A((\lambda)) = \left(rac{\lambda, 2}{\mathfrak{q}_A}
ight)$ $(\lambda \in O_A - \mathfrak{q}_A);$

$$f_B = \mathfrak{p}_B \infty_B$$
, $\chi_B((\mu)) = \left(\frac{\mu}{\mathfrak{p}_B}\right) \left(\frac{\mu, \beta}{\infty_B}\right)$ $(\mu \in O_B - \mathfrak{p}_B)$.

Proposition 2.10. Suppose D is of type (I3), then

$$f_{A} = \mathfrak{q}_{A}, \qquad \chi_{A}((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_{A}}\right) \qquad (\lambda \in O_{A} - \mathfrak{q}_{A});$$

$$f_{B} = \mathfrak{p}_{B}^{3} \infty_{B}, \quad \chi_{B}((\mu)) = \left(\frac{\mu, -2}{\mathfrak{p}_{B}}\right) \left(\frac{\mu, \beta}{\infty_{B}}\right) \qquad (\mu \in O_{B} - \mathfrak{p}_{B}),$$

where $\left(\frac{\mu, -2}{\mathfrak{p}_B}\right) = \begin{cases} 1 & \text{if } \mu \equiv 1, 3 \pmod{\mathfrak{p}_B^3}, \\ -1 & \text{if } \mu \equiv 5, 7 \pmod{\mathfrak{p}_B^3}. \end{cases}$

Proposition 2.11. Suppose D is of type (I4), then

$$\begin{split} f_A &= \mathfrak{q}_A , \qquad \chi_A((\lambda)) = \left(\frac{\lambda}{\mathfrak{q}_A}\right) \qquad (\lambda \in O_A - \mathfrak{q}_A); \\ f_B &= \mathfrak{p}_B^2 \infty_B , \quad \chi_B((\mu)) = \left(\frac{\mu, -1}{\mathfrak{p}_B}\right) \left(\frac{\mu, \beta}{\infty_B}\right) \qquad (\mu \in O_B - \mathfrak{p}_B), \end{split}$$

where $\left(\frac{\mu, -1}{\mathfrak{p}_B}\right) = \begin{cases} 1 & \text{if } \mu \equiv 1 \pmod{\mathfrak{p}_B^2}, \\ -1 & \text{if } \mu \equiv -1 \pmod{\mathfrak{p}_B^2}. \end{cases}$

In propositions 2.8 to 2.11 the infinite prime ∞_B is defined by $\left(\frac{\beta, \beta}{\infty_B}\right) = -1$, so that $\left(\frac{\mu, \beta}{\infty_B}\right)$ is the sign of μ with respect to ∞_B .

Proposition 2.12. For each D, α and β can be taken so that they satisfy the following conditions: (a) $\alpha \in O_A$, $\beta \in O_B$, $(\alpha, \alpha') = 1$, $(\beta, \beta') = 1$; (b)

$$\begin{array}{ll} (\mathrm{R1}): \begin{cases} \alpha \alpha' = q^{h(p)}, & \beta \beta' = p^{h(q)}, \\ \alpha^{3} \equiv 1 \ (\mathrm{mod} \ 4), & \beta^{3} \equiv 1 \ (\mathrm{mod} \ 4); \end{cases} \\ (\mathrm{R2}): \begin{cases} \alpha \alpha' = q, & \beta \beta' = 2^{h(q)}, \\ \alpha \equiv 1 \ or \ 3 + 2\sqrt{2} \ (\mathrm{mod} \ 4), & \beta + \beta' \equiv 2^{h(q)} + 1 \ (\mathrm{mod} \ 4); \end{cases} \\ (\mathrm{I1}): \begin{cases} \alpha \alpha' = q^{h(-p)}, & \beta \beta' = -p^{h(q)}, \\ \alpha^{3} \equiv 1 \ (\mathrm{mod} \ 4), & \beta^{3} \equiv 1 \ (\mathrm{mod} \ 4); \end{cases} \\ (\mathrm{I2}): \begin{cases} \alpha \alpha' = 2^{h(-p)}, & \beta \beta' = -p, \\ \alpha + \alpha' \equiv 2^{h(-p)} + 1 \ (\mathrm{mod} \ 4), & \beta \equiv 1 \ or \ 3 + 2\sqrt{2} \ (\mathrm{mod} \ 4); \end{cases} \\ (\mathrm{I3}): \begin{cases} \alpha \alpha' = q, & \beta \beta' = -2^{h(q)}, \\ \alpha \equiv 1 \ or \ 3 + 2\sqrt{-2} \ (\mathrm{mod} \ 4), & \beta + \beta' \equiv -2^{h(q)} + 1 \ (\mathrm{mod} \ 4); \end{cases} \end{cases}$$

(I4):
$$\begin{cases} \alpha \alpha' = q, & \beta \beta' = -1, \\ \alpha \equiv \pm 1 \pmod{4}, & \beta + \beta' \equiv 0 \pmod{4}. \end{cases}$$

Conversely, for each α (resp. β) satisfying (a) and (b) the field A_2 (resp. B_2) is the field $A(\sqrt{\beta})$ (resp. $B(\sqrt{\alpha})$).

We remark that the condition $\alpha^3 \equiv 1 \pmod{4}$ (resp. $\beta^3 \equiv 1 \pmod{4}$) is equivalent to $\alpha \equiv 1 \pmod{4}$ (resp. $\beta \equiv 1 \pmod{4}$) if $p \equiv 1 \pmod{8}$ (resp. $q \equiv 1 \pmod{8}$).

Proof. Since \mathfrak{q}_A is the unique finite prime which is ramified in $A_2 = A(\sqrt{\alpha})$ and $\alpha \alpha' \equiv d_2 \pmod{(A^{\times})^2}$, we have $(\alpha) = \mathfrak{q}_A \mathfrak{a}^2$ with an ideal \mathfrak{a} in A. It is well-known that the class number $h(d_1)$ is odd. Put $\mathfrak{a}^{h(d_1)} = (\gamma)$. We may replace α by $\alpha^{h(d_1)}\gamma^{-2}$, then $(\alpha) = \mathfrak{q}_A^{h(d_1)}$, so that $\alpha \in O_A$, $(\alpha, \alpha') = 1$, and $\alpha \alpha' = \pm N_A \mathfrak{q}_A^{h(d_1)} = \pm \mathfrak{q}^{h(d_1)}$. The sign of the right hand side is determined by the multiplicative congruence $\alpha \alpha' \equiv d_2 \pmod{(A^{\times})^2}$. Let \mathfrak{r}_A be a prime ideal in A such that $\mathfrak{r}_A | (2)$ and $\mathfrak{r}_A \neq \mathfrak{q}_A$. The ideal \mathfrak{r}_A is unramified in A_2 if and only if there exists an integer $\delta \in O_A$ such that $\alpha \equiv \delta^2 \pmod{\mathfrak{r}_A^{2e}}$, where e is the index of ramification of \mathfrak{r}_A with respect to A/Q, that is, $\mathfrak{r}_A' ||(2)$. Hence we have

$$\begin{array}{ll} \alpha^3 \equiv 1 \pmod{4} & \text{if } p \pm 2 \text{ and } q \pm 2; \\ \alpha \equiv \text{a square (mod 4)} & \text{if } p = 2 \text{ and } q \pm 2; \\ \alpha \equiv 1 \pmod{q_A^2} & \text{if } p \pm 2 \text{ and } q = 2. \end{array}$$

In the last case $(p \neq 2, q = 2)$, it follows from $\alpha' \equiv 1 \pmod{q_A^2}$ that $(\alpha - 1)(\alpha' - 1) = 2^{h(d_1)} - \alpha - \alpha' + 1 \equiv 0 \pmod{4}$. We can argue similarly for β except in the case (I4), in which we may proceed as follows. Since $\beta\beta' \equiv -4 \pmod{(B^{\times})^2}$, we have $\beta \in O_B$ and $\beta\beta' = -1$, that is, β is a unit, by a suitable choice of representative β modulo $(B^{\times})^2$. As $B(\sqrt{\beta})/B$ is ramified at \mathfrak{P}_B and unramified at \mathfrak{P}'_B , we have $\beta \equiv -1 \pmod{\mathfrak{P}_B^2}$ and $\beta \equiv 1 \pmod{\mathfrak{P}_B^2}$. Hence $\beta - 1 \equiv 0 \pmod{\mathfrak{P}_B \mathfrak{P}_B^2}$ and $(\beta - 1)(\beta' - 1) = -\beta - \beta' \equiv 0 \pmod{8}$, which implies $\beta + \beta' \equiv 0 \pmod{8}$. Conversely, if we take α , β satisfying conditions (a) and (b) then it is easily seen that $A(\sqrt{\alpha}, \sqrt{\alpha'})$ (resp. $B(\sqrt{\beta}, \sqrt{\beta'})$) is a Galois extension of Q with Galois group isomorphic to D_4 and it is a cyclic extension of K unramified at every finite prime. Hence it must be K_4 by class field theory. So we have $A_2 = A(\sqrt{\alpha})$ and $B_2 = B(\sqrt{\beta})$.

We remark that in case (I4) we mat take $\beta = T + U\sqrt{q} = \varepsilon_q$, the fundamental unit of $B(T, U \in \mathbb{Z}, T > 0, U > 0)$, in which case $T \equiv 0 \pmod{4}$ follows as a corollary.

Putting, for each D, respectively:

(R1)*:
$$\alpha = \frac{x+y\sqrt{p}}{2}, \quad \beta = \frac{z+w\sqrt{q}}{2};$$

(R2)*:
$$\alpha = x + y\sqrt{2}$$
, $\beta = \frac{z + w\sqrt{q}}{2}$;

(I1)*:
$$\alpha = \frac{x+y\sqrt{-p}}{2}, \quad \beta = \frac{z+w\sqrt{q}}{2};$$

(I2)*:
$$\alpha = \frac{x + y\sqrt{-p}}{2}, \quad \beta = z + w\sqrt{2};$$

(I3)*:
$$\alpha = x + y\sqrt{-2}, \quad \beta = \frac{z + w\sqrt{q}}{2};$$

(I4)*:
$$\alpha = x + y\sqrt{-1}$$
, $\beta = z + w\sqrt{q}$;

 $(x, y, z, w \in \mathbb{Z})$, it is easy to see

Proposition 2.13. The conditions (a), (b) of proposition 2.12 is equivalent to the following conditions:

(c)
$$x, y, z, w \in \mathbb{Z}$$
 and $q \not\downarrow (x, y), p \not\downarrow (z, w);$
(d)
(R1)**:
$$\begin{cases} x^2 - py^2 = 4q^{h(p)}, & z^2 - qw^2 = 4p^{h(q)}, \\ \left(\frac{x + y \sqrt{p}}{2}\right)^3 \equiv 1 \pmod{4}, & \left(\frac{x + w \sqrt{q}}{2}\right)^3 \equiv 1 \pmod{4}; \\ \left(\frac{x + y \sqrt{p}}{2}\right)^3 \equiv 1 \pmod{4}, & z^2 - qw^2 = 2^{h(q)+2}, \\ (x, y) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}, & z \equiv 2^{h(q)} + 1 \pmod{4}; \\ (x, y) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}, & z^2 - qw^2 = -4p^{h(q)}, \\ (11)^{**}: \begin{cases} x^2 + py^2 = 4q^{h(-p)}, & z^2 - qw^2 = -4p^{h(q)}, \\ \left(\frac{x + y \sqrt{-p}}{2}\right)^3 \equiv 1 \pmod{4}, & \left(\frac{x + w \sqrt{q}}{2}\right)^3 \equiv 1 \pmod{4}; \\ \left(\frac{x + y \sqrt{-p}}{2}\right)^3 \equiv 1 \pmod{4}, & (z, w) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}; \\ (13)^{**}: \begin{cases} x^2 + 2y^2 = q, & z^2 - qw^2 = -2^{h(q)+2}, \\ (x, y) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}, & z \equiv -2^{h(q)+2}, \\ (x, y) \equiv (1, 0) \text{ or } (3, 2) \pmod{4}, & z \equiv -2^{h(q)+1} \pmod{4}; \\ (14)^{**}: \begin{cases} x^2 + y^2 = q, & z^2 - qw^2 = -1, \\ y \equiv 0 \pmod{4}, & z \equiv 0 \pmod{4}. \end{cases}$$

We remark that $\left(\frac{x+y\sqrt{d}}{2}\right)^3 \equiv 1 \pmod{4}$ if and only if $(x, y) \equiv (2, 0) \text{ or } (6, 4) \pmod{8}$ if $d \equiv 1 \pmod{8}$, $(x, y) \equiv (2, 0)$, (6, 4), (3, 1), (3, 7), (7, 3), or $(7, 5) \pmod{8}$ if $d \equiv 5 \pmod{16}$, $(x, y) \equiv (2, 0)$, (6, 4), (3, 3), (3, 5), (7, 1), or $(7, 7) \pmod{8}$ if $d \equiv 13 \pmod{16}$.

3. Divisibility by 8. Assume $4|h^+(D)$, then, in the same way as in section 1, we have the following criterion for the class number $h^+(D)$ to be divisible by 8:

Proposition 3.1. The following conditions are equivalent:

- (a) $8|h^+(D);$
- (b) both $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$ belong to $H^+(D)^4$;
- (c) both \mathfrak{p} and \mathfrak{q} split completely in K_4 .

Using the notation of section 2, we obtain easily:

Lemma 3.2. The following conditions are equivalent:

- (a) $C^+(\mathfrak{p}) \in H^+(D)^4$ (resp. $C^+(\mathfrak{q}) \in H^+(D)^4$);
- (b) \mathfrak{p} (resp. q) splits completely in K_4/K ;
- (c) \mathfrak{p}_A (resp. \mathfrak{q}_B) splits completely in A_2/A (resp. B_2/B);
- (d) \mathfrak{p}'_B (resp. \mathfrak{q}'_A) splits completely in B_2/B (resp. A_2/A);
- (e) $\chi_A(\mathfrak{p}_A)=1$ (resp. $\chi_B(\mathfrak{q}_B)=1$);
- (f) $\chi_B(\mathfrak{p}'_B)=1$ (resp. $\chi_A(\mathfrak{q}'_A)=1$).

Proposition 3.3 (cf. [12] [3] [9]). Suppose D is of type (R1). Then we have

(a) 2||h(d) if and only if $\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=-1;$

if
$$\left(\frac{2}{q}\right)_{4} = -1$$
 and $\left(\frac{q}{2}\right)_{4} = 1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;
if $\left(\frac{2}{q}\right)_{4} = 1$ and $\left(\frac{q}{2}\right)_{4} = -1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$;

(b)
$$4||h(D) \text{ and } N_{\kappa} \varepsilon_{D} = -1 \text{ if and only if } \left(\frac{p}{q}\right)_{4} = \left(\frac{q}{p}\right)_{4} = -1;$$

(c) 8|
$$h^+(D)$$
 if and only if $\left(\frac{p}{q}\right)_4 = \left(\frac{q}{p}\right)_4 = 1;$

(d)
$$\left(\frac{p}{q}\right)_{4} = (-1)^{k(D)/2} \left(\frac{z}{p}\right)$$
 and $\left(\frac{q}{p}\right)_{4} = (-1)^{k(D)/2} \left(\frac{x}{q}\right)$,

where x, z are rational integers satisfying the conditions (c), (d) $(R1)^{**}$ of proposition 2.13.

Proof. Assume 2||h(D). Since $N_{\kappa}\varepsilon_{D} = 1$ we have $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$ or $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$ alternatively. In the first case we have $C^{+}(\mathfrak{p}) \in H^{+}(D)^{4}$ and $C^{+}(\mathfrak{q}) \notin H^{+}(D)^{4}$, hence, by proposition 2.6 (a) and lemma 3.2,

$$1 = \chi_A(\mathfrak{p}_A) = \chi_A((\sqrt{p})) = \left(\frac{\sqrt{p}}{\mathfrak{q}_A}\right) \operatorname{sgn} N_A \sqrt{p} = -\left(\frac{p}{q}\right)_4,$$

$$-1 = \chi_B(\mathfrak{q}_B) = \chi_B((\sqrt{q})) = \left(\frac{\sqrt{q}}{\mathfrak{p}_B}\right) \operatorname{sgn} N_B \sqrt{q} = -\left(\frac{q}{p}\right)_{\mathfrak{s}}.$$

In the same way we have $\left(\frac{p}{q}\right)_{4} = 1$ and $\left(\frac{q}{p}\right)_{4} = -1$ for the latter case. Next, assume 4|h(D), then, by proposition 2.6 (b), we have $\chi_{A}(\mathfrak{p}_{A}) = \left(\frac{\sqrt{p}}{q_{A}}\right) = \left(\frac{p}{q}\right)_{4}$ and $\chi_{B}(\mathfrak{q}_{B}) = \left(\frac{\sqrt{q}}{\mathfrak{p}_{B}}\right) = \left(\frac{q}{p}\right)_{4}$. If $8 \not\mid h^{+}(D)$ then 4||h(D) and $N_{K}\varepsilon_{D} = -1$, hence $\mathfrak{p} \approx \mathfrak{q} \approx 1$ and we see, by proposition 3.1 and lemma 3.2, $C^{+}(\mathfrak{p}) = C^{+}(\mathfrak{q}) \notin H^{+}(D)^{4}$ and $\chi_{A}(\mathfrak{p}_{A}) = \chi_{B}(\mathfrak{q}_{B}) = -1$. If $8|h^{+}(D)$, then we get $\chi_{A}(\mathfrak{p}_{A}) = \chi_{B}(\mathfrak{q}_{B}) = 1$ in the same way. To sum up, we get the assertions (a), (b), (c), and that

$$\chi_A(\mathfrak{p}_A) = (-1)^{h(D)/2} \left(\frac{p}{q}\right)_4$$
 and $\chi_B(\mathfrak{q}_B) = (-1)^{h(D)/2} \left(\frac{q}{p}\right)_4$

On the other hand, since $h(d_1)$ and $h(d_2)$ are odd,

$$\begin{aligned} \chi_{A}(\mathfrak{p}_{A}) &= \chi_{B}(\mathfrak{p}_{B}') \quad (\text{lemma 3.2}) \\ &= \chi_{B}(\mathfrak{p}_{B}')^{\mathfrak{h}(d_{2})} = \chi_{B}((\beta')) \\ &= \left(\frac{\beta'}{\mathfrak{p}_{B}}\right) \quad (\text{proposition 2.6, proposition 2.12}) \\ &= \left(\frac{\beta + \beta'}{\mathfrak{p}_{B}}\right) = \left(\frac{z}{p}\right) \quad (\text{by (R1)*}) \end{aligned}$$

and similarly $\chi_B(q_B) = \left(\frac{x}{q}\right)$, which imply the assertion (d). Q.E.D.

Proposition 3.4 (cf. [12] [3] [9]). Suppose D is of type (R2). Then we have

(a) 2||h(D) if and only if $\left(\frac{2}{q}\right)_{4}\left(\frac{q}{2}\right)_{4} = -1;$ if $\left(\frac{p}{q}\right)_{4} = -1$ and $\left(\frac{q}{p}\right)_{4} = 1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1;$ if $\left(\frac{p}{q}\right)_{4} = 1$ and $\left(\frac{q}{p}\right)_{4} = -1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1;$

(b) 4||h(D) and $N_{\kappa}\varepsilon_{D} = -1$ if and only if $\left(\frac{2}{q}\right)_{4} = \left(\frac{q}{2}\right)_{4} = -1;$

(c) 8|h⁺(D) if and only if
$$\left(\frac{2}{q}\right)_4 = \left(\frac{q}{2}\right)_4 = 1$$

(d)
$$\left(\frac{2}{q}\right)_4 = \left(\frac{z-2^{h(q)}}{2}\right)$$
 and $\left(\frac{q}{2}\right)_4 \left(\frac{x}{q}\right)$,

where x, z are rational integers satisfying the conditions (c), (d) $(R2)^{**}$ of proposition 2.13 and

$$\left(\frac{a}{2}\right) = 1 \text{ if } a \equiv 1 \pmod{8}, \ \left(\frac{a}{2}\right) = -1 \text{ if } a \equiv 5 \pmod{8}; \left(\frac{a}{2}\right)_4 = 1 \text{ if } a \equiv 1 \pmod{16}, \ \left(\frac{a}{2}\right)_4 = -1 \text{ if } a \equiv 9 \pmod{16}$$

Proof. Using the following:

(3.5)
$$\begin{cases} \left(\frac{\sqrt{q}, 2}{\mathfrak{p}_{B}}\right) = \left(\frac{q}{2}\right)_{4}, \\ \left(\frac{\beta', 2}{\mathfrak{p}_{B}}\right) = \left(\frac{z-2^{h(q)}}{2}\right), \end{cases}$$

we can argue in the same way as in the proof of proposition 3.3. The first equility of (3.5) is checked straightforwardly. Since $\beta' \equiv 1 \pmod{\mathfrak{p}_B^2}$, we see $\left(\frac{\beta',2}{\mathfrak{p}_B}\right)=1$ if and only if $\beta'\equiv 1 \pmod{\mathfrak{p}_B^3}$, that is, if and only if $(\beta-1)(\beta'-1)\equiv 0 \pmod{\mathfrak{p}_B^3}$, for $\beta\equiv 1 \pmod{\mathfrak{p}_B}$; on the other hand $(\beta-1)(\beta'-1)=\beta\beta'-\beta-\beta'+1=2^{h(q)}-z+1$; so we get the latter equality of (3.5). Q.E.D.

Proposition 3.5 (cf. [12] [9]). Suppose D is of type (I1), then

$$\left(\frac{-p}{q}\right)_4 = \left(\frac{x}{q}\right) = \left(\frac{z}{p}\right) = (-1)^{h(D)/4}$$
 and $\left(\frac{w}{p}\right) = \operatorname{sgn} w$,

where x, z, w are rational integers satisfying the conditions (c), (d) $(I1)^{**}$ of proposition 2.13.

Proof. Since $\mathfrak{pq}=(\sqrt{-pq})\approx 1$, we have $\mathfrak{p}\approx \mathfrak{q}\approx 1$. It follows from proposition 3.1 and lemma 3.2 that $\chi_A(\mathfrak{p}_A)=\chi_B(\mathfrak{q}_B)=\chi_B(\mathfrak{p}'_B)=\chi_A(\mathfrak{q}'_A)=(-1)^{k^+(D)/4}$. By proposition 2.8 we have

$$\begin{split} \chi_{A}(\mathfrak{p}_{A}) &= \left(\frac{\sqrt{-p}}{\mathfrak{q}_{A}}\right) = \left(\frac{-p}{\mathfrak{q}_{A}}\right)_{4} = \left(\frac{-p}{q}\right)_{4},\\ \chi_{A}(\mathfrak{q}_{A}') &= \chi_{A}(\mathfrak{q}_{A}')^{h(-p)} = \chi_{A}((\alpha')) = \left(\frac{\alpha'}{\mathfrak{q}_{A}}\right) = \left(\frac{\alpha+\alpha'}{\mathfrak{q}_{A}}\right) = \left(\frac{x}{q}\right),\\ \chi_{B}(\mathfrak{p}_{B}') &= \chi_{B}(\mathfrak{p}_{B}')^{h(q)} = \chi_{B}((\beta')) = \left(\frac{\beta'}{\mathfrak{p}_{B}}\right) \left(\frac{\beta',\beta}{\infty_{B}}\right) = \left(\frac{z}{p}\right),\\ \chi_{B}(\mathfrak{q}_{B}) &= \chi_{B}((\sqrt{q})) = \left(\frac{\sqrt{q}}{\mathfrak{p}_{B}}\right) \left(\frac{\sqrt{q},\beta}{\infty_{B}}\right). \end{split}$$

It follows from $\left(\frac{\beta, \beta}{\infty_B}\right) = -1$ that $\left(\frac{\sqrt{q}, \beta}{\infty_B}\right) = -sgn w$. Since $\beta = \frac{z + w\sqrt{q}}{2}$

$$\equiv 0 \pmod{\mathfrak{p}_B}, \text{ we have } \sqrt{q} \equiv -\frac{z}{w} \pmod{\mathfrak{p}_B}, \text{ so that } \chi_B(\mathfrak{q}_B) = \left(\frac{-z/w}{p}\right)(-sgn w)$$
$$= \left(\frac{zw}{p}\right) sgn w, \text{ which implies } \left(\frac{w}{p}\right) = sgn w. \qquad Q.E.D.$$

Proposition 3.6 (cf. [9]). Suppose D is of type (12), then

$$\left(\frac{-p}{2}\right)_{4} = \left(\frac{x-2^{h(-p)}}{2}\right) = \left(\frac{z}{p}\right) = (-1)^{h(D)/4} \text{ and } \left(\frac{w}{p}\right) = \operatorname{sgn} w,$$

where x, z, w are rational integers satisfying the conditions (c), (d) $(I2)^{**}$ of proposition 2.13.

Proof. Since $pq = (\sqrt{-2p}) \approx 1$, we see that $p \approx q \approx 1$. By proposition 3.1 and lemma 3.2 we have $\chi_A(p_A) = \chi_B(q_B) = \chi_A(q'_A) = \chi_B(p'_B) = (-1)^{k(D)/4}$. By proposition 2.9 we have

$$\begin{split} \chi_{A}(\mathfrak{p}_{A}) &= \chi_{A}((\sqrt{-p})) = \left(\frac{\sqrt{-p}, 2}{\mathfrak{q}_{A}}\right) = \left(\frac{-p}{2}\right)_{4}, \\ \chi_{A}(\mathfrak{q}_{A}') &= \chi_{A}((\alpha')) = \left(\frac{\alpha', 2}{\mathfrak{q}_{A}}\right) = \left(\frac{x-2^{h(-p)}}{2}\right), \\ \chi_{B}(\mathfrak{p}_{B}') &= \chi_{B}((\beta')) = \left(\frac{\beta'}{\mathfrak{p}_{B}}\right) \left(\frac{\beta', \beta}{\infty_{B}}\right) = \left(\frac{z}{p}\right), \\ \chi_{B}(\mathfrak{q}_{B}) &= \chi_{B}((\sqrt{2})) = \left(\frac{\sqrt{2}}{\mathfrak{p}_{B}}\right) \left(\frac{\sqrt{2}, \beta}{\infty_{B}}\right) = \left(\frac{zw}{p}\right) sgn w , \end{split}$$

in the same way as in the proof of proposition 3.3, proposition 3.4, and proposition 3.5. Q.E.D.

Proposition 3.7 (cf. [9]). Suppose D is of type (I3), then

$$\left(\frac{-2}{q}\right)_{4} = \left(\frac{x}{q}\right) = \left(\frac{z+2^{k(q)}}{2}\right) = \left(\frac{q}{2}\right)_{4}(-sgn\ w) = (-1)^{k(D)/4},$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I3)** with $z+w\equiv 0 \pmod{4}$.

Proof. Since $pq = (\sqrt{-2q}) \approx 1$, we have $p \approx q \approx 1$. By proposition 3.1 and lemma 3.2 we have

$$\chi_{\scriptscriptstyle A}(\mathfrak{p}_{\scriptscriptstyle A})=\chi_{\scriptscriptstyle B}(\mathfrak{q}_{\scriptscriptstyle B})=\chi_{\scriptscriptstyle A}(\mathfrak{q}_{\scriptscriptstyle A}')=\chi_{\scriptscriptstyle B}(\mathfrak{p}_{\scriptscriptstyle B}')=(-1)^{k(D)/4}\,.$$

By proposition 2.10, we have

$$\chi_A(\mathfrak{p}_A) = \chi_A((\sqrt{-2}) = \left(\frac{\sqrt{-2}}{\mathfrak{q}_A}\right)_4 = \left(\frac{-2}{q}\right)_4,$$

DIVISIBILITY BY 16 OF CLASS NUMBER

$$\begin{split} \chi_{A}(\mathfrak{q}'_{A}) &= ((\alpha')) = \left(\frac{\alpha'}{\mathfrak{q}_{A}}\right) = \left(\frac{x}{q}\right), \\ \chi_{B}(\mathfrak{p}'_{B}) &= \chi_{B}((\beta')) = \left(\frac{\beta', -2}{\mathfrak{p}_{B}}\right) \left(\frac{\beta', \beta}{\infty_{B}}\right) = \left(\frac{\beta', -2}{\mathfrak{p}_{B}}\right) = \left(\frac{z+2^{k(q)}}{2}\right), \\ \chi_{B}(\mathfrak{q}_{B}) &= \chi_{B}((\sqrt{q}\,)) = \left(\frac{\sqrt{q}\,, -2}{\mathfrak{p}_{B}}\right) \left(\frac{\sqrt{q}\,, \beta}{\infty_{B}}\right). \end{split}$$

We may safely assume $\sqrt{q} \equiv 1 \pmod{\mathfrak{p}_B^2}$, by transposing \mathfrak{p}_B and \mathfrak{p}'_B if necessary, obtaining $\left(\frac{\sqrt{q}}{\mathfrak{p}_B}, -2\right) = \left(\frac{q}{2}\right)_4$ and $2\beta \equiv z + w\sqrt{q} \equiv z + w \pmod{\mathfrak{p}_B^2}$. Hence we have $z + w \equiv 0 \pmod{4}$, which determines the sign of w. It follows from $\beta < 0$ and $\beta' > 0$ with respect to ∞_B that $w\sqrt{q} < 0$ with respect to ∞_B , which implies $\left(\frac{\sqrt{q}}{\infty_B}\right) = -sgn w$. Q.E.D.

Proposition 3.8 (cf. [11] [4] [10]). Suppose D is of type (I4), then

$$\left(\frac{2}{q}\right)_4 \left(\frac{q}{2}\right)_4 = (-1)^{z/4} = (-1)^{k(d)/4},$$

 $\left(\frac{x}{q}\right) = 1, \text{ and } w \equiv 1 \pmod{4},$

where x, z, w are rational integers satisfying the conditions (c), (d) $(I4)^{**}$ of proposition 2.13.

Proof. Since $q = (\sqrt{-q}) \approx 1$, we get $\mathfrak{p} \approx 1$, so that, by proposition 3.1 and lemma 3.2, we have $\chi_A(\mathfrak{p}_A) = \chi_B(\mathfrak{p}'_B) = (-1)^{k(D)/4}$ and $\chi_A(\mathfrak{q}'_A) = \chi_B(\mathfrak{q}_B) = 1$. By proposition 2.11, we have

$$\begin{split} \chi_A(\mathfrak{p}_A) &= \chi_A((1+\sqrt{-1})) = \left(\frac{1+\sqrt{-1}}{\mathfrak{q}_A}\right) = \left(\frac{2\sqrt{-1}}{\mathfrak{q}_A}\right)_4 \\ &= \left(\frac{2}{q}\right)_4 \left(\frac{q}{2}\right)_4. \end{split}$$

Since $B_2 = B(\sqrt{\beta})$ and $\beta \equiv 1 \pmod{\mathfrak{p}_B^{\prime^2}}$, we have $\chi_B(\mathfrak{p}_B) = 1$ if and only if $\beta \equiv 1 \pmod{\mathfrak{p}_B^{\prime^3}}$. As $\mathfrak{p}_B || (\beta - 1)$, we have $\beta \equiv 1 \pmod{\mathfrak{p}_B^{\prime^3}}$ if and only if $(\beta - 1)(\beta' - 1) = -2z \equiv 0 \pmod{16}$. On the other hand,

$$\chi_A(\mathfrak{q}'_A) = \chi_A((lpha')) = \left(rac{lpha'}{\mathfrak{q}_A}
ight) = \left(rac{x}{q}
ight) = 1,$$

 $\chi_B(\mathfrak{q}_B) = \chi_B((\sqrt{q})) = \left(rac{\sqrt{q}, -1}{\mathfrak{p}_B}
ight) \left(rac{\sqrt{q}, \beta}{\infty_B}
ight) = 1.$

Since $\sqrt{q} \equiv \pm 1 \pmod{\mathfrak{p}_B^2}$, we have $\left(\frac{\sqrt{q}, \beta}{\infty_B}\right) = \pm 1$, which implies $w \leq 0$,

while $\beta' \equiv z - w \sqrt{q} \equiv \mp w \equiv 1 \pmod{\mathfrak{p}_B^2}$. Hence $|w| \equiv 1 \pmod{4}$. Q.E.D.

4. Construction of K_8 . We assume $8 | h^+(D)$ throughout the rest of this paper. By proposition 1.2, K_8 is a dihedral extension of Q and both $G(K_8/A_2)$ and $G(K_2/B_2)$ are isomorphic to $Z_2 \times Z_2$. The intermediate fields of K_8/A_2 and K_8/B_2 are given in the following diagram:

where α''_2 (resp. β''_2) denotes the conjugae of α_2 over A (resp. of β_2 over B). By proposition 3.1, both \mathfrak{P}_A and \mathfrak{q}'_A (resp. both \mathfrak{P}'_B and \mathfrak{q}_B) split completely in A_2 (resp. in B_2) and \mathfrak{q}_A (resp. \mathfrak{P}_B) is ramified in A_2 (resp. in B_2). We put

$$egin{array}{lll} \mathfrak{p}_A = P_A P_A^{\,\prime\prime}\,, & \mathfrak{q}_A = \hat{Q}_A^2\,, & \mathfrak{q}_A^\prime = Q_A Q_A^{\prime\prime}\,, \ \mathfrak{p}_B = \hat{P}_B^2\,, & \mathfrak{p}_B^\prime = P_B P_B^{\prime\prime}\,, & \mathfrak{q}_B = Q_B Q_B^{\prime\prime}\,, \end{array}$$

with prime ideals P_A , $P_A^{\prime\prime}$, \hat{Q}_A , Q_A^{\prime} , $Q_A^{\prime\prime}$ in A_2 (resp. \hat{P}_B , P_B , $P_B^{\prime\prime}$, Q_B , $Q_B^{\prime\prime}$ in B_2).

Since K_8/K is unramified at every finite prime, Q_A (resp. P_B) ramifies in either A_4 or A_4'' (resp. B_4 or B_4''). By a suitable choice, we may suppose that:

(4.1) Q_A (resp. P_B) is the only finite prime of A_2 (resp. B_2), which is ramified in A_4 (resp. B_4).

Arguing the ramification of the infinite primes in A_2 (resp. B_2) as in section 2, we obtain:

- (4.2) If D < 0, then there is no (resp. only one (denoted by V_B)) infinite prime in A_2 (resp. B_2) which is ramified in A_4 (resp. B_4).
- (4.3) If D>0, 4||h(D), and $N_{\kappa}\varepsilon_{D}=1$, then every infinite prime in A_{2} (resp. B_{2}) is ramified in A_{4} (resp. B_{4}).
- (4.4) If D > 0 and 8 | h(D), then every infinite prime in A_2 (resp. B_2) is unramified in A_4 (resp. B_4).

Let ψ_A (resp. ψ_B) be the Hecke character of A_2 (resp. B_2) which is attached to the quadratic extension A_4/A_2 (resp. B_4/B_2). By (4.1), (4.2), (4.3), and (4.4) we determine ψ_A and ψ_B as follows:

Proposition 4.5. Suppose D is of type (R1) and $8|h^+(D)$. Then (a) if 4||h(D), we have

$$\psi_{A}((\lambda)) = \left(\frac{\lambda}{Q_{A}}\right) \operatorname{sgn} N_{A_{2}}\lambda \qquad (\lambda \in O_{A_{2}} - Q_{A});$$

$$\psi_{B}((\mu)) = \left(\frac{\mu}{P_{B}}\right) \operatorname{sgn} N_{B_{2}}\mu \qquad (\mu \in O_{B_{2}} - P_{B});$$

(b) if 8 | h(D), we have

$$egin{aligned} \psi_{A}((\lambda)) &= \left(rac{\lambda}{Q_{A}}
ight) & (\lambda \in O_{A_{2}} - Q_{A}); \ \psi_{B}((\mu)) &= \left(rac{\mu}{P_{B}}
ight) & (\mu \in O_{B_{2}} - P_{B}). \end{aligned}$$

Proof. (a) By (4.3) the primes of A_2 which ramify in A_4 consist of Q_A and all of the four infinite primes, so that

$$\psi_{\mathtt{A}}((\lambda)) = \left(rac{\lambda, A_{\mathtt{4}}/A_2}{Q_{\mathtt{A}}}
ight) \prod_{v \mid \infty} \left(rac{\lambda, A_{\mathtt{4}}/A_2}{v}
ight).$$

We have

$$\left(\frac{\lambda, A_4/A_2}{Q_A}\right) = \left(\frac{\lambda, \alpha_2}{Q_A}\right) = \left(\frac{\lambda}{Q_A}\right)^{\operatorname{ord}(\mathfrak{G}_2)} = \left(\frac{\lambda}{Q_A}\right),$$

where $\operatorname{ord}(\alpha_2)$ is the order of α_2 with respect to Q_A , and

$$\prod_{v\mid\omega}\left(\frac{\lambda,\,A_4/A_2}{v}\right) = \prod_{v\mid\omega} sgn\,\lambda^v = N_{A_2}\lambda\,.$$

This complete the proof of the first part of (a). The second part is obtained in the same way.

(b) The only prime of A_2 which ramifies in A_4 in this case is Q_A . Hence we have $\psi_A((\lambda)) = \left(\frac{\lambda, A_4/A_2}{Q_A}\right) = \left(\frac{\lambda}{Q_A}\right)$. We can calculate $\psi_B((\mu))$ similarly. Q.E.D.

Proposition 4.6. Suppose D is of type (R2) and $8 | h^+(D)$. Then (a) if 4 || h(D), we have

$$\psi_{A}((\lambda)) = \left(\frac{\lambda}{Q_{A}}\right) \operatorname{sgn} N_{A_{2}}\lambda \qquad (\lambda \in O_{A_{2}} - Q_{A});$$

$$\psi_{B}((\mu)) = \left(\frac{\mu, 2}{P_{B}}\right) sgn N_{B_{2}}\mu \quad (\mu \in O_{B_{2}} - P_{B});$$

(b) if 8 | h(D), we have

$$\psi_A((\lambda)) = \left(\frac{\lambda}{Q_A}\right) \qquad (\lambda \in O_{A_2} - Q_A);$$

$$\psi_B((\mu)) = \left(\frac{\mu, 2}{P_B}\right) \qquad (\mu \in O_{B_2} - P_B).$$

Proof. Since $B''_4 = B_2(\sqrt{\beta''_2})$ is unramified at P_B ,

$$\begin{split} \left(\frac{\mu, B_4/B_2}{P_B}\right) &= \left(\frac{\mu, \beta_2}{P_B}\right) = \left(\frac{\mu, \beta_2\beta_2''}{P_B}\right) = \left(\frac{\mu, \beta'}{P_B}\right) \\ &= \left(\frac{\mu, \beta\beta'}{P_B}\right) = \left(\frac{\mu, 2}{P_B}\right). \end{split}$$

The rest of the proof is the same as that of proposition 4.5.

In the same way we have:

Proposition 4.7. Suppose D is of type (I1) and 8 | h(D), then

$$\psi_A((\lambda)) = \left(\frac{\lambda}{Q_A}\right) \qquad (\lambda \in O_{A_2} - Q_A);$$

 $\psi_B((\mu)) = \left(\frac{\mu}{P_B}\right) \left(\frac{\mu, \beta_2}{V_B}\right) \qquad (\mu \in O_{B_2} - P_B).$

Proposition 4.8. Suppose D is of type (I2) and $8 \mid h(D)$, then

$$\begin{split} \psi_A((\lambda)) &= \left(\frac{\lambda, 2}{Q_A}\right) & (\lambda \in O_{A_2} - Q_A); \\ \psi_B((\mu)) &= \left(\frac{\mu}{P_B}\right) \left(\frac{\mu, \beta_2}{V_B}\right) & (\mu \in O_{B_2} - P_B). \end{split}$$

Proposition 4.9. Suppose D is of type (I3) and $8 \mid h(D)$, then

$$\psi_{A}((\lambda)) = \left(\frac{\lambda}{Q_{A}}\right) \qquad (\lambda \in O_{A_{2}} - Q_{A});$$

$$\psi_{B}((\mu)) = \left(\frac{\mu, -2}{P_{B}}\right) \left(\frac{\mu, \beta_{2}}{V_{B}}\right) \qquad (\mu \in O_{B_{2}} - P_{B}).$$

Proposition 4.10. Suppose D is of type (I4) and $8 \mid h(D)$, then

$$\psi_A((\lambda)) = \left(\frac{\lambda}{Q_A}\right) \qquad (\lambda \in O_{A_2} - Q_A);$$

16

Q.E.D.

DIVISIBILITY BY 16 OF CLASS NUMBER

$$\psi_{B}((\mu)) = \left(\frac{\mu, -1}{P_{B}}\right) \left(\frac{\mu, \beta_{2}}{V_{B}}\right) \quad (\mu \in O_{B_{2}} - P_{B}).$$

5. Divisibility by 16. We assume $8|h^+(D)$ in this section and obtain a criterion for $h^+(D)$ to be divisible by 16 in the same way as in section 3:

Proposition 5.1. The following conditions are equivalent:

- (a) $16|h^+(D);$
- (b) both $C^+(\mathfrak{p})$ and $C^+(\mathfrak{q})$ belong to $H^+(D)^8$;
- (c) both \mathfrak{P} and \mathfrak{q} split completely in K_8 .

Using the notation of previous sections, we obtain easily:

- Lemma 5.2. The following conditions are equivalent:
- (a) $C^{+}(\mathfrak{p}) \in H^{+}(D)^{8}$ (resp. $C^{+}(\mathfrak{q}) \in H^{+}(D)^{8}$);
- (b) \mathfrak{p} (resp. q) splits completely in K_8 ;
- (c) \hat{P}_B (resp. \hat{Q}_A) splits completely in B_4 (resp. A_4);
- (d) $\psi_B(\hat{P}_B) = 1$ (resp. $\psi_A(\hat{Q}_A) = 1$).

If $d_1 \neq -4$, we can set

$$(lpha) = \mathfrak{q}_A^{h(d_1)} = \hat{Q}_A^{2h(d_1)}, \ \ (eta) = \mathfrak{p}_B^{h(d_2)} = \hat{P}_B^{2h(d_2)}.$$

Hence we have:

Lemma 5.3. If $d_1 \neq -4$, then

$$\hat{Q}^{h(d_1)}_A = (\sqrt{\alpha}) \quad and \quad \hat{P}^{h(d_2)}_B = (\sqrt{\beta}).$$

Theorem 5.4. Suppose D is of type (R1) and $8|h^+(D)$. Then we have (a) 4||h(D) if and only if $\left(\frac{z}{p}\right)_4 \left(\frac{x}{q}\right)_4 = -1$; $\left(\frac{z}{p}\right)_4 = 1$ and $\left(\frac{x}{q}\right)_4 = -1$ if and only if $p \approx 1$ and $q \approx 1$; $\left(\frac{z}{p}\right)_4 = -1$ and $\left(\frac{x}{q}\right)_4 = 1$ if and only if $p \approx 1$ and $q \approx 1$; (b) 8||h(D) and $N_K \varepsilon_D = -1$ if and only if $\left(\frac{z}{p}\right)_4 = \left(\frac{x}{q}\right)_4 = -1$; (c) $16|h^+(D)$ if and only if $\left(\frac{z}{p}\right)_4 = \left(\frac{x}{q}\right)_4 = 1$;

where x, z are rational integers satisfying the conditions (c), (d) $(R1)^{**}$ of proposition 2.13.

Proof. Assume first that 4||h(D)|. Then, by proposition 4.5 and lemma 5.3, we have

$$\begin{split} \psi_{B}(\hat{P}_{B}) &= \psi_{B}(\hat{P}_{B})^{k(q)} = \psi_{B}((\sqrt{\beta}\,)) = \left(\frac{\sqrt{\beta}}{P_{B}}\right) sgn \, N_{B_{2}}\sqrt{\beta} ,\\ \left(\frac{\sqrt{\beta}}{P_{B}}\right) &= \left(\frac{\beta}{P_{B}}\right)_{4} = \left(\frac{\beta}{\mathfrak{p}_{B}'}\right)_{4} = \left(\frac{\beta+\beta'}{\mathfrak{p}_{B}'}\right)_{4} = \left(\frac{z}{p}\right)_{4}, \text{ and}\\ N_{B_{2}}\sqrt{\beta} &= N_{B}(-\beta) = \beta\beta' = p^{h(q)} > 0 \,. \end{split}$$

Hence $\psi_B(\hat{P}_B) = \left(\frac{z}{\hat{p}}\right)_4^2$. We obtain $\psi_A(\hat{Q}_A) = \left(\frac{x}{q}\right)_4^2$ similarly. On the other hand, as $N_K \varepsilon_D = 1$, we have either $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$ or $\mathfrak{p} \approx 1$ and $\mathfrak{q} \approx 1$. By lemma 5.2, we have $\psi_B(\hat{P}_B) = 1$ and $\psi_A(\hat{Q}_A) = -1$ in the first case and $\psi_B(\hat{P}_B) = -1$ and $\psi_A(\hat{Q}_A) = 1$ in the latter case.

Next, we assume that 8 | h(D). By proposition 4.5 (b), we have

$$\psi_{B}(\hat{P}_{B}) = \psi_{B}((\sqrt{\beta}\,)) = \left(\frac{\sqrt{\beta}}{P_{B}}\right) = \left(\frac{\beta}{P_{B}}\right)_{4} = \left(\frac{z}{p}\right)_{4},$$
$$\psi_{A}(\hat{Q}_{A}) = \psi_{A}((\sqrt{\alpha}\,)) = \left(\frac{\sqrt{\alpha}}{Q_{A}}\right) = \left(\frac{\alpha}{Q_{A}}\right)_{4} = \left(\frac{x}{q}\right)_{4}.$$

If 8||h(D) and $N_K \varepsilon_D = -1$, we have $\mathfrak{p} \approx \mathfrak{q} \approx 1$, hence $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = -1$ by lemma 5.2. If $16|h^+(D)$, then, by proposition 5.1 and lemma 5.2, we have $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}) = 1$. Q.E.D.

Theorem 5.5. Suppose D is of type (R2) and $8 | h^+(D)$. Then we have (a) 4 || h(D) if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_4 \left(\frac{x}{q}\right)_4 = -1;$

$$\left(\frac{z-2^{k(q)}}{2}\right)_{4} = 1 \text{ and } \left(\frac{x}{q}\right)_{4} = -1 \text{ if and only if } \mathfrak{p} \approx 1 \text{ and } \mathfrak{q} \approx 1;$$
$$\left(\frac{z-2^{k(q)}}{2}\right)_{4} = -1 \text{ and } \left(\frac{x}{q}\right)_{4} = 1 \text{ if and only if } \mathfrak{p} \approx 1 \text{ and } \mathfrak{q} \approx 1;$$

(b) 8||h(D) and
$$N_{\kappa}\varepsilon_{D} = -1$$
 if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_{4} = \left(\frac{x}{q}\right)_{4} = -1;$

(c) 16|
$$h^+(D)$$
 if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_4 = \left(\frac{x}{q}\right)_4 = 1;$

where x, z are rational integers satisfying the conditions (c), (d) $(R2)^{**}$ of proposition 2.13.

Proof. If 4||h(D), then, by proposition 4.6 (a), we have

$$\psi_{B}(\hat{P}_{B}) = \psi_{B}((\sqrt{eta})) = \left(rac{\sqrt{eta}}{P_{B}}, rac{2}{P_{B}}
ight) sgn N_{B_{2}}\sqrt{eta} = \left(rac{\sqrt{eta}}{P_{B}}, rac{2}{P_{B}}
ight) = \left(rac{eta}{\mathfrak{p}_{B}'}
ight)_{4},$$

where $\left(\frac{\beta}{\mathfrak{p}'_B}\right)_4^4 = 1$ if $\beta \equiv 1 \pmod{\mathfrak{p}'_B^4}$ and $\left(\frac{\beta}{\mathfrak{p}'_B}\right)_4^4 = -1$ if $\beta \equiv 9 \pmod{\mathfrak{p}'_B^4}$. Since $\beta \equiv 1 \pmod{\mathfrak{p}'_B^3}$ and $\beta' \equiv 1 \pmod{\mathfrak{p}'_B}$, we see that $\beta \equiv 1 \pmod{\mathfrak{p}'_B}$ if and only if $(\beta-1)(\beta'-1)=2^{k(q)}-z+1\equiv 0 \pmod{16}$, so that $\psi_B(\hat{P}_B)=\left(\frac{z-2^{k(q)}}{2}\right)_4^4$. The rest of the proof can be done in the same way as in theorem 5.4. Q.E.D.

Theorem 5.6. Suppose D is of type (I1) and $8 \mid h(D)$, then

$$\left(\frac{x}{q}\right)_4 = (-1)^{h(D)/8},$$

where x is a rational integer satisfying the conditions (c), (d) $(I1)^{**}$ of proposition 2.13.

Proof. Since $\mathfrak{p} \approx \mathfrak{q} \approx 1$, it follows from proposition 5.1 and lemma 5.2 that $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = (-1)^{h(D)/8}$. By proposition 4.7 and lemma 5.3, $\psi_A(\hat{Q}_A) = \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}}{Q_A}\right) = \left(\frac{\alpha}{Q_A}\right)_4 = \left(\frac{x}{q}\right)_4$. Q.E.D.

Theorem 5.7. Suppose D is of type (I2) and 8 | h(D), then

$$\left(\frac{x-2^{h(-p)}}{2}\right)_4 = (-1)^{h(D)/8},$$

where x is a rational integer satisfying the conditions (c), (d) $(I2)^{**}$ of proposition 2.13.

Proof. Since $\mathfrak{p} \approx \mathfrak{q} \approx 1$, it follows from proposition 5.1 and lemma 5.2 that $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = (-1)^{h(D)/8}$. By proposition 4.8 and lemma 5.3, we have $\psi_A(\hat{Q}_A) = \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}, 2}{Q_A}\right)$, and we deduce that $\left(\frac{\sqrt{\alpha}, 2}{Q_A}\right) = \left(\frac{x-2^{h(-\mathfrak{p})}}{2}\right)_4$ as in the proof of theorem 5.5. Q.E.D.

Theorem 5.8. Suppose D is of type (I3) and $8 \mid h(D)$, then

$$\left(\frac{2x}{q}\right)_4 = (-1)^{h(D)/8},$$

where x is a rational integer satisfying the conditions (c), (d) $(I3)^{**}$ of proposition 2.13.

Proof. Since $\mathfrak{p} \approx \mathfrak{q} \approx 1$, we have $\psi_B(\hat{P}_B) = \psi_A(\hat{Q}_A) = (-1)^{h(D)/8}$. By proposition 4.9, we have $\psi_A(\hat{Q}_A) = \psi_A((\sqrt{\alpha})) = \left(\frac{\sqrt{\alpha}}{Q_A}\right) = \left(\frac{\alpha}{Q_A}\right) = \left(\frac{2x}{q}\right)_4$. Q.E.D.

For discriminants of type (I4), the above argument does not work well.

An alternative method is therefore given in the next section.

6. D of type (I4). We assume that D is of type (I4) and 8|h(D) in this section. It is easy to see that

$$K_4 = K_2(\sqrt{\varepsilon_q}) = \boldsymbol{Q}(\sqrt{-1}, \sqrt{\varepsilon_q}),$$

where $\varepsilon_q = T + U\sqrt{q} > 1$ is the fundamental unit of *B*. The field K_8 has been explicitly constructed by H. Cohn and G. Cooke [4] (cf. also [10]):

Lemma 6.1 (Cohn-Cooke).

$$K_{\mathtt{B}}=K_4(\sqrt{(f+\sqrt{-q})(1+\sqrt{-1})\sqrt{arepsilon_q}})$$
 ,

where e and f are rational integral solutions of

(6.2)
$$-q = f^2 - 2e^2; e > 0, f \equiv -1 \pmod{4}.$$

We let $\lambda = (f + \sqrt{-q})(1 + \sqrt{-1})\sqrt{\varepsilon_q}$, so that $K_8 = K_4(\sqrt{\lambda})$. As P_B is ramified in K_4 , we have $P_B = \mathcal{P}^2$ where \mathcal{P} is a prime ideal of K_4 . It is easy to see that the completion of K_4 at \mathcal{P} is isomorphic to $Q_2(\sqrt{-1})$ and we may fix the isomorphism by taking

(6.3)
$$\sqrt{q} \equiv \frac{q+1}{2} \pmod{\mathfrak{p}_B^{\prime^3}} \text{ and } \sqrt{\mathfrak{e}_q} \equiv \frac{\mathfrak{e}_q+1}{2} \pmod{P_B^3}.$$

We remark that $\mathcal{P}^2|P_B|\mathfrak{p}'_B|(2)$. Denote by $O_{\mathcal{P}}$ the ring of \mathcal{P} -adic integers, then $\pi = 1 - \sqrt{-1}$ is a prime element of $O_{\mathcal{P}}$ and its maximal ideal is $\pi O_{\mathcal{P}}$, which is also denoted by \mathcal{P} . Since the ramification index of \mathcal{P} is 2, we obtain easily:

Lemma 6.4. Let the \mathcal{P} -adic units be denoted by $O_{\mathcal{P}}^{\times}$. Then

$$\mu \in O_{\mathcal{P}}^{\star^{2}}$$
 if and only if $\mu \equiv \pm 1 \pmod{\mathcal{P}^{5}}$

As $\lambda/\pi^2 \in O_{\mathcal{P}}^{\times}$, we have

Lemma 6.5. The following conditions are equivalent:
(a) 16 | h(D);
(b) 𝔅 splits completely in K₈;
(c) λ/π²≡±1 (mod 𝔅⁵).

By simple calculations we have:

Lemma 6.6. (a)
$$f \equiv -\frac{q+1}{2} \pmod{8};$$

(b) $\frac{f+\sqrt{-q}}{\pi} \equiv -\frac{q+1}{2} \pmod{\mathcal{P}^5}.$

Theorem 6.7 (Williams [17]). Suppose D is of type (I4) and 8|h(D). Then 16|h(D) if and only if $T \equiv q-1 \pmod{16}$, equivalently, $(-1)^{T/8} \left(\frac{q}{2}\right)_4 = (-1)^{h(D)/8}$, where $\varepsilon_q = T + U\sqrt{q} > 1$ is the fundamental unit of $Q\sqrt{(q)}$.

Proof. By (6.3) and lemma 6.6, we have

$$\lambda/\pi^2 = \frac{f + \sqrt{-q}}{\pi}\sqrt{\varepsilon_q} \equiv -\frac{q+1}{2}\frac{\varepsilon_q+1}{2} \pmod{\mathscr{D}^5}$$
,

and so $\lambda/\pi^2 \equiv \pm 1 \pmod{\mathcal{P}^5}$ if and only if

(6.8)
$$\frac{\varepsilon_q+1}{2} \equiv \pm \frac{q+1}{2} \pmod{\mathscr{P}^5}.$$

As $q \equiv 1 \pmod{8}$ and $\varepsilon_q \equiv 1 \pmod{p_B^{\prime 3}}$, that is, $q \equiv \varepsilon_q \equiv 1 \pmod{\mathcal{P}^6}$, we obtain (6.8) if and only if $\varepsilon_q \equiv q \pmod{\mathcal{P}^7}$, that is, if and only if $\varepsilon_q \equiv q \pmod{p_B^{\prime 4}}$. It follows from lemma 6.5 that 16|h(D) if and only if $\varepsilon_q \equiv q \pmod{p_B^{\prime 4}}$. Since $\varepsilon_q \equiv 1 \pmod{p_B^{\prime 3}}$ and $\varepsilon_q \equiv -1 \pmod{p_B^{\prime 2}}$, we have $\varepsilon_q \equiv 1 \pmod{p_B^{\prime 4}}$ if and only if $(\varepsilon_q - 1)(\varepsilon_q^{\prime} - 1) = 2T \equiv 0 \pmod{32}$. Hence we deduce $\varepsilon_q - 1 \equiv T \pmod{\mathcal{P}_B^{\prime 4}}$. Q.E.D.

References

- P. Barrucand and H. Cohn: Note on primes of type x²+32y², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
- [2] E. Brown: The class number of $\mathbf{Q}(\sqrt{-p})$, for $p \equiv 1 \pmod{8}$ a prime, Proc. Amer. Math. Soc. 31 (1972), 381-383.
- [3] J. Bucher: Neues über die Pell'schen Gleichung, Naturforschende Gesellschaft Mitteilungen Luzern 14 (1943), 1–18.
- [4] H. Cohn and G. Cooke: Parametric form of an eight class field, Acta Arith. 30 (1976), 367-377.
- [5] H. Hasse: Uber die Klassenzahl sop Körpers $P(\sqrt{-2p})$ mit einer Primzahl $p \neq 2$, J. Number Theory 1 (1969), 231–234.
- [6] H. Hasse: Uber die Klassenzahl des Körpers $P(\sqrt{-p})$ mit einer Primzahl $p \equiv 1 \mod 2^3$, Aequationes Math. 3 (1969), 165–169.
- H. Hasse: Uber die Teilbarkeit durch 2³ der Klassenzahl imaginär-quadratischer Zahlkorper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 241 (1970), 1–6.
- [8] H. Hasse: Uber die Teilbarkeit durch 2³ der Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Discriminantenprimteilern, Math. Nachr. 46 (1970), 61–70.
- [9] P. Kaplan: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan 25 (1973), 596-608.

- [10] P. Kaplan: Unité de norme -1 du $Q(\sqrt{p})$ et corps de classes de degré 8 de $Q(\sqrt{-p})$ ou p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239-243.
- [11] E. Lehmer: On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42-48.
- [12] L. Rédei: Uber die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klasseengruppe im quadratischen Zahlkörpers, J. Reine Angew. Math. 171 (1934), 131–148.
- [13] L. Rédei und H. Reichardt: Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
- [14] H. Reichardt: Zur Struktur der absoluten Ioealklassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 170 (1933), 75-82.
- [15] H. Reichardt: Uber die 2-Klassengruppe gewisser quadratischer Zahlkörper, Math. Nachr. 46 (1970), 71–80.
- [16] C.L. Siegel: Lectures on advanced analytic number theory, Bombey, 1961.
- [17] K.S. Williams: On the class number of $Q(\sqrt{-p})$ modulo 16, for $p \equiv 1 \pmod{8}$ a prime, Acta Arith. 34 (1981), 381-398.
- [18] Y. Yamamoto: 16-divisibilities of class numbers of quadratic fields, RIMS Kokyuroku 378 (1980), 82–87. (in Japanese)
- [19] Y. Yamamoto: On the 2-parts of class numbers of quadratic fields, Report of symposium on group theory and its applications held at Osaka Univ. (1981), 66-74. (in Japanese)

Department of Mathematics Osaka University Toyonaka, Osaka 560, Japan