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On Regular Neighbourhoods of 2-Manifolds
in 4-Euclidean Space. I

By Hiroshi NoGuchI”

Introduction

In 1921 L. Antoine [1] dealt with the embedding of sets in a
Euclidean space R and he pointed out that there are three categories
of the embeddings. Let P, @ be (topologically) equivalent sets in R.
The first category: There is an orientation preserving homeomorphism
onto Y : R— R such that {(P)=@. We say that P, @ are congruent.
The second category: There are neighbourhoods U(P), U(Q) of P, @
respectively such that there exists an orientation preserving homeomor-
phism onto «r: U(P) - U(Q) such that »(P)=@. We say that P, @ are
semicongruent. The third category: P, @ are neither congruent nor
semicongruent.

The present paper deals with the second category of the piecewise
linear embedding of polyhedral manifolds in R” (#=3, 4). The questions
studied are mostly local in character. We often use some of the results
and methods due to J.H.C. Whitehead [9] and V.K.A.M. Gugenheim
[6.1, 6.1I]. I am greatly indebted to their papers.

The exposition is as follows: In section 1 the results which are
well known and will be used in the rest of the paper are stated.
The results in section 2 are analogous appropriate to congruence of
theorems due to Whitehead concerning regular neighbourhoods of poly-
hedra in a Euclidean space. Section 3 contains the fundamental defini-
tions and lemmas. In section 4 we deal with (#z—1)-manifolds in
R" (n=3, 4) and show that the equivalent manifolds are semicongruent
(Theorem 2). In section 5 we deal with 2-manifolds in R* (Theorem 3)
and characterize the semicongruence classes of equivalent oriented
2-manifolds in R* (Theorem 4). Section 6 contains some geometric
applications of the above considerations.

1. Preliminaries

1.1. R" will stand throughout this paper for n—dimensional metric

1) The paper was written while the author held an Yukawa Fellowship at Osaka University.
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Euclidean space (in the statements using this and other points sets the
superscripts which denote the dimensionalities will often be omitted
when they are clear from the context). By a simplex we shall mean a
closed Euclidean simplex, and by a complex, a rectilinear closed locally
finite simplicial subcomplex of some Euclidean space (we only deal with
finite complexes except for R). Let K be a complex; we denote by | K|
the point set covered by the simplexes of K; such a point set will be
called a polyhedron and K a partition of the polyhedron. For con-
venience sake we very often use K instead of |K].

Polyhedra having isomorphic partitions will be said to be equivalent.
Let K, L be isomorphic partitions of polyhedra P, Q. Let ¢: P—@Q be
the homeomorphism obtained by mapping each simplex of K linearly
onto its correlate in L. We call ¢ a piecewise linear homeomorphism
onto, or PLO. Let QC T, where T is a polyhedron. Then the mapping
W : P-—T defined by r(x) =¢(x) for x€ P is called a piecewise linear
homeomorphism into, or PLI. The identity map be denoted by 1.

By I we shall denote the closed interval 0 <t <1. Let P, @ be
polyhedra and let

¢ PxI—-QxI

be a PLI such that &,(x, {) =(y, ), where x€ P, yeQ and t€l. If x, 9
and ¢ are related as above, we write y=¢,(x), and have thus defined a
map ¢,: P—Q which is a PLI and is such that

bi(x, ) = (P:(x), 9) .

In the above situation, the PLI ¢; or the family of PLI ¢, are called
an into isotopy between the PLI ¢, and ¢,, which are said to be into
isotopic; we write ¢,~¢,. If ¢; is a PLO or equivalently, if each ¢, is
a PLO, then we refer to an onto isoftopy, we say that ¢,, ¢, are onto
isotopic and write ¢,~¢,. Both ~ and =~ are equivalence relations

[6.I].

1.2. By a g—element E? we shall mean a polyhedron equivalent to
a g-simplex A? by a g-sphere S? one equivalent to the boundary of a
(g +1)-simplex.

Let K be a complex and H a set of simplexes in K. We denote by
N(H, K) the set of all simplexes of K which contain one or more sim-
plexes in H and referred to as the star of H in K. The set of simplexes
of K which are faces not intersecting H in some simplexes of N(H, K)
is denoted by L(H, K) and referred to as the /link of H in K.

A (combinatorial) ¢g-manifold M? is defined as a complex M? such
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that | N(A, M)| is a g—element for every simplex A M. Alternatively,
it is characterized as follows: Let x be any vertex of M. Then
|L(x, M)| is a (g—1)—element if x€ M, a (g—1)-sphere if x € IM, where
M will denote the boundary of M and IM=M—M.

From now on manifold will mean connected manifold. Let M? be
an orientable g-manifold. An orientation preserving PLI ¢: N‘— M?,
where N?C_M? is an orientable submanifold, is said to be positive in
M 1If a PLO ¢: M?—M? is positive in M? we call it a +PLO.

The following is well known:

(a) Let S be a sphere and ¢:S—S a +PLO. Then ¢~1 [6.1].

(b) Let E be an element and ¢: E—~FE a +PLO. Then ¢~1 [6.I].

(c) Let M? be an orientable closed 2-manifold and ¢: M*—M?* a
PLO such that ¢ induces an inner automorphism of the fundamental
group of M?. Then =1 [4].

(d) Let M? be an orientable g-manifold and E? (=1, 2) g-elements
in IM?. Let PCM?—E{—E} be a polyhedron which does not discon-
nect M? and let ¢: E{—E{ be a given PLO which is positive in M?.
There is a +PLO +: M?— M? such that J|P=1, ¥ |E{=¢ and ¥ =1
[6. I, Theorem 3 and also see its Remark].

(e) Let M? be a g-manifold (¢_>1) and x;, y; ¢=1, -, k) points
in IM? Then there is a +PLO ¢:M?—-M? such that ¢(x)=y; for
each 7 and ¢ ~1 (it is trivial, see [8]).

1.3. Let M be an orientable manifold and P, @ polyhedra of M.
We say that P, Q are congruent in M, P=@Q in M, if there is a +PLO
¢: M— M such that ¢(P)=@. In statements using this and consequen-
tial definitions the words in M will often be omitted when they are
clear. In the rest part of the paper by polyhedron we shall either
mean polyhedron P in the same sense as up to now; or else oriented
polyhedron P, in which latter case all PLI, equivalence and congruence
relations are taken to be consistent with the given orientations.

The following is due to Gugenheim [6.II]. A polyhedron P is
said to be locally embedded in an orientable n-manifold M" if there is
an n-element E"C M” such that PCCIE" and P does not disconnect M”.
By {P, M"} we shall denote a polyhedron P locally embedded in M”
and the oriented manifold M". We call {P, M"} a pair. We say that
the pair {P, M"} and {Q, N"} are congruent, {P, M"} ={Q, N}, if,
since P is locally embedded, there is a +PLO ¢:E”"—N", where E”
has the orientation induced by M™" such that ¢(P)=@Q. Congruence is
an equivalence relation between pairs.

Let [/ be an equivalence class of polyhedra. By (//, n) we denote
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the set of congruence classes of pairs {P, M"}, where P € [ and M" is
an oriented z—manifold.

For g<m, let <'q, n> denote the set of congruence classes of
oriented g-elements of R”, < ¢, n > is a commutative semigroup and
the zero element 0€< g, n> denotes the congruence class of flat
g—elements which are congruent in R” to an arbitrary oriented g-simplex.
We shall take < #, #_>=0 as a formal way of saying that all #n—elements
of R” which have the orientations which are induced by a fixed orienta-
tion of R”, are flat (see 1.2 (d)).

For g<m—1, let (g, n) denote the set of congruence classes of
oriented g-spheres of K", (¢, n) is a commutative semigroup and the zero
element O€ (g, #) denotes the congruence class of flat g—spheres which
are congruent in R"” to an arbitrary oriented boundary of a (g+1)—
simplex. Choose an orientation of R” and give to every (#—1)-sphere
of R” the orientation induced by its interior; then (#-1, n) denotes the
congruence classes of (#-1)-spheres so oriented.

Then we may identify

(B?, n) and <q,n> if q<m
% m and  (g,m if ¢g<n—1,

where E? are the equivalence class of oriented g—elements and >Y? that
of oriented g-spheres. The following is well known.

(a) Let P, QR" be polyhedra and let ¢: R"— R” be a +PLO such
that ¢(P)=¢Q. Then there is an n-element Ej and +PLO ¢,: R"—R"
such that ¢,|c/(R"—E?) =1 and ¢,|P=¢|P [6.1, 5, 7].

(b) Let P, QCR" be g-dimensional polyhedra, 2¢+2<w#u, and
¢: P—@Q be a given PLO. Then there is a +PLO : R"—R" such that
V| P=¢ [6.1].

(c) <1,n>=0 for each n>1 [6.1],
<gq,n>=0 for 2¢+1<mn [6.11],
<2, n>=0 for n=4 [6.11, 5],

(1,2) =0 well known,
(g, m) =0 for 2q+2<m [6.1],

(2,3) =0 Alexander’s theorem [5, 7].

2. Regular Neighbourhoods in R”

2.1. If K is a complex, K and K’ will stand for the first and
second derived complexes of K. Let M” be an n—dimensional manifold
which contains K as a subcomplex. By a regular neighbourhood of K
in M" we shall mean a subcomplex U(K, M) of M, such that U(K, M)
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is an n-dimensional manifold and U(K, M) contracts geometrically into
K. The main results of Whitehead [9, p. 293] are;
(a) N(K’, M"”) is a regular neighbourhood.
(b) Any two regular neighbourhoods of K in M are equivalent.
(c) If K is geometrically collapsible, U(K, M") is an n—element.
By U(K) we often denote U(K, M) when M=R.

2.2. Let M? be a g-manifold and E? a g-element such that
MNE*=M‘NE?=E""

a (g-1)-element. We say that M? and E? have regular contact in E*7'.
A transformation M?— M?UE? where M’ and E? have regular contact
in a (g-1)—element on the boundary of both, or the resultant of a finite
sequence of such transformations, will be called a regular expansion of
M? ]9, p. 291].

Let M?C R" be a g-manifold and F?C M’ a g-element such that

Mq nFG)F?—l ,

a (¢g—1)-element. Let E?C R" have regular contact with M’ in F?!
and let the g—element E?UF? be flat. Then we call E? a flat attachment

to M? [6.1, p. 33].

Lemma. If M"C R" is an n—-manifold, E" R" is an n—element and
M">M"UE" is a regular expansion of M”, then E" is a flat attachment
to M".

Proof. Since the transformation M"--M"UE”" is a regular expan-
sion, E” meets M” in an (n—1)—element F"' on the boundary of both.
Let F*=UF""*, M"). By 2.1 (c) F” is an n-element in M" such that
M”AF‘"DF”". Since, by 1.2 (d), the n—element E"UF”" is flat, E" is a
flat attachment to M".

2.3. Theorem 1. If P is a polyhedron in R", any two regular neigh-
bourhoods U,(P) and U,P) are congruent in R" relative to P, that is to
say, thereis a +PLO ¢: R"—R" such that ¢(U,(P))=U,(P) and $|P=1.

Proof. Let |K|=P be a partition such that K is a subcomplex
of R and each of the regular neighbourhood U;(P) contracts formally
into K,i=1,2[9, p. 296]. By the second corollary to Lemma 10 of
[9, p. 293], U expands regularly into N(U;, R”). Since K expands
formally into U;, it follows from Lemma 11 of [9, p. 294] that N(K”’, R”)
expands regularly into N(U;, R”). Hence by Lemma 2.2 and Theo-
rem 6 of [6.1]
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U;=U/=NU!, R")=N(K", R") .

Therefore there is a +PLO ¢:R— R such that ¢(U)=U,. Since by
2.1 (a) we may assume that F” in Lemma 2.2 which arises at each
step of regular expansions is disjoint from P, ¢|P=1.

2.4. Corollary 1. If P, Q are congruent polyhedra in R", then U(P)
and U(Q) are congruent in R".

Proof. Let ¢,:R—R be a +PLO such that ¢,(P)=@Q. Then
¢, (U(P)) is an m—manifold which contracts geometrically into ¢,(P)=@,
that is to say, ¢,(U(P)) is a regular neighbourhood of @ in R. Hence,
by Theorem 1, there is a +PLO ¢,: R— R such that ¢,0,(U(P))=U(Q).

2.5. Corollary 2. If P, Q are equivalent q-dimensional polyhedra in
R", then U(P) and U(Q) are congruent and also equivalent provided
n=>2q+2.

This follows from 1.3 (b) and 2.4 (see Theorem 24 of [9]).

2.6. REMARK. We can prove the following but since it is unneces-
sary in the rest of the paper, the proof is omitted:

If E™ is an m—element in R (m <n). Then the fundamental group
of R"—E™ is the unity.

3. Local congruence and semicongruence.

3.1. Let R" be R" with a given orientation which we keep fixed
throughout; all n-elements of R” and their boundaries will be given the
induced orientation.

Let M? be an oriented g-manifold of R”, and let g<n; we give to
all g-elements of M? and their boundaries the induced orientation.

Then we have for any vertex x€ M the pairs {N(x, M"), R},
{L(x, M"), L(x, R")}. If ¢<n—1, {N(x, M), R} represents an element
in <q,n>, {L(x, M”), L(x, R”)} represents an element in (¢g—1, n—1)
if x€IM and in <q¢—1,n—1> if x€ M.

3.2. DerINITION 1. Let MY N’ be equivalent oriented g-manifolds
of R". We say that M? N? are locally congruent in R", if there is a
+PLO ¢: M?— N7 such that for any vertex x € M’

{L(x, M"), L(x, R")} = {L($(x), N"), L($(x), R")} .

If M’ N’ are nonorientable, M? N? are locally congruent when
there is a PLO ¢: M? — N? as above, where the orientation of L(x, M")



On Regular Neighbourhoods of 2-Manifolds in 4-Euclidean space. I 231

is any one of the possible orientations of L(x, M) and that of
L(¢(x), N”) is one induced by ¢ and that of L(x, M").

DEerFINITION 2. Let M? N’ be equivalent oriented g-manifolds of K”.
We say that M? N? are semicongruent in R” if there are regular neigh-
bourhoods U(M?), U(N’) and +PLO +:U(M* — U(N?) such that
V(M)=N. If M’ N? are nonorientable, M’ N’ are semicongruent
when there is a +PLO «: UM’ — U(N?) such that (M)=N.

REMARK. It is clear that local congruence is an equivalence relation.
The reflexive and symmetric laws are clear for semicongruence and the
transitive law is easily proved by Theorem 1. Thus semicongruence is
an equivalence relation. Hence we may define local congruence classes
and semicongruence classes of equivalent oriented (or nonorientable)
manifolds in R". If M? N? of R" are semicongruent, they are locally
congruent. But whether in general the converse is true I do not know.

3.3. Lemma. [f S; (i=1,2) are oriented 1-spheres of R® and ¢ is
a +PLO:S,—S,. Then there is a +PLO ¢:N(S7, R’)—N(S;, R”)
such that r|S,=¢. .

Proof. Let S; (=1, 2) be subcomplexes of K®. Let x; be vertices
of S/ and ¢(x;)=y; vertices of S, (j=1, -, p) which are ordered by
the orientation of S; (/=1,2). It is well known that N(S!, R”) is the
aggregate of 3-elements N(z;;, R”’), where z;; is a vertex of S/, that is

b4
to say, N(S/, R")=N(\J z;;, R") [9, p. 294]. Let N(z;;, R")nN(z;;;,, R”)
=Dij7 =
(1 D, { = N(L(z;;, S}) N L(2ij41, S{) » L(z;;, R”))
’ = N(L(z;;, $/)"L(2ij115 S!) » L(2ijss, R))

is a 2-element (1=1,2. j=1,---,p mod p).
Since L(z;;, S;) is two points and L(z;;, R”’) is a 2-sphere such that
L(z;;, S{)L(z;;, R”), by 1.2 (e) for each j=1, -, p

(2) {L(x;, S1), L(x;, R")} ={L(y;, Sz), L(y;, R")} .
By (2) thereis a +PLO +7 : L(x,, R”)—L(y,, R”) such that 7 (L(x,, S7))
=Ly, S7). Since D;;_,vD;;==L(2;;, R”) for i=1,2 and j=1, ---, p mod p,

from (1) and Theorem 1 we have a +PLO p,:L(y, R")—L(y, R")
such that

P1(‘Pr(Dlj))=D2j ]=1,P and
pil Ly, Sz)=1.

Hence +{ : L(x,, R”)—L(y,, R”) defined by +,/=p 1 is a +PLO such
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that /(D) =D,; (j=1,p) and +/(L(x,, S))=L(y,S;). Then we
extend 4/ to a +PLO 4, :N(x,, R”)—>N(y,, R’) by the usual method
(see 3.11 of [6.I]), we have 4, such that ¥»|N(x,, S7)=¢ and (D,
=D2i (7=1, p).

As above by (2), we have a +PLO + : L(x,, R”’)—L(y,, R”) such
that ¥ (L(x,, S7))=L(y,, S;). From (1) and Theorem 1 we can assume
that

Yz (Dy)=D,; (j=1,2).

Since D, is a 2-element and ;' |D,, is a +PLO:D,,—D,, by 1.2 (d)
there is a +PLO p,: L(y,, R”) - L(y,, R”) such that p,|c/(L(y,, R")—H,,)
=1, p,| D=4y, ', where H,, is a regular neighbourhood of D,; in
L(y,, R’) which is disjoint from H;,,. Hence 4, : N(x,, R’)—>N(y,, R")
defined by ,/=p,p; on L(x,, R”) and the usual method (see 3.11 of
[6.1]) on N(x,, R’)—L(x,, R”), is a +PLO which is consistent with
on D,. Then +,: N(x,vx,, R")—>N(y,vy,, R’) defined by

"!’2__‘—"1’1 on N(an”),
"i’z="1fz/ on N(x27 R”)

is a +PLO such that «,|N(x,vx,, S{)=¢ and (D,;)=D,; (j=p, 2).

Since the same construction can be applied succesively, we have a
+PLO 4, ,:N(x, v--vx,,, R))>N(yv-- vy, R’') such that
‘Pp—l‘N(xl e J Xy, Sil):d) and ‘!’p—l(Dlj)=Dzj (]=p’ p_‘l)

As above there is a +PLO «, :L(x,, R')—L(y,, R’) such that
¥ (L(x,, S0))=Ll(y,, S{) and v}(D,;)=D,,; (j=p, p—1). By twice appli-
cations of 1.2 (d) there is a +PLO p,:L(y,, R’)—L(y,, R’) such that
PplDop s VD=1, A, " and p,lcl(L(y,, R')—H,_,,—H,,)=1. Hence
v, :N(x,, R”)—N(y,, R”) defined by +,=p,¥, on L(x,, R’) and the
usual way on N(x,, R’)—L(x,, R”) is a +PLO which is consistent with
Vp-1. Then

Y=, N(x, V- Uz, R )>N(y V- vy, R’
defined by taking

Y=, , on Nx V- vz, ,, R’ and
v=+, on N(x,, R’)

is a +PLO such that |S,=¢.

3.4. From 3.3, 1.2 (a) and Theorem 1 we have the well known
result [3].

REMARK. Any two oriented 1-spheves in R® are semicongruent in R°.
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Therefore the topological type of any regular neighbourhood of 1-sphere
in R® is the full torus, that is to say, the Cartesian product of a 2—element
with a I1-sphere.

3.5. Lemma. IfS; are 1-spheres of 3-spheres S%(i=1,2) and ¢ isa
+PLO:S,wN(x,, S¥) v - U N(x,, S¥') - S,UN(y,, S¥') v UN(y,, S¥’)
such that $(S,)=S,, $(N(x,, S¥)) =N(3,, S¥), -, $(N(x,, S))=N(3, ')
and $(N(x;, SY) "\ N(x,, ST)) = N3, SY) "\ N3, SY) for 1€ (h, =+, k),
me (h, ---, k), where x;, ¢(x;)=y; are the vertices of S/, S, respectively
(j=1, -, pland (h,--- ,k)==(1, -, p). Then thereis a +PLO y: N(S{, SY’)
—N(S;, S¥) such that | S, N(x,, S¥') -+ N(x,, S¥') =¢, ¥(N(x;, SY’))
=N(y;, S¥’) for each j=1,---,p and ¥(a,), V(b)) are homotopic to a,, b,
respectively, where a;, b; is an appropriately oriented canonical curve system
of the torus N(S!, S¥') such that a; is homotopic to zero in N(S;, S¥)
(=1, 2).

Proof. The first part of Lemma is clear from the proof of Lemma
3.3. Since @, is homotopic to zero in N(S7, S3’), ¥(a,) is also homotopic
to zero in N(S7, S3”), that is to say, (a,) is homotopic to a,.

If 4(b,) is not homotopic to b,, it is homotopic to aib,, where /=0
is an integer. Since (&, ---, k)==(1, ---, p), there is a number, say p, such
that ¢ does not define on N(x,, S}’). In the construction of 4, we take
a +PLO p,:L(y,, Sy’)—L(y,, S3’) such that

Pl Dop s Doy =1 sy ™ and
Po|Cl(L(yy, S3")—H,_, y—Hyy)

is an appropriate /-times rotation of the cylinder c¢/(L(y,, S¥’)
—-H,_,,—H,,) about S, which is the identity on the boundary of the
cylinder and whose direction is the inverse of the orientation of a,.
Thus the resulting 4 is a +PLO: N(S7, SY’) — N(S;, S¥’) such that (b,)
is homotopic to b,. Hence + is the required +PLO.

4. (n—1)-Manifolds in R" (n=3, 4)
4.1. Let M"* be a manifold in R" (n=3,4) and x,, x; vertices of
M’ which are the boundary of the l-simplex (x,, x;) of M’, then
N(x,, M")NN(x;, M")=C;

is an (#n—2)-element which is the dual cell of (x,,x; in M”, and
N(x,, R")n N(x;, R”)=E; is an (#—1)—element which is the dual cell of
(%, x;) in R”. Let x,, -+, x, be vertices of M’ which belong to L(x,, M),
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j\pjlc,-=L(xo,M”), an (n—2)-sphere if x,€IM, an (n—2)-element if
x,,EM and

»

j\=/1 E;=N(L(x,, M"), L(x,, R")) .

4.2. Lemma n. Let S7* be (n—1)-spheres (n=2, 3, 4), let ST2 S
be (n—2)-spheres (i=1, 2) and ¢: (ST *VE,,U ---V E,;) > (S§2VE,, U - U
E,) be a +PLO such that $(Sv2) =832 ¢(E,)=E,, -, d(E,;)=E,
and $(E,NE,,)=E,NE,, for l<(h,--,k), m€Eh,--,k), where E;; is
the star of wvertex x; (j=1,---,p) of (St73)” in (St™Y) such that
J_\IZE,-,-:N((S’;‘z)", (St™Y”) and IE,;, IE; are disjoint for j==k and

b(x,;) =%,;. Then thereis a +PLO :Sv*—S%* such that ¥|St *VE,,
V- VE,=¢ and ¥ (E,;)=E,; for each j.

Proof. We shall prove the Lemma by induction. Since the Lemma
is clear for the case #=2, we wish to make the inductive step.

Let Ct%, C3 ! be (n—1)-elements and p: (Ct ') — (C3 ') a +PLO,
there is a +PLO 5: Cy*—C%! such that g|(Ct ) = p (see 3.12 of
[6.1]). Since by (#—2, n—1)=0 for n=3, 4, c/(S7'— \jE,, is two
(n—1)—elements, it is sufficient to prove the Lemma that there is a
+PLO «,t»:(j\:ylEl,.)—»(J\Z E,) such that v|S7*UE,,u - UE,=¢ and
Y (E,;) = E,; for each j.

We construct a +PLO + by the stepwise extension of ¢. Let E,,
be a star such that ¢==h, ---,k. Since (n—3, n—2)=0 for n=3, 4,
there is a +PLO +; : (E,,)"— (E,,)" such that (qu)zbzq where D,, is
the star of x;, of (S?™®)” in (S77%”. If there is an E,; such that
j€(h, -, k) and Eur\Elq is not empty. Since ¢yrg 1|D24 is a +PLO, by
1.2 (), ¢¥e'ID,,~1. By Theorem 5 in 6.2 thereisa +PLO 5: (E,)
—(E,,)" such that ,71 D =Ye | D,,. Then v, : (E,) — (E,,)* defined by
v, =n¥; is a +PLO such that 4/ |Dql—q5. If E;nE,, is empty for
each j=h, -, k, we take ¥,/ =1,.

Since E',vq, D;,, may correspond with S77% S?7® of Lemma for the
case n—1, by the inductive hypothesis and the usual extension (see 3.11
of [6. I] ) we have a +PLO «[r* \¢— E,, such that ¥*| (S} VE,,u--- v
E,.)NE,)=¢ and V¥ (F,)=F,,, where F,, is the star of vertex x;, of
(D,q)” in (Ez,,)".

Then 4, : (St 2VE,, v - VE,,VE, ) — (S3*VE,,v - VE,,VE,,) de-
fined by taking

Yy,=¢ on ST VE,v--VE,
Y, =% on E,



On Regular Neighbourhoods of 2-Manifolds in 4-Euclidean space. I 235

is a +PLO which is the extension of ¢ over St ?VE,,v:-VE, VE,,
and «lrl( = Ezq By the same constructions we can extend ¢ to

\/El, \jEz, ) such that (E,;)=E,; for each j=1, .- ,p. This
completes the proof

4.3. The following is evident.

Lemma n. Let 87 be (n—1)-spheres (n=2, 3, 4), let C? 2 S?™* be
(n—2)—elements. (i=1,2) and let ¢:(Cr2UE,\ - uE,k) — (Cy 2V E,
V- VE,) be a +PLO such that $(Cy %) =C357?% ¢(E,)=E,,, ---, d(Ey,)

w and (EynE,,,)=E,NE,, for [€(h,--- k), mE(h,- - k), where EU
is the star of vertex x; (j=1,---,p) of (Cy%" in (S7Y)’ such that

j\ple,-,-=N((C;“2)", (St and IE,;, IE,, are disjoint for j==k and

d(x,;) =2x,;. Then thereis a +PLO :S7*— 8% such that ¥|Ct*VE,,
Ve VE,=¢ and V(E,;)=E,; for each j=1, .-, p.

4.4, Lemma. If M; (i=1,2) are (n—1)-manifolds in R® n=3, 4)
and ¢: M, —M, is a +PLO, then there is a +PLO +:N(M;, R")
— N(M3, R") such that | M,=¢.

Proof. Let x; be vertices of M/ and ¢(x;)=y; vertices of M,
(j==1, ---, m). Since the topological type of L(x,, M;) coincides with that
of L(y,M;) (see 4.1), there is a +PLO «|L(x,, M{): L(x,, M7)
— L(y, M;) and L(z;;, R”) is an (#—1)-sphere, where z;; is a vertex of
M/, by Lemma 4.2 or Lemma 4.3 there is a +PLO Y/ L(x,, R")
—L(y,, R”) such that »/|L(x,, M{)=¢ and +(E,,)=E,,, where E,, is
the star of vertex z,, of L(z;, M) in L(z;, R") (see 4.2 or 4.3). Then,
extending 4’ toa +PLO +,: N(x,, R”)— N(y,, R’) by the usual method,

we have
¥ |N(x,, M{)=¢ and +(E,)=E, for each a.

As above, by Lemma 4.2 or 4.3 we have a +PLO +; :L(x,, R”)
—L(y,, R”) such that +;|N(x,, R")NL(x,, R") =1, ¥y |L(x,, M{)=¢
and ; (F,)=F,,, where F; is the star of vertex z,, of L(z;,, M;) in
L(z;;, R”). Then we extend +r; to a +PLO +,/: N(x,, R”)—> N(y,, R")
by the usual method which is consistent with +,. Thus 4, : N(x,ux,, R”)
— N(y,vy,, R”) defined by taking

¥,=4vYy on N(x, R"),
v,=v,, on N(x,, R”)

is a +PLO such that
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W | N Uz, M) =6, v, (E,)=E,, and
‘J’Z(Flb) =F,, for each a,b.

Since the same construction can be applied to z,, ---‘, x,, succeéi\}ely,
we have a +PLO 4,: N(x, v---vx,, R))>N(y\Vv--vuy,, R’) such
that ,,|N(x, v - Ux,,, M{)=¢. Thus =+, is the required +PLO.

4.5. From 4.4 we have

Theorem 2. Any two equivalent (n—1)-manifolds in R" (n=3, 4) are
semicongruent.

ReEMARK. From Theorem 2, 2.1 (c) and 1.2 (d), we have <(3.4>=0
[6. II].

5. Orientable 2-manifolds in R*

5.1. Let M be a 2-manifold in R* and x,, x; vertices of M’ which.
are the boundary of the l-simplex (x,, x;) of M’. Then

N(x,, M")N\N(x;, M) =C;
is a 1-element which is the dual cell of (x,, x;) in M”, and
N(x,, R")nN(x;, R") =E;

is a 3-element which is the dual cell of (x,, x;) in R”.
Let «x,, -+, x, be vertices of M’ which belong to L(x,, M’),

? - l1-sphere if x,€IM
C;=L(x,, M")=1{?2 o0& 4
J\=j1 ’ (x ) {a l-element if x,€M

and J\fle,-=N(L(xo, M"), Lz, R")).

5.2. Lemma. Let S} be 3—spheres, let SiCS? (i=1, 2) be 1-spheres
such that {Si, S3}={S}, S3} and let ¢:(SIVE,, v - VE,)— (S;VE,,
V- VE,) bea +PLO such that $(S1)=S3, ¢(E,,) =E,,, -, p(E,;) =E,,
and $(E,NE,,)=E,NE,, for l€h, - k), meh, -,k and (h, -, k)
== (1, -+, p), where E;y is N(z;;, S¥') in Lemma 3.5 (j=1,---,p). Then
there is a +PLO :S81—S} such that |SIVE,, v - VE,=¢ and
Y(E,;)=E,; for each j=1, ---, p.

Proof. Since {S}, S3} = {S}, S3}, thereis a +PLO 6:S}—S? such
that 6(S3) =S1 and 0(N(S}, S¥’')=N(SY”, S¥’). Let a, b be the canonical
curve system of N( 3/, Sy”) such that & is homotopic to zero in
N(SY’, S¥/), 6(a), 6(b) is also the canonical curve system of N(SY’, S¥).
By Lemma 3.5 there is a +PLO ' : N(SY’, S¥’)— N(S%’, S§’) such that
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V' |SIVE, v VE,=¢ and ' (E,;)=E,; for each j and 6(a), 4'0(b)
are homotopic to a, b respectively. Thus xp’HIN( v S¥7) . N(SY’, S¥)
— N(SY’, S¥) is a PLO which induces the identical automorphism of
the fundamental group of N(SY’, S¥"). By 1.2 (c), «[/0|N( 3, Sy ~1.
By Theorem 5 in 6.2, there is an isotopy A,:S3— S} such that )\,=1,
A N(SY, S3’) =6 | N(SY’, S¥’). Then +:S?— 83 defined by taking

Y=y  on NSV, SV
v=n0" on cl(SI—N(SY, S¥))

is the required +PLO.
5.3. Since (2, 3) =0, the following is evident.

Lemma. Let S? be 3-spheres, let C}CS; (i=1, 2) be 1-elements and
let &:(CIVE,, v - VE,;)—(CiVE, - UEy,) be a +PLO such that
(Ci) = %, H(E,)=E,, -, p(Ey) =E,, and $(E,NE,,)=E,NE,, for
leh, -, k), meh, -k, where E;; is analogous to Lemma 5.2
(j=1,---,p). Then there is a +PLO :S%—>S8S3 such that y|SiVE,,
V- VE,=¢ and V(E\;)=E,; for each j=1, -, p.

5.4. Lemma. If M, M, are oriented 2-manifolds in R* and
b: M, - M, is a +PLO such that for any vertex x<€ M,

(%) {L(x, M), L(x, R")}={L(¢(x), ), Liplx), R")}
then there is a +PLO ¥ : N(M;, R”)— N(M;, R") such that r|M,=¢.

Proof. Let x; be vertices of M,/ and ¢(x;)=y; vertices of M,
(=1, ---, n). Since the topological type of L(x,, M{) coincides with that
of L(y,M;) and there is a +PLO ¢|L(x,, My): L(x,, My)— L(y,, M3)
by 5.2 or 5.3 and (%) there is a +PLO +/:L(x,, R’)—-L(y,, R”) such
that +|L(x,, M{)=¢ and /(E,;) =E,; for each j (see 5.2 and 5.3).
Then, extending ¥/ to a +PLO +,: N(x,, R”)— N(y,, R”) by the usual
method, we have 4, |N(x,, M{)=¢ and (E,;) =E,; for each j.

Since the analogous construction in 4.4 can be applied to x,, -, %,_,
succesively whenever the conditions of Lemma 3.5 are fulfilled, we may
assume that there is a +PLO +,_,: N(x,, -, x,.,, R')>N(y, v v
Yu-1» RH) such that “!’n—l'N(xx e VU Xy, M{I) =¢ and ‘lfn—x(Glj) =G2i for
each j where G,;, G,; are E,;, E,; (of N(x,, SY’), N(y,, S3’)) in Lemmas
5.2 and 5. 3.

If x,,EM, by using 5.3 we can continue the construction and have
the required +PLO y=+,. If x,€IM, by (x) there is +PLO
6:L(y,, R")—L(x,, R’) such that 6(L(y,, M;))=L(x,, M) and further
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6—1 |L(xn’ M{/) =¢' Let N(L(x,, M{/)) L(xi» RH)) =Ni1, N(L(yn Mg)’
L(y;, R"))=N;, and a, b a canonical curve system of N,,2 such that « is

homotopic to zero in N,, 6a, 6b is a canonical curve system of Nm
such that 6¢ is homotopic to zero in N,,.

If «}rn_lﬂanZ:an-é ‘,,2 induces the identical automorphism of the

fundamental group of N,,z, by the method of 5.2 we have the required
+PLO as in 4.4.

If «,b,,_lﬁle does not induce the identical automorphism of the
fundamental group of N,,, Jr,_,0(b) is homotopic to a’b, where /==0 is
an integer. Let (¥,, y., ¥,) be a 2-simplex of M, whose vertices are
Y., ¥, and y,. Let N,,zr\N,,2=B,,u,N,,2r\N,,2=B,,,,, Nuzr\N,,2=Bm,, they
are the cylinders. We deform +,, into a +PLO w;_l:N(gxi,M{’)
—>N(:.\jj1yi, ») such that ¥5_,|N, :N,,— N, is a +PLO which arises
from ;p,,_l and _é_—times rotations of B,, and B,, about L(y,, MZ) whose
directions are the inverse of the orientation of ¢ as in 3.5.
Further ,_,|(N,"\N,) : (NauNN,)— (N,.NN,,) is a +PLO which arises
from +,_, and %—times rotations of B,, about L(y,, M;) whose direc-

tion is the orientation of ¢ as in 3.5. Since the rotations of B,,, B,,
(B,», B,,) do not induce to make the torsion of N,,Z(N,,z), yrr_, really

exists such that ¥, ,|N( \J =, R")=1]f,,_1,¢£—1|N(Qxi,M/')=¢ and
i=

idnu0,

Ys_.0(b) is homotopic to b in N,,.
Then by 5.2 we can construct the required {r=1,.

5.5. REMARK. For nonorientable 2-manifolds the Lemma is also
true with slight modifications of the expression.

5.6. From 5.4, 5.5 and Remark in 3.2, we have

Theorem 3. Any two equivalent 2-manifolds in R' are scnicon-
gruent if and only if they are locally congruent.

5.7. The following is well known [6. II, p. 135]. For a vertex x
of a 2-manifold M’ in R*, {L(x, M"”), L(x, R’)} =0 is possible only if
x€IM. Hence there are k internal vertices x,, -, x,€ M’ such that
{L(x;, M"), L(x;, R”)} #=0. We call such points %, -+, x, singular points
of M in R*. If M has no singular point, we say that M is locally flat
in R

Lemma. [If M; (i=1,2) are equivalent oriented 2-manifolds in R'.
Then M,, M, ave semicongruent if and only if there is a one-one corre-
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spondence between the singular points x,,---,x, of M, and the singular
points y,, -+, ¥, of M, such that for each j=1, -,k

{L(xj7 M{/) ’ L(xj, RN) E{L(yjy Mé/) ’ L(yf, RN)} .

Proof. Let ¢: M,— M, be an arbitrary PLO. Since there is an
orientation reversing PLO: M;— M;, we may assume that ¢: M,— M,
be a +PLO. Let y/=¢(x;), by 1.2 (e) there is a +PLO p: M,— M,
such that p(y/)=y; for each j. Since the local congruence of M,, M,
arises from pp: M, — M,, the sufficiency of Lemma is established by 5.4.
The necessity of Lemma is evident.

5.8. Lemma. Let {S' S°} be an arbitrary knot. Then there is a
2-sphere S* in R' which has the only one singular point O such that

{L(0, S*"), L(0, R")}={S", $°} .

Proof. We take an R* of R* such that there is a S' in R® and
{S", R’} ={S", §*}. Then we take an R’ of R* and consider the regular

projection of the knot S' onto R? Let y,,--,y, be the double points
of the projection and x; and x,, the under and the upper points which

correspond to y; (i=1, ---,n). Let C, be a l-element such that IC;; > x;,
and E; a sufficient small 2-element such that S'NE;=C;vux; and

. k k
C,=cl(E;—C,). Since we can assume that (S'— \jICil)u(\jlc,,):So,
i= i=
for some k<#, is unknotted, there is a 2-element D, of R® such that
D,=S,. Let O be a point in R*—R® and D/ a cone of the vertex 0 and
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the base E; and C,C D/ a l-element such that C',~3=C.,-1 and C;, corre-
sponds topologically to C;; by the generating lines of D/, i=1, -,k
(see Fig). Let 0; be a point of R'—(R*uC;) which belongs to the in-
terior of the cone of the vertex O and the base E;, i=1, .-,k Let D;
be a cone of the vertex 0; and the base C;wC;. Let D be a cone of

the vertex O and the base (S'— (/ Cil)u(\,_G/Cia). It follows from the
" =1 i=1

construction that Dv(\/D,)uD, is a 2-sphere S If we orient S* by
i=1

the orientation of S', we can easily see by Theorem 6 [6. 1] that S
has only one singular point 0 such that {L(0, S*’), L(0, R")} = {S", S°}.

5.9. Theorem 4. There is a one-one corrvespondence between the semi-
congruence classes of equivalent oriented 2-mamnifolds in R* and the
(unordered) finite sets of knot types, where the empty set stands for the
unknotted type.

Proof. By Lemma in 5.7 it is sufficient to prove the Theorem that

for any orientable 2-manifold M, and any set of knot types (k,, -, )
there is a 2-manifold M in R* such that M is equivalent to M, and M
has the singular points 0; whose knot types are «; (i=1, .-+, k).

If (x,, - ,x,) is the empty set, M is a 2-manifold in R*C R* equi-
valent to M,. Since a l-sphere of a 2-sphere is flat in a 3-sphere
which contains the 2-sphere and <1, 3°>=0, M is locally flat in R*.

If («,, -+, x,) is a nonempty set, there are by 5.9 mutually disjoint
2-spheres S? in R* which have only one singular point 0; whose knot
types are «; respectively (i=1,---,k) and a 2-manifold M, in R* of R*
equivalent to M,. Let ¢, R* (=1, .-,k be mutually disjoint 1-
elements such that for each 7, C;n M, is one of the two end points and
in IM,, C;nS; is the other end point and in IS; and C; are disjoint
form S; (i==j). Let H; be an appropriate small regular neighbourhood
of C; in K. M, and S; divide H; into three 3-elements, let E; be a
3-element of H; which contains C;. Since by appropriate modifications
of H; the orientations of M, E,-, S; will be coherent on their inter-
sections, M=M*+i\jkl(E‘,-+S,-) is an oriented 2-manifold, where the
addition is the algebraic addition of complexs. It is easily seen that M

is equivalent to M, and has the singular points 0; whose types are «;
(t=1,---, k). Thus M is the required manifold.

5.10. REMARK. In the next paper we shall prove the following:
If M; (i=1, 2) are equivalent oriented 2-manifolds in R* such that they
are not semicongruent and M: (=1, 2) are the boundaries of regular
neighbourhoods U(M3) in R*, then M3 and M3 are not necessarily equivalent.
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6. Applications

6.1. Since by Theorem 2 in 4.5, the regular neighbourhood of any
two equivalent (z—1)-manifolds in R” (#=3,4) are equivalent, the
following will be seen easily (from Lemmas 4.2, 4.3 and elementary
considerations).

Let M be an (#—1)-manifold in R” (n=3,4) and C' a l-element
which will be thought of as a cone of the vertex 0¢€ IC' and the base
B=C" and C* a 2-element which will be thought of as a cone of the
vertex 0 € C? and the case B=1-element C' of C* such that 0€ C'. Then

UM R =(\JCxzx)u(\JC?*xx),
2CIM 2EM
where we identify (0, x) with =x.
Since C!, C* are the cone of the vertex 0 and the base B, Ci=\/J B,

ter

(i=1,2), where B,=\Jy, and y, is a point of the segment Oy such that
- YEB
yy::9.0=t¢t:1—t, thus C'= \J y,, where =0 and y,=

YE€B, t€l
6.2. Theorem 5. If M"™* is an (n—1I1)-manifold in R" (n=23, 4)
and ¢:M"'—->M"" is a PLO such that ¢=~1, then there is a +PLO
Yr: R"— R" such that | M=¢.

Proof. Let ¢,: M—M, t€l, be an isotopy between ¢(=¢,) and
1(=¢,). Then 4 : R— R defined by taking

Y(z)=z if zeR—UM, R),
V(2) = (s, Pe(x)), if z€ UM, R) and ze€Cixx

such that z={(y,, %), is a +PLO : R— R such that ¢ |M=¢.

Corollary. [If H™' is an (n—1I1)-sphere or an (n—I1)—element in R"
mn=3,4) and ¢: H**—->H"' s a +PLO, then there is a +PLO
Jr: R~ R" such that | H=¢.

This follows from Theorem 5 and 1.2 (d) or 1.2 (b).

6.3. Since the oriented 2-manifold in R® is locally flat in K, the
topological type of any regular neighbourhood of an orientable 2-
manifold M in R* which is locally flat is the Cartesian product of a
1-element with a regular neighbourhood of M in R°. Hence we have
the following: Let C*C® be a 2-element (3-element) which will be
thought of as a cone of the vertex 0€IC* (0¢€ () and the base B=C(?
(B=2-element C? of C*and C*30). Then UM, R)= \/ C*x x) U (x\ejMC3><x),



242 H. NogucH1

where we identify (0, x) with x. By the similar argument to Theorem 5,
we have

Theorem 6. If M"? is an orientable (n—2)-manifold in R" (n=23, 4)
which is locally flat if n=4 and ¢:M"*—->M"?* is a PLO such that
¢~1, then there is a +PLO : R"— R" such that | M=¢.

Corollary. If H"* is an (n—2)-sphere or an (n—2)—element in R"
(n=23, 4) which is lccally flat if n=4 and ¢: H"*—>H"* is a +PLO,
then theve is a +PLO Y : R"— R" such that | H=¢.

ReEMARK. If n=4, the condition of local flatness in Theorem 6 and
its corollary is essential. By 1.2 (e) we easily have the following: Let
M be an orientable 2-manifold R*. For any PLO ¢:M—M such that
¢p~1, there is a +PLO +r:R*—R* such that | M=¢ if and only if
M is locally flat.

6.4. The concept to be free defined by K. Borsuk [2] is an in-
variant under semicongruence. From the considerations above men-
tioned, we easily have the following :

Theorem 7. Any (n—1)-manifold and any orientable (n—2)—manifold
which are locally flat in R" are free in R" (n=23, 4).

Waseda University
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