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1. Introduction The purpose of this note is to obtain a polynomial
bound on the number of the scattering poles associated to the operator

G = ¢(x)™* szs 0:(8i(x)0;;) in R”,

where n>3, odd. We consider this operator under the following assumptions
on the coefficients:

(@) co(x)eC(R"; R) and c(x)=>¢,>0 for all x&R";

(b) g;;(x)=C*R") and the matrix {g;;(x)} is a strictly positive hermitian one for
all xeR" i.e.

(b), &) =m, i,j=1, -, n,VxER";
®) 2 u()EEZCIER Vi HER"X RN, C>0;

(c) there exists a p,>0 so that ¢(x)=1 and g;;(x)=39;; for |x| = p,, §;; being the
Kronecker’s symbol.

It is well known that under the above assumptions the operator G has a
self-adjoint realization, which will be again denoted by G, in the Hilbert space
H=L*R"; c(x)dx). Note also that it follows from the assumption (b), that the
operator G is elliptic. By G, we shall denote the self-adjoint realization of the
Laplacian A in the Hilbert space Hy,=L*R").

It is well known that, under the above assumptions, the scattering matrix
corresponding to the pair {G,G,} admits a meromorphic continuation to the
entire complex plane C. Let {A;} be the poles of this continuation, repeating
according to multiplicity, and set

N(r)=#{x;: I\ <7}

*) Partially supported by Bulgarian Ministry of Sciences and Education under Grant 52.
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It is shown in [10] that for any £€>0 there exists a constant C,>>0 so that
(1) M) <Cr"***+C,.

In fact, (1) is proved there for first order symmetric systems in R", n>3, odd,
but the proof easily extends to our case. The aim of this work is to improve
(1). More precisely, we have the following

Theorem. There exists a constant C>0 so that the number of the scattering
poles associated to the operator G satisfies the bound

(2) Nr)<Cr*+C.
Note that the desired result is to obtain the bound
(3) Nr<cr'+cC.

In [7] Melrose proved (3) for the Laplacian in exterior domains with Dirichlet
or Robin boundary conditions, while in [13] Zworski proved (3) for the Schrod-
inger operator A+ V(x) with a potential V' €Lg(R"). Note that a bound of the
form (3) is important for obtaining Weyl asymptotics of the phase shift (see
[8], where such an asymptotic is obtained for an arbitrary smooth obstacle).
To our knowledge, the problem of obtaining a bound of the form (3) on the
number of the scattering poles associated to the operator G is still open. Let
us also mention Intissar’s work [4] where a bound of the form (2) on the number
of the scattering poles associated to the operator (—iV-+b(x))*+a(x) in R", n>3,
odd, is obtained, where a(x)C5(R"; R), b(x)€C7(R"; R). In [3] and [4] he
has also obtained an analogue of (2) in the case of even n,n>4.

To prove (2) we exploit the fact that the scattering poles, with multiplicity,
coincide with the poles of the meromorphic continuation of the cutoff resolvent
R,(2)=XR(2)X from {z€C: Im 2>0} to the entire complex plane C, where
R(2)=(G+2*)"* for Im 2>0, and X CF(R") is such that X=1 for |x| <p,+1,
X=0 for |x|>p,+2 (see [5]). This enables us to characterize the scattering
poles as the poles of a meromorphic function of the form (1—K(2))™ where
K(2) is an entire family of compact operators on H such that K(2)?, p=(n-+1)/2,
is trace class. Then, following [4], [6], [7] and [13], we deduce that the scatter-
ing poles, with multiplicity, are among the zeros of the entire function A(z)=
det(1—K(=)?), and hence, to prove (2) it suffices to show that the order of X(z)
is less than or equal to n41. However, in our case the operator K(2) is much
more complicated and therefore it is not so easy to obtain the desired order of
h(z). To overcome the difficulties we use precise estimates of the cutoff free
resolvent for Im >0 combained with an application of the Phragmen-Lindelof
principle.

Acknowledgments. I would like to thank Vesselin Petkov for the useful
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discussions during the preparation of this work.

2. Representation of the cutoff resolvent

First, we shall introduce some notations. Given two Hilbert spaces X and
Y, L(X,Y) will denote the space of all linear bounded operators acting from
X into Y. Given any s>0, H® will denote the usual Sobolev space H*(R").
Finally, given a compact operator A, u;(A) will denote the characteristic values
of A, ie. the eigenvalues of (A*A)? ordered, with multiplicity, to form a
nonincreasing sequence.

Denote by Ry(2) the outgoing resolvent of A, i.e. that one with kernel
E(x—y,2) where E(x,2) is the outgoing fundamental solution of the operator
A+2%  Then we have Ry(2)=(G,+2*)'€_L(H, H,) for Im 2>0. Moreover,
it is well known that the kernel of Ry(2) is given in terms of Hankel’s functions
by

) RR)xy) = —({4)2r)" (3] |xa—y ) PPHGLop(2| x—y]) -

It follows easily from this representation that XRy(2)X forms an entire family
of compact pseudodifferential operators of order —2 in _L(H,, H,), X being the
function introduced in the previous section. Using this we shall build the
meromorphic continuation of R,(2). Set 0=G,—G and fix a z,€C, Im 2,>0.
Clearly, for Im 2>0, we have

) R(2) = Ry(2)+R(2)ORy(2)
and
(6) R(z) = R(20)+(25—2")R(z)R(=,) .

Combining these identities yields

R(z)(1— (25 —2") QRy(2)R(2,)) = R(20)+(25—2")Ro(2)R(2,)
for Im 2>0. Multiplying the both sides of this identity by X, since Q=X0Q,
we get
@) R,(2)(1—K(2)) = Ry(20)+K,(2) for Im2>0,
where K(2)=(25—2*)ORy(2)R(2,)X and K,(2)=(25—2%)XR\(2)R(2,)X. We need
now the following

Lemma 1. The operator-valued functions K(2) and K,(2) have analytic
continuations from {2€C:Im 2>0} to the entire C with values in the compact
operators in L(H,H). Moreover, there exists a constant C>0 so that

(8) ri(K(#)<C exp(C|z]), VzEC, Vj;
9)  wKE)<CA+12])(1+|Im 2])7j", V=€, if j>C(1+|2])".
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Assuming that the conclusions of Lemma 1 are fulfilled, we shall complete
the proof of (2). Obviously, 1—K{(2) is invertable in _L(H,H) at 2=z, and
since K(2) is an entire family of compact operators, (1—K(2))™! is a meromorphic
L(H,H)-valued function on C. By (7) we deduce that so is true for R,(z) and
the poles of R,(2), with multiplicity, are among the poles of (1—(K(2))™’, and
hence among the poles of (1—K(z)?)™! where p=(n+1)/2. On the other hand,
it follows from (9) and the well known inequality
(10) ri(K(=))<p;(K(2)) Vi,
that K(2)? is trace class for all z&C. Hence we can introduce the entire func-
tion

h(z) = det(1—K(2)?)
and conclude that the poles of R,(2), with multiplicity, are among the zeros of
h(2). Hence, (2) will be proved if we show that

(11) |h(2)] < C exp(C |z|**) Vzel.
By (8), (9) and (10) we obtain with some constant C'>0:
wi(K(2)?)<C’" exp(C’|2]) Vzel, Vj,

and
piK@R))<C'(14|2])*? (14 | Im 2|)~? j=+D/» vzel,

if j>C'(1+|2])". Now by Weyl’s convexity estimate we get
I(z)| < T (14 (K()%)

C'exp(C’'|z])) exp( 3 ui(K(2)?))

3. /, ”
i</ +|a)) j>c’GQ+1zH"
<exp(C”(1+|z|)**") exp(C'(1+| 2| (14 |Im 2|)~? i‘lj_("“)/")-
=
T'hus we have obtained the estimate

(12) |h(2)] <C exp(C(1+]2])*? (14 |Im 2])7?) Vzel,

with some constant C>>0. We shall show that this estimate implies (11).
Clearly, by (12) we have

(13) |A(=2)] < C exp(C | z|*) Vzel,

with possibly a greater constant C>0. Introduce the sets S*={z&C: |Im 2|
< %% Re 2}, where y=tg(z/8p), and set S=S*US~. Itis easy to see that

(14) (1+]z])(1+|Im 2])7' <1497 VzeC\S.
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Thus, by (12) and (14), we obtain
(15) |h(2)| <C exp(C|z|**)  VzeC\S.

Now we are going to show that such an estimate holds on S. To this end we
need the following fundamental lemma (for the proof, see [9]).

Lemma 2. Let A={2C : §,<arg 2<<0,} and let a<1/2 be such that 0,
—6,=r|a. Let the function f(2) be holomorphic in a neighbourhood of A and
satisfy the conditions :

) |f(R)I<M  for argz=6,, k=12;
(ii) | fz)| <M'(exp(M’|2]7) =,
with a B such that 0<B<a .

Then

lfz)|<M  VzeA.

Clearly, St*={2€C: —=[8p<<arg 3<<=z[8p}. Introduce the function f(z)=
h(z)exp(g 2**) where g€ R is a parameter to be chosen later on. In view of (13)
we have

(16) [ f(z)| <C" exp(C’'|2|?) VzeC.
Writing 2=r¢®, r=|2|, p=arg 2, for o= £x/8p, in view of (15), we have
| fiz)| <C exp(C7**) | exp(g 7™ e )|
= C exp(C7**) exp(q7r** cos(z/4)),
and taking g=—C/cos(z[4), we deduce
17) [f(R)I<C  for argz= +=/8p.

Now, in view of (16) and (17), we can apply Lemma 2 with A=S*, a=4p,
B=3p, to conclude that

| f(®R)|<C  VzeSt,
which in turn yields
|A(2)] <C |exp(—q 2*)| < C exp(C’|z|??) vzeSt.
Similarly, so is true for all 2&.S~, and hence for all & S. This together with
(15) imply (11) since 2p=n-1.
3. Proof of Lemma 1
Since R(2,)=Ry(%p)+ Ro(2:)OR(2,), we have
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(18) K(2) = (28— 22)ORy(2)Ry(20)XK,  for Im z>0,

where K,=1+4+0R(2,)X. Since G is an elliptic second order differential opera-
tor, we have R(z,)€_L(H,H?), and hence K,e_L(H,H). Choose functions X,,
X, Cy(R") such that X,=1 on supp Q, X,=1 on supp X, and X=1 on supp X,.
Now, using (5) witk Ry(2), after an easy computation, we obtain from (18):

(19) Ky(2) = (K+(25—2F)K)XR(2)XK,+K;  for Im2>0,
where

K3 = QRy(2,)[Go, Xa]Ro(20)[ G X »

K, = ORy(20)X,+ORy(20)[Go, X,] Ro(20)X, ,

K; = —K;R(2)XK, .

Here [,] stands for the commutator. Clearly, K; K, L(H,H) and K;e
L(H, H?). Hence Kj is a compact operator in -.L(H,H). Furthermore, as men-
tioned above, XRy(2)X is an entire family of compact operators in _L(H,, H,), and
hence, by (19), K(2) can be continued analytically to the entire C with values
in the compact operators in L(H,H). Clearly, so is true for K (2). To prove
(8) and (9) we need the following

Lemma 3. There exists a constant C >0 so that
(20) |IXRo(2)X||.L(Hy, H) < C exp(C | 2]) Vzel ;
(21)  [IXR(=)Xll-aHo H)<C(1+12])'(1+Im 2)7  for Im 2>0;
(22) IXRy(2)X|| c(Ho, By < C(1+4 | 2])(14+Im 2)™*  for Im 2>0.

Assume for a moment that the conclusions of Lemma 3 are fulfilled. Now

(8) immediately follows from (19), (20) and the well known inequality p;(A)<

A, Vj. Turn to the proof of (9). Set B={x&R": |x|<p,+3} and de-

note by Ay the self-adjoint realization of the Laplacian A with domain D(A)=
¢(B) in the Hilbert space L*B). It is well known that

(23) uA(1=As) ™)< CE-jin, ¥j, Vinteger m>1.

First, we shall prove (9) for Im 2>0. Using the well known inequalities

(24) .U'zi+1(uq +Q) < Mj(ul)‘l— 1 ,(-@) Vj )
and
Il /(). Vi,
5 (AP
) ulAB)< {n.@n wi( ), Vi,
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by (19), we obtain

2 +1((K(2)) < p(Ks)+ 1K+ (25—22 VK [112;(XRo(2)X) || K|
< C p(XRo(20)X) +C(14- | 21*) (e j(XRo(2)X) »
where ||+|| is the norm in .L(Hy, H;). On the other hand, by (22), (23) and (25)
we have
1i(XRoy(2)X) < (1= 25) )I(1— A)XRo(2)X| | L(Ho, Ho)
<Cj¥1+4+|2|)(1+Im =)' for Im=z>0, Vj.

Now, in this case, (9) follows from the above estimates at once.
Turn to the proof of (9) for Im 2<0. By (24) we have

(26) pas(K(2)) < i (K(—2))+1i(R(2)) ,

where K(2)=K(2)—K(—=2). We have already seen above that, when Im 2<0,
w;j(K(—2)) has the desired bound. To estimate the other term we shall proceed
as in [13]. Set Ry(z)=Ry(2)—R,(—z). It follows from (4) that the kernel of
R() is given by

R@)(xy) = (2)@ay 2 | | s,

where S*~! denotes the unit sphere in R". Now it is easy to see that for any
multiindex « we have

@ i, | 03 Ry(2)(%,y)| SCle1#t | z| 1o et
l:lls:g+s

with some constant C >0. By Theorem 1.4.2 of [2], for any integer m>1 there
exists a function X,,&C7(R") such that X,,=1 on supp X, X,=0 for |x| >p,+3
and |97X,| <C'**'|a|! for |a|<2m with some constant C>0. Using this
together with (19), (23), (25) and (27), we get
1 (R(2)) <II(Ks+ (25— ) K )Xl 1 (X Rol(2)X) | Kol

<C(1+ 121, (1—As) ™) I(1— Ay X Ry(z)XI]

SC(1+ |21y (1—A5) ") 5up | (1= AL)"(Xu(4) Re(2) (%, 2)X(5)) |

L O (| 2|2 (2m)Pm)eClel j~2min NzeC, Vj, Vm>1,
with some constant C>0. Here ||-|| again denotes the norm in _L(H,,H,).
Now, taking 2m=|2| we can easily airange for j >g¢|2|", |2| > 1, with large g
depending only on C, that

uARENSC

with possibly another constant C>0. Now, in this case, (9) follows from this
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estimate, (26) and the estimate of u,(K(—=z)) obtained above.

4. Proor of Lemma 3
First, we shall derive (22) from (21). Choose functions X, X,&C7(R")
such that X;=1 on supp X, X,=1 on supp X,. As above, we have
(28) XRy(2)X = Ry(2,)A(~)
where
A(2) = ((35—2")(X+[Go, X]Ro(20)X1)+
+[Go, X]Ry(20)[Go, X1] X Ro(2) X+ [ G, X] Ro(20) X, +X° .
Since Ry(2,)€-L(H,, H?), clearly A(2)e-L(H,, H,) and by (28) we get
IXRo(=)XI| £k, ) < C | A(2)| LCHo, Ho
SC (1|3 )X Ro(2) Xl L(Ho HYF-C”
<C”(1+|z])(1+Im 2)* for Im2>0,

provided (21) is fulfilled with X replaced by X,.
To prove (20) and (21) we shall exploit the following resolvent formula

(29) Ry(2)f = S" énUfdt  for Imz>0,feH,,
0
where U(t) is the propagator of the Cauchy problem v

{(aﬁ—A)Uo(t)f(x)—_—o in R,xR:,
Ul0)f (%) = 0, 8,Ux(0)f (%) = f() -

It is easy to see that

(30) 0. Us®)f llwe<IIfllz,  VfEH, Vi.

Now, integrating by parts in (29) and using that by Huygens’ principle there
exists a T'>0 so that XUy()X=0 for 1>T, we get
@31 XR()Xf =1 ST et*xo,Uy(t)Xfdt  for Im2>0, feH,,
0
which clearly extends analytically to the entire complex plane C. By (30) and
(31) we have
CTe#, Vzel,
T
12X Ro(2)X|| £ (H,, Hy) SCS ettt <{CT  for Im 2>0,
0
C(Im 2)™! for Imz>1.

Now (20) and (21) follow from these estimates at once.
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