Title	On finite homogeneous symmetric sets
Author(s)	Nagao, Hirosi; Nobusawa, Nobuo; Kano, Mikio
Citation	Osaka Journal of Mathematics. 1976, 13(2), p. $399-406$
Version Type	VoR
URL	https://doi.org/10.18910/11786
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/

Kano, M., Nagao, H. and Nobusawa, N.
Osaka J. Math.
13 (1976), 399-406

ON FINITE HOMOGENEOUS SYMMETRIC SETS

Dedicated to Professor Mutsuo Takahashi on his 60th bitrhday

Mikio KANO, Hirosi NAGAO and Nobuo NOBUSAWA

(Received June 19, 1975)

1. Introduction

A symmetric set is a set A on which a binary operation $a \circ b$ is defined satisfying the following three axioms:
(1.1) $\quad a \circ a=a$,
(1.2) $\quad(x \circ a) \circ a=x$,
(1.3) $\quad x \circ(a \circ b)=((x \circ b) \circ a) \circ b$.

The mapping $S_{a}: A \rightarrow A$ defined by $x S_{a}=x \circ a$ is a permutation on A by (1.2), and it is called the symmetry around a. Corresponding to the axioms above we have the following:

$$
a S_{a}=a
$$

(1.2') $\quad S_{a}^{2}=I$,
(1.3') $\quad S_{a \circ b}=S_{a S_{b}}=S_{b}^{-1} S_{a} S_{b}$.

We denote by $G(A)$ the permutation group on A generated by $S_{A}=$ $\left\{S_{a} \mid a \in A\right\}$. Since $T^{-1} S_{a} T=S_{a T}$ for $a \in A$ and $T \in G(A)$ by $\left(1.3^{\prime}\right), S_{A}$ is a set of involutions in $G(A)$ which is $G(A)$-invariant. The subgroup of $G(A)$ generated by $\left\{S_{a} S_{b} \mid a, b \in A\right\}$ is called the group of displacements and is denoted by $H(A)$. The set S_{A} is a symmetric set with binary operation $S_{a} \circ S_{b}=$ $S_{b}^{-1} S_{a} S_{b}$. The mapping $a \mapsto S_{a}$ of A onto S_{A} is a homomorphism, and if it is an isomorphism, i.e. if $a \neq b$ implies $S_{a} \neq S_{b}$ then A is called effective. If A is effective then the center $Z(G(A))$ of $G(A)$ is trivial.

Remark. In [4] and [5] the group of displacements is denoted by $G(A)$.
Now suppose that G is a group and A is a subset of G satisfying the following:
(1.4) A is a set of involutions in G which is G-invariant,
(1.5) G is generated by A.

Then A is a symmetric set with the binary operation $a \circ b=b^{-1} a b$, and it is easy to show that $G(A)$ is isomorphic to $G / Z(G)$. If a symmetric set A^{\prime} is isomorphic to A then we say that A^{\prime} is embedded in a group G. In this case identifying A^{\prime} with A we regard A^{\prime} as a set of involutions in G. The subgroup generated by $\{a b \mid a, b \in A\}$ is also called the group of displacements and is denoted by H. If $Z(G)=1$ then A is said to be embedded faithfully in G. Every effective symmetric set A is embedded faithfully in the group $G(A)$.

A symmetric set A is called homogeneous if it satisfies the following conditions:
(1.6) $a \circ x=b$ has a solution x in A for any $a, b \in A$.

If A is homogeneous then S_{A} is a conjugate class of involutions in $G(A)$, and the mapping $\phi_{a}: x \mapsto a \circ x$ of A to A is surjective. Now suppose A is finite. Then ϕ_{a} is also injective, and hence the solution x of $a \circ x=b$ is unique. Especially $a S_{x} \neq a S_{y}$ if $x \neq y$. Thus a finite homogeneous summetric set A is effective and can be embedded faithfully in a finite group G. Then the condition (1.6) is equivalent to the following:
(1.7) for any $a, b \in A$ there is $c \in A$ such that $c^{-1} a c=b$.

In this way every finite homogeneous symmetric set A can be regarded as a conjugate class of involutions in a finite group G satisfying (1.5) and (1.7).

The purpose of this paper is to study the structure of finite homogeneous symmetric sets in connection with finite groups generated by a conjugate class of involutions satisfying (1.7). The following theorem, which will be proved in the next section by using the Glauberman's Z^{*}-Theorem, is fundamental.

Theorem 1. Suppose a finite symmetric set A is embedded in agroup G. Then A is homogeneous if and only if the group of displacements H is of odd order.

All sets considered in this paper are assumed to be finite. For a set $X,|X|$ denotes the cardinality of X and $|X|_{p}$ denotes the p-part of $|X|$ for a prime p. For a group $G, O(G)$ denotes the maximal normal subgroup of G of odd order, and $Z^{*}(G)$ is the subgroup containing $O(G)$ such that $Z^{*}(G) /$ $O(G)$ coincides with the center of $G / O(G)$. For $a \in G$, the order of a is denoted by $o(a)$. When G acts on a set X the action is called semiregular if any $a \neq 1$ of G has no fixed point. Other notation in group theory is the same as in [3].

2. Proof of Theorem 1 and preliminary lemmas

We begin with the following lemma.
Lemma 1. Let a and b be two involutions in a group G. Then the sub-
group $\langle a, b\rangle$ generated by a and b is the dihedral group of order $2 r$, where r is the order of $a b$. If $r=o(a b)$ is odd then $\langle a, b\rangle-\langle a b\rangle=a\langle a b\rangle$ is a conjugate class of involutions in $\langle a, b\rangle$ satisfying (1.7).

Proof. Let $x=a b$. Then $\langle a, b\rangle=\langle a, x\rangle$ and we have

$$
a^{2}=1, \quad x^{r}=1, \quad a^{-1} x a=x^{-1}
$$

Thus $\langle a, b\rangle$ is the dihedral group of order $2 r$. If r is odd, then since $x^{-i} a x^{i}=$ $a x^{2 i}$ we have $\left\{x^{-i} a x^{i} \mid 0 \leqq i<r\right\}=a\langle x\rangle=\langle a, b\rangle-\langle a b\rangle$. Hence $a\langle x\rangle$ is the conjugate class in $\langle a, b\rangle$ containing a, and for any element c of $a\langle x\rangle$ there is an integer i such that $c=a x^{2 i}$. Then $c=\left(a x^{i}\right)^{-1} a\left(a x^{i}\right)$. Since $a x^{i} \in a\langle x\rangle, a\langle x\rangle$ satisfies (1.7).

From now on we assume that A is a symmetric set which is embedded in a group G.

Remark. For $e, a \in A$, the cycle generated by a with a base point e which is defined in [5] coincides with the following sequence of elements of A :

$$
e, a=e(e a), \quad e(e a)^{2}, \quad e(e a)^{3}, \cdots
$$

Now suppose $H=\langle a b \mid a, b \in A\rangle$ is of odd order. Then by Lemma $1 A$ satsifies (1.7) and hence A is homogeneous. Thus the "if" part of Theorem 1 is proved.

To prove the "only if" part, we assume that A satisfies (1.7).
Lemma 2. Under the assumption above we have the following:
(i) For $a, b \in A$ the element c of A satisfying $c^{-1} a c=b$ is unique.
(ii) For $a \in A, A \cap C_{G}(a)=\{a\}$.
(iii) $|A|$ is odd.
(iv) If $a, b \in A$ then $o(a b)$ is odd, $\langle a b\rangle$ acts on A semi-regularly and hence $o(a b)$ divides $|A|$.
(v) For a fixed $e \in A, H=\langle e a \mid a \in A\rangle=G^{\prime}$.
(vi) H is of odd order.

Proof. (i) By (1.7) the mapping $x \mapsto x^{-1} a x$ of A to A is surjective, and hence injective.
(ii) Since $a^{-1} a a=a$, the assertion follows from (i).
(iii) For $a \in A$, the group $\langle a\rangle$ of order 2 acts on A and it fixes only a. Hence $|A|$ is odd.
(iv) Let $D=\langle a, b\rangle$. Then $\langle a\rangle$ acts on $a^{D}=\left\{d^{-1} a d \mid d \in D\right\}$, and since a fixes only a in $a^{D},\left|a^{D}\right|$ is odd. On the other hand $\langle b\rangle$ also acts on a^{D}, and since $\left|a^{D}\right|$ is odd b fixes an element y of a^{D}. Then by (ii) $y=b \in a^{D}$. Hence $b=(a b)^{-i} a(a b)^{i}=a(a b)^{2 i}$ for some i. Thus $(a b)^{2 i-1}=1$ and hence $o(a b)$ is odd.

Now suppose $(a b)^{-i} c(a b)^{i}=c$ for some $c \in A$. Then $a^{-1} c a=\left[(a b)^{i} a\right]^{-1}$ $c\left[(a b)^{i} a\right]$. Since $(a b)^{i} a \in A$ by Lemma 1 , we have $a=(a b)^{i} a$ by (i) and hence $(a b)^{i}=1$. Thus if $(a b)^{i} \neq 1$ then $(a b)^{i}$ has no fixed element in A.
(v) For $a, b \in A, a b=(e a)^{-1}(e b)$. Hence $H=\langle a b \mid a, b \in A\rangle=\langle e a \mid a \in A\rangle$. Since $G=\langle A\rangle=H \cup e H,|G: H| \leqq 2$ and $G^{\prime} \leqq H$. On the other hand for $a \in A$ there is an element b of A such that $a=b^{-1} e b$, and then $e a=e^{-1} b^{-1} e b \in G^{\prime}$. Hence $G^{\prime}=H$.
(vi) Let a be an element of A. Then by (iv), for any $\mathrm{g} \in G, g^{-1} a^{-1} g a$ is of odd order. Then by the Glauberman's Z^{*}-Theorem([2], Theorem 1) we have $a \in Z^{*}(G)$. Since $G=\langle A\rangle, G=Z^{*}(G)$ and hence $O(G) \geqq G^{\prime}=H$.

The "only if" part of Theorem 1 is proved in (vi) of Lemma 2. Now since G is of even order we have $|G: H|=2$. By the Feit-Thompson's theroem G is solvable and by the Sylow's theroem all involutions are conjugate. Thus we have the following

Corollary. If a homogeneous symmetric set A is embedded in a group G, then G is solvable, $|G: H|=2,|H|$ is odd and A is the only conjugate class of involutions in G.

Let e be a fixed element of A. Then e induces an involutive automorphism of the group H of odd order. Let $V(e)=C_{H}(e)$ and $K(e)=$ $\left\{k \in H \mid e^{-1} k e=k^{-1}\right\}$. Then we have the following

Lemma 3. (i) Each coset of $V(e)$ in H contains only one element of $K(e)$, and hence $|H: V(e)|=|K(e)|$.
(ii) $K(e)=\{e a \mid a \in A\},|A|=|K(e)|$ and $H=\langle K(e)\rangle$.
(iii) If a prime p divides $|H|$ then p also divides $|A|$. In particular if $|A|$ is a power of a prime p then H is a p-group.
(iv) Any e-invarian p-subgroup of H is contained in an e-invariant Sylow p-subgroup of H. If P is an e-invariant Sylow p-subgroup of H, then

$$
|A|_{p}=|K(e)|_{p}=|P \cap K(e)|,|V(e)|_{p}=|P \cap V(e)|
$$

(v) H is abelian if and only if $H=K(e)$.

Proof. For the proofs of (i) and (v) see Lemma 2.1 in [1].
(ii) Since A is the conjugate class in G containing e, we have

$$
|A|=\left|G: C_{G}(e)\right|=\left|H: C_{H}(e)\right|=|H: V(e)|=|K(e)|
$$

Now evindently $\{e a \mid a \in A\} \subseteq K(e)$. Hence we have $K(e)=\{e a \mid a \in A\}$ and $H=\langle K(e)\rangle$.
(iii) If p does not divide $|A|=|K(e)|$, then a Sylow p-subgroup of
$V(e)$ is a Sylow p-subgroup of H. Then by (v) of Lemma 2.1 in [1] p does not divide $|\langle K(e)\rangle|=|H|$, which is a contradiction.
(v) If H is abelian then $K(e)$ is a subgroup, and hence $H=K(e)$. Conversely suppose that $H=K(e)$. Then for $x, y \in H(x y)^{-1}=(x y)^{e}=x^{e} y^{e}=x^{-1} y^{-1}$. Hence x and y commute and H is abelian.

3. Symmetric sets which are also groups

Let X be any group. Then defining the binary operation on X by setting $x \circ y=y x^{-1} y X$ is a symmetric set. In this case we say that the symmetric set X is also a group.

Theorem 2. Let A be a symmetric set which is also a group. Then A is homogeneous if and only if A is of odd order.

Proof. If A is homogeneous then by (iii) of Lemma $2|A|$ is odd.
Conversely suppose that A is a group of odd order. It suffices to show that the mapping $x \mapsto a \circ x=x a^{-1} x$ is injective, and hence surjective. Since A is of odd order the mapping $x \mapsto x^{2}$ of A to A is bijective. Let $a=b^{2}$ and assume $x b^{-2} x=y b^{-2} y$. Then we have $\left(b x^{-1} b\right)^{2}=\left(b y^{-1} b\right)^{2}, b x^{-1} b=b y^{-1} b$ and hence $x=y$.

The following is obtained in [5]. For the completeness we shall prove it in a slightly different way.

Theorem 3. Let A be an effective symmetric set. Then the following conditions are equivalent:
(i) A is also an abelian group.
(ii) The group of displacements $H(A)$ is abelian.
(iii) $H(A)=\left\{S_{e} S_{a} \mid a \in A\right\}$, where e is a fixed element of A.

Furtheromre if one of the conditions is satisfied then A is homogeneous and hence $|A|$ is odd.

Proof. (i) \Rightarrow (ii) Suppose that A is also an abelian group. Then $a \circ b=$ $b a^{-1} b=a^{-1} b^{2}$. Since $x S_{e} S_{a}=x e^{-2} a^{2}, S_{e} S_{a} \quad$ and $\quad S_{e} S_{b} \quad$ commute. Hence $H(A)=\left\langle S_{e} S_{a} \mid a \in A\right\rangle$ is abelian
(ii) \Rightarrow (iii) Let e be a fixed element of A. Then, since $H(A)$ is abelian and S_{e} inverts $S_{e} S_{a}, S_{e}$ inverts every element of $H(A)$. Suppose $H(A)$ has an involution T. Then T commutes with S_{e}, hence T is in the center $Z(G(A))$ of $G(A)$, which is a contradiction. Thus $H(A)$ is of odd order, and by Theorem $1 A$ is homogeneous. By (v) of Lemma 3 we have $H(A)=\left\{S_{e} S_{a} \mid\right.$ $a \in A\}$.
(iii) \Rightarrow (i) Suppose $H(A)=\left\{S_{e} S_{a} \mid a \in A\right\}$. Since S_{e} inverts every element
of $H(A), H(A)$ is an abelian group. Then it is easy to see that the mapping $a \mapsto S_{e} S_{a}$ of A onto $H(A)$ is an isomorphism of symmetric sets. Thus A is also an abelian group.

The last half of the theorem has been shown in the proof of (ii) \Rightarrow (iii). A symmetric set A is called abelian if $H(A)$ is abelian group.

4. Symmetric subsets

Let A be a symmetric set. A subset B of A is called a symmetric subset of A if $b \circ c \in B$ for any $b, c \in B$. If B is a symmetric subset of A then $B \circ a$ is also a symmetric subset, and if A is homogeneous then B is also homogeneous and $B \cap B \circ a=\phi$ for $a \in A-B$.

From now on we assume that A is a homogeneous symmetric set which is embedded in a group G, and let $H=\langle a b \mid a, b \in A\rangle$. If B is a symmetric subset of A then B is embedded in $G_{B}=\langle B\rangle$. Let $H_{B}=\langle b c \mid b, c \in B\rangle$.

Theorem 4. (i) Let B be a subset of A and $e \in B$. Then B is a symmetric subset if and only if there exists an e-invariant subgroup J of H such that $B=e^{J}=$ $\left\{j^{-1} e j \mid j \in J\right\}$.
(ii) A symmetric subset B is abelian if and only if there exists an e-invariant abelian subgroup J of H scuh that $B=e^{J}$.

Proof. If B is a symmetric subset of A, then $H_{B}=\langle e b \mid b \in B\rangle$ is e invariant and $B=e^{H_{B}}$. By Theorem $3 B$ is abelian if and only if H_{B} is abelian. Suppose conversely that J is an e-invariant subgroup of H and $B=e^{J}$. Then for $j, k \in J e^{j} \circ e^{k}=e^{-k} e^{j} e^{k}=k^{-1}\left(j k^{-1}\right)^{-e} e\left(j k^{-1}\right)^{e} k \in e^{J}$. Hence B is a symmetric subset.

Theorem 5. If B is a symmetric subest of a homogeneous symmetric set A, then $|B|$ divides $|A|$.

Proof. Let $e \in B$ and p a prime division of $|B|$. By (iv) of Lemma 3 there is an e-invariant Sylow p-subgroup Q of H_{B} and Q is contained in an e-invariant p-subgroup P of H. Then

$$
|A|_{p}=|P \cap K(e)|_{p} \geqq|Q \cap K(e)|_{p}=|B|_{p} .
$$

Hence $|B|$ divides $|A|$.
A symmetric subset B of A is called a symmetric p-subset if $|B|$ is a power of p, and B is called a symmetric Sylow p-subset if $|B|=|A|_{p}$. Then we have the following Sylow's theorem for homogeneous symmetric sets.

Theorem 6. Let C be a symmetric p-subset of a homogeneous symmetric set A. Then C is contained in a symmetric Sylow p-subset of A. Two symmetric

Sylow p-subsets of A are isomorphic.
Proof. Let $e \in C$. By (iii) of Lemma $3 H_{C}$ is an e-invariant p-subgroup of H and is contained in an e-invariant Sylow p-subgroup P of H. Let $B=e^{P}$. Then $C=e^{H_{C}} \subseteq B$, and since

$$
|B|=|P: P \cap V(e)|=|P \cap K(e)|=|A|_{p}
$$

B is a symmetric Sylow p-subset of A.
Now let B^{\prime} be any symmetric Sylow p-subset of A. Then there is an element a of A such that $B^{\prime a} \ni e$. Let $B^{\prime \prime}=B^{\prime a}$. Then $H_{B^{\prime \prime}}$ is an e-invariant p-subgroup and is contained in an e-invariant Sylow p-subgroup $P^{\prime \prime}$ of H. Since $B^{\prime \prime}=e^{H_{B^{\prime \prime}}} \leqq e^{P^{\prime \prime}}$ and $\left|B^{\prime \prime}\right|=|A|_{p}=\left|e^{P^{\prime \prime}}\right|$, we have $B^{\prime \prime}=e^{P^{\prime \prime}}$. By (ii) of Theorem 2.2 in [3], Chapter 6 there is an element x of $C_{H}(e)$ such that $P^{\prime \prime}=P^{x}$. Then $B^{\prime \prime}=e^{P^{\prime \prime}}=\left(e^{P}\right)^{x}=B^{x}$ and hence $B^{\prime}=\left(B^{\prime \prime}\right)^{a}=B^{x a}$. Thus B^{\prime} is isomorphic to B.

5. Symmetric quotient sets

Suppose that an equivalence relation \sim in a symmetric set A satisfies the following condition: if $a \sim a^{\prime}$ and $b \sim b^{\prime}$ then $a \circ b \sim a^{\prime} \circ b^{\prime}$. Denote the equivalence class containing a by a^{*}. Then the set of all equivalence classes $A^{*}=A / \sim$ is a symmetric set with the binary operation $a^{*} b^{*}=(a \circ b)^{*}$. We call A^{*} a symmetric quotient set of A and an equivalence class is called a coset. Since $b \circ c \sim a \circ a=a$ for $b, c \in a^{*}$, each coset is a symmetric subset of A.

Now suppose A is homogeneous. Then a symmetric quotient set A^{*} of A is also homogeneous. Let $e \in A$ and $B=e^{*}$. If $x \sim e \circ a$ then $x \circ a \sim(e \circ a) \circ a$ $=e$ and hence $x=(x \circ a) \circ a \in B \circ a$. Thus $(e \circ a)^{*} \subseteq B \circ a$. On the other hand if $b \sim e$ then $b \circ a \sim e \circ a$. Hence $B \circ a \subseteq(e \circ a)^{*}$ and we have $(e \circ a)^{*}=B \circ a$. Since A is homogeneous every coset can be written in a form $B \circ a$ with $a \in A$. Therefore A^{*} is uniquely determined by a coset B, and hence we may denote A^{*} by A / B. A symmetric subset B of A is called normal in A if B is a coset of some symmetric quotient set of A.

Let A be a homogeneous symmetric set embedded in a group $G, H=$ $\langle a b \mid a, b \in A\rangle$ and $e \in A$. If J is a subgroup of H which is normal in G, then $\bar{A}=A \bmod J$ is a symmetric set which is homomorphic to A, and \bar{A} is embedded in $\bar{G}=G / J$. Then the group of its displacements is $\bar{H}=H / J$.

Theorem 7. (i) Let B be a symmetric subset of A containing e. Then B is normal in A if and only if there exists a normal subgroup J of G such that $J \subseteq H$ and $B=e^{J}$. In this case A / B is isomorphic to $\bar{A}=A \bmod J$.
(ii) Let B be a symmetric normal subset of A. Then A / B is abelian if and only if there exists a normal subgroup J of G such that $B=e^{J}, J \subseteq H$ and H / J is abelian.

Proof. Suppose first that J is a normal subgroup of G contained in H. Let $\bar{G}=G / J$ and $\bar{A}=\{a=a J \mid a \in A\}$. Let $a^{*}=\{b \in A \mid \bar{b}=a\}$. Then $A^{*}=$ $\left\{a^{*} \mid a \in A\right\}$ is a symmetric quotient set of A and $A^{*} \simeq \bar{A}$. Suppose $\bar{a}=\bar{b}$ for $a, b \in A$. Then $b=a j$ with $j \in J$, and since a and b are involutions $a^{-1} i a=j^{-1}$. Since J is of odd order there is an element i of J such that $i^{2}=j$. Then $a^{-1} i a=i^{-1}$ and we have $b=i^{-1} a i \in a^{J}$. Conversely if $b \in a^{J}$ then $\bar{a}=\bar{b}$. Thus we have $a^{*}=a^{J}$ and a^{J} is a coset. By Theorem $3 \bar{A}\left(\simeq A^{*}=A / e^{J}\right)$ is abelian if and only if $\bar{H}=H / J$ is an abelian group.

Suppose next that $B=e^{*}$ is a coset of a symmetric quotient set A^{*} of A.
If $a^{*}=b^{*}$ then for $c \in A\left(a^{c}\right)^{*}=\left(b^{c}\right)^{*}$, and hence $\left(a^{x}\right)^{*}=\left(b^{x}\right)^{*}$ for any $x \in G$. Since $B^{a}=B^{b}$ we have $B^{a b}=B$. Let $J=\left\langle a b \mid a, b \in A, a^{*}=b^{*}\right\rangle$. Then J is a normal subgroup of G contained in H and $e^{J} \subseteq B$. Since $H_{B}=\langle e b| b \in$ $B\rangle \leqq J$, and $B=e^{H_{B}}$, we have $e^{J}=B$.

By using the solvability of H, we have the following
Corollary 1. If A is a homogeneous symmetric set, then there is a chain of symmetric subsets

$$
A=B_{0} \supset B_{1} \supset \cdots \supset B_{n}=\{e\}
$$

such that B_{i+1} is normal in B_{i} and B_{i} / B_{i+1} is abelian.
Let Z be the center of H. Then Z is clearly a normal subgroup of G and hence by Theorem $7 e^{Z}$ is a normal symmetric subset of A which is abelian by (ii) of Theorem 4. In [4] e^{z} is called the center of A (relative to a base point e). Now suppose that A is faithfully embedded in G. Then $\left|e^{Z}\right|=$ $|Z|$. If A is a symmetric p-set then H is a p-group by (iii) of Lemma 3 and hence H has a non-trivial center. Thus we have

Corollary 2. If A is a homogeneous symmetric p-set, then the center of A relative to a base point e is not trivial.

Akashi Technical College
Osaka University
University of Hawait

References

[1] H. Bender: Transitive Gruppen gerader Ordnung in denen jede Involution genau einen Punkt festlässt, J. Algebra 17 (1971), 527-554.
[2] G. Glauberman: Central elements in cone-free groups, J. Algebra 4 (1966), 403420.
[3] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
[4] O. Loos: Symmetric Spaces I, Benjamin, New York, 1969.
[5] N. Nobusawa: On symmetric structure on a finite set, Osaka J. Math. 11 (1974), 569-575.

