

Title	Polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in $\mathbb{R}^n, n \geq 3$, odd
Author(s)	Vodev, Georgi
Citation	Osaka Journal of Mathematics. 1991, 28(2), p. 441–449
Version Type	VoR
URL	https://doi.org/10.18910/11799
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

POLYNOMIAL BOUNDS ON THE NUMBER OF SCATTERING POLES FOR METRIC PERTURBATIONS OF THE LAPLACIAN IN \mathbf{R}^n , $n \geq 3$, ODD

GEORGI VODEV*

(Received May 1, 1990)

1. Introduction The purpose of this note is to obtain a polynomial bound on the number of the scattering poles associated to the operator

$$G = c(x)^{-1} \sum_{1 \leq i, j \leq n} \partial_{x_i} (g_{ij}(x) \partial_{x_j}) \quad \text{in } \mathbf{R}^n,$$

where $n \geq 3$, odd. We consider this operator under the following assumptions on the coefficients:

- (a) $c(x) \in C(\mathbf{R}^n; \mathbf{R})$ and $c(x) \geq c_0 > 0$ for all $x \in \mathbf{R}^n$;
- (b) $g_{ij}(x) \in C^1(\mathbf{R}^n)$ and the matrix $\{g_{ij}(x)\}$ is a strictly positive hermitian one for all $x \in \mathbf{R}^n$, i.e.
 - (b)₁ $g_{ij}(x) = \overline{g_{ji}(x)}$, $i, j = 1, \dots, n$, $\forall x \in \mathbf{R}^n$;
 - (b)₂ $\sum_{i \leq j, j \leq n} g_{ij}(x) \xi_i \xi_j \geq C |\xi|^2$, $\forall (x, \xi) \in \mathbf{R}^n \times \mathbf{R}^n \setminus 0$, $C > 0$;
- (c) there exists a $\rho_0 > 0$ so that $c(x) = 1$ and $g_{ij}(x) = \delta_{ij}$ for $|x| \geq \rho_0$, δ_{ij} being the Kronecker's symbol.

It is well known that under the above assumptions the operator G has a self-adjoint realization, which will be again denoted by G , in the Hilbert space $H = L^2(\mathbf{R}^n; c(x) dx)$. Note also that it follows from the assumption (b)₂ that the operator G is elliptic. By G_0 we shall denote the self-adjoint realization of the Laplacian Δ in the Hilbert space $H_0 = L^2(\mathbf{R}^n)$.

It is well known that, under the above assumptions, the scattering matrix corresponding to the pair $\{G, G_0\}$ admits a meromorphic continuation to the entire complex plane \mathbf{C} . Let $\{\lambda_j\}$ be the poles of this continuation, repeating according to multiplicity, and set

$$N(r) = \#\{\lambda_j : |\lambda_j| \leq r\}.$$

*) Partially supported by Bulgarian Ministry of Sciences and Education under Grant 52.

It is shown in [10] that for any $\varepsilon > 0$ there exists a constant $C_\varepsilon > 0$ so that

$$(1) \quad M(r) \leq C_\varepsilon r^{n+1+\varepsilon} + C_\varepsilon.$$

In fact, (1) is proved there for first order symmetric systems in \mathbf{R}^n , $n \geq 3$, odd, but the proof easily extends to our case. The aim of this work is to improve (1). More precisely, we have the following

Theorem. *There exists a constant $C > 0$ so that the number of the scattering poles associated to the operator G satisfies the bound*

$$(2) \quad N(r) \leq C r^{n+1} + C.$$

Note that the desired result is to obtain the bound

$$(3) \quad N(r) \leq C r^n + C.$$

In [7] Melrose proved (3) for the Laplacian in exterior domains with Dirichlet or Robin boundary conditions, while in [13] Zworski proved (3) for the Schrödinger operator $\Delta + V(x)$ with a potential $V \in L_0^\infty(\mathbf{R}^n)$. Note that a bound of the form (3) is important for obtaining Weyl asymptotics of the phase shift (see [8], where such an asymptotic is obtained for an arbitrary smooth obstacle). To our knowledge, the problem of obtaining a bound of the form (3) on the number of the scattering poles associated to the operator G is still open. Let us also mention Intissar's work [4] where a bound of the form (2) on the number of the scattering poles associated to the operator $(-i\vec{\nabla} + \vec{b}(x))^2 + a(x)$ in \mathbf{R}^n , $n \geq 3$, odd, is obtained, where $a(x) \in C_0^\infty(\mathbf{R}^n; \mathbf{R})$, $\vec{b}(x) \in C_0^\infty(\mathbf{R}^n; \mathbf{R})$. In [3] and [4] he has also obtained an analogue of (2) in the case of even n , $n \geq 4$.

To prove (2) we exploit the fact that the scattering poles, with multiplicity, coincide with the poles of the meromorphic continuation of the cutoff resolvent $R_\chi(z) = \chi R(z) \chi$ from $\{z \in \mathbf{C}: \operatorname{Im} z > 0\}$ to the entire complex plane \mathbf{C} , where $R(z) = (G + z^2)^{-1}$ for $\operatorname{Im} z > 0$, and $\chi \in C_0^\infty(\mathbf{R}^n)$ is such that $\chi = 1$ for $|x| \leq \rho_0 + 1$, $\chi = 0$ for $|x| \geq \rho_0 + 2$ (see [5]). This enables us to characterize the scattering poles as the poles of a meromorphic function of the form $(1 - K(z))^{-1}$ where $K(z)$ is an entire family of compact operators on H such that $K(z)^p$, $p = (n+1)/2$, is trace class. Then, following [4], [6], [7] and [13], we deduce that the scattering poles, with multiplicity, are among the zeros of the entire function $h(z) = \det(1 - K(z)^p)$, and hence, to prove (2) it suffices to show that the order of $h(z)$ is less than or equal to $n+1$. However, in our case the operator $K(z)$ is much more complicated and therefore it is not so easy to obtain the desired order of $h(z)$. To overcome the difficulties we use precise estimates of the cutoff free resolvent for $\operatorname{Im} z \geq 0$ combined with an application of the Phragmen-Lindelof principle.

Acknowledgments. I would like to thank Vesselin Petkov for the useful

discussions during the preparation of this work.

2. Representation of the cutoff resolvent

First, we shall introduce some notations. Given two Hilbert spaces X and Y , $\mathcal{L}(X, Y)$ will denote the space of all linear bounded operators acting from X into Y . Given any $s > 0$, H^s will denote the usual Sobolev space $H^s(\mathbf{R}^n)$. Finally, given a compact operator \mathcal{A} , $\mu_j(\mathcal{A})$ will denote the characteristic values of \mathcal{A} , i.e. the eigenvalues of $(\mathcal{A}^* \mathcal{A})^{1/2}$, ordered, with multiplicity, to form a nonincreasing sequence.

Denote by $R_0(z)$ the outgoing resolvent of Δ , i.e. that one with kernel $E(x-y, z)$ where $E(x, z)$ is the outgoing fundamental solution of the operator $\Delta + z^2$. Then we have $R_0(z) = (G_0 + z^2)^{-1} \in \mathcal{L}(H_0, H_0)$ for $\operatorname{Im} z > 0$. Moreover, it is well known that the kernel of $R_0(z)$ is given in terms of Hankel's functions by

$$(4) \quad R_0(z)(x, y) = -(i/4)(2\pi)^{(n-2)/2}(z/|x-y|)^{(n-2)/2} H_{(n-2)/2}^{(1)}(z|x-y|).$$

It follows easily from this representation that $\chi R_0(z)\chi$ forms an entire family of compact pseudodifferential operators of order -2 in $\mathcal{L}(H_0, H_0)$, χ being the function introduced in the previous section. Using this we shall build the meromorphic continuation of $R_\chi(z)$. Set $Q = G_0 - G$ and fix a $z_0 \in \mathbf{C}$, $\operatorname{Im} z_0 > 0$. Clearly, for $\operatorname{Im} z > 0$, we have

$$(5) \quad R(z) = R_0(z) + R(z)QR_0(z)$$

and

$$(6) \quad R(z) = R(z_0) + (z_0^2 - z^2)R(z)R(z_0).$$

Combining these identities yields

$$R(z)(1 - (z_0^2 - z^2)QR_0(z)R(z_0)) = R(z_0) + (z_0^2 - z^2)R_0(z)R(z_0)$$

for $\operatorname{Im} z > 0$. Multiplying the both sides of this identity by χ , since $Q = \chi Q$, we get

$$(7) \quad R_\chi(z)(1 - K(z)) = R_\chi(z_0) + K_1(z) \quad \text{for } \operatorname{Im} z > 0,$$

where $K(z) = (z_0^2 - z^2)QR_0(z)R(z_0)\chi$ and $K_1(z) = (z_0^2 - z^2)\chi R_0(z)R(z_0)\chi$. We need now the following

Lemma 1. *The operator-valued functions $K(z)$ and $K_1(z)$ have analytic continuations from $\{z \in \mathbf{C} : \operatorname{Im} z > 0\}$ to the entire \mathbf{C} with values in the compact operators in $\mathcal{L}(H, H)$. Moreover, there exists a constant $C > 0$ so that*

$$(8) \quad \mu_j(K(z)) \leq C \exp(C|z|), \quad \forall z \in \mathbf{C}, \forall j;$$

$$(9) \quad \mu_j(K(z)) \leq C(1 + |z|)^3(1 + |\operatorname{Im} z|)^{-1}j^{-2/n}, \quad \forall z \in \mathbf{C}, \text{ if } j \geq C(1 + |z|)^n.$$

Assuming that the conclusions of Lemma 1 are fulfilled, we shall complete the proof of (2). Obviously, $1-K(z)$ is invertable in $\mathcal{L}(H, H)$ at $z=z_0$, and since $K(z)$ is an entire family of compact operators, $(1-K(z))^{-1}$ is a meromorphic $\mathcal{L}(H, H)$ -valued function on \mathbf{C} . By (7) we deduce that so is true for $R_x(z)$ and the poles of $R_x(z)$, with multiplicity, are among the poles of $(1-(K(z))^{-1})$, and hence among the poles of $(1-K(z)^p)^{-1}$ where $p=(n+1)/2$. On the other hand, it follows from (9) and the well known inequality

$$(10) \quad \mu_{pj}(K(z)^p) \leq \mu_j(K(z))^p \quad \forall j,$$

that $K(z)^p$ is trace class for all $z \in \mathbf{C}$. Hence we can introduce the entire function

$$h(z) = \det(1-K(z)^p)$$

and conclude that the poles of $R_x(z)$, with multiplicity, are among the zeros of $h(z)$. Hence, (2) will be proved if we show that

$$(11) \quad |h(z)| \leq C \exp(C|z|^{n+1}) \quad \forall z \in \mathbf{C}.$$

By (8), (9) and (10) we obtain with some constant $C' > 0$:

$$\mu_j(K(z)^p) \leq C' \exp(C'|z|) \quad \forall z \in \mathbf{C}, \forall j,$$

and

$$\mu_j(K(z)^p) \leq C'(1+|z|)^{3p}(1+|\operatorname{Im} z|)^{-p} j^{-(n+1)/n} \quad \forall z \in \mathbf{C},$$

if $j \geq C'(1+|z|)^n$. Now by Weyl's convexity estimate we get

$$\begin{aligned} |h(z)| &\leq \prod_{j=1}^{\infty} (1+\mu_j(K(z)^p)) \\ &\leq \left(\prod_{j \leq C'(1+|z|)^n} C' \exp(C'|z|) \right) \exp\left(\sum_{j \geq C'(1+|z|)^n} \mu_j(K(z)^p) \right) \\ &\leq \exp(C''(1+|z|)^{n+1}) \exp(C'(1+|z|)^{3p}(1+|\operatorname{Im} z|)^{-p} \sum_{j=1}^{\infty} j^{-(n+1)/n}). \end{aligned}$$

Thus we have obtained the estimate

$$(12) \quad |h(z)| \leq C \exp(C(1+|z|)^{3p}(1+|\operatorname{Im} z|)^{-p}) \quad \forall z \in \mathbf{C},$$

with some constant $C > 0$. We shall show that this estimate implies (11). Clearly, by (12) we have

$$(13) \quad |h(z)| \leq C \exp(C|z|^{3p}) \quad \forall z \in \mathbf{C},$$

with possibly a greater constant $C > 0$. Introduce the sets $S^{\pm} = \{z \in \mathbf{C} : |\operatorname{Im} z| < \pm \gamma \operatorname{Re} z\}$, where $\gamma = \operatorname{tg}(\pi/8p)$, and set $S = S^+ \cup S^-$. It is easy to see that

$$(14) \quad (1+|z|)(1+|\operatorname{Im} z|)^{-1} \leq 1 + \gamma^{-1} \quad \forall z \in \mathbf{C} \setminus S.$$

Thus, by (12) and (14), we obtain

$$(15) \quad |h(z)| \leq C \exp(C|z|^{n+1}) \quad \forall z \in \mathbb{C} \setminus S.$$

Now we are going to show that such an estimate holds on S . To this end we need the following fundamental lemma (for the proof, see [9]).

Lemma 2. *Let $\Lambda = \{z \in \mathbb{C} : \theta_1 < \arg z < \theta_2\}$ and let $\alpha < 1/2$ be such that $\theta_2 - \theta_1 = \pi/\alpha$. Let the function $f(z)$ be holomorphic in a neighbourhood of Λ and satisfy the conditions :*

$$(i) \quad |f(z)| \leq M \quad \text{for } \arg z = \theta_k, \quad k = 1, 2;$$

$$(ii) \quad |f(z)| \leq M' \exp(M' |z|^\beta) \quad z,$$

with a β such that $0 < \beta < \alpha$.

Then

$$|f(z)| \leq M \quad \forall z \in \Lambda.$$

Clearly, $S^+ = \{z \in \mathbb{C} : -\pi/8p < \arg z < \pi/8p\}$. Introduce the function $f(z) = h(z) \exp(q z^{2p})$ where $q \in \mathbb{R}$ is a parameter to be chosen later on. In view of (13) we have

$$(16) \quad |f(z)| \leq C' \exp(C' |z|^{2p}) \quad \forall z \in \mathbb{C}.$$

Writing $z = r e^{i\varphi}$, $r = |z|$, $\varphi = \arg z$, for $\varphi = \pm\pi/8p$, in view of (15), we have

$$\begin{aligned} |f(z)| &\leq C \exp(Cr^{2p}) |\exp(qr^{2p} e^{i2p\varphi})| \\ &= C \exp(Cr^{2p}) \exp(qr^{2p} \cos(\pi/4)), \end{aligned}$$

and taking $q = -C/\cos(\pi/4)$, we deduce

$$(17) \quad |f(z)| \leq C \quad \text{for } \arg z = \pm\pi/8p.$$

Now, in view of (16) and (17), we can apply Lemma 2 with $\Lambda = S^+$, $\alpha = 4p$, $\beta = 3p$, to conclude that

$$|f(z)| \leq C \quad \forall z \in S^+,$$

which in turn yields

$$|h(z)| \leq C |\exp(-q z^{2p})| \leq C \exp(C' |z|^{2p}) \quad \forall z \in S^+.$$

Similarly, so is true for all $z \in S^-$, and hence for all $z \in S$. This together with (15) imply (11) since $2p = n + 1$.

3. Proof of Lemma 1

Since $R(z_0) = R_0(z_0) + R_0(z_0)QR(z_0)$, we have

$$(18) \quad K(z) = (z_0^2 - z^2) QR_0(z) R_0(z_0) \chi K_2 \quad \text{for } \operatorname{Im} z > 0,$$

where $K_2 = 1 + QR(z_0)\chi$. Since G is an elliptic second order differential operator, we have $R(z_0) \in \mathcal{L}(H, H^2)$, and hence $K_2 \in \mathcal{L}(H, H)$. Choose functions $\chi_1, \chi_2 \in C_0^\infty(\mathbf{R}^n)$ such that $\chi_1 = 1$ on $\operatorname{supp} Q$, $\chi_2 = 1$ on $\operatorname{supp} \chi_1$ and $\chi = 1$ on $\operatorname{supp} \chi_2$. Now, using (5) with $R_0(z)$, after an easy computation, we obtain from (18):

$$(19) \quad K_3(z) = (K + (z_0^2 - z^2) K_4) \chi R_0(z) \chi K_2 + K_5 \quad \text{for } \operatorname{Im} z > 0,$$

where

$$\begin{aligned} K_3 &= QR_0(z_0)[G_0, \chi_1]R_0(z_0)[G_0, \chi_2], \\ K_4 &= QR_0(z_0)\chi_1 + QR_0(z_0)[G_0, \chi_1]R_0(z_0)\chi_2, \\ K_5 &= -K_3 R_0(z_0) \chi K_2. \end{aligned}$$

Here $[\cdot, \cdot]$ stands for the commutator. Clearly, $K_3, K_4 \in \mathcal{L}(H, H)$ and $K_5 \in \mathcal{L}(H, H^2)$. Hence K_5 is a compact operator in $\mathcal{L}(H, H)$. Furthermore, as mentioned above, $\chi R_0(z) \chi$ is an entire family of compact operators in $\mathcal{L}(H_0, H_0)$, and hence, by (19), $K(z)$ can be continued analytically to the entire \mathbf{C} with values in the compact operators in $\mathcal{L}(H, H)$. Clearly, so is true for $K_1(z)$. To prove (8) and (9) we need the following

Lemma 3. *There exists a constant $C > 0$ so that*

$$(20) \quad \|\chi R_0(z) \chi\|_{\mathcal{L}(H_0, H_0)} \leq C \exp(C|z|) \quad \forall z \in \mathbf{C};$$

$$(21) \quad \|\chi R_0(z) \chi\|_{\mathcal{L}(H_0, H_0)} \leq C(1+|z|)^{-1}(1+\operatorname{Im} z)^{-1} \quad \text{for } \operatorname{Im} z \geq 0;$$

$$(22) \quad \|\chi R_0(z) \chi\|_{\mathcal{L}(H_0, H^2)} \leq C(1+|z|)(1+\operatorname{Im} z)^{-1} \quad \text{for } \operatorname{Im} z \geq 0.$$

Assume for a moment that the conclusions of Lemma 3 are fulfilled. Now (8) immediately follows from (19), (20) and the well known inequality $\mu_j(\mathcal{A}) \leq \|\mathcal{A}\|, \forall j$. Turn to the proof of (9). Set $B = \{x \in \mathbf{R}^n : |x| \leq \rho_0 + 3\}$ and denote by Δ_B the self-adjoint realization of the Laplacian Δ with domain $D(\Delta) = C_0^\infty(B)$ in the Hilbert space $L^2(B)$. It is well known that

$$(23) \quad \mu_j((1 - \Delta_B)^{-m}) \leq C_B^m \cdot j^{-2m/n}, \quad \forall j, \quad \forall \text{integer } m \geq 1.$$

First, we shall prove (9) for $\operatorname{Im} z \geq 0$. Using the well known inequalities

$$(24) \quad \mu_{2j+1}(\mathcal{A} + \mathcal{B}) \leq \mu_j(\mathcal{A}) + \mu_j(\mathcal{B}) \quad \forall j,$$

and

$$(25) \quad \mu_j(\mathcal{A}\mathcal{B}) \leq \begin{cases} \|\mathcal{A}\| \mu_j(\mathcal{B}), & \forall j, \\ \|\mathcal{B}\| \mu_j(\mathcal{A}), & \forall j, \end{cases}$$

by (19), we obtain

$$\begin{aligned} \mu_{2j+1}((K(z)) &\leq \mu_j(K_5) + \|K_3 + (z_0^2 - z^2)K_4\| \mu_j(\chi R_0(z)\chi) \|K_2\| \\ &\leq C \mu_j(\chi R_0(z_0)\chi) + C(1 + |z|^2)(\mu_j(\chi R_0(z)\chi)), \end{aligned}$$

where $\|\cdot\|$ is the norm in $\mathcal{L}(H_0, H_0)$. On the other hand, by (22), (23) and (25) we have

$$\begin{aligned} \mu_j(\chi R_0(z)\chi) &\leq \mu_j((1 - \Delta_B)^{-1}) \|(1 - \Delta)\chi R_0(z)\chi\|_{\mathcal{L}(H_0, H_0)} \\ &\leq C j^{-2/n} (1 + |z|)(1 + \operatorname{Im} z)^{-1} \quad \text{for } \operatorname{Im} z \geq 0, \forall j. \end{aligned}$$

Now, in this case, (9) follows from the above estimates at once.

Turn to the proof of (9) for $\operatorname{Im} z \leq 0$. By (24) we have

$$(26) \quad \mu_{2j+1}(K(z)) \leq \mu_j(K(-z)) + \mu_j(\tilde{K}(z)),$$

where $\tilde{K}(z) = K(z) - K(-z)$. We have already seen above that, when $\operatorname{Im} z \leq 0$, $\mu_j(K(-z))$ has the desired bound. To estimate the other term we shall proceed as in [13]. Set $\tilde{R}_0(z) = R_0(z) - R_0(-z)$. It follows from (4) that the kernel of $\tilde{R}_0(z)$ is given by

$$\tilde{R}_0(z)(x, y) = (i/2)(2\pi)^{-n+1} z^{n-2} \int_{S^{n-1}} e^{iz\langle x-y, w \rangle} dw,$$

where S^{n-1} denotes the unit sphere in \mathbf{R}^n . Now it is easy to see that for any multiindex α we have

$$(27) \quad \sup_{\substack{|x| \leq \rho_0 + 3 \\ |\alpha| \leq \rho_0 + 3}} |\partial_x^\alpha \tilde{R}_0(z)(x, y)| \leq C^{|\alpha|+1} |z|^{|\alpha|} e^{C|x|}$$

with some constant $C > 0$. By Theorem 1.4.2 of [2], for any integer $m \geq 1$ there exists a function $\chi_m \in C_0^\infty(\mathbf{R}^n)$ such that $\chi_m = 1$ on $\operatorname{supp} \chi$, $\chi_m = 0$ for $|x| \geq \rho_0 + 3$ and $|\partial_x^\alpha \chi_m| \leq C^{|\alpha|+1} |\alpha|!$ for $|\alpha| \leq 2m$ with some constant $C > 0$. Using this together with (19), (23), (25) and (27), we get

$$\begin{aligned} \mu_j(\tilde{K}(z)) &\leq \|(K_3 + (z_0^2 - z^2)K_4)\chi\| \mu_j(\chi_m \tilde{R}_0(z)\chi) \|K_2\| \\ &\leq C'(1 + |z|^2) \mu_j((1 - \Delta_B)^{-m}) \|(1 - \Delta)^m \chi_m \tilde{R}_0(z)\chi\| \\ &\leq C''(1 + |z|^2) \mu_j((1 - \Delta_B)^{-m}) \sup_{x, y} |(1 - \Delta_x)^m (\chi_m(x) \tilde{R}_0(z)(x, y) \chi(y))| \\ &\leq C^{2m+1} (|z|^{2m} + (2m)^{2m}) e^{C|x|} j^{-2m/n}, \forall z \in \mathbf{C}, \forall j, \forall m \geq 1, \end{aligned}$$

with some constant $C > 0$. Here $\|\cdot\|$ again denotes the norm in $\mathcal{L}(H_0, H_0)$. Now, taking $2m = |z|$ we can easily arrange for $j \geq q|z|^q$, $|z| \gg 1$, with large q depending only on C , that

$$\mu_j(\tilde{K}(z)) \leq C j^{-2/n}$$

with possibly another constant $C > 0$. Now, in this case, (9) follows from this

estimate, (26) and the estimate of $\mu_j(K(-z))$ obtained above.

4. Proof of Lemma 3

First, we shall derive (22) from (21). Choose functions $\chi_1, \chi_2 \in C_0^\infty(\mathbf{R}^n)$ such that $\chi_1=1$ on $\text{supp } \chi$, $\chi_2=1$ on $\text{supp } \chi_1$. As above, we have

$$(28) \quad \chi R_0(z)\chi = R_0(z_0)A(\cdot)$$

where

$$\begin{aligned} A(z) = & ((z_0^2 - z^2)(\chi + [G_0, \chi]R_0(z_0)\chi_1) + \\ & + [G_0, \chi]R_0(z_0)[G_0, \chi_1]\chi_2R_0(z)\chi + [G_0, \chi]R_0(z_0)\chi_1 + \chi^2). \end{aligned}$$

Since $R_0(z_0) \in \mathcal{L}(H_0, H^2)$, clearly $A(z) \in \mathcal{L}(H_0, H_0)$ and by (28) we get

$$\begin{aligned} \|\chi R_0(z)\chi\|_{\mathcal{L}(H_0, H^2)} & \leq C \|A(z)\|_{\mathcal{L}(H_0, H_0)} \\ & \leq C'(1 + |z|^2) \|\chi_2 R_0(z)\chi_1\|_{\mathcal{L}(H_0, H_0)} + C' \\ & \leq C''(1 + |z|)(1 + \text{Im } z)^{-1} \quad \text{for } \text{Im } z \geq 0, \end{aligned}$$

provided (21) is fulfilled with χ replaced by χ_2 .

To prove (20) and (21) we shall exploit the following resolvent formula

$$(29) \quad R_0(z)f = \int_0^\infty e^{itz} U_0(t)f dt \quad \text{for } \text{Im } z > 0, f \in H_0,$$

where $U_0(t)$ is the propagator of the Cauchy problem

$$\begin{cases} (\partial_t^2 - \Delta)U_0(t)f(x) = 0 & \text{in } \mathbf{R}_t \times \mathbf{R}_x^n, \\ U_0(0)f(x) = 0, \quad \partial_t U_0(0)f(x) = f(x). \end{cases}$$

It is easy to see that

$$(30) \quad \|\partial_t U_0(t)f\|_{H_0} \leq \|f\|_{H_0} \quad \forall f \in H_0, \quad \forall t.$$

Now, integrating by parts in (29) and using that by Huygens' principle there exists a $T > 0$ so that $\chi U_0(t)\chi = 0$ for $t \geq T$, we get

$$(31) \quad z\chi R_0(z)\chi f = i \int_0^T e^{itz}\chi \partial_t U_0(t)\chi f dt \quad \text{for } \text{Im } z > 0, \quad f \in H_0,$$

which clearly extends analytically to the entire complex plane \mathbf{C} . By (30) and (31) we have

$$\|\chi R_0(z)\chi\|_{\mathcal{L}(H_0, H_0)} \leq C \int_0^T e^{-t \text{Im } z} dt \leq \begin{cases} C T e^{T|z|}, & \forall z \in \mathbf{C}, \\ C T & \text{for } \text{Im } z \geq 0, \\ C(\text{Im } z)^{-1} & \text{for } \text{Im } z \geq 1. \end{cases}$$

Now (20) and (21) follow from these estimates at once.

References

- [1] C. Bardos, J. Guillot and J. Ralston: *La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion*, Comm. Partial Differential Equations 7 (1982), 905–958.
- [2] L. Hörmander: The analysis of linear partial differential operators, I, Distribution theory and Fourier analysis, Springer Verlag, Berlin, 1983.
- [3] A. Intissar: *A polynomial bound on the number of scattering poles for a potential in even dimensional space \mathbf{R}^n* , Comm. Partial Differential Equations 11 (1986), 367–396.
- [4] A. Intissar: *On the value distribution of the scattering poles associated to the Schrödinger operator $H = (-i\vec{\nabla} + \vec{b}(x))^2 + a(x)$ in \mathbf{R}^n , $n \geq 3$* , preprint.
- [5] P.D. Lax and R.S. Phillips: Scattering theory, Academic Press, 1967.
- [6] R.B. Melrose: *Polynomial bounds on the number of scattering poles*, J. Func. Analy. 53 (1983), 287–303.
- [7] R.B. Melrose: *Polynomial bounds on the distribution of poles in scattering by an obstacle*, Journées “Equations aux Dérivées Partielles”, Saint Jean de Montes, 1984.
- [8] R.B. Melrose: *Weyl asymptotics for the phase in obstacle scattering*, Comm. Partial Differential Equations 13 (1988), 1431–1439.
- [9] E.C. Titchmarsh: The theory of functions, Oxford University Press, 1968.
- [10] G. Vodev: *Polynomial bounds on the number of scattering poles for symmetric systems*, preprint.
- [11] M. Zworski: *Distribution of poles for scattering on the real line*, J. Func. Anal. 73 (1987), 277–296.
- [12] M. Zworski: *Sharp polynomial bounds on the number of scattering poles of radial potentials*, J. Func. Anal. 82 (1989), 370–403.
- [13] M. Zworski: *Sharp polynomial bounds on the number of scattering poles*, Duke Math. J. 59 (1989), 311–323.

Bulgarian Academy of Sciences
 Institute of Mathematics
 1090 Sofia, P.O. Box 373
 Bulgaria

