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1. Introduction The purpose of this note is to obtain a polynomial
bound on the number of the scattering poles associated to the operator

G = c(xyι Σ dXi(gij(x)dXj) in R\

where w>3, odd. We consider this operator under the following assumptions
on the coefficients:

(a) c(x)taG(Rn; R) and c(x)>cQ>0 for all

(b) gijW&CXR*) and the matrix {£,,(#)} is a strictly positive hermitian one for
all Λ G Λ " , i.e.

(b)i gi,(x) = gμ(x), iJ=h ->

(b)2 Σ AyWWi^CIf |2, V(*, ξ)ϊΞRnχR»\0y C>0;

(c) there exists a ρQ>0 so that C(Λ;)=1 and gij(x)=Sij for |x | >p 0 , δ o being the
Kronecker's symbol.

It is well known that under the above assumptions the operator G has a
self-adjoint realization, which will be again denoted by G, in the Hubert space
H=L\Rn'; c{x)dx). Note also that it follows from the assumption (b)2 that the
operator G is elliptic. By Go we shall denote the self-adjoint realization of the
Laplacian Δ in the Hubert space H0=L2(Rn).

It is well known that, under the above assumptions, the scattering matrix
corresponding to the pair {G, Go} admits a meromorphic continuation to the
entire complex plane C. Let {λy} be the poles of this continuation, repeating
according to multiplicity, and set

*) Partially supported by Bulgarian Ministry of Sciences and Education under Grant 52.
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It is shown in [10] that for any £>0 there exists a constant Oβ>0 so that

(1) M

In fact, (1) is proved there for first order symmetric systems in Rn, w>3, odd,

but the proof easily extends to our case. The aim of this work is to improve

(1). More precisely, we have the following

Theorem. There exists a constant C>0 so that the number of the scattering

poles associated to the operator G satisfies the bound

(2) N

Note that the desired result is to obtain the bound

(3) i n

In [7] Melrose proved (3) for the Laplacian in exterior domains with Dirichlet
or Robin boundary conditions, while in [13] Zworski proved (3) for the Schrϋd-
inger operator A+V(x) with a potential V^L^(Rn). Note that a bound of the
form (3) is important for obtaining Weyl asymptotics of the phase shift (see
[8], where such an asymptotic is obtained for an arbitrary smooth obstacle).
To our knowledge, the problem of obtaining a bound of the form (3) on the
number of the scattering poles associated to the operator G is still open. Let
us also mention Intissar's work [4] where a bound of the form (2) on the number
of the scattering poles associated to the operator (—iV+b(x))2+a(x) in jRn, »>3,
odd, is obtained, where a(x)^C%(Rn; 1?), b(x)^C%(Rn;R). In [3] and [4] he
has also obtained an analogue of (2) in the case of even n, w>4.

To prove (2) we exploit the fact that the scattering poles, with multiplicity,
coincide with the poles of the meromorphic continuation of the cutoff resolvent
R%(z)=XR(z)X from {z&C: Im z>0} to the entire complex plane C, where
#(*)=((?+s 2 )- 1 for Im £>0, and XtEC%(RH) is such that X=l for | * | ^p o +l>
%=0 for I Λ?| >p0H~2 (see [5]). This enables us to characterize the scattering
poles as the poles of a meromorphic function of the form (1—X"^))"1 where
K(z) is an entire family of compact operators on H such that K(z)p, /)=(w+l)/2,
is trace class. Then, following [4], [6], [7] and [13], we deduce that the scatter-
ing poles, with multiplicity, are among the zeros of the entire function h(z)=
det(l— K(z)p), and hence, to prove (2) it suffices to show that the order of h(z)
is less than or equal to n-\-\. However, in our case the operator K{z) is much
more complicated and therefore it is not so easy to obtain the desired order of
h{z). To overcome the difficulties we use precise estimates of the cutoff free
resolvent for Im #Ξ>0 combained with an application of the Phragmen-Lindelof
principle.

Acknowledgments. I would like to thank Vesselin Petkov for the useful
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discussions during the preparation of this work.

2. Representation of the cutoff resolvent

First, we shall introduce some notations. Given two Hubert spaces X and
F, X(X,Y) will denote the space of all linear bounded operators acting from
X into Y. Given any ί>0, Hs will denote the usual Sobolev space H\Rn).
Finally, given a compact operator <Jl, μj(Jΐ) will denote the characteristic values
of <JL> i.e. the eigenvalues of (<_Λ!*<J!)1/2, ordered, with multiplicity, to form a
nonincreasing sequence.

Denote by R0(z) the outgoing resolvent of Δ, i.e. that one with kernel
E(x— y,z) where E(x,z) is the outgoing fundamental solution of the operator
Δ+s 2 . Then we have Λ0(ar)=(G0+«2)-1eX(fl0» #o) for Im #>0. Moreover,
it is well known that the kernel of R0(z) is given in terms of HankeΓs functions
by

(4) /«*)(*oO = - W4)(2;r)<«-2>'2(*/1 x-y \ Yn^2H{ll2)/2(z \ x-y \).

It follows easily from this representation that XR0(z)X forms an entire family
of compact pseudodifferential operators of order —2 in X(H0) Ho), X being the
function introduced in the previous section. Using this we shall build the
meromorphic continuation of R*(z). Set Q=G0—G and fix a zQ^Cy Im so>O.
Clearly, for Im #>0, we have

(5)

and

(6) R(z) - R(zo)+(zl-z2)R(z)R{zo).

Combining these identities yields

R(z)(l-(zl-z*)QR0(z)R(z0)) = R(zo)+(z2

o-z2)Ro(z)R(zo)

for Im #>0. Multiplying the both sides of this identity by Xy since Q=χQy

we get

(7) R,(z)(l-K(z)) = R^+K^z) for I m s > 0 ,

where K{z)=^{zl-z2)QR0(z)R(z0)X and K1(z)=(zl-z2)XR(ί(z)R(z0)X. We need

now the following

Lemma 1. The operator-valued functions K(z) and K^z) have analytic
continuations from {zeC: Im z>0} to the entire C with values in the compact
operators in £{H,H). Moreover, there exists a constant C>0 so that

(8) μj(K(z))<Cexp(C|*|), VseC, V/;

(9) ^
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Assuming that the conclusions of Lemma 1 are fulfilled, we shall complete
the proof of (2). Obviously, 1— K(z) is inverlable in X(HyH) at z=zOi and
since K(z) is an entire family of compact operators, (ί—K(z))~ι is a meromorphic
-£(i/,iϊ)-valued function on C By (7) we deduce that so is true for R%(%) and
the poles of Rx(z)> with multiplicity, are among the poles of (1—(ϋ^*))"1, and
hence among the poles of (l—K^Y)'1 where p—(w+l)/2. On the other hand,
it follows from (9) and the well known inequality

(10) μpj(K(χ,γ)^μj(K(z)γ vy,

that K(z)p is trace class for all # e C . Hence we can introduce the entire func-
tion

h(z) = dtt{l-K(z)p)

and conclude that the poles of i?x(#), with multiplicity, are among the zeros of
h{z). Hence, (2) will be proved if we show that

(11) \h(z)\<Cexp(C\z\»+1)

By (8), (9) and (10) we obtain with some constant C">0:

μj(K(zY)<:C'exp(C'\z\) Vs<=C,V/,

and

μj (K(zy)<C'(l+ \z\γp(l+ \ Imz\)-

if j ^ C\\ + I z I ) n . Now by WeyΓs convexity estimate we get

| ) - + 1 ) e x p ( C ' ( l + 1 « | ) ( | | ) ±

Thus we have obtained the estimate

(12) | ^ ) | < C e x p ( C ( l + | ^ | ) ^ ( l + | I m ^ | ) ^ ) V^eC,

with some constant O>0. We shall show that this estimate implies (11).
Clearly, by (12) we have

(13) |λ(#)|<Cexp(C|*|3>) V ^ G C ,

with possibly a greater constant 0 0 . Introduce the sets S±={z^C: |Im #|
< dbγ Re z}y where 7=tg(τr/8/>), and set S=S+ U S". It is easy to see that

(14) (l+MXl+IImsir^l+γ-1 VseC\S.
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Thus, by (12) and (14), we obtain

(15) |A(s

Now we are going to show that such an estimate holds on S. To this end we
need the following fundamental lemma (for the proof, see [9]).

Lemma 2. Let Λ = {z&C: #i<arg z<θ2} and let a<\β be such that θ2

— θx—π/a. Let the function f(z) be holomorphk in a neighbourhood of Λ and
satisfy the conditions:

(i)

(ϋ)

with a
Then

1/(2)1 <,M

IΛ*)l2

/S ίwcA that 0<β«x .

for argz=θt, i

ZM'iexpiM'W)

k=ί,2;

\f{jή\ Vs<=Λ.

Clearly, 5 + = {zeC: —zr/8/)<arg z<π/8p}. Introduce the function f(z)=
h(z)exp(q z*p) where qSR is a parameter to be chosen later on. In view of (13)
we have

(16) |/(*) | £ C exp(C'\z\*>) Vz(=C.

Writing z=reiφ, r= \z\, ̂ >=arg z, for φ= ύzπ/8p, in view of (15), we have

= C exp(C^) exp(ί t2* ooβ(jr/4)),

and taking q——C/cos(w/4), we deduce

(17) \A*)\£C for argz = ±πβp.

Now, in view of (16) and (17), we can apply Lemma 2 with Λ = 5 + , a=4p,
β=3p, to conclude that

which in turn yields

I *(*) I ^ C I exp(- ? z») I < C exp(C | x \ 2>) V s e S + .

Similarly, so is true for all ^ G S " , and hence for all z&S. This together with
(15) imply (11) since 2p=n+l.

3. Proof of Lemma 1

Since R(ZO)=RO(ZQ)+RO(ZO)QR(ZO)> we have
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(18) K(z) = (zl-z*)QR0(z)R0{z0)XK2 for I m s > 0 ,

where K2=l+QR(z0)X. Since G is an elliptic second order differential opera-
tor, we have i?(so)e_£(if,ίf2), and hence K2&X(H,H). Choose functions Xly

%2^CT(Λn) such that Xx=\ on supp Q, X2=l on supp X1 and X=ί on supp %2.
Now, using (5) with i?o(#), a ft e r a n e a sY computation, we obtain from (18):

(19) K3(z) = (^+(^~(2
2).K:4)Xi?0(^)%if2+^5 for Im

where

K3 =

ί:B = -K3R0(Z0)XK2 .

Here [,] stands for the commutator. Clearly, K3,K4^X(H,H) and .SΓ5e
-C(H, H2). Hence K5 is a compact operator in X(HyH). Furthermore, as men-
tioned above, XRQ{Z)X is an entire family of compact operators in X(H0)H0), and
hence, by (19), K(z) can be continued analytically to the entire C with values
in the compact operators in -£(H,H). Clearly, so is true for K^z). To prove
(8) and (9) we need the following

Lemma 3. There exists a constant C > 0 so that

(20) \\XR^)X\\X{H^HQ)<C exp(C | * | ) V s e C

(21) \\XR0(z)X\\jχHo,H0)<0(l+\z\)-ι(l+Imz)-1 for I m s > 0 ;

(22) | |X«0(*)X||^(fli lfl*)^C(l+|*|)(H-Im*)-1 for Im

Assume for a moment that the conclusions of Lemma 3 are fulfilled. Now
(8) immediately follows from (19), (20) and the well known inequality μj(<Jl)<
\\JL\l Vj. Turn to the proof of (9). Set B={x(=Rn: | * | < p o + 3 } and de-
note by AB the self-adjoint realization of the Laplacian Δ with domain Z)(Δ)=
Co(B) in the Hubert space L\B). It is well known that

(23) ^ ( ( l - Δ 5 ) - - ) < C S i-2 w / Λ, Vy, Vinteger m>\ .

First, we shall prove (9) for I m # > 0 . Using the well known inequalities

(24)

and

(25)
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by (19), we obtain

z\i)(μj(XRo(z)X),

where | | | | is the norm in X(H0,H0). On the other hand, by (22), (23) and (25)
we have

s | ) ( l + I m z)"1 for Im s^O, V; .

Now, in this case, (9) follows from the above estimates at once.
Turn to the proof of (9) for I m s ^ O . By (24) we have

(26) μ2j+ι(K(z))^μj(K(^z))+μj(R(z)),

where £(z)=K(z)—K(—z). We have already seen above that, when Im s^O,
μj(K(—z)) has the desired bound. To estimate the other term we shall proceed
as in [13]. Set βo(z)=Ro(z)—Ro(—z). It follows from (4) that the kernel of
R0(z) is given by

where S*"1 denotes the unit sphere in Rn. Now it is easy to see that for any
multiindex a we have

(27) sup I KίUz)(x,y)\ <:C'*' + 1 | s |
ι*ι^p+3

with some constant O>0. By Theorem 1.4.2 of [2], for any integer m>\ there
exists a function Xm^Co(Rn) such that Xm=l on supp %, Xm=0 for |Λ?| ^ ρ o + 3
and | 8 J X | ^ C l - l + 1 | α | ! for \a\<2m with some constant 0 0 . Using this
together with (19), (23), (25) and (27), we get

B y m ) sup i ( l -Ax)
m(xm

with some constant C>0. Here || || again denotes the norm in -C(HOiHo).
Now, taking 2tn=\z\ we can easily arrange for j>q\z\n

9 \z\ > 1 , with large q
depending only on C, that

with possibly another constant C>0. Now, in this case, (9) follows from this
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estimate, (26) and the estimate of μj(K(—z)) obtained above.

4. Prooi of Lemma 3

First, we shall derive (22) from (21). Choose functions Xly

such that %i=l on supp XyX2=^l on supp Xv As above, we have

(28) XR0(z)X = Ro(

where

A(z) = ((zl-z*)(X+[Gΰ,X]Rΰ(zϋ)X1)+

+[Go, %]i2o(*o)[GO) X1]X2Ro(z)X+[Go,

Since R0(z0)^X(H0,H
2), clearly A{z)^X{H0,H0) and by (28) we get

\\XR0(z)X\U(H<hHz)<C\\A(z)\\X(H0,H0)

z)-1 for ϊm ,

provided (21) is fulfilled with X replaced by Xj.
To prove (20) and (21) we shall exploit the following resolvent formula

(29) i?o(*)/=(V' l/ o ( ί)/Λ for Imz>0,feH0,
Jo

where U0(t) is the propagator of the Cauchy problem

Ud2

t-A)Uo(t)f(x) = 0 in RtxR»x,

Wo(O)/(«) = 0,

It is easy to see that

(30) II

Now, integrating by parts in (29) and using that by Huygens' principle there
exists a Γ > 0 so that XUo(t)X=0 for f>Γ, we get

(31) zXR0{z)Xf = i[TeiuXdtU0(t)Xfdt for Im *>0, f<=HQ,
Jo

which clearly extends analytically to the entire complex plane C. By (30) and
(31) we have

\\zXRo(z)X\\χ(HOtHo)<C^e-tlm'dt< CT for Im*>0,

C(Imz)~ι for

Now (20) and (21) follow from these estimates at once.
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