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1. Introduction

In Riemannian geometry, it is a fundamental question to ask how the
geometric invariants of Riemannian manifolds are influenced by curvature re-
strictions.

The volume of Riemannian manifolds and of geodesic balls in them is one
of the most basic invariants, for which Bishop-Gromov’s comparison theorem
is well known (see [3], [5]).

In this note, we prove Bishop-Gromov type comparison theorem for the
class of complete connected Kihler manifolds of complex dimension z whose
Ricci curvature and holomorphic sectional curvature satisfy

Ric=2(n+1) &
and
Ky=48%,

respecitvely, where § is a positive real number (Theorem 1). Moreover, we
characterize the complex projective space with the canonical metric by its vol-
ume among this class (Theorem 2).

In Section 2 we prepare notations and some preliminary results. Here we
reduce our problem to the estimation of the mean curvature of geodesic spheres,
which is carried out in Section 3. In Section 4 we estimate the volume element
with respect to polar coordinates and prove our main theorems.

The author would like to express his hearty thanks to Professor T. Sakai
for his suggestions for improving the first version of this paper and to Professors
H. Ozeki and M. Takeuchi for their constant encouragement and instruction.

2. Notations and preliminaries

Let M be a complete connected Riemannian manifold of dimension m(m=
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2). We denote the tangent space of M at p by T,M and the inner product of
tangent vectors % and v in T,M by <{u,v>. The length or norm of v is de-
noted by [|v|| and the unit sphere in T,M by U,M.

Let B(p,r) and S(p, r) denote the geodesic ball and the geodesic sphere of
radius 7 centered at p, respectively, that is,

B(p,r) = {exp, tv: v€e UM, 0=t<r}
and
S(p,r) = {exp,rv:v€ UM} ,

where exp,: T,M—M stands for the exponential map at p.

For peM and ve U, M, let ¢, ,: [0, co)—M denote the geodesic parametriz-
ed by arc length emanating from p with the initial direction v. We denote by
R,(v) (resp. @,(v)) the cut value (resp. the smallest conjugate value) of p in the
direction v. We write simply R(v) and @(v) when no confusion is likely to
occur.

If u and v are two orthogonal unit vectors at a point of M, then we denote
by K(u, v) the sectional curvature of the plane section determined by # and v.
Moreover, let {e, -+, ¢,} be an orthonormal basis of 7,M and let v be a unit
tangent vector at p. Then the quantity Ric(v)=337"; K (9, ¢;) is called the Ricci
curvature of v.

Let A be a real number. We write Ric=\ if the inequality Ric(v)=n
holds for every unit tangent vector v of M.

Let peM, veU,M and r&(0, ¢(v)). Then the geodesic sphere S(p, r) is
locally a hypersurface near around the point ¢, ,(r) and the velocity vector ¢, ,(7)
is a unit normal vector to S(p,r). Let 5,,(r) denote the mean curvature of S
(p, r) with respect to ¢, (7).

We choose an orthonormal basis {e,, -, e,,_,} in the tangent space of S(p,7)
at ¢, (7). There exist Jacobi fields Y(2), «-+, Y,_,(?) along ¢, ,|[0, ] satisfying

Y(0)=0,Y(r)=¢, 1=<i<m—1.
Then 7,,,(r) can be expressed as follows (see [6]):
1) (1) = —1/(m—1) 3315 <Yi(r), Yi(r)>
— —1em—1)y 2 | 1YvioIr
'—<R (éﬁ,w Y,) c.p,m Ya> (t)] dt ’

where Y/(f) denotes the covariant derivative of Y,(¢) along ¢,, and R denotes
the Riemannain curvature tensor of M.
Now fix p&M. We define a smooth map ®, from U,MX[0, o) onto M

by
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8,(v,t) =exp,tv, veUM, t&[0, o).

We choose an orientation for T,M and define an orientation for U,M so that
for each veU,M, {e,, -+, e,-,} is a positively oriented basis of T, U, M if and
only if {e,, -+, e,-,, v} is a positively oriented basis of T,M, where T, UM is
considered as a subspace of T,M. Let do denote the volume element on U,M
with respect to this orientation. Let dp be the parallel translate of the volume
element on T,M along the geodesics emanating from p. We now define a smooth
function 6,(v, ) on U,M X [0, o) by

8F dp = 0,(v, t) do Adt .
Then it is easy to verify that for each ve UM
0,2, 0) = 6,(v, p(2) = 0,
and
0,(v,)>0, 0<t<gp(v).

Choose a basis {e,, :*+, e,-,} of T, U, M. There exist Jacobi fields Y;(2),
e, Y,,_,(2) along ¢, , satisfying Y;(0)=0, Y}(0)=e¢;, ISi=m—1. We extend ¢,
s++, €y, to the parallel vector fields ¢(2), ++-, e,,,(¢) along ¢, ,, respectively. Since
d B,u.n (6;)=Y(t), 1=i=m—1, we have the following expression of the function

0,(v, t) (see [1], [3]):
(2 0,0, t) = (Vi) A+ AY p_i(D))/(ex(B) A\ -++ Aeyy(2)) -

Using 6,(v, 1), the volume of the geodesic ball B(p, 7) can be expressed as fol-
lows. If we set s(v)=min(r, R(v)) for each v U,M, then

3) vol(B(p, 7)) — XU Mdagz(" 0,(v, 1) dt .

»

This formula is an immediate consequence of Fubini’s Theorem, which is
permissible because the functions concerned are all continuous.
We have the following relation between the functions 8,(v, t) and %, ,(2):

Lemma l. Let peM and veU,M. Then we have
(4) dldt log 0,(v, t) = —(m—1) 3, ,(2), 0<i<e(v).

Proof. Fix t,&(0, @(v)) arbitrarily. In the formula (2) we may assume
that Y,(%), -*+, Y,,_,(%,) are orthonormal. We define a matrix-valued function

A(t)z(a{:(t))léi,jém-l by
Yi(t) = 275 al(f) e(1), 1<i<m—1.

Then we have 0,(v, t)=det A(t) by (2).
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We set b,;(t)=<Y(?), Y;()>, B(t)=(bij(t)hsi,jsm-1 Pij=<e:r €;> and P=
(Pishsijsm-r-  Then b;(1)=337721 ai(t) pu aj(2), so that det B(f)=(det A(2))*
det P. Hence differentiating the both sides, we obtain

(5) d/dt log (det B(t)) = 2 d/dt log (det A(2))
= 2 d|dt log 6,(v, t) .
On the other hand, we have

(6) d/dt log (det B(t))|;-,, = 2(det B(t,))™
X ZKY H(t), Yilte)>
= —2(m—1) ny,(t)
by (1). Combining (5) with (6), we conclude that
d|dz 10g 0,(v, 2) | 1=ty=—(m—1) 7,4(,) -
Since ¢, is arbitrary, this completes the proof.//

ExampLE 1. Let S} be the m-dimensional sphere with the canonical metric
of constant sectional curvature p*(p>0). Then 5,, and 6, are independent of
particular choices of p and v, and

75.4(1) = —p cot pt
and
6,(v, ) = (sin pt/p)™~" .

ExampLE 2. Let P%(C) be the complex projective space of complex dimen-
sion n with the canonical metric of constant holomorphic sectional curvature
48 (8>0). In this case 7,, and 6, are also independent of p and v, and

Np,0(t) = 75.4(t) = —8(cot 82—1/(2n—1) tan &t)
and
0,(v, t) = 0y, ,(t) = (sin 8¢/8)**~* cos 8t .
These expressions follows from the formulas (1) and (2), respectively, since the

Jacobi fields on P3(C) are well-known (see [1]).

3. Estimate of 7, ,

Let M be a Kahler manifold. Let J stand for the almost complex structure
of M. For a unit tangent vector v of M, the sectional curvature K(v, Jv) is
called the holomorphic sectional curvature of v and denoted by Ky(v).
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Let A be a real number. We write Kz= if the inequality Kg(v)=2
holds for every unit tangent vector v of M.

In the rest of this paper, we consider a complete connected Kahler manifold
of complex dimension 7z which satisfies the following conditions for a positive
real number §:

Ric=2(n+1) 8* and K,=48°.

It is well-known that such a Kihler manifold is simply connected and compact,
and in fact its diameter is less than or equal to z/28 (see [8], [9]).

Lemma 2. Let M be as above. Then we have

(7) 7p,o(1) Z73,4(2), 0<2<min(p(v), 7/29) ,
for any unit tangent vector v at any point p of M.

Proof. Fix t& (o, min(¢p (), #/23)) arbitrarily. We take unit vectors ey, «+-,
€y AL €y ,(2) sO that ey, <+, e, ,, J+C, (t)=€,,-, form an orthonormal basis of
Tepov S(Ps 1), and extend them to the parallel vector fields e,(s), -+, ¢,,-,(5) along
Cpolto, - Note that we have e,, ,(s)=]-¢,,(s). Let Y (s), --+, Y,,_,(s) be Jacobi
fields along ¢, , |, satisfying

Y (00)=0, Y()=¢, 1=5i<2n—1.
Moreover, we define vector fields Z\(s), +++, Z,,,(s) along ¢, ,| 21 by
Z49) { (sin 8s/sin 82) e(s), 1=i<2n—2,
AS) =
! (sin 28s/sin 282) eyy_y(s), 7=2n—1.

Let I3(X) denote the index form of a vector field X along ¢,,|f,1 Then
by the minimization theorem (see [3]), we have I{(Y;)=<I§(Z)), 1=i<2n—1.
Hence

1)yt = St TN V)< S I4(Z)
- Y [(2n—2) (8 cos & sfsin & £)—(sin & s/sin & £)* S7° K (Gy.(), ex(5))
—|—o(28 cos 28 s/sin 28 £)*—(sin & s/sin & £)? (cos & s/cos 8 t)* Ky(C,,(s))] ds
= S: [(27—2) (& cos & s/sin & t)*—(sin 8 s/sin & t)? Ric(C,,.(5))
+(28 cos 28 s/sin 28 t)*—(sin & s/sin § t)* {(cos & s/cos & t)*—1}
X K(éy())] ds
< S: [(2n—2) (8 cos & sfsin § £)*—(sin 8 s/sin § £)? (2n--2) &
+(28 cos 28 s/sin 28 t)*—(sin 3 s/sin & t)* {(cos 3 s/cos & t)*—1} 48°] ds
— S: [(21—2) (5 cos § s/sin 8 £)*— (sin & s/sin & 1)? (2n—2) &
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(28 cos 23 s/sin 28 t)*—(sin 23 s/sin 28 t)* 48%] ds
= —(2n—1) 75 4(t). This completes the proof.//

4. Estimate of 6, and comparison theorems for the volume of
geodesic balls

Lemma 3. Let M be a complete connected Kahler manifold of complex
dimension n which satisfies

Ric=2(n+1)8 and Kyp=4%

for a positive real number 3.
Then we have

8) 0,0, 1)/0,(0, 1)< 05 u(t)]0s0(1), 0<1SE'<o(0)
for any unit tangent vector v at any point p of M.

Proof. We put a=min(p (), #/28). Let us consider in the interval (0, a).
For simplicity we set

0(s) = 04(z,5) and Oy(s) = G5 4(5) .
By Lemma 1 and Lemma 2 we have
(log 6(s))’ =(log Bi(s))" »

where “,” stands for the differentiation with respect to the variable s. Let
0<t<t'<a. By integrating the both sides from : to ¢’ we obtain

(log (8(")/0(2))=log (6,(t')/6,(2)) -
Hence the inequality (8) follows and
(9) 0(t')[6,(t)=06(1)[0u(?) -
Since the right-hand side goes to 1 as ¢ tends to 0, we obtain
0(t)=6,(t).

From this inequality, it can be easily seen that the smallest conjugate value ¢(2)
<=/28. This completes the proof./ /

In the last of the proof, we have obtained

Corollary 1. Let M be as in Lemma 3. Then the smallest conjugate value
satisfies

(10) P (0) <728
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for any unit tangent vector v of M.

RemARk. From (10), we know that the inequality (7) in Lemma 2 holds
in the interval (0, ¢(2)).

From Lemma 3, we obtain the following Bishop-Gromov type comparison
theorem.

Theorem 1. Let M be a complete connected Kahler manifold of complex
dimension n which satisfies

Ric=2(n+1) 8 and Kp=48
for a positive real number 8. Then for any peM and for any r' =r>0, we have
(11) vol(B(p, 7'))[vol(B(p, 1)) = vs,a(r")[0s,4(r) »
where vy ,(r) denote the volume of the geodesic ball of radius r in P3(C).
Proof. By Lemma 3 we know that the function
ti—= 0,(9, 1)054(), 0<i<p(v)

is nonincreasing for any p& M and for any ve U, M.

We set
[ 0,(v,8), O<t<R(v),
O(v, t) = { 0. =00,
B,(t) = { 05.(2), 0<t<m|28,
h(£) = 0 s,
and

— 9(‘0’ i)/go(t) ) 0<t<R(v) ,

o= { 0, t=R(v).

Note that f(t) is nonincreasing
By (3) we have

20l (B(p, Nfosa(r) = (1feol(sT) | [( w0y as / So By(2) dt] do .
Setting du(t)=~0,(t) dt, we have

So 8(v, 1) dt / So B,(t) dt — (1 / S;d,u,(t)> v So £ dula)

Since f(t) is nonincreasing, the right-hand side is also nonincreasing (see [5]).
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Hence vol(B(p, r))[vs,4(7) is a nonincreasing function of . This completes the
proof.//
Since the quantity vol (B(p, 7))/vs .(r) goes to 1 as r tends to 0, we have

Corollary 2. Let M be as in Theorem 1. Then for any peM and for
any r>0, we have

(12) vol(B(p, )< 05,4(r) -
Theorem 2. Let M be as in Theorem 1. Then
vol (M) Zvol(P}(C)) .
The equality holds if and only if M is holomorphically isometric to P3(C).

REMARK. Let M be as in the theorem. Then by Bishop’s comparison
theorem (see [3]), we have

vol(M)=vol(S2"),

where p=+/2(n-1)/(2n—1) 8. The inequality in Theorem 2 is sharper than
this one.

Bishop-Goldberg [4] obtained the similar result using the circle bundle
method. Our method here is quite different from theirs and the assumption
of the theorem seems more reasonable.

Proof. The first assertion follows if we set r=7/28 in (12).
To prove the second assertion, we assume that vol(M)=vol(P3(C)) and
fix p&M arbitrarily. Then we can easily verify that for any ve U,M

0p(v, 1) = Oy0(), O0SISp(v) = /25 .
Hence we have for any ve U,M
ﬂﬁ.u(t) = ﬂa,n(t) ’ O<t<n‘/23 .

Then all the inequalities in the proof of Lemma 2 must be equalities. In par-
ticular, we have the equality sign in the last inequality and

Ky(6,(s)) = 48%, 0=s<t.

Since p and o were taken arbitrarily, we know that the holomorphic sec-
tional curvature of M is constant and equal to 46>. Hence M is holomorphically
isometric to P3(C) (see [1], [7]).//
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