

Title	On finite homogeneous symmetric sets
Author(s)	Nagao, Hirosi; Nobusawa, Nobuo; Kano, Mikio
Citation	Osaka Journal of Mathematics. 1976, 13(2), p. 399-406
Version Type	VoR
URL	https://doi.org/10.18910/11786
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Kano, M., Nagao, H. and Nobusawa, N. Osaka J. Math. 13 (1976), 399-406

ON FINITE HOMOGENEOUS SYMMETRIC SETS

Dedicated to Professor Mutsuo Takahashi on his 60th bitrhday

MIKIO KANO, HIROSI NAGAO AND NOBUO NOBUSAWA

(Received June 19, 1975)

1. Introduction

A symmetric set is a set A on which a binary operation $a \circ b$ is defined satisfying the following three axioms:

 $(1.1) \quad a \circ a = a ,$

- $(1.2) \quad (x \circ a) \circ a = x ,$
- (1.3) $x \circ (a \circ b) = ((x \circ b) \circ a) \circ b$.

The mapping $S_a: A \to A$ defined by $xS_a = x \circ a$ is a permutation on A by (1.2), and it is called the symmetry around a. Corresponding to the axioms above we have the following:

- (1.1') $aS_a = a$,
- (1.2') $S_a^2 = I$,
- (1.3') $S_{a\circ b} = S_{aS_b} = S_b^{-1} S_a S_b$.

We denote by G(A) the permutation group on A generated by $S_A = \{S_a | a \in A\}$. Since $T^{-1}S_a T = S_{aT}$ for $a \in A$ and $T \in G(A)$ by (1.3'), S_A is a set of involutions in G(A) which is G(A)-invariant. The subgroup of G(A) generated by $\{S_a S_b | a, b \in A\}$ is called the *group of displacements* and is denoted by H(A). The set S_A is a symmetric set with binary operation $S_a \circ S_b = S_b^{-1}S_a S_b$. The mapping $a \mapsto S_a$ of A onto S_A is a homomorphism, and if it is an isomorphism, *i.e.* if $a \neq b$ implies $S_a \neq S_b$ then A is called *effective*. If A is effective then the center Z(G(A)) of G(A) is trivial.

REMARK. In [4] and [5] the group of displacements is denoted by G(A). Now suppose that G is a group and A is a subset of G satisfying the following:

- (1.4) A is a set of involutions in G which is G-invariant,
- (1.5) G is generated by A.

Then A is a symmetric set with the binary operation $a \circ b = b^{-1}ab$, and it is easy to show that G(A) is isomorphic to G/Z(G). If a symmetric set A' is isomorphic to A then we say that A' is *embedded* in a group G. In this case identifying A' with A we regard A' as a set of involutions in G. The subgroup generated by $\{ab | a, b \in A\}$ is also called the group of displacements and is denoted by H. If Z(G)=1 then A is said to be embedded *faithfully* in G. Every effective symmetric set A is embedded faithfully in the group G(A).

A symmetric set A is called *homogeneous* if it satisfies the following conditions:

(1.6) $a \circ x = b$ has a solution x in A for any $a, b \in A$.

If A is homogeneous then S_A is a conjugate class of involutions in G(A), and the mapping $\phi_a: x \mapsto a \circ x$ of A to A is surjective. Now suppose A is finite. Then ϕ_a is also injective, and hence the solution x of $a \circ x = b$ is unique. Especially $aS_x \neq aS_y$ if $x \neq y$. Thus a finite homogeneous summetric set A is effective and can be embedded faithfully in a finite group G. Then the condition (1.6) is equivalent to the following:

(1.7) for any $a, b \in A$ there is $c \in A$ such that $c^{-1}ac = b$.

In this way every finite homogeneous symmetric set A can be regarded as a conjugate class of involutions in a finite group G satisfying (1.5) and (1.7).

The purpose of this paper is to study the structure of finite homogeneous symmetric sets in connection with finite groups generated by a conjugate class of involutions satisfying (1.7). The following theorem, which will be proved in the next section by using the Glauberman's Z^* -Theorem, is fundamental.

Theorem 1. Suppose a finite symmetric set A is embedded in a group G. Then A is homogeneous if and only if the group of displacements H is of odd order.

All sets considered in this paper are assumed to be finite. For a set X, |X| denotes the cardinality of X and $|X|_p$ denotes the p-part of |X| for a prime p. For a group G, O(G) denotes the maximal normal subgroup of G of odd order, and $Z^*(G)$ is the subgroup containing O(G) such that $Z^*(G)/O(G)$ coincides with the center of G/O(G). For $a \in G$, the order of a is denoted by o(a). When G acts on a set X the action is called *semi-regular* if any $a \neq 1$ of G has no fixed point. Other notation in group theory is the same as in [3].

2. Proof of Theorem 1 and preliminary lemmas

We begin with the following lemma.

Lemma 1. Let a and b be two involutions in a group G. Then the sub-

group $\langle a, b \rangle$ generated by a and b is the dihedral group of order 2r, where r is the order of ab. If r=o(ab) is odd then $\langle a, b \rangle - \langle ab \rangle = a \langle ab \rangle$ is a conjugate class of involutions in $\langle a, b \rangle$ satisfying (1.7).

Proof. Let x=ab. Then $\langle a, b \rangle = \langle a, x \rangle$ and we have

$$a^2 = 1$$
, $x^r = 1$, $a^{-1}xa = x^{-1}$.

Thus $\langle a, b \rangle$ is the dihedral group of order 2*r*. If *r* is odd, then since $x^{-i}ax^i = ax^{2i}$ we have $\{x^{-i}ax^i | 0 \le i < r\} = a < x > = < a, b > - < ab >$. Hence a < x > is the conjugate class in $\langle a, b \rangle$ containing *a*, and for any element *c* of a < x > there is an integer *i* such that $c = ax^{2i}$. Then $c = (ax^i)^{-1}a(ax^i)$. Since $ax^i \in a < x >, a < x >$ satisfies (1.7).

From now on we assume that A is a symmetric set which is embedded in a group G.

REMARK. For $e, a \in A$, the cycle generated by a with a base point e which is defined in [5] coincides with the following sequence of elements of A:

 $e, a = e(ea), e(ea)^2, e(ea)^3, \cdots$.

Now suppose $H = \langle ab | a, b \in A \rangle$ is of odd order. Then by Lemma 1 A satsifies (1.7) and hence A is homogeneous. Thus the "if" part of Theorem 1 is proved.

To prove the "only if" part, we assume that A satisfies (1.7).

Lemma 2. Under the assumption above we have the following:

(i) For $a, b \in A$ the element c of A satisfying $c^{-1}ac=b$ is unique.

(ii) For $a \in A$, $A \cap C_G(a) = \{a\}$.

(iii) |A| is odd.

(iv) If $a, b \in A$ then o(ab) is odd, $\langle ab \rangle$ acts on A semi-regularly and hence o(ab) divides |A|.

(v) For a fixed $e \in A$, $H = \langle ea | a \in A \rangle = G'$.

(vi) H is of odd order.

Proof. (i) By (1.7) the mapping $x \mapsto x^{-1}ax$ of A to A is surjective, and hence injective.

(ii) Since $a^{-1}aa = a$, the assertion follows from (i).

(iii) For $a \in A$, the group $\langle a \rangle$ of order 2 acts on A and it fixes only a. Hence |A| is odd.

(iv) Let $D = \langle a, b \rangle$. Then $\langle a \rangle$ acts on $a^D = \{d^{-1}ad \mid d \in D\}$, and since a fixes only a in a^D , $|a^D|$ is odd. On the other hand $\langle b \rangle$ also acts on a^D , and since $|a^D|$ is odd b fixes an element y of a^D . Then by (ii) $y = b \in a^D$. Hence $b = (ab)^{-i}a(ab)^i = a(ab)^{2i}$ for some i. Thus $(ab)^{2i-1} = 1$ and hence o(ab) is odd.

Now suppose $(ab)^{-i}c(ab)^i = c$ for some $c \in A$. Then $a^{-1}ca = [(ab)^i a]^{-1}$ $c[(ab)^i a]$. Since $(ab)^i a \in A$ by Lemma 1, we have $a = (ab)^i a$ by (i) and hence $(ab)^i = 1$. Thus if $(ab)^i \neq 1$ then $(ab)^i$ has no fixed element in A.

(v) For $a, b \in A, ab = (ea)^{-1}(eb)$. Hence $H = \langle ab | a, b \in A \rangle = \langle ea | a \in A \rangle$. Since $G = \langle A \rangle = H \cup eH$, $|G:H| \leq 2$ and $G' \leq H$. On the other hand for $a \in A$ there is an element b of A such that $a = b^{-1}eb$, and then $ea = e^{-1}b^{-1}eb \in G'$. Hence G' = H.

(vi) Let *a* be an element of *A*. Then by (iv), for any $g \in G$, $g^{-1}a^{-1}ga$ is of odd order. Then by the Glauberman's Z*-Theorem([2], Theorem 1) we have $a \in Z^*(G)$. Since $G = \langle A \rangle$, $G = Z^*(G)$ and hence $O(G) \ge G' = H$.

The "only if" part of Theorem 1 is proved in (vi) of Lemma 2. Now since G is of even order we have |G:H|=2. By the Feit-Thompson's theorem G is solvable and by the Sylow's theorem all involutions are conjugate. Thus we have the following

Corollary. If a homogeneous symmetric set A is embedded in a group G, then G is solvable, |G:H|=2, |H| is odd and A is the only conjugate class of involutions in G.

Let *e* be a fixed element of *A*. Then *e* induces an involutive automorphism of the group *H* of odd order. Let $V(e)=C_H(e)$ and $K(e)=\{k\in H | e^{-1}ke=k^{-1}\}$. Then we have the following

Lemma 3. (i) Each coset of V(e) in H contains only one element of K(e), and hence |H: V(e)| = |K(e)|.

(ii) $K(e) = \{ea \mid a \in A\}, |A| = |K(e)| \text{ and } H = \langle K(e) \rangle.$

(iii) If a prime p divides |H| then p also divides |A|. In particular if |A| is a power of a prime p then H is a p-group.

(iv) Any e-invarian p-subgroup of H is contained in an e-invariant Sylow p-subgroup of H. If P is an e-invariant Sylow p-subgroup of H, then

 $|A|_{p} = |K(e)|_{p} = |P \cap K(e)|, |V(e)|_{p} = |P \cap V(e)|.$

(v) H is abelian if and only if H=K(e).

Proof. For the proofs of (i) and (v) see Lemma 2.1 in [1].

(ii) Since A is the conjugate class in G containing e, we have

$$|A| = |G: C_G(e)| = |H: C_H(e)| = |H: V(e)| = |K(e)|$$

Now evindently $\{ea \mid a \in A\} \subseteq K(e)$. Hence we have $K(e) = \{ea \mid a \in A\}$ and $H = \langle K(e) \rangle$.

(iii) If p does not divide |A| = |K(e)|, then a Sylow p-subgroup of

V(e) is a Sylow *p*-subgroup of *H*. Then by (v) of Lemma 2.1 in [1] *p* does not divide $|\langle K(e) \rangle| = |H|$, which is a contradiction.

(v) If H is abelian then K(e) is a subgroup, and hence H=K(e). Conversely suppose that H=K(e). Then for $x, y \in H(xy)^{-1}=(xy)^e=x^ey^e=x^{-1}y^{-1}$. Hence x and y commute and H is abelian.

3. Symmetric sets which are also groups

Let X be any group. Then defining the binary operation on X by setting $x \circ y = yx^{-1}y$ X is a symmetric set. In this case we say that the symmetric set X is also a group.

Theorem 2. Let A be a symmetric set which is also a group. Then A is homogeneous if and only if A is of odd order.

Proof. If A is homogeneous then by (iii) of Lemma 2 |A| is odd.

Conversely suppose that A is a group of odd order. It suffices to show that the mapping $x \mapsto a \circ x = xa^{-1}x$ is injective, and hence surjective. Since A is of odd order the mapping $x \mapsto x^2$ of A to A is bijective. Let $a=b^2$ and assume $xb^{-2}x=yb^{-2}y$. Then we have $(bx^{-1}b)^2=(by^{-1}b)^2$, $bx^{-1}b=by^{-1}b$ and hence x=y.

The following is obtained in [5]. For the completeness we shall prove it in a slightly different way.

Theorem 3. Let A be an effective symmetric set. Then the following conditions are equivalent:

- (i) A is also an abelian group.
- (ii) The group of displacements H(A) is abelian.
- (iii) $H(A) = \{S_e S_a | a \in A\}$, where e is a fixed element of A.

Furtheromre if one of the conditions is satisfied then A is homogeneous and hence |A| is odd.

Proof. (i) \Rightarrow (ii) Suppose that A is also an abelian group. Then $a \circ b = ba^{-1}b = a^{-1}b^2$. Since $xS_eS_a = xe^{-2}a^2$, S_eS_a and S_eS_b commute. Hence $H(A) = \langle S_eS_a | a \in A \rangle$ is abelian

(ii) \Rightarrow (iii) Let *e* be a fixed element of *A*. Then, since *H*(*A*) is abelian and S_e inverts S_eS_a , S_e inverts every element of *H*(*A*). Suppose *H*(*A*) has an involution *T*. Then *T* commutes with S_e , hence *T* is in the center *Z*(*G*(*A*)) of *G*(*A*), which is a contradiction. Thus *H*(*A*) is of odd order, and by Theorem 1 *A* is homogeneous. By (v) of Lemma 3 we have $H(A) = \{S_eS_a | a \in A\}$.

(iii) \Rightarrow (i) Suppose $H(A) = \{S_e S_a | a \in A\}$. Since S_e inverts every element

of H(A), H(A) is an abelian group. Then it is easy to see that the mapping $a \mapsto S_e S_a$ of A onto H(A) is an isomorphism of symmetric sets. Thus A is also an abelian group.

The last half of the theorem has been shown in the proof of (ii) \rightarrow (iii). A symmetric set A is called *abelian* if H(A) is abelian group.

4. Symmetric subsets

Let A be a symmetric set. A subset B of A is called a symmetric subset of A if $b \circ c \in B$ for any $b, c \in B$. If B is a symmetric subset of A then $B \circ a$ is also a symmetric subset, and if A is homogeneous then B is also homogeneous and $B \cap B \circ a = \phi$ for $a \in A - B$.

From now on we assume that A is a homogeneous symmetric set which is embedded in a group G, and let $H = \langle ab | a, b \in A \rangle$. If B is a symmetric subset of A then B is embedded in $G_B = \langle B \rangle$. Let $H_B = \langle bc | b, c \in B \rangle$.

Theorem 4. (i) Let B be a subset of A and $e \in B$. Then B is a symmetric subset if and only if there exists an e-invariant subgroup J of H such that $B=e^{J}=\{j^{-1}e^{j}| j\in J\}$.

(ii) A symmetric subset B is abelian if and only if there exists an e-invariant abelian subgroup J of H scuh that $B=e^{J}$.

Proof. If B is a symmetric subset of A, then $H_B = \langle eb | b \in B \rangle$ is einvariant and $B = e^{H_B}$. By Theorem 3 B is abelian if and only if H_B is abelian. Suppose conversely that J is an e-invariant subgroup of H and $B = e^J$. Then for $j, k \in J e^{j} \circ e^k = e^{-k}e^{j}e^k = k^{-1}(jk^{-1})^{-e}e(jk^{-1})^{e}k \in e^J$. Hence B is a symmetric subset.

Theorem 5. If B is a symmetric subset of a homogeneous symmetric set A, then |B| divides |A|.

Proof. Let $e \in B$ and p a prime division of |B|. By (iv) of Lemma 3 there is an *e*-invariant Sylow *p*-subgroup Q of H_B and Q is contained in an *e*-invariant *p*-subgroup P of H. Then

$$|A|_{p} = |P \cap K(e)|_{p} \ge |Q \cap K(e)|_{p} = |B|_{p}$$

Hence |B| divides |A|.

A symmetric subset B of A is called a symmetric p-subset if |B| is a power of p, and B is called a symmetric Sylow p-subset if $|B| = |A|_p$. Then we have the following Sylow's theorem for homogeneous symmetric sets.

Theorem 6. Let C be a symmetric p-subset of a homogeneous symmetric set A. Then C is contained in a symmetric Sylow p-subset of A. Two symmetric

404

Sylow p-subsets of A are isomorphic.

Proof. Let $e \in C$. By (iii) of Lemma 3 H_c is an e-invariant *p*-subgroup of H and is contained in an *e*-invariant Sylow *p*-subgroup P of H. Let $B=e^P$. Then $C=e^{H_C}\subseteq B$, and since

$$|B| = |P: P \cap V(e)| = |P \cap K(e)| = |A|_{p}$$

B is a symmetric Sylow p-subset of A.

Now let B' be any symmetric Sylow p-subset of A. Then there is an element a of A such that $B'^a \ni e$. Let $B''=B'^a$. Then $H_{B''}$ is an e-invariant p-subgroup and is contained in an e-invariant Sylow p-subgroup P'' of H. Since $B''=e^{H_{B''}} \le e^{P''}$ and $|B''|=|A|_p=|e^{P''}|$, we have $B''=e^{P''}$. By (ii) of Theorem 2.2 in [3], Chapter 6 there is an element x of $C_H(e)$ such that $P''=P^x$. Then $B''=e^{P''}=(e^P)^x=B^x$ and hence $B'=(B'')^a=B^{xa}$. Thus B' is isomorphic to B.

5. Symmetric quotient sets

Suppose that an equivalence relation \sim in a symmetric set A satisfies the following condition: if $a \sim a'$ and $b \sim b'$ then $a \circ b \sim a' \circ b'$. Denote the equivalence class containing a by a^* . Then the set of all equivalence classes $A^* = A/\sim$ is a symmetric set with the binary operation $a^* \circ b^* = (a \circ b)^*$. We call A^* a symmetric quotient set of A and an equivalence class is called a coset. Since $b \circ c \sim a \circ a = a$ for $b, c \in a^*$, each coset is a symmetric subset of A.

Now suppose A is homogeneous. Then a symmetric quotient set A^* of A is also homogeneous. Let $e \in A$ and $B = e^*$. If $x \sim e \circ a$ then $x \circ a \sim (e \circ a) \circ a = e$ and hence $x = (x \circ a) \circ a \in B \circ a$. Thus $(e \circ a)^* \subseteq B \circ a$. On the other hand if $b \sim e$ then $b \circ a \sim e \circ a$. Hence $B \circ a \subseteq (e \circ a)^*$ and we have $(e \circ a)^* = B \circ a$. Since A is homogeneous every coset can be written in a form $B \circ a$ with $a \in A$. Therefore A^* is uniquely determined by a coset B, and hence we may denote A^* by A/B. A symmetric subset B of A is called *normal* in A if B is a coset of some symmetric quotient set of A.

Let A be a homogeneous symmetric set embedded in a group G, $H = \langle ab | a, b \in A \rangle$ and $e \in A$. If J is a subgroup of H which is normal in G, then $\overline{A} = A \mod J$ is a symmetric set which is homomorphic to A, and \overline{A} is embedded in $\overline{G} = G/J$. Then the group of its displacements is $\overline{H} = H/J$.

Theorem 7. (i) Let B be a symmetric subset of A containing e. Then B is normal in A if and only if there exists a normal subgroup J of G such that $J \subseteq H$ and $B = e^{J}$. In this case A/B is isomorphic to $\overline{A} = A \mod J$.

(ii) Let B be a symmetric normal subset of A. Then A|B is abelian if and only if there exists a normal subgroup J of G such that $B=e^J, J\subseteq H$ and H|J is abelian. Proof. Suppose first that J is a normal subgroup of G contained in H. Let $\overline{G}=G/J$ and $\overline{A}=\{\overline{a}=aJ|a\in A\}$. Let $a^*=\{b\in A|\overline{b}=a\}$. Then $A^*=\{a^*|a\in A\}$ is a symmetric quotient set of A and $A^*\simeq \overline{A}$. Suppose $\overline{a}=\overline{b}$ for $a, b\in A$. Then b=aj with $j\in J$, and since a and b are involutions $a^{-1}ia=j^{-1}$. Since J is of odd order there is an element i of J such that $i^2=j$. Then $a^{-1}ia=i^{-1}$ and we have $b=i^{-1}ai\in a^J$. Conversely if $b\in a^J$ then $\overline{a}=\overline{b}$. Thus we have $a^*=a^J$ and a^J is a coset. By Theorem 3 $\overline{A}(\simeq A^*=A/e^J)$ is abelian if and only if $\overline{H}=H/J$ is an abelian group.

Suppose next that $B=e^*$ is a coset of a symmetric quotient set A^* of A. If $a^*=b^*$ then for $c \in A$ $(a^c)^*=(b^c)^*$, and hence $(a^x)^*=(b^x)^*$ for any $x \in G$. Since $B^a=B^b$ we have $B^{ab}=B$. Let $J=\langle ab | a, b \in A, a^*=b^* \rangle$. Then J is a normal subgroup of G contained in H and $e^J \subseteq B$. Since $H_B=\langle eb | b \in B \rangle \leq J$, and $B=e^{H_B}$, we have $e^J=B$.

By using the solvability of H, we have the following

Corollary 1. If A is a homogeneous symmetric set, then there is a chain of symmetric subsets

 $A = B_0 \supset B_1 \supset \cdots \supset B_n = \{e\}$

such that B_{i+1} is normal in B_i and B_i/B_{i+1} is abelian.

Let Z be the center of H. Then Z is clearly a normal subgroup of G and hence by Theorem 7 e^{Z} is a normal symmetric subset of A which is abelian by (ii) of Theorem 4. In [4] e^{Z} is called the center of A(relative to a base point e). Now suppose that A is faithfully embedded in G. Then $|e^{Z}| =$ |Z|. If A is a symmetric p-set then H is a p-group by (iii) of Lemma 3 and hence H has a non-trivial center. Thus we have

Corollary 2. If A is a homogeneous symmetric p-set, then the center of A relative to a base point e is not trivial.

Akashi Technical College Osaka University University of Hawaii

References

- [2] G. Glauberman: Central elements in cone-free groups, J. Algebra 4 (1966), 403-420.
- [3] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
- [4] O. Loos: Symmetric Spaces I, Benjamin, New York, 1969.
- [5] N. Nobusawa: On symmetric structure on a finite set, Osaka J. Math. 11 (1974), 569-575.

^[1] H. Bender: Transitive Gruppen gerader Ordnung in denen jede Involution genau einen Punkt festlässt, J. Algebra 17 (1971), 527-554.