

Title	A note on stable Clifford extensions of modules
Author(s)	Lu, Ziqun
Citation	Osaka Journal of Mathematics. 2007, 44(3), p. 563-565
Version Type	VoR
URL	https://doi.org/10.18910/11818
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

A NOTE ON STABLE CLIFFORD EXTENSIONS OF MODULES

ZIQUN LU

(Received June 26, 2006, revised September 25, 2006)

Abstract

Let H be a normal subgroup of G . Let W be a G -invariant indecomposable RH -module with vertex Q . Let V be an indecomposable direct summand of the induced module W^G . Let W' and V' be the Green correspondents of W and V in $N_H(Q)$ and $N_G(Q)$ respectively. Then we prove that $\text{rank}_R V/\text{rank}_R W = \text{rank}_R V'/\text{rank}_R W'$.

Let \mathcal{O} be a complete discrete valuation ring, and let F be the residual field of \mathcal{O} of characteristic $p > 0$. We assume that \mathcal{O} and F are big enough. Let R be \mathcal{O} or F .

Let G be a finite group. Let H be a normal subgroup of G . Let W be a G -invariant indecomposable RH -module with vertex Q . Let W' be the Green correspondent of W with respect to $(H, Q, N_H(Q))$. Then $G = HN_G(Q)$, and W' is $N_G(Q)$ -invariant. We write W^G for the induction of W to G . Set $E = \text{End}_{RG}(W^G)$ and $\Lambda = \text{End}_{RH}(W)$. We can write E in the form $E = \sum_{\bar{x} \in X} \bigoplus E_{\bar{x}}$ where $X = G/H$ and $E_{\bar{x}}$ is the R -submodule of E mapping $W = W \otimes 1$ to $W \otimes x$ inside W^G , and $\text{Hom}_{RH}(W, Wx) \cong E_{\bar{x}}$ (as R -module) by [4, Chap. 4, Lemma 6.4]. Clearly $E_{\bar{x}}E_{\bar{y}} \subset E_{\bar{x}\bar{y}}$, for $\bar{x}, \bar{y} \in X$. Also we can use the stability hypothesis to choose an element $\varphi_{\bar{x}} \in E_{\bar{x}}$ mapping $W \otimes 1$ isomorphically onto $W \otimes x$; it follows that $\varphi_{\bar{x}}$ is a unit in E . Since $E_{\bar{1}}$ can be identified with Λ , we have $E_{\bar{x}} = \Lambda\varphi_{\bar{x}} = \varphi_{\bar{x}}\Lambda$. Thus $E_{\bar{x}}$ can also be identified with $\text{Hom}_{RH}(W, Wx)$. We do so in this paper. Set $E' = \text{End}_{RN_G(Q)}((W')^{N_G(Q)})$, and $\Lambda' = \text{End}_{RN_H(Q)}(W')$. It is well-known that $J(\Lambda)E \subset J(E)$ (resp. $J(\Lambda')E' \subset J(E')$), and $E/J(\Lambda)E$ (resp. $E'/J(\Lambda')E'$) is a twisted group algebra.

In [3], the author proves that $E'/J(\Lambda')E'$ is isomorphic to $E/J(\Lambda)E$, which already appears without proof in Cline [2]. Here we will give an application of the above isomorphism. The following is our main result.

Theorem. *Keep notation and assumptions as above. Then the Green correspondence gives a one-to-one correspondence between the set of non-isomorphic indecomposable direct summands of W^G and that of $(W')^{N_G(Q)}$, and keeps multiplicities. Let*

2000 Mathematics Subject Classification. Primary 20C20; Secondary 20C05.
 The author was supported by NSFC (No: 10501027).

V be an indecomposable direct summand of W^G . Let V' be the Green correspondent of V in $N_G(Q)$. Then $\text{rank}_R V / \text{rank}_R W = \text{rank}_R V' / \text{rank}_R W'$.

Proof. From the proof of the main theorem in [3], we do not know whether the isomorphism given there is compatible with the Green correspondence. Here we will first construct an isomorphism from $E'/J(\Lambda')E'$ to $E/J(\Lambda)E$, which is compatible with the Green correspondence.

Let L be a subgroup of G . For RL -modules W_1 and W_2 , there is a homomorphism

$$\text{Tr}_L^G: \text{Hom}_{RL}(W_1, W_2) \rightarrow \text{Hom}_{RG}((W_1)^G, (W_2)^G),$$

such that the following holds: for $f \in \text{Hom}_{RL}(W_1, W_2)$ and $\sum_{x \in L \setminus G} u_x \otimes x \in (W_1)^G$,

$$\text{Tr}_L^G(f) \left(\sum_{x \in L \setminus G} u_x \otimes x \right) = \sum_{x \in L \setminus G} f(u_x) \otimes x.$$

Assume that $(W')^H = W \oplus M$ for some RH -module M . Then $(W')^G = W^G \oplus M^G$. Let $\Omega = \{P: P < Q \cap Q^x, \text{ for some } x \in H - N_H(Q)\}$. Then M and M^G are Ω -projective. Let $\iota_{W^G}: W^G \rightarrow (W')^G$ and $\pi_{W^G}: (W')^G \rightarrow W^G$ be the inclusion map and the projection map, respectively. We have the following algebra homomorphism:

$$\begin{aligned} \beta: \text{End}_{RN_G(Q)}((W')^{N_G(Q)}) &\rightarrow \text{End}_{RG}(W^G) \\ f &\mapsto \pi_{W^G} \cdot \text{Tr}_{N_G(Q)}^G(f) \cdot \iota_{W^G}. \end{aligned}$$

Since M^G is Ω -projective,

$$\text{End}_{RG}((W')^G) = \text{End}_{RG}(W^G) + \text{Tr}_{\Omega}^G(\text{End}_R((W')^G)).$$

It is easy to see that

$$\text{End}_{RG}(W^G) \cap \text{Tr}_{\Omega}^G(\text{End}_R((W')^G)) = \text{Tr}_{\Omega}^G(\text{End}_R(W^G)).$$

By [4, Chapter 4, Lemma 5.3], the map $\text{Tr}_{N_G(Q)}^G$ induces the following algebra isomorphism:

$$\text{End}_{RN_G(Q)}((W')^{N_G(Q)}) / \text{Tr}_{\Omega}^{N_G(Q)}(\text{End}_R((W')^{N_G(Q)})) \rightarrow \text{End}_{RG}((W')^G) / \text{Tr}_{\Omega}^G(\text{End}_R((W')^G)),$$

so β induces the following algebra isomorphism:

$$\beta: \text{End}_{RN_G(Q)}((W')^{N_G(Q)}) / \text{Tr}_{\Omega}^{N_G(Q)}(\text{End}_R((W')^{N_G(Q)})) \rightarrow \text{End}_{RG}(W^G) / \text{Tr}_{\Omega}^G(\text{End}_R(W^G)).$$

By [4, Chapter 4, Lemma 5.1 (Dade)], the following isomorphism holds:

$$\sum_{x \in H \setminus G} \bigoplus \text{Tr}_{\Omega}^H(\text{Hom}_R(W, Wx)) = \text{Tr}_{\Omega}^H(\text{Hom}_R(W, W^G)) \cong \text{Tr}_{\Omega}^G(\text{End}_R(W^G)).$$

Let $I = \text{Tr}_{\Omega}^H(\text{End}_R(W))$ and $I' = \text{Tr}_{\Omega}^{N_H(Q)}(\text{End}_R(W'))$. It is easy to see that $\text{Tr}_{\Omega}^H(\text{Hom}_R(W, Wx_i)) = \text{Hom}_{RH}(W, Wx_i) \cdot I$. Thus by identification, $\text{Tr}_{\Omega}^G(\text{End}_R(W^G))$ is just the graded ideal EI of E generated by I . Let $E'I'$ be the graded ideal of E' generated by I' . Then $\text{Tr}_{\Omega}^G(\text{End}_R(W^G)) = EI$ and $\text{Tr}_{\Omega}^{N_G(Q)}(\text{End}_R(W'^{N_G(Q)})) = E'I'$. Thus β gives an isomorphism from $E'/E'I'$ to E/EI . Since both W and W' are not Ω -projective, $I \subseteq J(\Lambda)$ and $I' \subseteq J(\Lambda')$. Note that by restriction β induces an algebra isomorphism from Λ'/I' to Λ/I . Thus β induces an isomorphism from $\Lambda'/J(\Lambda')$ to $\Lambda/J(\Lambda)$. So β sends $J(\Lambda')$ to $J(\Lambda)$. As β is an isomorphism from $E'/E'I'$ to E/EI , we have that β is an isomorphism from $E'/J(\Lambda')E'$ to $E/J(\Lambda)E$.

The first statement of the Theorem is obvious. Thus V' is an indecomposable direct summand of $(W')^{N_G(Q)}$. Let e' be a (primitive) idempotent of E' correspondent to V' . Let e be a primitive idempotent of E such that $\beta(e') = \bar{e}$. Set $\tilde{V} = eW^G$. Then \tilde{V} is of vertex Q , and is a direct summand of $\text{Tr}_{N_G(Q)}^G(e')(W')^G = (e'(W')^{N_G(Q)})^G = (V')^G$. We must have that \tilde{V} is the Green correspondent of V' . Thus $V \cong \tilde{V}$. By Cline [1, Corollary 3.15], $V \cong W \otimes_{\Lambda} eE$ and $V' \cong W' \otimes_{\Lambda'} e'E'$. Since $eE/J(\Lambda)eE = \beta(e'E'/J(\Lambda')e'E')$, we have $\dim_F e'E'/J(\Lambda')e'E' = \dim_F eE/J(\Lambda)eE$. So

$$\text{rank}_R V / \text{rank}_R W = \dim_F eE/J(\Lambda)eE = \dim_F e'E'/J(\Lambda')e'E' = \text{rank}_R V' / \text{rank}_R W',$$

as desired. \square

References

- [1] E. Cline: *Stable Clifford Theory*, J. Algebra **22** (1972), 350–364.
- [2] E. Cline: *Some connections between Clifford theory and the theory of vertices and sources*; in Representation Theory of Finite Groups and Related Topics (Proc. Sympos. Pure Math. **XXI**, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc., Providence, R.I., 1971, 19–23.
- [3] Z. Lu: *Stable Clifford extensions of modules*, J. Algebra **305** (2006), 430–432.
- [4] H. Nagao and Y. Tsushima: *Representations of Finite Groups*, Academic Press, New York, 1988.

Department of Mathematical Sciences
 Tsinghua University
 Beijing 100084
 P.R. China
 e-mail: zlu@mail.tsinghua.edu.cn