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1. Introduction

In Riemannian geometry, it is a fundamental question to ask how the
geometric invariants of Riemannian manifolds are influenced by curvature re-

strictions.

The volume of Riemannian manifolds and of geodesic balls in them is one

of the most basic invariants, for which Bishop-Gromov's comparison theorem

is well known (see [3], [5]).
In this note, we prove Bishop-Gromov type comparison theorem for the

class of complete connected Kahler manifolds of complex dimension n whose

Ricci curvature and holomorphic sectional curvature satisfy

and

respecitvely, where δ is a positive real number (Theorem 1). Moreover, we
characterize the complex projective space with the canonical metric by its vol-

ume among this class (Theorem 2).
In Section 2 we prepare notations and some preliminary results. Here we

reduce our problem to the estimation of the mean curvature of geodesic spheres,

which is carried out in Section 3. In Section 4 we estimate the volume element

with respect to polar coordinates and prove our main theorems.
The author would like to express his hearty thanks to Professor T. Sakai

for his suggestions for improving the first version of this paper and to Professors
H. Ozeki and M. Takeuchi for their constant encouragement and instruction.

2. Notations and preliminaries

Let M be a complete connected Riemannian manifold of dimension m(m^
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2). We denote the tangent space of M at p by TpM and the inner product of

tangent vectors u and v in TpM by ζu, v). The length or norm of v is de-
noted by \\v\\ and the unit sphere in TpM by UPM.

Let B(p, r) and S(p, r) denote the geodesic ball and the geodesic sphere of

radius r centered at p, respectively, that is,

, r) = {exp, tv: v& UPM, 0^

and

S(P> r) =

where exp^: TPM-*M stands for the exponential map at p.
For p^M and v^UpM, let cp>v: [0, oo)-*Λf denote the geodesic parametriz-

ed by arc length emanating from p with the initial direction v. We denote by

Rp(v) (resp. φp(v)} the cut value (resp. the smallest conjugate value) of p in the

direction v. We write simply R(v) and φ(v) when no confusion is likely to
occur.

If u and v are two orthogonal unit vectors at a point of M, then we denote

by K(u, v) the sectional curvature of the plane section determined by u and v.

Moreover, let {el9 •••, em} be an orthonormal basis of TPM and let v be a unit

tangent vector at p. Then the quantity Ric(ϋ) = Σ?-ι K(v> ei) ιs called the Ricci
curvature of v.

Let λ be a real number. We write Ric^λ if the inequality Ric(z;)^λ
holds for every unit tangent vector v of M.

Let p^M, v& UPM and re(0, φ(v)) Then the geodesic sphere S(p, r) is
locally a hypersurface near around the point cptV(r) and the velocity vector cptV(r)

is a unit normal vector to S(p, r). Let ηptV(r) denote the mean curvature of S

(p, r) with respect to cptV(r).

We choose an orthonormal basis {ely •••, em_^ in the tangent space of S(py r)

at cptV(r). There exist Jacobi fields YΊ(/), •••, Ym^(t) along ^>t,|[0, r] satisfying

F,.(0) = 0, Yfr) = β, , l^i^ifi-1.

Then ^,r(r) can be expressed as follows (see [6]):

(1) W) = -!/(«-!) Σ?-

where FJ(ί) denotes the covariant derivative of Ff (£) along ^fβ and Λ denotes

the Riemannain curvature tensor of M.
Now fixp&M. We define a smooth map Θ^ from C7^Λfχ[0, oo) onto M

by



VOLUME OF POSITIVELY CURVED KAHLER MANIFOLDS 225

θp(v, t) = exp, tv, v^ UPM , f e [0, oo) .

We choose an orientation for TpM and define an orientation for UPM so that

for each v& UPM> {ely •••, em^} is a positively oriented basis of Tv Up M if and

only if {ely •••, em_l9 v} is a positively oriented basis of TpM, where Tv UPM is

considered as a subspace of TPM. Let dσ denote the volume element on UPM

with respect to this orientation. Let dp be the parallel translate of the volume

element on TpM along the geodesies emanating from^. We now define a smooth

function θp(v, t) on UpMx [0, oo) by

Qγdp=θp(v,t)dσΛdt.

Then it is easy to verify that for each v e UpM

and

θp(v,t)>Q,

Choose a basis -fo, •• ,^_1} of Tυ UPM. There exist Jacobi fields

•••, Ym-i(t) along cpt, satisfying y,.(0)=0, Y/

i(Q)=ei9 l^i^m—1. We extend el9

•••> em-ι to the parallel vector fields ^(ί), •••, ̂ - ί̂) along ̂ tβ, respectively. Since
ί/Θ^(p t) (e{)= Yi(t), l^i^m—ly we have the following expression of the function

0,(βfί) (**[!], [3]):

(2) 0,(β, ί) = (YMΛ >•> Λ y.-χ(ί))/(eι(ί)Λ - Λ«._,(ί)) .

Using ^(ϋ, ί), the volume of the geodesic ball -B(̂ ), r) can be expressed as fol-

lows. If we set s(v)=min(r, R(v)) for each v^ UPM, then

(3) vol(B(p, r)) = \ dσ('W θp(v, t) dt .
JUpM Jθ

This formula is an immediate consequence of Fubini's Theorem, which is

permissible because the functions concerned are all continuous.

We have the following relation between the functions θp(v, t) and ηptV(f) :

Lemma 1. Let p^M and v e UPM. Then we have

(4) d/dt log θp(v, t) = -(m- 1) qpt,(t) , 0<t<φ(v) .

Proof. Fix /Oe(0, 9?(^)) arbitrarily. In the formula (2) we may assume

that YΊ(£O)> "•> Ym-ι(to) are orthonormal. We define a matrix-valued function

(^W)ι^ι.^«-ι by

Then we have θp(v, ί)=det ^4(ί) by (2).
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We set i0.(ί)=<y,.(0, Yi(ty>,m=(Wfi1*l.Js.-i,Pu=<'i>'i> and P=
(Pii)ι*ι./*.-ι Then M'HΣΓjii β?(0ί«βί(ί), so that det B(«)=(det A(t))*
det P. Hence diίFerentiating the both sides, we obtain

(5) djdt log (det B(t)) = 2 d/dt log (det A(t))

= 2 d\dt log θp(v, t) .

On the other hand, we have

(6) d/dt log (det B(t)) I Mβ - 2(det B^))'1

= -2(m-\) ηptυ(t,}

by (1). Combining (5) with (6), we conclude that

d/dt log θp(v, t) |,_,β=-(m-l) ̂ ..fo) .

Since £0 is arbitrary, this completes the proof.//

EXAMPLE 1. Let S™ be the w-dimensional sphere with the canonical metric
of constant sectional curvature p2(p>0). Then ηptV and θp are independent of
particular choices of p and v, and

Vp.M = -P cot Pt

and

EXAMPLE 2. Let PδCC) be the complex projective space of complex dimen-
sion n with the canonical metric of constant holomorphic sectional curvature
4δ2 (δ>0). In this case ηp>v and θp are also independent of p and v, and

WO = ̂ ..(0 = -8 (cot 8t-l/(2n-l) tan δί)

and

^(ϋ, t) = Θ8>n(t) = (sin St/S)2"-1 cos δί .

These expressions follows from the formulas (1) and (2), respectively, since the
Jacobi fields on Pl(C) are well-known (see [1]).

3. Estimate of ijPtU

Let M be a Kahler manifold. Let / stand for the almost complex structure
of M. For a unit tangent vector v of M, the sectional curvature K(v,Jv) is
called the holomorphic sectional curvature of v and denoted by KH(v).
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Let λ be a real number. We write Kff^\ if the inequality
holds for every unit tangent vector v of M.

In the rest of this paper, we consider a complete connected Kahler manifold

of complex dimension n which satisfies the following conditions for a positive

real number δ:

Ric^2(/H-l)δ2 and KH^2 .

It is well-known that such a Kahler manifold is simply connected and compact,

and in fact its diameter is less than or equal to π/28 (see [8], [9]).

Lemma 2. Let M be as above. Then we have

(7) W0^??β..(0> V<t<min(φ(v), πβS) ,

for any unit tangent vector v at any point p of M.

Proof. Fix f e(o, mm(φ(v)} ττ/2δ)) arbitrarily. We take unit vectors ely •••,
e2n-2 at cρ,v(t) so Λat ely •• ,e2n-2>J'Cp.v(t)=:e2n-ι form an orthonormal basis of
TCptV(t) S(p, ί), and extend them to the parallel vector fields ^(s), •••, <2n-ι(s) along

Cp.,\\Λ.tl Note that we have e2n^(s)=J cpfV(s). Let F^s), •••, Y^^s) be Jacobi
fields along cp>v \ [θtί] satisfying

Γ,(0) = 0 , y,(f) = ei9 1 ̂ i^2n- 1 .

Moreover, we define vector fields Z^s), •••, Z2n_λ(s) along cptV\ι0itι by

(sin δί/sin St) e^s) , 1 <^i<^2n—2 ,

~~ (sin 2δ5/sin 2St) e2n^(ή y i = 2n— 1 .

Let I*o(X) denote the index form of a vector field X along cίίt,| [<,,,]. Then
by the minimization theorem (see [3]), we have

Hence

= Γ [(2«-2) (S cos S ί/sin δ f)2-(sin δ i/sίn δ ί)2 ΣflΊ2 (̂c. «,(ί),
Jo

+(2δ cos 2δ s/sin 2δ (f— (sin δ ί/sin δ ί)2 (cos δ ί/cos δ ί)2 ^(<fΛ,

= (' [(2w-2) (δ cos δ ί/sin δ ί)2-(sin δ s/sin δ if Ric(cp,,(s)}
Jo

+(2δ cos 2δ s/sin 28 t)2— (sin δ s/sin δ ί)2 {(cos δ s/cos δ ί)2— 1}

(' [(2«-2) (δ cos δ j/sin δ i)2~(sin δ s/sin δ *)2 (2^+2) δ2

Jo
+(2δ cos 2δ s/sin 2δ t)2— (sin δ s/sin δ ί)2 {(cos δ s/cos δ ί)2— 1} 4δ2] ds

Γ [(2ιι-2) (δ cos δ s/sin δ *)2-(sin δ s/sin δ /)2 (2n-2) δ2

Jo
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+(2δ cos 28 s/sin 28 t)2— (sin 2δ 5/sin 28 t)2 4δ2] ds

= — (2/ί— 1) η8,n(t) This completes the proof.//

4. Estimate of θp and comparison theorems for the volume of
geodesic balls

Lemma 3. Let M be a complete connected Kάhϊer manifold of complex
dimension n which satisfies

2 and Kff^482

for a positive real number δ.

Then we have

(8) *,(», t'}lθt(

for any unit tangent vector v at any point p of M.

Proof. We put a=min(φ(v), τr/2δ). Let us consider in the interval (0, a).

For simplicity we set

θ(t) = ΘJt,ί) and θ&) = θt.n(s).

By Lemma 1 and Lemma 2 we have

(log 0(*))'^(log θa(ή)' ,

where " / " stands for the differentiation with respect to the variable s. Let

ΐ^t'<a. By integrating the both sides from t to t' we obtain

Hence the inequality (8) follows and

(9) θ(t')lθ,(t')

Since the right-hand side goes to 1 as t tends to 0, we obtain

From this inequality, it can be easily seen that the smallest conjugate value φ(v)

<:τr/2δ. This completes the proof.//

In the last of the proof, we have obtained

Corollary 1. Let M be as in Lemma 3. Then the smallest conjugate value
satisfies

(10) φ
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for any unit tangent vector v of M.

REMARK. From (10), we know that the inequality (7) in Lemma 2 holds
in the interval (0, φ(v)).

From Lemma 3, we obtain the following Bishop-Gromov type comparison
theorem.

Theorem 1. Let M be a complete connected Kάhler manifold of complex
dimension n which satisfies

2 and KH^

for a positive real number δ. Then for any pξ=M and for any r'^r>0, we have

(11) vol(B(p, r'))lvol(B(p, r))<^>')K,M ,

where vBtΛ(r) denote the volume of the geodesic ball of radius r in Pl(C).

Proof. By Lemma 3 we know that the function

is nonincreasing for any p^M and for any
We set

-ί'1

^ »(
0,

:Ό,

and

f(t} = J ̂/U 1 0,

Note that/(ί) is nonincreasing
By (3) we have

vol(B(p, r))K.(r) = (l/TO/ί-SΪ"-1)) ί ΓΓ δ(υt t) dtfi ΘJt) dt~\ dσ .
JUpM LJo / Jo JJUpM

Setting dμ(t)=0Q(t) dty we have

Γ Θ(V, t) dt /Γ 9Q(t) dt = (l/Γ dμ(t)) X \'f(t) dμ(t) .
J o I J o \ I J o / J o

Since f(f) is nonincreasing, the right-hand side is also nonincreasing (see [5]).
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Hence vol(B(p, r))/vSfn(r) is a nonincreasing function of r. This completes the
proof.//

Since the quantity vol(jB(^>, 0)/ϋ«,«(r) g°es to 1 as r tends to 0, we have

Corollary 2. Let M be as in Theorem 1. Then for any p&M and for
any r>0, we have

(12)

Theorem 2. Let M be as in Theorem 1. Then

The equality holds if and only if M is holomorphίcally isometric to Pl(C).

REMARK. Let M be as in the theorem. Then by Bishop's comparison
theorem (see [3]), we have

where p=\/2(n+l)/(2n— 1) δ. The inequality in Theorem 2 is sharper than
this one.

Bishop-Goldberg [4] obtained the similar result using the circle bundle
method. Our method here is quite different from theirs and the assumption
of the theorem seems more reasonable.

Proof. The first assertion follows if we set r=π/2δ in (12).
To prove the second assertion, we assume that vol(M)=vol(Ps(C)) and

fix p^M arbitrarily. Then we can easily verify that for any

Hence we have for any v e

Then all the inequalities in the proof of Lemma 2 must be equalities. In par-

ticular, we have the equality sign in the last inequality and

Since p and v were taken arbitrarily, we know that the holomorphic sec-
tional curvature of M is constant and equal to 4δ2. Hence M is holomorphically
isometric to PJ(C) (see [1], [7]).//
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