Title	A note on stable Clifford extensions of modules
Author(s)	Lu, Ziqun
Citation	Osaka Journal of Mathematics. 2007, 44(3), p. 563-565
Version Type	VoR
URL	https://doi.org/10.18910/11818
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

Lu, Z.

A NOTE ON STABLE CLIFFORD EXTENSIONS OF MODULES

Ziqun LU

(Received June 26, 2006, revised September 25, 2006)

Abstract

Let H be a normal subgroup of G. Let W be a G-invariant indecomposable $R H$-module with vertex Q. Let V be an indecomposable direct summand of the induced module W^{G}. Let W^{\prime} and V^{\prime} be the Green correspondents of W and V in $N_{H}(Q)$ and $N_{G}(Q)$ respectively. Then we prove that $\operatorname{rank}_{R} V / \operatorname{rank}_{R} W=$ $\operatorname{rank}_{R} V^{\prime} / \operatorname{rank}_{R} W^{\prime}$.

Let \mathcal{O} be a complete discrete valuation ring, and let F be the residual field of \mathcal{O} of characteristic $p>0$. We assume that \mathcal{O} and F are big enough. Let R be \mathcal{O} or F.

Let G be a finite group. Let H be a normal subgroup of G. Let W be a G-invariant indecomposable $R H$-module with vertex Q. Let W^{\prime} be the Green correspondent of W with respect to $\left(H, Q, N_{H}(Q)\right)$. Then $G=H N_{G}(Q)$, and W^{\prime} is $N_{G}(Q)$-invariant. We write W^{G} for the induction of W to G. Set $E=\operatorname{End}_{R G}\left(W^{G}\right)$ and $\Lambda=\operatorname{End}_{R H}(W)$. We can write E in the form $E=\sum_{\bar{x} \in X} \oplus E_{\bar{x}}$ where $X=G / H$ and $E_{\bar{x}}$ is the R-submodule of E mapping $W=W \otimes 1$ to $W \otimes x$ inside W^{G}, and $\operatorname{Hom}_{R H}(W, W x) \cong E_{\bar{x}}$ (as R-module) by [4, Chap. 4, Lemma 6.4]. Clearly $E_{\bar{x}} E_{\bar{y}} \subset E_{\overline{x y}}$, for $\bar{x}, \bar{y} \in X$. Also we can use the stability hypothesis to choose an element $\varphi_{\bar{x}} \in E_{\bar{x}}$ mapping $W \otimes 1$ isomorphically onto $W \otimes x$; it follows that $\varphi_{\bar{x}}$ is a unit in E. Since $E_{\overline{1}}$ can be identified with Λ, we have $E_{\bar{x}}=\Lambda \varphi_{\bar{x}}=\varphi_{\bar{x}} \Lambda$. Thus $E_{\bar{x}}$ can also be identified with $\operatorname{Hom}_{R H}(W, W x)$. We do so in this paper. Set $E^{\prime}=\operatorname{End}_{R N_{G}(Q)}\left(\left(W^{\prime}\right)^{N_{G}(Q)}\right)$, and $\Lambda^{\prime}=\operatorname{End}_{R N_{H}(Q)}\left(W^{\prime}\right)$. It is well-known that $J(\Lambda) E \subset J(E)\left(\right.$ resp. $J\left(\Lambda^{\prime}\right) E^{\prime} \subset J\left(E^{\prime}\right)$), and $E / J(\Lambda) E$ (resp. $\left.E^{\prime} / J\left(\Lambda^{\prime}\right) E^{\prime}\right)$ is a twisted group algebra.

In [3], the outhor proves that $E^{\prime} / J\left(\Lambda^{\prime}\right) E^{\prime}$ is isomorphic to $E / J(\Lambda) E$, which already appears without proof in Cline [2]. Here we will give an application of the above isomorphism. The following is our main result.

Theorem. Keep notation and assumptions as above. Then the Green correspondence gives a one-to-one correspondence between the set of non-isomorphic indecomposable direct summands of W^{G} and that of $\left(W^{\prime}\right)^{N_{G}(Q)}$, and keeps multiplicities. Let
V be an indecomposable direct summand of W^{G}. Let V^{\prime} be the Green correspondent of V in $N_{G}(Q)$. Then $\operatorname{rank}_{R} V / \operatorname{rank}_{R} W=\operatorname{rank}_{R} V^{\prime} / \operatorname{rank}_{R} W^{\prime}$.

Proof. From the proof of the main theorem in [3], we do not know whether the isomorphism given there is compatible with the Green correspondence. Here we will first construct an isomorphism from $E^{\prime} / J\left(\Lambda^{\prime}\right) E^{\prime}$ to $E / J(\Lambda) E$, which is compatible with the Green correspondence.

Let L be a subgroup of G. For $R L$-modules W_{1} and W_{2}, there is a homomorphism

$$
\operatorname{Tr}_{L}^{G}: \operatorname{Hom}_{R L}\left(W_{1}, W_{2}\right) \rightarrow \operatorname{Hom}_{R G}\left(\left(W_{1}\right)^{G},\left(W_{2}\right)^{G}\right)
$$

such that the following holds: for $f \in \operatorname{Hom}_{R L}\left(W_{1}, W_{2}\right)$ and $\sum_{x \in L \backslash G} u_{x} \otimes x \in\left(W_{1}\right)^{G}$,

$$
\operatorname{Tr}_{L}^{G}(f)\left(\sum_{x \in L \backslash G} u_{x} \otimes x\right)=\sum_{x \in L \backslash G} f\left(u_{x}\right) \otimes x
$$

Assume that $\left(W^{\prime}\right)^{H}=W \oplus M$ for some $R H$-module M. Then $\left(W^{\prime}\right)^{G}=W^{G} \oplus M^{G}$. Let $\Omega=\left\{P: P<Q \cap Q^{x}\right.$, fo some $\left.x \in H-N_{H}(Q)\right\}$. Then M and M^{G} are Ω-projective. Let $\iota_{W^{G}}: W^{G} \rightarrow\left(W^{\prime}\right)^{G}$ and $\pi_{W^{G}}:\left(W^{\prime}\right)^{G} \rightarrow W^{G}$ be the inclusion map and the projection map, respectively. We have the following algebra homomorphism:

$$
\begin{aligned}
\beta: \operatorname{End}_{R N_{G}(Q)}\left(\left(W^{\prime}\right)^{N_{G}(Q)}\right) & \rightarrow \operatorname{End}_{R G}\left(W^{G}\right) \\
f & \mapsto \pi_{W^{G}} \cdot \operatorname{Tr}_{N_{G}(Q)}^{G}(f) \cdot \iota_{W^{G}} .
\end{aligned}
$$

Since M^{G} is Ω-projective,

$$
\operatorname{End}_{R G}\left(\left(W^{\prime}\right)^{G}\right)=\operatorname{End}_{R G}\left(W^{G}\right)+\operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(\left(W^{\prime}\right)^{G}\right)\right)
$$

It is easy to see that

$$
\operatorname{End}_{R G}\left(W^{G}\right) \cap \operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(\left(W^{\prime}\right)^{G}\right)\right)=\operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(W^{G}\right)\right)
$$

By [4, Chapter 4, Lemma 5.3], the map $\operatorname{Tr}_{N_{G}(Q)}^{G}$ induces the following algebra isomorphism:

$$
\operatorname{End}_{R N_{G}(Q)}\left(\left(W^{\prime}\right)^{N_{G}(Q)}\right) / \operatorname{Tr}_{\Omega}^{N_{G}(Q)}\left(\operatorname{End}_{R}\left(\left(W^{\prime}\right)^{N_{G}(Q)}\right)\right) \rightarrow \operatorname{End}_{R G}\left(\left(W^{\prime}\right)^{G}\right) / \operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(\left(W^{\prime}\right)^{G}\right)\right.
$$

so β induces the following algebra isomorphism:

$$
\beta: \operatorname{End}_{R N_{G}(Q)}\left(\left(W^{\prime}\right)^{N_{G}(Q)}\right) / \operatorname{Tr}_{\Omega}^{N_{G}(Q)}\left(\operatorname{End}_{R}\left(\left(W^{\prime}\right)^{N_{G}(Q)}\right)\right) \rightarrow \operatorname{End}_{R G}\left(W^{G}\right) / \operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(W^{G}\right)\right)
$$

By [4, Chapter 4, Lemma 5.1 (Dade)], the following isomorphism holds:

$$
\sum_{x \in H \backslash G} \bigoplus \operatorname{Tr}_{\Omega}^{H}\left(\operatorname{Hom}_{R}(W, W x)\right)=\operatorname{Tr}_{\Omega}^{H}\left(\operatorname{Hom}_{R}\left(W, W^{G}\right)\right) \cong \operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(W^{G}\right)\right)
$$

Let $I=\operatorname{Tr}_{\Omega}^{H}\left(\operatorname{End}_{R}(W)\right)$ and $I^{\prime}=\operatorname{Tr}_{\Omega}^{N_{H}(Q)}\left(\operatorname{End}_{R}\left(W^{\prime}\right)\right)$. It is easy to see that $\operatorname{Tr}_{\Omega}^{H}\left(\operatorname{Hom}_{R}\left(W, W x_{i}\right)\right)=\operatorname{Hom}_{R H}\left(W, W x_{i}\right) \cdot I$. Thus by identification, $\operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(W^{G}\right)\right)$ is just the graded ideal $E I$ of E generated by I. Let $E^{\prime} I^{\prime}$ be the graded ideal of E^{\prime} generated by I^{\prime}. Then $\operatorname{Tr}_{\Omega}^{G}\left(\operatorname{End}_{R}\left(W^{G}\right)\right)=E I$ and $\operatorname{Tr}_{\Omega}^{N_{G}(Q)}\left(\operatorname{End}_{R}\left(W^{\prime N_{G}(Q)}\right)\right)=$ $E^{\prime} I^{\prime}$. Thus β gives an isomorphism from $E^{\prime} / E^{\prime} I^{\prime}$ to $E / E I$. Since both W and W^{\prime} are not Ω-projective, $I \subseteq J(\Lambda)$ and $I^{\prime} \subseteq J\left(\Lambda^{\prime}\right)$. Note that by restriction β induces an algebra isomorphism from $\Lambda^{\prime} / I^{\prime}$ to Λ / I. Thus β induces an isomorphism from $\Lambda^{\prime} / J\left(\Lambda^{\prime}\right)$ to $\Lambda / J(\Lambda)$. So β sends $J\left(\Lambda^{\prime}\right)$ to $J(\Lambda)$. As β is an isomorphism from $E^{\prime} / E^{\prime} I^{\prime}$ to $E / E I$, we have that β is an isomorphism from $E^{\prime} / J\left(\Lambda^{\prime}\right) E^{\prime}$ to $E / J(\Lambda) E$.

The first statement of the Theorem is obvious. Thus V^{\prime} is an indecomposable direct summand of $\left(W^{\prime}\right)^{N_{G}(Q)}$. Let e^{\prime} be a (primitive) idempotent of E^{\prime} correspondent to V^{\prime}. Let e be a primitive idempotent of E such that $\beta\left(e^{\prime}\right)=\bar{e}$. Set $\tilde{V}=e W^{G}$. Then \tilde{V} is of vertex Q, and is a direct summand of $\operatorname{Tr}_{N_{G}(Q)}^{G}\left(e^{\prime}\right)\left(W^{\prime}\right)^{G}=\left(e^{\prime}\left(W^{\prime}\right)^{N_{G}(Q)}\right)^{G}=\left(V^{\prime}\right)^{G}$. We must have that \tilde{V} is the Green correspondent of V^{\prime}. Thus $V \cong \tilde{V}$. By Cline [1, Corollary 3.15], $V \cong W \otimes_{\Lambda} e E$ and $V^{\prime} \cong W^{\prime} \otimes_{\Lambda^{\prime}} e^{\prime} E^{\prime}$. Since $e E / J(\Lambda) e E=$ $\beta\left(e^{\prime} E^{\prime} / J\left(\Lambda^{\prime}\right) e^{\prime} E^{\prime}\right)$, we have $\operatorname{dim}_{F} e^{\prime} E^{\prime} / J\left(\Lambda^{\prime}\right) e^{\prime} E^{\prime}=\operatorname{dim}_{F} e E / J(\Lambda) e E$. So

$$
\operatorname{rank}_{R} V / \operatorname{rank}_{R} W=\operatorname{dim}_{F} e E / J(\Lambda) e E=\operatorname{dim}_{F} e^{\prime} E^{\prime} / J\left(\Lambda^{\prime}\right) e^{\prime} E^{\prime}=\operatorname{rank}_{R} V^{\prime} / \operatorname{rank}_{R} W^{\prime},
$$

as desired.

References

[1] E. Cline: Stable Clifford Theory, J. Algebra 22 (1972), 350-364.
[2] E. Cline: Some connections between Clifford theory and the theory of vertices and sources; in Representation Theory of Finite Groups and Related Topics (Proc. Sympos. Pure Math. XXI, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc., Providence, R.I., 1971, 19-23.
[3] Z. Lu: Stable Clifford extensions of modules, J. Algebra 305 (2006), 430-432.
[4] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, New York, 1988.

Department of Mathematical Sciences Tsinghua University
Beijing 100084
P.R. China
e-mail: zlu@mail.tsinghua.edu.cn

