

Title	アルミニウム合金鋳物における湯回り不良及びガス巻 き込みの予測に関する研究
Author(s)	柏井, 茂雄
Citation	大阪大学, 2008, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/1182
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

アルミニウム合金鋳物における湯回り不良 及びガス巻き込みの予測に関する研究

Prediction Methods for Misrun and Gas Entrapment in Aluminum Alloy Castings

$2 \ 0 \ 0 \ 7$

柏 井 茂 雄

- 1.1. 本研究の目的
- 1.2. 鋳造欠陥の分類
- 1.3. 従来の研究
- 1.4. 本研究の概要
- 参考文献

- 2.1. 緒 言
- 2.2. 板状鋳物の鋳造実験方法
- 2.3. 数值予測法
 - 2.3.1. 固液共存溶湯の見かけ粘性の取り扱い
 - 2.3.2. 運動量保存則
 - 2.3.3. 質量保存則
 - 2.3.4. 流動停止の取り扱い
 - 2.3.5. 鋳物-鋳型間の熱伝達係数の評価
- 2.4. 結果および考察
 - 2.4.1. 粘性変化を考慮した湯流れ解析結果
 - 2.4.2. 流動長さに及ぼす各種パラメータの影響
 - 2.4.3. 流動停止部の組織
 - 2.4.4. 水モデルによる流れの観察
- 2.5. 製品への応用事例
- 2.6. 結 論

参考文献

第3章 湯境・湯じわの観察と湯流れ解析による数値予測 ・・・・・・31

- 3.1. 緒 言
- 3.2. 実験方法
- 3.3. 低温溶湯の合流位置の数値予測法
- 3.4. 結果および考察
 - 3.4.1. Type I 鋳物の実験結果
 - 3.4.2. Type I 鋳物の湯流れ解析結果
 - 3.4.3. Type Ⅱ, Ⅲ鋳物の実験および解析結果
- 3.5. 結 論

参考文献

第4章 タイヤモールド鋳物の重力鋳造における湯流れの 直接観察と数値解析 ・・・・・・・・・49

- 4.1. 緒 言
- 4.2. 実験方法
- 4.3. 結果および考察
 - 4.3.1. タイヤモールド鋳物の欠陥発生状況と 湯流れの直接観察
 - 4.3.2. 水モデルによる流れの直接観察
 - 4.3.3. 湯流れの数値解析

4.4. 結 論

参考文献

第5章 吸引鋳造における湯流れ挙動の直接観察と数値予測 ・・・・・・・・63

- 5.1. 緒 言
- 5.2. X線透視法による湯流れ観察の実験方法
- 5.3. 数值解析方法
 - 5.3.1. ガス排出速度と圧力損失
 - 5.3.2. ガスの質量保存則
- 5.4. 結果および考察
 - 5.4.1. X線透視法による湯流れの直接観察
 - 5.4.2. 鋳型充填挙動に対する吸引圧力の影響
 - 5.4.3. 背圧の実測と計算結果
 - 5.4.4. 実験と解析結果の比較
- 5.5. 結 論

参考文献

謝 辞

第1章 序 論

1.1. 本研究の目的

鋳造は、金属を溶かして型に流し込む単純なプロセスであり紀元前より用いられている技 術であるが、それぞれの時代のニーズに応じて技術革新を重ねることで今日でも重要な製造 技術の一つとして利用されている。例えばアルミニウム、マグネシウム、チタンなどの軽量 な金属材料の実用化、また球状黒鉛鋳鉄の発見による材料特性の飛躍的な向上、またダイカ スト法や有機自硬性鋳型の開発による生産性の飛躍的な向上など、特筆すべき多くの技術革 新が行われてきた。現在では自動車産業や家電製品製造業などの基幹産業を支える不可欠な 技術の一つであり、基礎素形材製造技術として産業の発展に大きな役割を果たしている。

このような技術革新と製造拡大の中で、鋳造技術者はいかに高品質の鋳物を迅速に安く製造するかに取り組んできた。その取り組みの中で最も重要な課題は、製造時に発生する鋳造 欠陥をいかに無くすかということであり、これは鋳造技術における永遠の課題とも言える。 鋳造工程は金属に着目すると次の2つに大別される。

(1) 溶融した金属の流動性を利用し、鋳型内の空間に流し込む。

(2) 鋳型への熱移動を利用して溶融金属を凝固させ、固相を得る。

(1)は湯流れ過程、(2)は凝固過程であり、この2つの過程において各種材料の熱的、力学的挙 動に関係して鋳造欠陥が発生する。適切な製造工程(方案)を設計し欠陥発生を予防するた めには、湯流れや凝固の過程における高速、高温、高圧といった過酷な環境での材料の挙動、 非線形な材料物性を知る必要がある。しかしこれらを実験的、あるいは現場的に調べること は容易ではないため、方案設計および欠陥対策の多くは経験や勘に頼らざるをえなかった。 このような状況に対して、古くから凝固や湯流れについて科学的な扱いを目指した取り組み が行われてきた。例えば凝固では Chvorinov¹⁾により凝固時間の推定式の提案が、また湯流 れではベルヌーイの式による鋳込み時間の推定²⁾や R.Lehman³⁾による湯口比の提案などが 行われ、各種の近似式や推定式が広く利用されてきた。しかしこれらの近似式は、単純形状 をモデルとしているために複雑形状品への適応には限界がある、また本来非定常流の鋳型充 填挙動を定常流として取り扱っているなど、方案設計への適応には限界があった。

1950年代にコンピュータが商品化されると、実験的に知ることが困難な鋳造中の物理現象 を数値解析(シミュレーション)により予測する鋳造シミュレーションの研究が進められて きた。鋳造シミュレーションのうち凝固解析については、60年代より実用化に向けた開発が 始まり⁴⁾、80年代には3次元形状での数値解析が実用的に利用可能となった。一方、湯流れ 解析については、自由表面などの複雑な物理現象を3次元で取り扱うことが不可欠であった ことからコンピュータに高い計算能力が要求され、開発は凝固解析よりも遅い 1980 年代よ り始められた⁵⁾。湯流れ解析が鋳造現場で広く利用できるようになったのは、パーソナルコ ンピュータの性能が飛躍的に向上した 2000 年以降である。鋳造シミュレーションの開発当 初は、凝固過程および湯流れ過程から欠陥を推定していたが、同時に欠陥の予測法や欠陥判 定のパラメータの検討が行われてきた。凝固解析では、早期より閉ループ法、温度勾配法や 修正温度勾配法など各種欠陥パラメータの開発やポロシティ生成の数値予測などの試みが行 われ、一部が実用的に利用されている⁶⁾。

一方、湯流れ解析でも欠陥予測の取り組みが行われているが、凝固に比較して複雑な物理 現象の考慮が必要なこと、流動現象の実験、観察が困難であることが、凝固解析に比較して 欠陥予測を困難にしている。例えばアルミニウム合金の湯流れでは、湯先の酸化やガスの巻 き込みは酸化物の巻き込みやガスポロシティの発生につながる。また、薄肉鋳物では溶湯温 度の低下による湯回り不良や湯境などの欠陥が発生する。さらに、鋳型中の残存ガスによる 背圧の発生は充填挙動の変化をもたらす。数値解析ではこのような湯流れ中の複雑な物理現 象を完全には考慮できないため、得られる結果を実際の湯流れや欠陥発生の状況と完全に一 致させることは困難である。

このため、鋳造シミュレーションを方案設計や欠陥対策に利用するためには、欠陥発生の モデル化と予測法の開発が不可欠である。自動車部品や携帯機器等、製品の軽量化と高品質 化が進むなか、鋳物の高品質化、薄肉化がますます要求が高まると共に、高品質化のための 製造技術開発が求められている。そこで本論文では、特にアルミニウム鋳物の湯流れに起因 する鋳造欠陥である湯回り不良、湯境およびガス巻き込みなどの欠陥について、数値解析に よる予測法の開発を目的とし、流動中の凝固や溶湯の合流挙動などを考慮した欠陥予測法を 提案するとともに、湯流れ状態の直接観察、モデル鋳物による鋳造実験により提案した予測 法の検証を行う。

1.2. 鋳造欠陥の分類

鋳造欠陥の分類、要因については鋳鉄を中心に 1952,55 年にフランスで欠陥集が発行され、 その後国際鋳物編集委員会でまとめられ、日本でも「国際鋳物欠陥分類図集」⁷⁾として翻訳 出版された。この国際鋳物欠陥分類をもとにして、砂型アルミニウム鋳物の欠陥については 「軽合金鋳物の欠陥写真集」⁸⁾が、アルミニウムダイカスト品の欠陥については「ダイカス トの鋳造欠陥・不良対策事例集」⁹⁾が出版されている。これらの分類では、それぞれの鋳造 法や材質に特有の欠陥が新たに追加されている。Table 1-1 に主な鋳造欠陥の分類と発生要因を示す。B-1、C-3、D-1、E-1、G-1 は湯流れが関係する欠陥、また B-2、B-3、C-2、G-2 は凝固が関係する欠陥として、それぞれ分類できると考えられる。

group		defect name	factor
A Metallic projection	1.	Flash, Fin	imperfect or broken of mold
		Air or gas entrapment, Gas porosity	casting plan
B Cavity	2.	Shrinkage cavity	solidification shrinkage
	3.	Micro porosity, Micro shrinkage cavity	solidification shrinkage gas of molten metal
		Broken casting	mechanical stress
C Discontinuities	2.	Hot cracking	generating stress during, solidification or cooling
	3.	Cold shut	low temperature of melt, surface oxidation
D Defective surface	1.	Flow marks, Fow line	melt flow pattern surface oxidation
E Incomplete casting	1.	Misrun	temperature of melt, backpressure
	2.	Poured short	insufficient melt
F Incorrect dimensions or shape	1.	Incorrect dimensions	shrinkage allowance error, low toughness of mold
	2.	Mold shift, lam off etc.	imperfection of mold
	1.	Inclusion entrapment	oxide film, slag, treatment of melt, casting plan
G Defects of structural quality	2.	segregations	solidification and melt flow
		Abnormal structure	chemical composition

Table 1-1 Typical casting defect and factor

1.3. 従来の研究

鋳造分野における湯流れ解析の歴史を見ると、従来に航空機や原子力などの分野で開発が 進められた流れの解析技術を、1983年に Hwang ら⁵⁾が鋳造分野に応用したのが始まりとさ れいる。日本では 1985 年に安斎ら¹⁰⁾ により形状鋳物の解析が行われたのが始まりである。 流れの解析法としては MAC 法¹¹⁾、SMAC 法¹²⁾、SOLA-VOF 法¹³⁾、直接差分法¹⁴⁾等が開発 され、これらを用いてソフトウェアの開発が進められてきた。湯流れシミュレーションの開 発当初は、自由表面の位置と湯境発生位置の比較や¹⁵⁾解析での最終充填位置とガス欠陥発生 位置の比較など、湯流れ状態の検討により欠陥の発生を推定してきた。これらの方法は方案 の良否の定性的な評価には有効であるが、客観的、定量的な評価が難しく、欠陥の予測には 解析担当者の経験や熟練を必要とした。このため欠陥予測法や欠陥パラメータなどによる客 観的かつ定量的な欠陥予測に関する研究が強く求められている。Table 1-2 に湯流れにより 生じる典型的な欠陥である湯回り不良、湯境、湯じわ、湯模様、ガス・酸化物巻き込みなど の欠陥予測法とその方法について、過去の研究を示す。

薄肉鋳物では、湯流れ中の鋳型への熱移動による溶湯の温度低下が大きく、問題となる。 湯流れ中に溶湯温度が液相線温度より低くなると、固相が晶出する。さらに温度が低下し固 相率が高くなると溶湯流動が困難となり、最終的には溶湯流動は停止し、湯回り不良が発生 する。Kubo¹⁶⁰らは溶湯の液相率が限界液相率以下の部分は流動が停止するとして、湯回り不 良の予測を行っている。また Xu¹⁷⁰らおよび Sztur¹⁸⁰らは溶湯の粘性を温度により変化させて 流動長の予測を試み、湯回り不良予測の可能性を示した。しかしながら、①湯回り不良が発 生する固相率が 0.1 で一般的な流動限界固相率に比較して大変小さな値である、②粘性変化 の取扱方法が明らかにされていない、③流動停止を判定し湯回り不良の発生を評価する方法 については十分な検討が行われていない、など検討すべき課題がある。流動停止の機構につ いて Flemings²⁸⁰は、鋳型壁からの凝固により溶湯の流路が狭くなる場合、および湯先の固相 率が上昇する場合をあげている。また固相が晶出した状態での溶湯については、Al-Cu,Al-Si 系合金などのマッシー凝固形態の合金の場合、固相は容易に液相と共に移動しその粘性は単 一液体の見かけの粘性として取り扱いが可能であると考えられる。これらのことから湯回り 不良の予測においては、固液混合溶湯の粘性を考慮に入れ、さらに流動停止条件を加えた欠 陥予測の開発が必要と考えられる。

溶湯温度の低下が少なく湯回り不良に至らない場合でも、溶湯合流部分に湯境あるいは湯 じわ欠陥が発生する場合がある。湯境は、低温溶湯(高固相率溶湯)の合流や凝固した鋳物 部(流動停止部)への溶湯合流時に接合が十分でないことにより発生する。溶湯の固相率が 湯境を発生するほど高くない場合でも、合流部分に沿って湯じわが発生する場合がある。湯 じわは、溶湯の合流部に発生し、湯先表面の酸化膜が影響していると考えられている。湯境、 湯じわについては、要素の流入状態^{19,20}、湯先の温度¹⁹、湯先マーカの軌跡²¹⁾などから予測 可能であることが示唆されている。湯境、湯じわは、固液共存状態での湯流れ、溶湯の合流

Defects	Estimation method/Criteria	Explanation	Reference
Misrun	Critical temperature or fraction liquid	Filling stops when melt temperature or fraction liquid becames smaller than critical value.	Kubo et al.(17)
	Back pressure	Elements where back pressure becomes higher than a value	Kano et al.(18)
	Solid fraction method	When the solid fraction of melt becomes above a critical value, the melt in the element becomes stagnant.	Xu et al.(19) Sztur et al.(20)
Cold shut Surface fold Air entrapment	Flow-in simulation into elements	Evaluate according to the flow-in situation into elements. For example if melt flow-in through all surfaces of an element, the element has the worst point.	Ohtsuka et al.(21)
Cold shut	Front marker method	When front markers generated at the melt front collide each other, the defect appears.	Anzai et al.(22)
	Front temperature method	When the temperature of an element becomes below a critical value and melt flows-in the element through multiple surfaces with a collision angle, the defects appears in the element.	Kano et al.(18)
Air entrapment	Finally filled elements	It is assumed that finally filled elements trap air.	Anzai et al.(23)
	Bubble maker method	When melt collides with each other with velocity vector angle larger than a critical alue, bubble markers are generated and move with the melt. If the markers reach the free surface, they are deleted. The defect is evaluated form the residual number of markers.	Hirabayashi et al.(24)
	Backpressure and marker method	Backpressure and gas escape are taken into consideration. A marker of gas porosity is created when a gas group is surrounded with melt and it is smaller than the element volume	Kimatsuka et al.(25)
Inclusion Entrupment	Traking method	Simulation of movement of inclusion with melt flow.	Backer et al.(26) Maru et al.(27)
	Maker and cell method	Marker particles are created when free surface collides with fluid and mold. Number of markers creating on free surface are related with collision area and velocity.	Sako et al.(28)

Table 1-2 Defect and prediction method

方向・速度および合流時の溶湯の固相率、背圧、自由表面の酸化が相互に影響して発生する と考えられることから、欠陥予測にはこれらの総合的な考慮が必要である。

アルミニウム鋳物においては流動中のガス巻き込みが鋳物品質を大きく損なうことが知られており、高品質アルミニウム鋳物の製造には巻き込み状態の数値解析が必要である。しかし、従来の湯流れ解析で行われてきた鋳込み時間や充填順序などによる湯流れ状態の評価では高品質アルミニウム鋳物の製造には不十分である。このため、ガスの巻き込み状態を数値解析する方法²⁴⁾、自由表面の表面張力を考慮した方法²⁹⁾などが検討されているが、さらに巻き込まれたガスの溶湯中での移動の観察やその数値解析を含めた検討が必要である。

一方、湯流れ状態の評価および数値予測法の検証に有効な直接観察には、水モデルによる 観察、低融点材料を用いた観察、X線透視法、透明な鋳型素材を用いた観察などの方法が利 用されている。X線透視法は、実際の金属の湯流れ状態の観察が可能、3次元の巻き込みや 自由表面状態の情報が得られるなど、巻き込み状態の観察、シミュレーションの検証に非常 に適した方法である³⁰⁾。しかし、装置が高価で特殊であることから観察事例が少ない。一方、 古くから広くも湯流れの観察に使われてきた水モデルは、安価でかつ実物大での観察実験が 可能である、ガスの巻き込み状態や移動状態を知ることができる、など大きな利点がある。

1.4. 本研究の概要

本研究では、湯流れによって生じるアルミニウム鋳物の欠陥予測法の開発に当り、特に凝 固を伴う流れに着目し、見かけ粘性の変化を考慮した湯流れ解析、固相率の評価、速度ベク トルによる合流の評価により、湯回り不良、湯境ならびに湯じわの欠陥予測を行う。さらに、 数値解析と直接観察から湯流れ中の気泡や粒子の移動について述べる。次に、鋳物製品を解 析例としてガス巻き込みによるピンホール欠陥の評価と方案の検討を行う。また、吸引鋳造 における湯流れ状態とガスの巻き込みについて、X線透視装置による直接観察と数値解析に よる予測法の開発を行う。

第1章は序論であり、本研究の目的と概要について述べる。

第2章では、板状鋳物による直接観察実験を行い、湯回り不良の発生状況について論じる。 マッシー凝固する Al-Si 系合金について、溶湯粘性の変化と流動停止についてモデル化を行 う。すなわち、溶湯の湯流れ中に晶出した固相は液相とともに移動すると仮定し、溶湯粘性 を固相率の関数である見かけの粘性として求める。さらに、自由表面の固相率により流動停 止を判定することで、湯回り不良を予測する方法を提案する。また、湯先部の組織観察およ び流体の粘性を変化させた水モデル実験を行い、流動中の気泡、粒子の移動について述べる。

第3章では、第2章の内容を発展させて、溶湯合流によって生じる湯境、湯じわの欠陥予 測を行う。板状鋳物を用いて注湯温度および溶湯の合流位置を変化させた鋳造を行い、湯流 れの直接観察と組織観察、表面観察から湯境、湯じわの発生状況を評価する。次に、要素充 満時の温度分布、固相率分布および速度ベクトルを用いた溶湯合流評価により、湯境、湯じ わの予測を試み、得られた解析結果と実験結果とを比較し、数値予測の可能性について述べ る。

第4章では、重力鋳造法の湯流れ解析について、湯流れの直接観察および水モデルによる 直接観察と数値解析結果とを比較し、解析における湯口系のとりあつかいおよび湯口境界条 件の解析精度に及ぼす影響、ポロシティの発生状況について論じる。実生産されている大型 アルミニウム鋳物について、解析結果をもとに改善方案を提案し、実生産に応用してポロシ ティ欠陥の削減を試みる。

第5章では、X線透視装置を用いて吸引鋳造プロセスにおける減圧速度と溶湯の充填状態 およびガス巻き込み状態について述べる。さらに鋳型内のガス挙動を考慮した湯流れ解析の アルゴリズムを開発し、数値解析結果と直接観察結果とを比較検討し、数値予測の可能性に ついて述べる。

第6章は上記の各章の結果、考察を総括する。

参考文献

- 1) N.Chvorinov: Die Giesserei, **27**(1940)177,201,222
- 2) J.Petin: Die Giesserei, 15(1928)31,61
- 3) R.Rehmann: Die Giesserei, 28(1941) 197
- 4) J.G.Henzel, J.Keverian: AFS Cast Metals Res. J., 1(1965)19
- 5) W.S.Hwang and R.A.Stoehr: J.of Metals, (1983.8)22
- 6) 大中逸雄:コンピュータ伝熱・凝固解析入門(丸善)(1985)
- 7) 国際鋳物技術委員会編:国際鋳物欠陥分類図集(日本鋳物協会),(1975)
- 8) 日本非鉄金属鋳物協会編:軽合金鋳物の欠陥写真集(日本非鉄鋳物協会),(1988)
- 9) 日本鋳造工学会ダイカスト研究部会編:ダイカストの鋳造欠陥・不良及び対策事例集 (日本鋳造工学会),(2000)
- 10) K.Anzai, H.Niiyama: IMONO, 57(1985)600
- 11) J.E.Welch, et al.:LA-3425(1966)

- 12) A.A.Amsden, et al.: LA-4370 (1970)
- 13) B.D.Nichols, et al.: LA-8355 (1980)
- 14) I.Ohnaka, K.Kobayashi: Trans.ISIJ,26(1986)781
- 15) K.Anzai, T.Uchida, K.Kataoka: IMONO, 60(1988) 763
- 16) K.Kubo and M.Fukuhira: Numerical Simulation of Casting Solidification in Automotive Applications, ed.by C.Kim and C-W.Kim,TMS,(1991)149
- 17) S.Kano, S.Ohtsuka, Y.Nagasaka and S.Kiguchi: 121st Grand Lecture of Japan Foundrymen's Society,(1992)51
- 18) Z.A.Xu and F.Mampaey: Modeling of Casting Welding and Advanced Solidification Processes VIII, ed.by B.G. Thomas and C.Beckermann, TMS, (1998)45
- 19) Ch.Sztur, S.Guy and C.Rigaaut: Fonderie Fondeur D'aujour'hui, 157 (1996)21
- 20) Y.Ohtsuka, T.Ono, K.Mizuno and N.Matsubara: IMONO, 60(1988) 757
- 21) K.Anzai, T.Uchida and K.Kataoka: IMONO, 60(1988) 763
- 22) K.Anzai, T.Uchida and K.Kataoka: IMONO, 62(1990) 174
- 23) S.Hirabayashi: Proceedings of Japan Die Casting Congress,(1992-11)83
- 24) A.Kimatsuka, I.Ohnaka, J.D.Zhu, T.Ohmichi: J.JFS, 76(2004)374
- 25) G.P.Backer and F.J.Sant:Numerical Simulation of Casting Solidification in Automotive Applications, ed.by C.Kim and C-W.Kim,TMS,(1991)149
- 26) T.Maru, C-Z.Wang and H.Nomura:121st Grand Lecture of Japan Foundrymen's Society,(1992)55
- 27) Y.Sako, I.Ohnaka, J.D.Zhu, H.Yasuda: J.JFS, 74(2002)235
- 28) M.C.Flemings: Solidification Processing, (McGrow-Hill) (1974)
- 29) T.Sakuragi: J.JFS, 76(2004) 562
- 30)(財)素形材センター編:湯流れ可視化計測技術とコンピュータシミュレーション (1994)

第2章 板状鋳物の湯流れおよび流動停止の数値予測

2.1. 緒 言

湯流れに起因する代表的な欠陥の一つに湯回り不良があげられるが、鋳物の薄肉化にあた ってはいかに湯回りを確保し湯回り不良が発生しない方案を設計するかが問題となる。湯回 り不良の主要因としては、背圧の発生および溶湯温度低下の2つが考えられる。前者につい ては、背圧を考慮した数値解析法の開発が行われている^{10,70}。一方、流動中の温度低下に関 しては、固相の晶出による溶湯の見かけ粘性の上昇、あるいは流路の閉鎖により流動停止に 至ることが知られている⁸⁰。このような場合の湯流れ解析では、溶湯粘性の変化を考慮する 必要がある。Xuら⁹⁰は、Al-10mass%Si合金(以下%は mass%を示す)を用いて流動停止 時の流動長を実験と解析で比較し、湯回り不良予測の可能性を検討している。しかし、流動 中の粘性の取り扱い、および流動停止の条件については不明瞭である。Sztur ら¹⁰⁰は、 Al-8%Si-3%Cu合金の溶湯粘性を固相率に応じて3段階に変化させ解析を行い実験と比較し ている。しかしながら、流動停止の固相率(流動限界固相率)は0.1 と小さく、粘性の取り 扱い、あるいは計算手法に問題があると考えられる。また、大塚ら⁴⁰はダイカスト製品の湯 回り不良予測を行っている。彼らは見かけの粘性を液相率の関数として解析を行っているが、 見かけ粘性の取り扱いおよび流動限界固相率などの流動停止条件ついては十分な考察が行わ れていない。

固液共存状態の流れについては、固相間を液相が流れる場合、および固相と液相が同時に 流動する場合に大別できる。前者としてはデンドライト間での液相の流れがこれに相当する が、この場合はダルシー流れとして混合相中の液相の透過率を考慮することにより解析が可 能であると考えられる。一方、Al-5%Si合金、Al-4%Cu合金等の比較的凝固範囲の広い合金 では固相が等軸晶として晶出し易く(マッシー凝固タイプの合金)¹¹⁾、固相は液相とともに 容易に移動すると考えられる(Fig.2.1)。すなわちこれらの合金は後者の場合に相当し、溶 湯の粘性は固液混合溶液の見かけの粘性により取り扱えると考えられる。

そこで本章では、湯流れ中に晶出した固相は液相とともに移動すると仮定し固相率の関数 として見かけの粘性を求め、さらに流動停止の評価を加えることにより、凝固を伴う湯流れ 状態および湯回り不良の予測を行う方法について検討する。また、JIS AC4C 合金

(Al-7%Si-0.3%Mg)板状鋳物を用い流動停止時の流動長を測定し、解析結果と比較検討する。さらに、鋳物と同じサイズのアクリル樹脂製水モデル装置により、ガスの巻き込みとその移動状況を観察する。最後に、開発した欠陥予測法を砂型重力鋳造法で製造されているア

ルミニウム製品へ応用する。

2.2. 板状鋳物の鋳造実験方法

Fig.2-2 に実験に用いた板状鋳物およびその鋳型形状を示す。鋳物寸法は長さ 550mm、巾 30mm で、厚さは 9mm と 4.5mm の 2 種類を準備した。鋳型は炭素鋼製金型であり、また 金型上部は湯流れ観察のために石英ガラスを用いた。この石英ガラスを通し、ビデオカメラ により湯流れ状態を観察、記録した。鋳造合金は市販の AC4C 合金を用いた。湯口上部に設 けた取り鍋に 50mm の高さまで溶湯を注入し、目標鋳込み温度に達した時点でストッパーを 上昇させ鋳造を行った。注湯温度は 923K, 943K, 973K, 1003K および 1023K の 5 種類と した。なお、金型温度は室温とし、さらに背圧の影響を除くために湯口と反対側の端部を開 放して鋳造を行った。

溶湯と鋳型間の熱伝達係数が湯回り不良予測に大きく影響を及ぼす。そこで、まず Fig.2-2 に示した6ヶ所に直径0.23mmのK型熱電対を設置して、流動中の溶湯温度の測定を行った。 次に熱伝達係数を数種類に変えて湯流れ解析を行い、解析による流動中の溶湯温度と測定値 とを比較することで、計算に用いる熱伝達係数を決定した。なお、流動が停止しないように、 温度測定は鋳込み温度1023K、鋳型温度約423Kの条件で行った。

流れの先端付近の状態を調べるために、流動停止した試料の湯先部分のマクロ組織及びミ クロ組織を観察した。またアクリル樹脂製水モデル装置により、湯口直下のガスの巻き込み の状態および気泡、粒子の移動について調べた。水モデル装置は板状鋳物と同じサイズとし、 側面と上面からビデオカメラで流れの状態を観察した。流体はグリセリン水溶液を用い、グ リセリンの濃度を0%から100%まで変えることで流体の粘性を調整した。

さらに、提案した欠陥予測法を砂型重力鋳造法で製造されているアルミニウム鋳物に応用 し、欠陥予測の可能性について検討した。

2.3. 数值予測法

湯流れ計算は、直接差分法^{11,12)}により開発された湯流れ解析コードを改善して実施した¹²⁻¹⁵⁾。

2.3.1. 固液共存溶湯の見かけ粘性の取り扱い

Al-Cu,Al-Si 系合金はマッシー凝固形態の合金であることが知られている。このような合金では固相は容易に液相と共に移動し、その粘性は単一液体の見かけの粘性として取り扱いが可能であると考えられる。 すなわち AC4C 合金はマッシー凝固形態に分類できることから、次の仮定が成立するものとして解析を行った。

① 固相は液相とともに流動する。

② 溶湯の粘性は固液混合液体の見かけの粘性として扱える。

また、流れは層流でニュートン流体を仮定した。

粒子混合溶液の見かけの粘性については、粒子形状および粒子間距離の影響を考慮した森 ら¹⁷⁾の理論式が実験とよく一致することが知られている¹⁷⁻¹⁹⁾。また、合金の見かけ粘性につ いては、森らの式をもとにせん断ひずみ速度および冷却速度の依存を考慮した検討が行われ ており、固液共存溶湯の見かけの粘性式として森らの理論式が有効であることが知られてい る¹⁹⁻²²⁾。ここでは粘性は固相率のみに依存し、せん断ひずみ速度および冷却速度には依存し ないものと仮定し、式(2-1)に示す森らの式を用いて固液混合溶湯の見かけの粘性を求めた。

$$\mu_{s} = \mu_{0} \left(1 + \frac{k}{1/f_{s} - 1/f_{sc}} \right)$$

$$k = \frac{\overline{d}S_{f}}{2}$$

$$(2-1)$$

ここで μ_s : 固液混合液体の粘性、 μ_o :液相の粘性、 f_s : 固相率、 f_{sc} :流動限界固相率、k: 形状係数、 \bar{d} : 混合粒子平均直径、 S_f : 混合粒子の比表面積。

混合粒子が球状均一粒径の場合、 f_{sc} の理論値は粒子の最稠密充填時の固相率 $\pi / 6$ (\Rightarrow 0.52) であることから、 f_{sc} =0.52 として計算を行った。Fig.2-3 に、形状係数 k=150 として計算を行った場合の見かけの粘性と固相率の関係を、Spencer²⁰⁾らによる Pb-15%Sn 合金の見かけの粘性の測定結果と比較して示しす。Pb-Sn 合金は代表的な共晶合金であるが、

Pb-15%Sn の組成においては固液共存温度域が広く、典型的なマッシー凝固合金である。また Loue²¹⁾らは Al-7Si-0.3Mg 合金(AC4C)についてせん断速度と見かけの粘性と固相率の 関係を調べている。Fig.2-4 に Loue らの測定結果と式(2-1)により形状計数 k を変化させ て求めた見かけ粘性を比較して示す。いずれも計算値と測定値はよく一致している。

なお、式(2-1)は $f_{s=fsc}$ で発散するため本研究では $\mu \ge 2000 \mu_0$ では $2000 \mu_0$ 一定として計算を行った。

2.3.2 運動量保存則

i番目の面を中心とするスタッガード要素に関する運動量保存則を式(2-2)に示す。

$$\left(\rho V\right)_{i} \frac{\mathbf{u}_{i}^{n+1} - \mathbf{u}_{i}^{n}}{\Lambda t} = \mathbf{M}_{ci} + \mathbf{M}_{vi} + \mathbf{M}_{pi} + \mathbf{M}_{gi}$$
(2-2)

ここで ρ[:] 密度、 V: スタッガード要素体積、 **u**: 速度、 *n*: タイムステップ数、 Δ*t*: タイ ムステップ。また右辺の各項はそれぞれ対流項、粘性項、圧力項および重力項である。 粘性項**M**_{vi}は次式(2-3)で与えられる。

$$\mathbf{M}_{vi} = \sum_{j} \frac{(\mathbf{u}_{j} - \mathbf{u}_{i})}{\Delta x_{ij}} \overline{\mu}_{ij} S_{ij}$$
(2-3)

ここで μ_{ij} : 平均の粘性、 S: 面積、 Δx : 面間距離。また式(2-2)、(2-3)における添え字 i は 面番号または i 番目の面を中心としたスタッガード要素番号、j は面 i に隣接する面の面番号 を示す。なお、その他の計算式の詳細については文献(13)、(14)を参照されたい。

2.3.3. 質量保存則

要素 i に関する質量保存則を式(2-4)に示す 14)。

$$\sum (\mathbf{n}S\overline{f}_{L}\overline{\beta}_{s}\mathbf{u})_{j}\Delta t = (\beta_{Vi}^{n+1} - \beta_{Vi}^{n})V_{i}$$
(2-4)

n: 面の法線ベクトル(流入が正)、 f_L : 液相率、 β_S : 面充満率、 β_V : 体積充満率、 \overline{f}_L 、 $\overline{\beta}_s$ は上流側の値、また添え字は*i*: 要素番号、*j*: 要素*i*の構成面の面番号を示す。

3.3.4. 熱エネルギー保存則

要素 i に関する熱エネルギー保存式を式(2-5)に示す 15)。

$$(\rho C_{P} V \beta_{V})_{ci} \frac{\Delta T_{ci}}{\Delta t} = \sum_{c \to c} \beta_{S} S_{ij} \lambda_{c} \frac{T_{cj}^{B} - T_{ci}^{B}}{d_{ij}} + \sum_{c \to c} (\mathbf{n} \rho C_{P} \overline{\beta}_{S} S \mathbf{u})_{ij} (\overline{T}_{ci}^{B} - T_{ci}^{B}) + \sum_{m \to c} (\beta_{S} S)_{ij} \frac{T_{mj}^{B} - T_{ci}^{B}}{R_{ij}} + \sum_{a \to c} h_{ac} \beta_{S} S_{ij} (T_{a} - T_{ci}^{B}) + \frac{\Delta (\rho \Delta H V \beta_{V} f_{S})_{ci}}{\Delta t}$$

$$(2-5)$$

ここで C_p :比熱、 ΔH :凝固潜熱、R:複合熱抵抗、 d_{ij} :要素i、j間の距離を示す。また添 え字はi:要素番号、j:要素iの隣接要素番号または要素iの構成面番号、c:鋳物、m:鋳 型、a:外気、B: タイムステップ前の値を示す。

右辺の各項は左より熱伝導項、対流項、鋳型との熱伝達項、外気との熱伝達項、潜熱項で ある。固相率は温度回復法¹⁵⁾を用いて計算した。式(2-5)と2元系合金におけるシャイル の式¹¹⁾とを連立させることにより温度と固相率を求めた。

-15-

2.3.4. 流動停止の取り扱い

流動停止の判定については、自由表面を構成するすべての要素の固相率を調べ、これらの 要素の固相率がすべて *fsc* を越えた場合に流動は停止し、湯回り不良が発生したと判断して 計算を終了するようにプログラムを作成した(Fig.2-5 参照)。

2.3.5. 鋳物-鋳型間の熱伝達係数の評価

解析に先立ち鋳物-鋳型間の熱伝達係数評価を行った結果を Fig.2-6 に示す。湯流れ中の 溶湯温度は熱伝達係数 $h=8400 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$ での計算結果と比較的よく一致した。この熱伝達 係数の値は金型では妥当な値であることから 23 、以降の数値計算ではすべて $h=8400 \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$ として計算を行った。

2.4. 結果および考察

2.4.1. 粘性変化を考慮した湯流れ解析結果

Fig.2-7 に鋳込み温度 973K, 肉厚 9mm の板状鋳物の湯流れ状態を示す。この実験では鋳込み後 1.50s 後に湯流れが停止し、このときの流動長は 324mm であった。

Fig.2-8 に、鋳込み温度 973K,肉厚 9mm で溶湯粘性を一定とした場合(a)、および粘性を 変化させた場合(b)の湯流れ解析結果を示す。鋳込み 0.21s 後の時点では、両者の流れに相違 は認められない。しかし、0.4s 以降は溶湯温度が液相線以下になり溶湯粘性が増加すること により、両者の湯流れ状態は大きく異なった。すなわち、(a)では粘性変化を考慮していない ために流れは停止することなく 1.44s 後に溶湯は鋳型を満すが、(b)では粘性変化により流速 が低下し 1.57s 後に湯流れが停止した。この時の流動長は 330mm であった。以上のことか ら、凝固を伴う湯流れ状態を数値解析により求めるには、粘性一定のニュートン流体モデル では困難であること、また粘性可変(固相率依存)のニュートン流体モデルではある程度可 能であると言える。

Fig.2-9 に流れの前方部分における流速と温度分布について、粘性一定の場合(a)と粘性変 化を考慮した場合(b)の比較を示す。溶湯温度は、(a)では流れの先端部が低いのに対して、 (b)では湯先よりもやや後方部が低く、両者で温度分布は大きく異なった。流速については、 (a)では先端に向かって若干大きくなる程度であるのに対して、(b)では流速は低温部の厚さ方 向中央部で大きく、その前方の自由表面部で減少した。Fig.2-10 に湯流れ中の速度分布につ いて模式的に示す。壁面付近の溶湯温度が低下し、この部分の粘性が高くなることで有効な 流路面積が減少する。その結果、中央部の流速が周囲より大きくなる。しかし、先端部付近 では溶湯は放射状に広がり、先端部の流速は減少する。一方、中央部を通過した高温の溶湯 は先端部に到達するが、流路の減少⁸⁾および先端部の流速低下により先端部の温度が低下し、 流動停止に至ったと考えられる。このことから自由表面要素の固相率を流動停止の判断基準 としているが、湯先よりも後方において流路が閉鎖される場合についても、流動停止の評価 が可能であると考えられる。

次に、肉厚 4.5mm と 9mm の鋳物を各種温度で鋳込んだ結果を Fig.2-11(a)(b)に示す。鋳 込み温度が高くなるに従い流動長さは増加し、また肉厚の増加によっても流動長さは増加し た。Fig.2-12 に鋳込み温度と流動長さの関係について実験結果と湯流れ解析の結果を示す。 ばらつきはあるが肉厚 9mm および 4.5mm のいずれの鋳物においても、その流動長は鋳込み 温度の増加に対してほぼ直線的に増加する。一方、解析結果においても実験結果と同様に流 動長さは鋳込み温度の増加に対して直線的に増加しており、実験結果と解析結果はよく一致 している。

2.4.2. 流動長さに及ぼす各種パラメータの影響

計算による流動長は流動限界固相率 fsc および形状係数 k により変化すると考えられるた め、これらの流動長に及ぼす影響について調べた。Fig.2-13 に計算流動長に及ぼす fsc の影 響について示す。流動限界固相率の増加に伴い流動長はほぼ直線的に増加し、その変化は比 較的大きい。マッシー凝固タイプ合金として Pb-Sn 合金 20)、Al-Si 合金 21)、Al-Cu 合金 19)22)24) および鋳鉄 24)25)などの溶湯の見かけ粘性が測定されている。 Pb-15%Sn 合金の粘性データ 21) に式 (2-1) を 適用 した ところ、 fsc=0.52, k=150 で 実験 結果 とよく 一致 した。 Al-7%Si-0.3%Mg合金 22)、Al-4.5%Cu-1.5%Mg²³⁾合金の流動限界固相率は約0.5で理論値 0.52 に近い値であることが報告されている。つぎに、Fig.2-14 計算流動長に及ぼす形状係数 k の 影響を示す。形状係数 150 以上では流動長は形状係数の増加に従い減少するが、形状係数 150 以下では流動長さはほぼ一定であり、形状係数の流動長への影響は fsc の場合に比べて小さ

Fig.2-12 Comparison of experimental and simulated flow length.

Fig.2-13 Effect of critical fraction of solid, f_{sc} , on simulated flow length. Thickness of castings: 9mm and pouring temp.: 973K.

い。一方、平居らは Al-10%Cu 合金の形状係数を測定しており¹⁹、その係数値は数十程度で ある。また、各種の合金粘性データに式(2-1)を適用し k を評価したところ、Pb-15%Sn 合金 ²⁰⁾の場合は 150 であった。また Al-7%Si-0.3%Mg 合金²¹⁾ では、せん断ひずみ速度が比較的 速い場合の測定結果とは k=50~500 の範囲で一致した。これらの値と比較して、用いた流動 限界固相率、形状係数は適切な値であると考えられ、その結果実験結果と解析結果が比較的 良く一致したものと考えられる。

以上のことから、適切な流動限界固相率、形状係数を選定することにより、凝固を伴う流 れのシミュレーションへの本手法の適用が有効であると考えられる。見かけ粘性はせん断ひ ずみ速度に影響され、例えば Fig.2-4 で 27s⁻¹のせん断ひずみ速度が小さい場合、低固相率で 式(2-1)のプロットと測定値との差が大きくなっているが、今後せん断速度の依存性を考慮す ることで、解析精度の向上が可能と考えられる。

2.4.3. 流動停止部の組織

Fig.2-15 に流動停止した湯先付近のマクロ組織を示す。程度に差は認められるが、湯先に 相当する先端部分(左端)にピンホールが集中する傾向が認められる。Fig.2-16 にミクロ組 織を示す。Fig.2-16(a)、(b)は、それぞれ Fig2-15(a)の P1,P2 で示した場所のミクロ組織であ る。P1 は先端部に近く、一方 P2 は先端部から少し離れ位置である。P1 では、マクロ組織 に見られたピンホールが認められる。また P2 に比べると初晶α相が多く Si 相が少ない。EDX 分析により Si 濃度を調べたところ、P2 付近は 7.2wt%であったが、湯先付近では Si 濃度が 5.5wt%程度に減少する傾向が認められた。このような興味深い観察結果を説明するために下 記の実験を行った。

2.4.4. 水モデルによる流れの観察

透明アクリルを用いた水モデル実験結果を Fig.2-17 に示す。湯口底の堰の前方で、流体が ガスを巻き込みながら流入している状態が認められる。巻き込まれたガスの内、大きな気泡 は浮力が大きいために堰から近い所で鋳物上部に浮上し、消滅する。一方、小さな気泡はよ り流れの前方まで運ばれる様子が観察された。

Fig.2-18 は、アルミニウムの湯流れ状態を上部より観察した結果を示している。白い○で 示した個所でガス気泡が鋳物表面に浮上する様子が観察される。すなわち、水モデルの場合 と同様に、実際の鋳物においても堰を通過した溶湯がガスを巻き込みながら流入し、巻き込 まれたガスの内大きな気泡は鋳物表面から大気中に放出されたと考えられる。

Fig.2-19 は、水モデルで観察された着色剤の粒子の移動の様子を示す。粒子は湯先の方向 に移動しており、粒子の流速は湯先の速度よりも速い。これは、湯先部分では溶湯が上下左 右に放射状に広がるためである。Fig.2-16 および Fig.2-19 の結果は、Fig.2-17 で巻き込まれ た微細なガス気泡が湯先先端に運ばれる可能性を示しているといえる。また Fig.2-10 に示し た板状鋳物の湯流れ解析の結果からも、湯先部よりも中央部の流れが速くなることが示され ている。本研究における湯流れ解析では表面張力あるいは固相の移動を考慮していないが、 気泡あるいは粒子が湯先の移動速度よりも速い速度で移動することを説明できるものと考え られる。 Flemings⁸⁾は "Fine grains are carried along with the tip of the flowing stream, and flow stoppage can be by formation of sufficient solid at the tip." と推定している。す なわち気泡だけではなく流動中に晶出した初晶 α が湯先に移動し、 α 相の増加ーすなわち Si 濃度の減少を招くと考えられる。また Si 濃度の減少により液相線温度が上昇し、このことは 湯回り不良欠陥の発生に影響をおよぼすと考えられる。

(a) around the front (b) far from the front

Fig.2-16 Microstructures at P1 and P2 indicated in Fig.2-15(a)

Fig.2-19 Direct obsevation of particle moving towards flow front in the water model.

2.5. 製品への応用事例

Fig.2-20 に砂型重力鋳造法により生産されているアルミニウム鋳物の解析結果を示す。 Fig.2-20(c)は 健全品であり、(b)は注湯温度を下げて鋳造を行った典型的な湯回り不良品を、 (a)はその湯回り不良品の解析結果を示す。湯回り不良予測の結果は不良品の外観と類似して おり、本研究で提案した予測法は実製品への応用が可能であると考えられる。

なお本研究で開発した湯回り不良予測法は、株式会社クオリカより市販されている湯流 れ・凝固解析ソフトウェア JS-CAST の流動停止モジュールとして実用化され、鋳造現場で 利用されている。

2.7 結 論

溶湯粘性を固相率の関数として求め、さらに流動停止の評価を行うことで、凝固を伴う湯 流れ状態および湯回り不良の予測について検討した。提案した方法を用いて、AC4C 合金板 状鋳物、砂型重力鋳造で製造されているアルミニウム鋳物の湯回り不良予測を行った。また、 水モデルにより板状鋳物のガス巻き込み状態と気泡の移動につて検討した。得られた結果は 次の通りである。

- (1) 粘性可変と一定の場合とでは計算による温度分布、流速分布ともに大きく異なり、粘性変化を考慮する事により流動停止の評価が可能である。
- (2)本実験で使用した板状鋳物の湯流れ解析では、壁面からの冷却により流路が制限され湯 先部の流速が遅くなり、先端部の固相率が上昇して流動停止に至ると考えられる。
- (3) 鋳物肉厚 9mm で 973K の鋳込み試料について、流動停止時間および流動長ともに解析 結果は実験結果と良く一致した。
- (4) 温度を変化させて鋳造した場合、解析および実験値ともに流動長は鋳込み温度の増加に 従いほぼ直線的に増加し、実験結果と解析結果はよく一致した。
- (5) 流動限界固相率、形状係数を適切に評価することにより、凝固を伴う湯流れの解析および湯回り不良予測が可能であると考えられる。
- (6) 水モデル観察、板状鋳物の観察から、堰直下で巻き込まれたガスのうち、大きな気泡は 鋳物上部に浮上し大気中に放出され、細かな気泡および初晶αは、鋳物中央部の速い流 れにより湯先方向に移動すると考えられる。
- (7)湯回り不良予測法を、砂型重力鋳造法で生産されているアルミニウム鋳物に適用し、実製品への応用の可能性を示した。

参考文献

- 1) K.Tanaka, K.Terashima, H.Nomura: IMONO, 65 (1993) 277
- 2) Hwang L-R,Lin H-C,Shin T-S:Traans Am Foundrymen Soc., 105 (1997) 745
- 3) K.Ohtsuka, K.Ono, K.Shimizu, Y.Matsubara: IMONO, 60 (1988) 757
- 4) S.Kano, E.Nagasaka: Report of 123th JFS Meeting 123 (1993) 10
- 5) J.D.Zhu,I.Ohnaka,A.Suzuki: Report of 122th JFS Meeting 122 (1993) 57
- 6) K.Inomata, J.D.Zhu, I.Ohnaka: Report of 135th JFS Meeting 135 (1999) 32
- 7) I.Takahashi, T.Uchida: Report of 133th JFS Meeting 133 (1998) 121
- 8) M.C.Flemings: Solidification Processing, (McGrow-Hill) (1974)
- 9) Z.A.Xu and F.Mampaey: Modeling of Casting, Welding and Advanced Solidification Processes VIII, (San Diego) (TMS) (1998) 45
- 10) Ch.Sztur, S.Guy and C.Rigaaut: Fonderie Fondeur D'aujour'hui, 157 (1996)21
- 11) 大中逸雄: コンピュータ伝熱・凝固解析入門(丸善)(1985)
- 12) M.Ohmasa, I.Ohnaka: IMONO,63 (1991) 817
- 13) J.D.Zhu and I.Ohnaka: Modeling of Casting, Welding and Advanced Solidification Processes VII, London (TMS) (1995) 971
- 14) J.D.Zhu, I.Ohnaka: J.JFS, 68 (1996) 668
- 15) I.Ohonaka: Solidification Analysis of Castings, Selected Topics on Ice-Water Systems and Welding and Casting Processes, (Hemisphere Pub.)(1991)
- 16) 森芳郎、乙竹直: 化学工学 20 (1956) 488
- 17) I.Ohnaka, A.Sugiyama, J.D.Zhu, T Ohmichi and S.Kitano: Proc. 4th Asian Foundry Congress, Australia (Australia Foundrymen's Soc.)(1996) 533
- 18) I.Ohnaka, A.Sugiyama and J.D.Zhu: EDP Congress 1997, (TMS)(1997) 719
- 19) 平居正純、竹林克浩、吉川雄司、山口隆二:鉄と鋼 78 (1992) 902
- 20) D.Spencer, R.Mehrabian and M.C.Flemings: Met. Trans., 3 (1972) 1925
- 21) W.R.Loue, S.Landkroon and W.H.Kool: Mater. Sci. Eng., A151 (1992) 255
- 22) T.Z.Kattamis and T.J.Piccone: Sci. Eng., A131 (1991) 265
- 23) H.Nomura, Y.Maeda, E.Kato, A.Yamazaki and Y.Mori: Modeling of Casting and Solidification Processes IV,(Seoul)(Ed. by C.P.Hong, J.K.Choi and D.H.Kim) (1999)
 177
- 24) 森信幸、大城桂作、松田公扶:日本金属学会誌 48 (1984) 936
- 25) 渋谷昭彦、有原和彦、中村泰:鉄と鋼 66 (1980) 92
- 26) 邱培琪、野村宏之、滝田光晴、今泉賢: 鋳造工学 71 (1999) 404

第3章 湯境・湯じわの観察と湯流れ解析による数値予測

3.1. 緒 言

自動車部品や携帯機器等、製品の軽量化とダウンサイジングが進むなか、鋳物の薄肉化が ますます要求されている。しかし、薄肉鋳物では湯流れ中に溶湯温度が低下しやすく、温度 低下が大きな場合は第2章で論じた湯回り不良が発生する。さらに湯回り不良に至らない場 合においても、湯境、湯じわといった典型的な欠陥が発生する。携帯機器のケースなどでは 鋳物の表面状態が製品品質に大きく影響することから、薄肉鋳物においては品質の確保、生 産性の向上において湯境や湯じわの対策が、特に重要である。

高品質な薄肉鋳物において問題となる湯境および湯じわの発生メカニズムについては、下 記の研究成果がある。湯境は、固液共存状態の低温溶湯の合流や、凝固した鋳物部(流動停 止部)への溶湯合流などにより発生する¹⁻³⁾。また、湯じわについては、合流部での溶湯表面 の酸化膜やガス残留等が影響していると考えられている²⁾。

一方、湯境および湯じわの数値予測法については下記の研究報告がある。大塚ら 4は、溶 湯合流部に湯境、湯じわが生じるとして、要素への溶湯流入に応じた指数付けを行うことで これらの欠陥を判定できる可能性を指摘した。湯境については、湯流れ解析で湯流れ完了時 の低温部分と湯境発生位置が一致するという報告がある 5.6%。しかし、溶湯の合流状態、合流 点での溶湯温度については評価されていない。また、湯境の予測で溶湯粘性を考慮した報告 もあるが、湯回り不良についての考察にとどまり、湯境については議論されていない 7.8%。溶 湯の合流については、速度ベクトル表示 9%、溶湯軌跡表示など市販ソフトに付属した既存の 機能の利用が考えられるが、これらの機能を用いて湯境を評価した報告はほとんどない。さ らに湯流れ解析と実験結果とを比較し、湯境や湯じわとの関係について調べた報告はない。

そこで本章では、まず注湯温度および溶湯の合流位置を変化させた板状鋳物の鋳造実験を 行い、湯流れの可視化実験とともに湯境および湯じわの発生状況を調べる。次に、湯境およ び湯じわの湯流れ解析による予測を行うために、速度ベクトルによる合流の評価と解析要素 が充満する時点での溶湯温度、固相率による評価の方法について論じる。さらに、実験結果 と数値予測結果との比較から、本研究で提案した数値予測法の妥当性を評価する。
3.2. 実験方法

溶湯の流入方向を変化させた Type I,Ⅱ,Ⅲの3種類の板状鋳物について鋳造実験を行った。Type Iの鋳物と鋳型の形状・寸法を Fig.3-1 に、また Type ⅡとⅢの鋳物と湯道の形状 について Fig.3-2 に示す。

Type Iの形状は、幅 40mm、長さ 270mm、肉厚 5mm の板状とした。溶湯は、鋳物の左 右両端に設けた湯だまりから流入し、鋳物中央付近で正面から合流する。Type II、Ⅲの形状 は、幅 110mm、長さ 170mm、肉厚 5mm の平板状である。これらの鋳物では1つの湯口か ら流入した溶湯を2カ所の堰から流入させている。Type II では溶湯が直交するように、また Type III では溶湯が平行して流入するようにそれぞれ堰を設けた。

Table 3·1 に各鋳物の鋳造実験条件を示す。I·01~I·04 の場合は、一方の溶湯温度を 1023K で一定とし、他方を 973K から 903K に変化させて鋳込みを行った。I·10 の場合は、溶湯が 流動停止した後、反対側から溶湯を流し込んだ。I·10 の場合、流動停止から溶湯合流までの 時間は約 2 秒であった。また Type Ⅱ,Ⅲでは鋳込み温度は 1023K とした。

Fig.3-2 Geometry of aluminum plate castings, Type II and III.

Туре	Sample	Pouring temp. (K)		Remarks	
of casting	No.	left gate	right gate	$\Delta t(s)$	ΔT (deg.)
Туре І	I-01	1023	973	0	50
	I-02	1023	943	0	80
	I-03	1023	923	0	100
	I-04	1023	903	0	120
	I-10	1023	1023	2	0
Type II	II-01	993		0	0
Type III	III-01	993		0	0

Table 3-1 Casting conditions.

 Δt = pouring onset time difference at left and right gates ΔT = pouring temperature difference at left and right Type I, II, III ともに鋳型は炭素鋼製の金型で、上型は厚さ 3mm の石英板を用いた。背圧に よる湯回り不良の発生を防ぐために、5mm×20mm のセラミックファイバーを用いたベント ホールおよび型合わせ面に 0.5mm 程度の隙間を設けた。流動中の湯流れ状態については、 上型の石英板を通してビデオカメラにより観察した。湯じわ、湯境の状況は光学顕微鏡によ る組織観察と表面形状測定装置による表面の凹凸測定により調べた。

なお、鋳造合金には JIS AC4C 合金を用い、金型は常温にて鋳造を行った。

3.3. 低温溶湯の合流位置の数値予測法

湯流れ計算には、直接差分法¹⁰⁻¹⁴により開発された湯流れ解析コードを用いた。湯境ある いは湯じわを評価するために、次の3つの方法について検討した。

(1) 温度法 (Temperature Method): 要素充満時の温度による評価

(2)固相率法(Solid Fraction Method):要素充満時の固相率による評価

(3)速度ベクトル法(Velocity Vector Method):速度ベクトルによる合流の評価

温度法、固相率法では、要素が充満状態になった時点での要素の温度および固相率を求め その分布を調べた。合流点ではその要素は未充満から充満要素になると考えられることから、 本方法での情報には要素の合流時点での情報が含まれている。一方通常の方法では、ある時 刻における各要素の温度、固相率の分布を求めており、すなわち溶湯の合流とは無関係であ り、本方法とは大きく異なる。

速度ベクトル法では、要素充満時の要素面からの溶湯流入速度ベクトルを調べ、合流の有 無を判断した。また、湯境および湯じわの評価にあたっては、速度ベクトル法と固相率法と を併せて用い、合流が発生した要素の固相率を求めることで評価を行った。

2方向から溶湯が合流する場合の合流パターンを Fig.3-3 に示す。(a)は正面からの合流、 (c)は側面からの合流、(d)は斜め後方からの合流のパターンを示している。(b)は(a)(c)の中間 的な場合である。速度ベクトル法では以下のアルゴリズムにより合流要素の判定を行ってい る。

①新しい充満要素を合流判定の対象(注目要素 ie)とする。

- ②1タイムステップ前に ie のある対向面 (S1,S2) において向かい合う面流速 (us1, us2) が存在する。
- ③S1,S2 を含む ie の隣接要素 (j1, j2) の中心速度ベクトル Vj1,Vj2 について 2 ベクトル 間の角度 θ を求める。

④ $\theta c < \theta \leq 180^{\circ}$ (θc はしきい値)を満たす場合、ie を合流要素として判定する。

なお θは Vj1,Vj2 が向かい合う方向にある場合は正、そうでない場合を負と定義した。なお θ c は実験で求めることが困難であるため便宜上 10°として計算を行った。また、解析は 3 次元であるため、X-Y,Y-Z,Z-X の各平面についてベクトルによる評価を行い、少なくとも 1 つの平面で合流条件が満たされた場合は、その要素で溶湯が合流しているとしてその位置を 求めた。

湯境の発生には、溶湯温度の低下が大きく影響すると考えられる。溶湯温度の低下が大き い場合は溶湯粘性が上昇することから、湯境、湯じわの評価においては溶湯粘性変化の考慮 が必要である。前章では、溶湯の見かけ粘性を固相率の関数として求めて数値解析を行う方 法が、AC4C 合金鋳物の湯回り不良予測に有効である事を示した。そこで本章でも、この見 かけ粘性の関数を用いて湯流れ解析を行った。Table 3-2 に湯流れ解析に用いた物性値を示 す。また AC4C 合金の各種物性については文献 15 の値を用いた.

μ _o	k	fsc	h
dynamic viscosity of liquid metal	shape factor	critical fraction of solid	heat transfer coefficient
m²/s	_	_	W /(m ² K)
0.01x10 ⁻⁴	200	0.52	8820

3.4. 結果および考察

3.4.1. Type I 鋳物の実験結果

I-01~I-04 および I-10 鋳物の外観写真を Fig.3-4 に示す。ビデオ観察と外観観察による合流状態は次の通りであった。

- (1) I-01 および I-02 では左右の溶湯は流動状態で合流した。外観からは、合流により 生じた模様が観察された。
- (2) I-03 では低温側(923K)の溶湯が流動停止し、約 0.2 秒後に高温側(1023K)か ら流れてきた溶湯が合流した。外観からは、くぼみが観察された。

- (3) I-04 では、流動停止により湯回り不良となった。
- (4) I-10 では、先に注湯した溶湯が流動停止し、約2秒後に反対方向からの溶湯が合流した。外観からは、明瞭な溝が観察された。

Fig.3-5 に、溶湯合流部の組織写真と表面形状測定装置による鋳物裏面合流部のくぼみの測定結果を示す。I-10 の場合、360 µmの深い溝が認められ、組織では合流部に明瞭な界面が認められる。この界面の前後で組織は不連続であり、結晶粒の大きさや方位も異なる。また、界面上には多数の空隙が認められた。このことから、I-10 の合流部は湯境欠陥であると言える ^{2,3)}。流動停止した湯先(左側)は丸みを帯びた形状であり、流動停止時に鋳型と金型間に

大きな隙間が存在していたことがわかる。この隙間は、温度低下によるぬれ角の増加、ある いは粘性上昇により溶湯と鋳型のぬれ角が大きいまま凝固した結果によるものと考えられる。 また合流してきた溶湯(右側)は、その隙間を埋める前に凝固したことがわかる。I-03の場 合、外観では 25μ m のくぼみが認められ、組織でも結晶粒サイズや方位が異なるなどの相違 がはっきりと確認出来る。しかし、I-10に見られるような界面は認められない。I-02の場合、 外観では 20μ m のくぼみが認められるが、組織では合流部の判別が困難である。I-01 の場 合、組織からは合流部はほとんど判別できず、さらに表面のくぼみは 5μ m 以下であるため 表面凹凸との区別も困難である。これらのことから、鋳込み温度が低くなるほど合流部分は 湯境に近づくが、本実験において I-01,02,03の表面模様はいずれも湯じわに分類できる。 表面張力により湯先は丸みを帯び、I-10 のように溝が形成される。溶湯温度が高い I-01 の場合、合流により混合した溶湯は溶湯粘性が小さいため、容易に溝部を埋めることができ る。また合流により鋳型内の空気がトラップされる可能性がある。合流部の温度が高いほど 凝固までの時間が長いことから、トラップされた空気が下型およびパーティングラインに設けたベントから排気される可能性も高くなる。その結果、背圧の発生も少なく、表面のくぼ みはほとんど見られなかったものと考えられる。I-01 に認められる湯じわの原因としては湯 先表面の酸化膜の影響が考えられるが、本実験結果からはその原因は明らかではない。

溶湯温度が低い I-02,I-03 では、凝固までの時間が I-01 の場合より短い。そのため、合流 時にトラップされた空気の排気が十分ではなく、また溝部が埋まる前に溶湯の流動性がなく なることにより、丸みを帯びたくぼみが発生したものと考えられる。

3.4.2. Type I 鋳物の湯流れ解析結果

Fig.3-6 に I-03 の湯流れ解析による合流点の評価結果を示す。(a)は湯流れ状態を、(b),(c),(d)はそれぞれ温度法、固相率法、速度ベクトル法による結果を表示している。温度法(b)では、湯先部は温度が低いため合流部付近に低温部の表示が認められるが、その分布の幅は広く合流点の特定は困難である。また、固相率法(c)では、合流部分は高固相率として表示される。その領域幅は温度分布の場合よりも狭く明瞭であるが、鋳型に接する部分にも高固相率部が認められ、温度分布の場合と同様に合流点の特定は困難である。

一方、速度ベクトル法(d)では、溶湯の合流点が線状に表示される。左右中央の合流部は実 験結果と良く一致しており、湯境、湯じわの評価に利用が可能である。なお、幅方向中央部 分に合流部の判定結果が得られているが、これは中央部の流れが遅く、先行する周囲の溶湯 が中央部で合流することにより生じている。しかし、ビデオ観察ではこのような湯流れ状態 は観察されていない。解析と実際の流れ状態の差は、主に金型と溶湯間に発生するエアギャ ップなどによる熱伝達状態の変化によると考えられる。さらに、本研究では考慮していない 表面張力、背圧も影響している可能性もある。

Fig.3-7 に I-03 についてメッシュのサイズを変更した場合の速度ベクトル法による欠陥予 測の変化を示す。縦に伸びた合流点の予測位置は、検討したメッシュサイズの範囲ではほと んど変化がない。このため本章ではメッシュサイズ 2.5×2.5×1.7mm で解析を行った。

次に I-01,02,03,10 の各鋳物について速度ベクトル法と固相率法を併せた方法により合流 点の評価を行った。固相率が十分に高い場合は湯境が発生する。一方、液相率が高い場合の

合流でも、湯先表面に酸化膜あるいは薄い凝固層が存在して、湯境にならなくても湯じわと なることが考えられる。本研究では表面の凝固層を考慮して、湯じわの発生条件をfsc1 < fs< fsc2、湯境の発生条件を $fsc2 \leq fs < 1$ とした。fsc2については、目安として流動が停止する 流動限界固相率が考えられる。

Fig.3-8 に I-03 について、fsc1=0.05、fsc2=0.52(解析に用いた流動限界固相率)とした場合の解析結果を示す。グレーの表示部分は固相率 fs が 0.05 < fs < 0.52の合流部分を、また黒の表示部分は $0.52 \le fs < 1$ の合流部分を示す。数値解析では、Table 2 に示したように流動限界固相率 fsc を 0.52として見かけの溶湯粘性を計算している。すなわち fsc が 0.52以上では

計算上流動が停止する。解析で求めた合流点での固相率は、湯境が発生した I-10 の場合は 0.52 より大きく1に近い値であった。また湯じわと判断した I-01,02,03 の固相率はいずれも 0.52 以下であった。fsc1=0.05、fsc2=0.52 とした場合に実験結果に対応した欠陥予測が得ら れており、本実験の欠陥予測においては $0.52 \leq fs < 1$ の場合は湯境が、0 < fs < 0.52 の場合は 湯じわが発生すると判断できる。

3. 4. 3. Type Ⅱ, Ⅲ鋳物の実験および解析結果

Fig.3-9 に Type II の湯流れの観察結果と解析結果および各予測法による解析結果を示す (上部からの観察)。温度法、固相率法(Fig.3-9(c),(d))では、右下部に低温部および高固相 率の部分が認められ、この付近に湯じわあるいは湯境の発生が予想される。 しかし、中央部 付近での溶湯合流の判定は困難である。一方、速度ベクトル法(Fig.9(e))では、中央部付 近の合流、右下部に合流の判定が認められる。

Fig.3·10 に Type Ⅱ および Type Ⅲ鋳物の裏面の外観を示す。Type Ⅱ は、楕円で示した 部分で溶湯が直交して合流しており、この部分に湯じわが認められる。また矢印で示した右 上部分に明瞭な溝が認められる。ビデオ観察では、この部分において写真下方向から流れて きた溶湯が流動停止し、その後左方向から溶湯が合流する様子が観察された。組織観察では 合流による界面が確認できたことから、この部分は湯境である。Type Ⅲ は、堰から平行に 流入した溶湯が楕円で囲った付近で合流しており、この部分に湯じわが認められる。なお、 Type Ⅱ,Ⅲ ともに写真で白く観察される凹凸が見られるが、これはエアギャップにより生じ たくぼみである。

Fig.3-11 に速度ベクトル法と固相率法による解析結果を示す。Fig.3-10(a),(b)の湯じわの 部分と Fig.3-11(a),(b)のグレーの部分を比較すると、形状は異なるが、その発生位置はおお むね一致している。また Fig.3-11(a)中、黒で示された固相率 0.52以上の合流点は、Fig.3-10(a) の湯境位置と一致している。なお、Fig.3-11(a)で実験結果では湯じわなどが観察されていな い左上部分にグレーの合流点が認められる。これは、Type I の場合と同様に金型と溶湯の熱 伝達状態の時間変化などにより湯流れ状態が実際と異なったことが原因と考えられる。

本研究では、湯境、湯じわの発生要因のうち溶湯の表面張力や酸化膜を考慮していないが、 溶湯合流評価と合流点の固相率評価はこれらの欠陥の予測に利用可能であると考えられる。

-43-

3.5.結論

湯流れ解析による湯境、湯じわの評価法を提案し、各種の板状鋳物の実験結果と解析結果 とを比較検討した。得られた結果は次の通りである。

- (1) I-01,02,03 鋳物の場合、流動状態か流動停止直後に溶湯が合流し、鋳物表面に湯じわの発生が認められた。一方、流動停止後に溶湯合流が生じた I-10 鋳物の場合、組織 観察で合流部に線状に境界が認められ、湯境欠陥が発生した。
- (2) 温度法、固相率法、速度ベクトル法の3種類の判定法により溶湯合流点の評価を行ったところ、速度ベクトル法が実験結果と良い一致を示した。
- (3) 速度ベクトル法と固相率法を併用し Type I の合流点での固相率を求めたところ、湯 境が発生した I-10 の固相率は 0.52 より大きく1 に近い値であった。また湯じわと判 断した I-01,02,03 の固相率はいずれも 0.52 以下であった。
- (4) Type II, IIIの鋳造実験と解析結果を比較したところ、0.52≦fs<1 の合流部は Type II
 の湯境の発生位置と良く一致した。また 0.05<fs<0.52 の合流部は Type II, IIIの湯
 じわの位置とおおむね対応した。
- (5) 速度ベクトル法と固相率法を併せた評価方法により、湯境および湯じわの予測可能性 を示すことができた。

参考文献

- 1) 千々岩健児、尾崎良平:国際鋳物欠陥分類図集(日本鋳物協会)(1975)
- 2) 日本非鉄鋳物協会編:軽合金鋳物の欠陥写真集(素形材センター)(1988)
- 3) 日本鋳造工学会ダイカスト研究部会編:ダイカストの鋳造欠陥・不良及び対策事例集
 (日本鋳造工学会)2000
- 4) Y.Ohtsuka, T.Ono, K.Mizuno, E.Matsubara: IMONO 60 (1988) 757
- 5) L.Xiao,K.Anzai,E.Niyama,T.Kimura,H.Kubo: Int J Cast Met Res, 11(1998)71
- 6) L.Xiao,K.Anzai,E.Niyama,T.Kimura,H.Kubo: J.JFS 73 (2001) 580
- 7) Z.A.Xu and F.Mampaey: Modeling of Casting, Welding and Advanced Solidification Processes VII, (San Diego) (TMS) (1998) 45
- 8) G.J.Moran,S.M.Bounds,K.A.Pericleous,M.Cross: Modeling of Casting, Welding and Advanced Solidification Processes VII, (San Diego) (TMS) (1998) 101

- 9) K.Anzai, T.Uhida, K.Kataoka: IMONO 60(1988)763
- 10) 大中逸雄: コンピュータ伝熱・凝固解析入門(丸善)(1985)
- 11) M.Ohmasa, I.Ohnaka: IMONO 63 (1991) 817
- 12) J.D.Zhu and I.Ohnaka: Modeling of Casting, Welding and Advanced Solidification Processes VII, London (TMS) (1995) 971
- 13) J.D.Zhu,I.Ohnaka: J.JFS 68 (1996) 668
- 14) I.Ohnaka: Solidification Analysis of Castings, Selected Topics on Ice-Water Systems and Welding and Casting Processes, (Hemisphere Pub.)(1991)
- 15) 鋳造技術データブック編集委員会:鋳造技術データブック(日刊工業新聞社)(1970)

第4章 タイヤモールド鋳物の重力鋳造における湯流れの 直接観察と数値解析

4.1. 緒 言

アルミニウム鋳物では、ピンホール欠陥の発生により鋳物品質が低下する問題がある。ピ ンホールの発生原因としては脱ガス処理が不十分、凝固収縮、注湯中のガスの巻き込み等が 考えられ、しかもそれぞれの解決策も異なることが知られている。しかし、実際の問題に対 してピンホール発生原因の判定は決して容易ではなく、解決策も迅速に取れないのが現状で ある。

一方、凝固収縮および凝固の指向性の問題で生じるポロシティについては凝固解析による ポロシティ予測法がいくつか提案されており¹⁾、すでに広く普及されている。しかし、流動 に起因するガス巻き込み欠陥の予測については現時点でまだ研究段階である。左子、大中ら ²⁾は流動中の酸化膜の巻き込み、その後の水素ガスの核生成及び成長、凝固収縮の影響を考 慮したガス巻き込み欠陥の予測法を提案しており、今後の実用化が期待されている。

流動に起因するガス巻き込み欠陥を推定するためには、湯流れの計算精度を十分上げる必要がある。計算精度については、従来報告されている自由表面の取り扱いのほか³、湯口における流入境界条件の設定も重要な要因である考えられる⁴。ダイカストの場合は速度境界 条件、また低圧鋳造法の場合は圧力境界条件が利用されるように、流入境界条件の設定が比較的容易である。一方、重力鋳造法では手動注湯が多いため、流入境界条件の設定が困難になる場合が多く、鋳込み時間と鋳込み重量から逆算した平均流入速度を速度境界条件で与える方法や、湯口における溶湯ヘッド圧を圧力境界条件で与える方法が用いられてきた。しかし、これらの方法は必ずしも重力鋳造法の流入条件と一致しておらず、解析精度の低下につながっている。

そこで本章では、まず重力鋳造法で製造されている大型タイヤモールド・アルミニウム鋳 物を解析例に、凝固および湯流れ解析からポロシティの発生原因を検討する。次に実鋳物の 湯流れ過程の直接観察および水モデルを用いた湯流れ可視化実験を行い、湯口系のモデル化 による湯流れ解析の計算結果に及ぼす影響を論じる。これらの検討結果を基に改良方案を提 案し、実製品の生産に応用する。

Fig.4-1 Side view of a tire-mold aluminum casting.

4.2. 実験方法

Fig.4-1 に大型タイヤモールド・アルミニウム鋳物の外観写真を示す。また Fig. 4-2 に鋳物の形状と方案図を示す。湯流れの直接観察は、堰からの溶湯流入状態に着目し、押し湯部からビデオカメラを用いて行った。鋳造合金は JIS AC4C 合金で、直径 1800mm、鋳込み重量は約 1000kg である。湯口、湯道、堰の方案については同種の小型タイヤモールド鋳物に利用されている方案を基にして作製した。湯口は直径 60mm、高さ 580mm で、鋳物周囲に 90° ごとに4カ所に設けた。湯道は、断面形状が 40mm×30mm で、鋳物周囲にリング状に配した。堰は断面形状 50mm×16mm で、湯口と湯口の間に 3カ所ずつ合計 12 カ所に設けた。なお、湯口:湯道:堰の断面積比は 1:0.85:0.85 である。このタイヤモールド鋳物は各種のサイズで製造されており、今回検討した直径 1800mm の大型鋳物において鋳造欠陥が発生した。欠陥の発生状況については、カラーチェック、組織試験により調べた。

湯流れ解析の検証には、X線透視装置や水モデルなどが利用されている。しかし、X線透

視装置はX線の透過能力や観察視野の制限から大型の鋳物の観察には適していない。そこで、 本章では Fig.4-3 に示す水モデル実験装置により、大型タイヤモールド鋳物の湯流れ状態の 検証を行った。実験装置は2つの湯口を含む形状であり、すなわち鋳物全体の約 1/3 の部分 をモデル化したものである。また方案検討のため堰の取り付け角度 65°と 25°の2種類の 方案について実験を行い、ビデオカメラにより流れの状態を記録・観察した。

湯流れおよび凝固については直接差分法により開発された解析コード JSCAST を用いて 計算を行い、観察結果と比較することで欠陥発生の原因の推測を行った。

4.3. 結果および考察

4.3.1.タイヤモールド鋳物の欠陥発生状況と湯流れの直接観察

Fig.4-4 に通常の方案により鋳込んだタイヤモールド鋳物のカラーチェック結果を示す。欠陥は鋳物下部の通称リブ付近に認められた。Fig.4-5 にミクロ組織と欠陥の観察結果を示す。 鋳物下部に見られる欠陥の多くは丸い形状をしており、その形状から欠陥は引け欠陥よりも ガスに起因する例えばピンホール欠陥であると考えられる ⁵⁰。Fig.4-6 に凝固解析結果を示す。 Fig.4-6(a)は固相率 *fs*=0.7 における等固相率法の結果を示しており、下部の冷やし金により 指向性凝固が行われていることがわかる。なお固相率 *fs*=0.4 の場合も同様に指向性凝固が確 認された。また Fig.4-6(b)は G/√R 法による欠陥評価結果を示しているが、欠陥発生危険領 域は鋳物内にほとんど無い。凝固解析による欠陥判定の結果からは、引け欠陥の発生する可 能性は低と考えられた。

一方ガス欠陥の要因としては、溶湯の水素ガス、鋳型からのガス吸収および湯流れ中の巻き込みなどによるガス吸収が考えられる。溶湯の水素ガス量については、鋳込み直前に取り 鍋内でアルゴンガスバブリングすることにより 0.001 L/kg 以下に管理されている。このこと から、溶湯中の水素によるガス欠陥は発生しにくいと考えられる。また、鋳型からのガス吸

収については、石膏鋳型を背面から減圧することで鋳型から発生するガス(主に水蒸気)を 鋳型外に排出している。石膏鋳型ではこのような減圧法が広く利用されており、鋳型からの ガス発生に対する対策の有効性が確認されている⁶⁰。以上のことからリブ部のピンホール欠 陥は、湯流れ中の巻き込みにより吸収されたガスが特定の部位に集中して発生したために発 生したと考えられる。

Fig.4-7 にタイヤモールド鋳物の湯流れの直接観察結果を示す。流入速度は遅く、堰から 緩やかに溶湯が流入する状態が観察された。その後注湯の途中段階で Fig.4-7(c)に見られる ように堰前の湯面に乱れが認められた。溶湯面が押湯下部に達する段階では、Fig.4-7(d)に示 すように、湯面は乱れもなく緩やかに上昇した。湯面の乱れはリブの位置付近において認め られることから、堰からの流入状態が欠陥の発生に関係している可能性が考えられる。

4.3.2. 水モデルによる流れの直接観察

Fig.4-8 に水モデルでの流れ状態を示す。流入状態は Fig.4-6 の観察結果と類似している。 初期流入は緩やかであるが、流入が進むと堰からの流入量が増加している。図中矢印は堰か らの流入方向を示している。堰は鋳物に対して約 65°の角度で取り付けているが(65°堰)、 堰から流入した水は直角に近い角度で鋳型壁に衝突している。鋳型壁面に衝突した水は、上 方に流れの向きを変え、また流入量の増加によりこの部分で水面の乱れが観察される。アル ミニウム鋳物において溶湯表面の乱れが観察されているが、水モデルと同様の状態が鋳物で も生じているものと考えられる。特に Fig.4-8(c)中〇で示した部分では、堰から流入した溶 湯が鋳型に衝突することによる空気の巻き込みが観察されている。また湯口および湯道でも 空気の巻き込みが発生し、白濁した水が観察される。

方案の改善には堰からの流入を工夫することと湯口系の設計全体を再検討する方法が考 えられるが、方案施工上の観点から堰の角度について検討を行った。Fig.4-9 は堰の取り付け 角度を 65°から 25°に変更した場合(25°堰)の水モデルによる湯流れ状態を示す。図中 矢印は流入方向を示しているが、堰の取り付け角度を変更することにより水は鋳物の周方向 に流入する。鋳型の衝突角度も浅く、また鋳型壁との衝突強度も弱い。流れの観察結果から は Fig.4-8 の場合に比較すると鋳型への衝突による空気の巻き込みは少ない。すなわち流入 状態が改善されたと考えられる。なお、水モデルではリングの 1/3 をモデル化しているため、 流入方向の左部に水が溜まっており、逆方向の右部には水がない状態となっている。

Fig.4-8 Observed mold filling sequences in the water simulation experiment (previous ingate).

Fig.4-9 Observed mold filling sequences in the water simulation experiment (modified ingate).

4.3.3. 湯流れの数値解析

実生産では湯口棒の上に設けた湯だまりに取り鍋から手作業で注湯している。そこで、解 析においても湯だまりを考慮し、湯だまり上部の一部を流入境界(圧力境界)とし溶湯を自 由落下させる流入条件とした。なお、流入要素面積と湯口面積は等しくし、圧力0Paの圧力 境界条件を用いて計算を行った。Fig.4-10に水モデルの解析結果を示す。堰からの流入方向、

速度、時間は水モデルの実験結果とほぼ一致している。また、鋳型壁面に水が衝突する状態 が認められる。衝突部分では溶湯が上方向に跳ね上がり湯面の乱れを生じている。これは水 モデル Fig.4-8(c)に対応しており、跳ね上がった水(溶湯)によりこの部分で空気の巻き込 みが発生すると考えられる。

次に湯だまりを設けずに湯口棒の上面全面に圧力境界条件を設定した場合について計算 を行い、Fig.4-10と比較検討した。Fig.4-11に湯だまりを考慮しない場合の解析結果を示す。 溶湯は一気に流入し、鋳型壁に激しくぶつかる。堰からの流入方向は水モデルと同等である が、流入速度と時間は実験結果と異なる。Fig.4-11では湯口棒を溶湯が満たすように落下し ており、すなわち縮流が起っていない。一方、湯だまりを介した水実験のFig.4-9では湯口 棒内を溶湯が十分満たさずに流入している。Fig.4-10の解析結果でも湯口棒は同様の状態で ある。このことから、重力鋳造法で湯だまりを介して注湯する場合には、湯だまりを含めて 流入条件を設定することが、湯流れ解析の精度向上に有効であると考えられる。

水モデルの結果を基にタイヤモールド鋳物の湯流れ解析を行った結果を Fig.4-12 に示す。 Fig.4-7 の湯流れの直接観察結果と類似した流れ状態が得られた。すなわち最初堰から緩やか に溶湯が流入し、その後堰前の湯面に乱れが認められる。Fig.4-13 にリブ部を含む縦断面で の湯流れ状態(速度ベクトル分布)を示す。鋳型壁面に衝突した溶湯は上方に向きを変え湯 面に到達し、溶湯が湯面から跳ね上がるのが認められる。Fig.4-8、Fig.4-10 および Fig.4-13 の結果から、鋳型に衝突した溶湯によりガスの巻き込みが発生していると考えられる。湯面

高さが高くなると湯面の乱れは少なくなるが、鋳物内で鋳型壁面を上昇する溶湯の強い流れ が認められ、またリブ部の充満直前、直後でリブ部に渦流の発生が認められた。ピンホール の原因となるガスの巻き込みは鋳型との衝突以外にも湯口系で発生しており、両方がピンホ ール発生に影響していると考えられる。これらの巻き込まれたガスが渦流によりリブ部で捕 捉され、ピンホールが発生したと考えられる。

Fig.4-14 に 25° 堰方案の湯流れ解析結果を示す。水モデル実験で明らかなように、堰から 鋳物の周方向に溶湯が流入することにより、鋳型壁への衝突が弱くなっている。その結果 Fig.4-13 に見られる湯面の乱れも認められない。またリブ部での渦流もほとんど認められな い。これらのことから、堰の取り付け角度を変更することにより湯流れ状態の改善が可能で あることを示している。

湯口系での空気の巻き込みをするためには湯口サイズや湯口比などの方案検討がさらに 必要であるが、検討した方案を用いて生産を行ったところ不良率の低減に効果が認められた。

4.4. 結論

重力鋳造で製造されている大型タイヤモールド・アルミニウム鋳物のポロシティを予測す る目的で、凝固および湯流れ解析の応用を行った。また湯流れの計算精度を検証および向上 させるために、水モデル実験および実鋳物の充填過程の直接観察結果と数値解析結果を比較 した。さらに、計算精度に及ぼす注湯条件設定の影響を調べた。

以下は本研究で得られた主な結果である。

- (1)湯口棒の上に湯だまりが設置され、さらに手動で注湯するタイヤモールド鋳物の重力鋳造の場合、流入境界条件の設定が計算結果に大きく影響することが分かった。すなわち、湯だまりを考慮せず、湯口棒の上部を完全充満とした圧力境界条件の場合、計算で得られた充填速度が水モデル実験および実鋳物の観察結果より速く、自由表面の乱れの程度も実際と大きく異なった。上記に対して湯だまりを計算モデルに取り入れ、湯だまり上部の一部を流入境界(圧力境界)にすると、計算結果は水モデルおよび実際の鋳物での直接湯流れ観察結果とよく一致するようになった。
- (2) 水モデル実験結果では、65°堰を通過した後の水は鋳型壁に衝突し空気を巻き込む状態が認められた。また湯口系においても空気の巻き込みが認められた。計算結果においても水モデルと同様の結果が得られ、鋳型に衝突した水は湯面から上方に跳ね上がり、強い湯面の乱れを生じた。空気の巻き込みは、鋳型との衝突部分と湯口系で発生した。さ

らに湯流れ計算では、リブ部の充満直前および直後に渦流が発生した。

- (3) 凝固解析によるポロシティ推定法(等固相率法、G/√R法)からは、凝固収縮によるリブ部でのポロシティ発生の可能性はかなり低いことがわかった。さらに溶湯の水素濃度が低いこと、減圧鋳造法を利用していることを総合すると、リブ部のポロシティの発生は湯流れ中に巻き込まれたガスがこの部分に留まったことによると考えられた。
- (4) 堰の角度を 65 から 25° に変更した改良方案では、水モデル実験および数値解析の両方 結果から、自由表面の乱れによるガスの巻き込みを抑え、またリブ部での渦流をなくす ことにより、ポロシティを軽減できる可能性を示した。

参考文献

- 1) 大中逸雄:コンピュータ伝熱・凝固解析入門(丸善)(1985)
- 2) Y.Sako, I. Ohnaka , J.D.Zhu, H.Yasuda : J.JFS, 74(2002)235
- J.D.Zhu, Itsuo Ohnaka: 2nd Pacific Rim International Conference on Modeling of Casting and Solidification Processes, Hitachi Japan (1995) 359
- 4) 加藤鋭次、野村宏之、大久保真一:日本ダイカスト協会論文集 2000 (2000) 171
- 5) 日本非鉄金属鋳物協会編:軽合金鋳物の欠陥写真集(日本非鉄鋳物協会)(1988)
- 6) 日本鋳物協会精密鋳造研究部会編:精密鋳造法(日刊工業新聞社)(1973)

第5章 吸引鋳造における湯流れ挙動の直接観察および数値予測

5.1. 緒 言

減圧、吸引を利用した鋳造プロセスは、精密鋳物や薄肉鋳物などの高付加価値鋳物の製造 に有効な方法として用いられている。例えばセラミックシェルモールド法では CLA プロセ ス¹⁾や CLV プロセス²⁾として、ダイカストでは真空ダイカスト法³⁾とし、砂型や石膏鋳型で は背圧抵抗の軽減および鋳肌転写精度の向上などのために利用されている^{4,5)}。このような減 圧、吸引を利用した吸引鋳造においては、減圧力および減圧速度は鋳型充てん挙動(溶湯の 充てんパターン、自由表面の乱れおよびガスの巻き込み)に影響を及ぼすことが考えられる が、これらに関する研究はあまり報告されていない。

コンピュータによる数値解析を減圧鋳造に適応する場合、ガス吸引に伴う背圧の低下は溶 湯充てんの駆動力となるため、背圧を考慮した湯流れ解析が不可欠である。背圧を考慮した 湯流れ解析に関するこれまでの研究は、鋳型に通気性を持たないダイカスト又は金型鋳造に 関するものがほとんどであった⁶⁻¹¹⁾。一方、鋳型に通気性を持つ砂型鋳造の場合については、 木間塚、大中ら¹²⁾は砂型内のガス透過を考慮した背圧ならびに湯流れ解析手法を提案し、砂 型重力鋳造法への応用を試みている。しかし従来研究は減圧鋳造プロセスへの適用例はあま りなく、減圧鋳造における自由表面移動およびガスの巻き込み現象をどの程度シミュレート できるのかが不明である。

湯流れ状態を調べるもう一つの有力な手段として直接観察がある。直接観察は、湯流れの 物理現象の把握とともに、数値解析結果の妥当性の検証手段として有効である。直接観察法 としては X線透視法¹³⁻¹⁴、水モデル^{15,16)}および石英ガラスなどを利用した鋳型¹⁶⁻¹⁸⁾などが 利用されている。なかでも X線透視法は 2次元情報だけではなくガス巻込みなどの 3次元情 報を含んでいることから、数値解析の比較検証に適した手段であると考えられる。しかしな がら吸引鋳造法の湯流れ数値予測を目的として背圧を考慮した解析法の報告はほとんどなく、 さらに湯流れ状態の直接観察と数値予測結果とを比較検討した報告はない。

そこで本章では、吸引鋳造プロセスにおける湯流れ挙動を明らかにし、湯流れの数値予測 法を確立することを目的として、まずX線透視法を用いて吸引鋳造における湯流れ状態の直 接観察を行う。次に吸引システムをモデル化する。さらに鋳型内のガス挙動を考慮した解析 ^{11,12)}を行う。得られた数値解析結果と直接観察結果とを比較することにより、吸引プロセス の数値解析法について述べる。

5. 2. X線透視法による湯流れ観察の実験方法

実験に用いた鋳物および鋳型の形状・寸法を Fig.5-1 に示す。X 線透視観察のため、鋳物 形状は上下二枚の板状鋳物にした。板鋳物の寸法は 100mm×50mm で、厚さは下部板 A お よび上部板 B がそれぞれ 20mm および 10mm とし、A と B の間には 10mm 角のくびれ部を 設けた。鋳型は高密度黒鉛板を機械加工して作製した。減圧のための吸引は B の右上部の鋳 型内に加工した吸引口(6mm)より行った。溶湯は、減圧による大気圧との差圧により下 部のゲートから鋳型内へ吸い上げた。鋳造合金は JIS AC4C を用い、注湯は 973K で行った。 さらに湯流れ中のキャビティ内の圧力変化を、B の左上の鋳型内に加工した通気口(3mm) を通してピエゾ抵抗型半導体圧力センサ(応答速度 2msec)により測定した。

Fig.5-2 に吸引実験装置の模式図を示す。吸引は、減圧チャンバ(C1)内の初期減圧力(大気圧と C1内の初期圧力差を指す)20kPa、40kPaで行った。又減圧速度を制御するため、バッファチャンバ(C2,初期圧力は大気圧)を経由するパス1と鋳型と C1を直結するパス2の2経路を設けることにした。パス1の場合、バルブ SV2 が 1/4 回転開きで C1の減圧力

が 20kPa、および SV2 が 1/2 回転開きで C1 の減圧力 40kPa の 2 種類を吸引条件とした。 それぞれの吸引条件における減圧速度は、約 1.2kPa/s および約 4.2kPa/s であった。また、 パス 2 での吸引条件は C1 の減圧力 20kPa の 1 種類とし、このときの減圧速度は約 80kPa/s であった。なお減圧速度は、減圧開始から湯先が吸引口に到達するまでのキャビティ内の減 圧力の平均上昇速度と定義した。

湯流れ過程の直接観察には湯流れ観察用のX線透視装置を用いた¹⁹⁾。X線のエネルギーを 表すX線管球電圧および電流はそれぞれ 150kV および 8mA とした。X線透視画像は高速ビ デオカメラにより1秒間あたり 500 フレーム又は 1000 フレームの録画速度で撮影した。さ らに減圧力と湯流れ状態との対応を調べるため、撮影終了の出力信号によりビデオ撮影と圧 力測定との同期をとった。

5.3. 数值解析方法

湯流れ計算は、直接差分法¹⁹⁻²³により開発された湯流れ解析コード^{11,12}を改善して実施した。なお、ガス流れを取り扱うに当たり本解析では次のように仮定した。

- (a) 湯流れはニュートン流体の層流流れである。
- (b) キャビティ内のガスは理想気体として近似でき、すなわち理想気体の状態方程式に従う。
- (c)「ガス圧、ガス密度、温度、グループ体積」を1つのガスグループ内のガス状態を 表せる基本変数とし、同じガスグループの中でガス圧、温度、密度が位置に依存 しないとする。

吸引中のベントホールからのガス排気速度は、鋳型内キャビティの背圧と減圧チャンバ、 バッファチャンバのガス圧とを次に示す方法により連成させることで計算を行った。

5.3.1. ガス排出速度と圧力損失

Fig.5-3 に1つの減圧チャンバと吸引パイプ、バルブによりなる単純な吸引装置のモデルを示す。この場合、吸引パイプ内で生じる圧力損失は次式で表される。

$$\Delta P = P_{ig} - P_C = \left(\lambda \frac{L}{d} + \zeta_1 + \zeta_2 + \zeta_3 + \zeta_4\right) \frac{{u_k}^2}{2g} \rho_k$$
(5-1)

ここで P_{ig} : ガスグループのガス圧、igは吸引パイプと繋がっているガスグループ。 P_c : 真空チャンバーのガス圧。 L, d: パイプの長さと直径。 g:重力加速度。 u_k :パイプ内の ガス移動速度。 ρ_k : ガスの密度。 λ :パイプによる摩擦損失係数。 $\zeta_1 \sim \zeta_4$: 入り口、曲が り、バルブ、出口による損失係数。

5.3.2. ガスの質量保存則

吸引パイプと繋がっているガスグループ ig の質量保存則は次の式で与えられる。

$$\frac{\left(\rho_{ig}V_{ig}\right)^{t+\Delta t} - \left(\rho_{ig}V_{ig}\right)^{t}}{\Delta t} = -S_{v}u_{v}^{t}\rho_{ig}^{t}$$
(5-2)

ここで ρ_{ig} : ガスの密度。 V_{ig} : ガス体積。 S_v : 吸引口の断面積。 u_v : ベント内での排出ガス速度 ($S_v u_v = S_k u_k$)。 添字 ig: ガスグループ番号, v: 吸引ベント, t: 時間, Δt : タイムステップ。

さらに減圧チャンバのガス圧力の変化は次式で求められる。

$$P_C^{t+\Delta t} = P_C^t + \frac{RT_C}{MV_C} \left(S_k u_k^{t+\Delta t} \rho_k^{t+\Delta t} \Delta t \right)$$
(5-3)

ここで P_c , V_c , T_c : チャンバー内のガスの圧力、体積、温度。 R: ガス定数。 M: ガス の分子量。

式(5·3)からわかるように、減圧チャンバの容積が小さくなると、吸引中におけるチャンバ内 圧の変化は大きくなる。

式(5-1)の背圧 P_{ig} は湯流れ解析計算と連立させ、次のようにして求める。

- (i) 式(3-1)よりガス排気速度 *u_k* を求める
- (ii) 減圧チャンバのガス圧力 P_c を式(5-3)より求める
- (iii) 湯流れ解析により $V_{ig}^{t:\Delta t}$ を決定し、式(5-2)より背圧 P_{ig} を求める

5.4. 結果と考察

5.4.1. X線透視法による湯流れの直接観察

X 線透視法によって観察した湯流れの1 例を Fig.3-4 に示す。なお減圧吸引条件は以下の 通りである。

- ① 減圧チャンバ C1 の初期減圧力: 20kPa。
- ② 減圧開始から湯先が吸引口に到達するまでの所要時間とその時点の減圧力:約 1.9s, 8kPa。
- ③ 上記から求めた減圧速度:4.2kPa/s。

Fig.5-4 中の白と黒の矢印はそれぞれ溶湯流入方向およびガス吸引(流出)方向を示す。 又キャビティAおよびB内の黒い領域と白い領域は、それぞれ溶湯および空気(未充てん領 域)に対応している。本実験条件で得られた湯流れ過程は下記の通りであった。

- ① キャビティAの充てん中(充てんの初期段階)に、上昇方向(白い矢印の指す方向) への溶湯流速は速く、湯先中央部が凸状となった。又くびれ部に到達した時(Fig.5-4(2)) に、左右両側に大きな未充てん領域が発生した。その後、未充てん領域内に閉じ込めら れたガスはくびれ部を経由して上部キャビティ B へ逃げる状態が動画観察で見られた。 又充てん中キャビティ A 内の未充てん領域体積は多少減少したが、Fig.5-3(5)以後はほ とんど変化しなくなった(これは溶湯静圧と未充てん領域内のガス圧とが釣合い、ほぼ 平衡状態になったためである)。
- ② 湯先が堰を通過した後、溶湯は噴水流的な流れパターン (Fig.5-4(3))となった。その後、重力効果により湯先が落下に転じ、又落下中に自由表面の乱れによるガスの巻き込み(Fig.5-4(4)-(8))があった。
- ③ 湯先が Bの天井部に到達した時点(Fig.5-4(7))から、キャビティ B内の未充てん領 域は溶湯により2分割され、又左辺未充てん領域内のガスは外部へ流出できなくなった ため、非対称な充てんパターンとなった。

5.4.2. 鋳型充填挙動に対する吸引圧力の影響

Fig.5-5 に異なる吸引条件での鋳型充填挙動を示す。いずれも減圧チャンバ C1 の初期圧力 は 20kPa である。Fig.5-5(a)は C1 と鋳型を直結したパス 1 の結果であり、Fig.5-5(b)は直結 しないパス 2 の結果を示している。吸引開始から吸引口に溶湯が到達するまでの時間、およ

Fig.5-4 Directly observed mold filling patterns by X-ray at reduced pressure of 8kPa and reducing pressure rate of 4.2kPa/s.

びそのときの吸引圧力は、それぞれ Fig.5-5(a)の場合は 0.1s, 8kPa、また Fig.5-5(b)の場合 は 5s、6kPa であった。すなわち減圧速度は(a),(b)それぞれで 80kPa/s, 1.2kPa/s であった。

減圧速度の大きい Fig.5-5 (a)では、溶湯は湯口より一気に鋳型上部まで噴出した。0.1s で 溶湯は吸引口に達しているが、その後も溶湯の慣性により 0.25s まで溶湯流入が進み、ほと んど鋳型が充てんされない状態で注湯は終了した。一方減圧速度が小さい Fig.5-5 (b)では、 溶湯はキャビティ A から順次充てんされる。Fig.5-4 にみられたキャビティ A での未充てん 部分、又キャビティ B でのガス巻込みはほとんど見られない。以上のように、減圧速度によ り湯流れ状態が大きく変化することから、鋳造方案の設計には湯流れ状態の把握とこれに基 づく減圧速度の設定が必要であることがわかった。

5.4.3. 背圧の実測と計算結果

Fig.5-6 に鋳型内とキャビティ B の減圧の時間変化について、半導体センサによる測定と 数値解析による結果を示す。実線は Fig.5-4 の実験での鋳型内減圧力変化で、上側が溶湯流

入をともなう場合、下側が同じ実験条件で溶湯流入をともなわない空試験の場合をそれぞれ 示す。図中の *t1,t3,t5,ts*は Fig.5-4 中の時間に対応している。Fig.5-6 と Fig.5-4 を比較した結 果は次の通りである。

- Fig.5-6(3)以降で減圧力は増減を繰り返している。湯流れの動画観察ではこの時点で キャビティAの残留ガスがキャビティBに断続的に流入していることから、減圧力の 増減はこの残留ガスの影響であると考えられる。
- ② Fig.5-6(8)は湯流れ観察からは溶湯が吸引口に達した時点に相当する。吸引口に到達した溶湯が吸引口を塞いだ結果減圧力が低下し、その後の溶湯流入は少なかった。
- ③ 2つの実線グラフで溶湯流入をともなう場合と伴わない場合において圧力変化が大きく異なる。この傾向は減圧速度を変えた場合においても認められた。両者は溶湯吸引の有無が異なることから、溶湯流入に伴う湯面の上昇が主な相違の理由である。
- ④ 計算により求めた背圧は大きく変動しており、実験結果と同様の結果が得られた。

5.4.4. 実験と解析結果の比較

Fig.5-4の実験に対して背圧を考慮した数値解析結果を Fig.5-7 に示す。解析条件は次の通りである。

- ① 湯口境界条件: 圧力境界で 0kPa 一定(大気圧と溶湯の相対圧力として与えた)。
- ② キャビティBで吸引口とつながっている未充てん領域の背圧:ガスパイプを通過するガス流れと連立させ、式(5-1)-(5-3)を用いて求めた。
- ③ パス1 (Fig.5-2 参照) 内のガス流れは式(5-1)により考慮した。
- ④ ガスの温度は 973K で一定とした。
- ⑤ 計算は湯先が吸引口へ到達するまでとした。

Fig.5-7 と Fig.5-4 を比較した結果は次の通りである。解析結果は大まかな充てん時間および 自由表面形態はともに観察結果とよく一致している。Fig.5-4(5)に見られるガス巻込みが、 Fig.5-7(5)でも認められる。又 Fig.5-4(8)の B の吸引口側の充てんが進んでいる状態および A の上部の未充てん状態(湯まわり不良)について、Fig.5-7(8)でも同様の結果が得られている。 なお、充てんは直接観察結果と比較して解析の方は遅く時間的な誤差が生じているが、これ は吸引口における境界圧力の設定値(1次近似)と実測値とのずれが要因であると考えられ る。

次に背圧を考慮しない場合(鋳型内の圧力を一定値0Paとした)の数値解析結果をFig.5-8 に示す。この解析では溶湯の圧力境界条件のみを用いており、湯口と鋳型内との相対的な圧

力差を与えている。すなわち湯口における溶湯圧力を 0.1kPa から 8kPa まで 1.9s で直線的 に変化させている。Fig.5-8 中〇を記した部分を Fig.5-4 の観察結果および Fig.5-7 の解析結 果と比較すると、湯流れ状態が大きく異なる。Fig.5-8(5)-(8)ではガス巻込みは再現されてい ない。溶湯の充てんも比較的左右対称に進む。又、A 上部の未充てん部分も最終的には充て んされる。鋳型内の背圧を考慮しない数値解析では吸引鋳造における湯流れ状態を正しく計 算できていない。一方、鋳型内の背圧を考慮した数値解析では自由表面形態、大まかな充て ん時間、B の非対称溶湯充てん、ガス巻込みおよび A 上部未充てん部の発生のいずれも観察 結果とほぼ一致した。

以上のことから、背圧を考慮した湯流れ解析は重要であり、本章で提案した数値解析法は 吸引鋳造法における湯流れ状態の数値予測に有効であることがわかった。

5.5. 結論

吸引鋳造法における湯流れ挙動をX線透視装置により直接観察した。又、鋳型内背圧(減 圧)を考慮した数値解析を行った。さらに数値解析結果と直接観察結果を比較し、吸引鋳造 法における湯流れの数値予測の可能性について検討した。得られた結果は次の通りである。

- (1) X線透視装置による直接観察では残留ガスによるガス巻込み状態、非対称溶湯充てん 状態又湯まわり不良部など、吸引および背圧の発生により生ずる湯流れ状態を確認す ることができた。
- (2) 減圧速度が 80kPa/s の場合、溶湯は湯口から一気に鋳型上部まで噴出し、吸引口をふ さぐことで注湯が停止した。減圧速度が 1.2kPa/s の場合、溶湯は下部より順次充て んされ、良好な湯流れ状態が観察された。吸引速度により湯流れ状況が大きく変化す ることから、湯流れ状態を把握し適切な吸引速度の設定を行うことが重要である。
- (3) 背圧を考慮しない数値解析では、ガス巻込み状態や自由表面形態などが湯流れ観察と 異なる結果であった。
- (4) 背圧を考慮した数値解析では、充てん時間、自由表面形態、ガス巻込み位置、非対称 溶湯充てんおよび背圧による未充てん状態など観察結果とおおむね一致した。本実験 で得られた湯流れパターンの特徴をシミュレートでき、吸引鋳造法の湯流れ予測が可 能である。

参考文献

- 1) G.D.Chandley: 25th ICI Annual Meeting (1977), p.7
- 2) 宮野光憲:金属 82(1982) 61
- 3) 日本鋳造工学会編:鋳造工学便覧(丸善)(2002)
- 4) 日本鋳物協会精密鋳造研究部会編:精密鋳造法(日刊工業新聞社)(1973)
- 5) 出来尚隆、北原耕一、久保公雄、岡崎清治、三上昭:日立金属技法 13(1997)77
- 6) K.Tnakak, I.Terashima, H.Nomura: IMONO 65 (1993) 277
- 7) Y.Ohtsuka, T.Ono, K.Mizuno, E.Matsubara: IMONO 60 (1988) 757
- 8) I.Takahashi, T.Uchida: Report of 133th JFS Meeting **133**(1998) 121
- J.D.Zhu and I.Ohnaka: Modeling of Casting, Welding and Advanced Solidification Processes VII, London (TMS) (1995) 23
- 10) G.Backer, M.Ranganathan, et al., North American Die Casting association, (2001)1
- 11) A.Kimatsuka,I.Ohnaka,J.D.Zhu,T.Ohmichi: Modeling of Casting, Welding and Advanced Solidification Processes X, Florida(2003)335
- 12) A.Kimatsuka,I.Ohnaka,J.D.Zhu,A.Sugiyama,T.Kamitsu:Int. J. Cast Metals Res., 15(2002) 149
- 13) R.W.Ruddle: The Running and Gating Sand Casting, The Institute of Metals, London (1956)16
- 14) K.Masabayashi, H.Okamoto: IMONO 30(1958)738
- 15) S.Kashiwai, H.Kureta, I.Ohnaka, J.D.Zhu, S.Egawa: J.JFS 75 (2003) 682
- 16)(財)素形材センター編:湯流れ可視化計測技術とコンピュータシミュレーション (1994)
- 17) S.Kashiwai, I.Ohnaka, J.D.Zhu: J.JFS 73(2001)592
- 18) 大中逸雄、大政光史、池田孝史、中村孝夫:日本ダイカスト協会論文集(1992)58
- 19) I.Ohnaka, H.Yasuda, A.Sugiyama and T.Ohmichi : Trans. Indian Institutes of Metals, **58**(2005),603
- 20) 大中逸雄: コンピュータ伝熱・凝固解析入門(丸善)(1985)
- 21) M.Ohmasa, I.Ohnaka: IMONO 63 (1991) 817
- 22) J.D.Zhu and I.Ohnaka: Modeling of Casting, Welding and Advanced Solidification Processes VII, London (TMS) (1995) 971
- 23) J.D.Zhu,I.Ohnaka: IJ.JFS 68 (1996) 668
- 24) I.Ohnaka: Solidification Analysis of Castings, Selected Topics on Ice-Water Systems and Welding and Casting Processes, (Hemisphere Pub.)(1991)

第6章 総 括

本研究は、鋳造過程において鋳物の品質を大きく左右する溶湯の湯流れ状態とこれに起因 する欠陥について、直接観察による湯流れ状態の把握と湯流れ解析による鋳造欠陥の予測を 目的としたものである。特に、溶湯粘性が関与する湯回り不良、湯境、湯じわ、ピンホール の欠陥予測と、吸引鋳造法における湯流れ解析法の開発を行った。湯回り不良は溶湯粘性が 上昇し溶湯流動が停止することにより発生する。そこで、溶湯粘性の取り扱いと流動停止の 判定による湯回り不良の予測法を提案し、板状鋳物を用いて湯回り不良予測の可能性を検討 した。湯回り不良にならない場合でも、溶湯温度の低下による湯境、湯じわ欠陥の発生が考 えられる。これらの欠陥の発生には、溶湯合流および合流時の固相率が関係していると考え られる。そこでベクトルと固相率を用いた評価法を提案し、さらに3種類の板状鋳物の湯流 れを直接観察することで、これらの欠陥の数値予測の可能性を検討した。

次に溶湯流動中の巻き込みによる欠陥について、大型タイヤモールド鋳物の場合を例に湯 流れおよび凝固解析の総合的な評価からポロシティ欠陥の発生原因を検討した。さらに、水 モデルによる流れの観察を行い、湯口境界条件による湯流れ解析結果の相違について比較検 討することで、ピンホール欠陥の対策を行った。

つづいて、吸引鋳造法における湯流れ中のガス巻き込み現象を、X線透視装置によりリア ルタイムに観察した。吸引鋳造法の湯流れ解析のために、吸引チャンバおよび鋳型内のガス 圧を考慮した解析法を提案し、X線透視装置による直接観察結果と比較することで解析精度 を検証した。

本研究で得られた結果を総括すると以下のようになる。

第1章では本研究を行う目的、従来の研究をふまえた研究の背景、および本論文の構成に ついて述べた。

第2章では、凝固を伴う流れの予測のために溶湯の粘性変化を考慮した数値解析法を提案 した。これに流動停止の評価をあわせて行うことにより、湯回り不良予測法を開発した。す なわちマッシー凝固の代表的合金である Al-Si 系 AC4C 合金について、湯流れ中に晶出した 固相は液相とともに移動すると仮定し、溶湯の見かけの粘性を固相率の関数を用いて求める ことで湯流れ中の粘性変化を考慮した。さらに自由表面の固相率を求め、固相率が臨界値を 越えた場合に流動停止するとして湯回り不良の予測を行った。粘性変化を考慮した場合とし ない場合では、湯流れ状態、温度分布、流速分布ともに解析結果が大きく異なった。すなわ ち、溶湯の温度低下が大きい薄肉鋳物などの湯流れ状態の解析および湯回り不良の予測には、 粘性変化の考慮は不可欠であると考えられた。一方、見かけ粘性推定式ではfsc および k に より粘性の変化状態が変わる。このため流動停止距離は、これらの係数の値により変化する。 また、鋳型と溶湯間の熱伝達係数によっても変化する。これらの係数を適切に選ぶことによ り、流動停止の予測が可能であることを示した。板状鋳物の湯流れ解析結果からは、壁面か らの冷却により流路が制限されること、その結果湯先部の流速が遅くなり先端部の固相率が 上昇して流動停止に至る状態が予測された。AC4C 合金板状鋳物の鋳造実験の結果、解析に よる流動停止時間および流動長はともに実験結果と良く一致した。組織観察の結果では、流 動停止した湯先部分に多数の欠陥が認められた。一方、水モデルによる観察結果から、堰直 下においてガスの巻き込みが観察され、また粒子が流れに沿って湯先に移動する状況が観察 されたことから、巻き込まれたガスが湯先に移動する可能性を示唆した。ここで開発した湯 回り不良予測法は、市販されている湯流れ・凝固解析ソフトウェア (JS-CAST)の流動停止 モジュールとして実用化され、鋳造現場で利用されている。

第3章では、板状鋳物を用いた湯流れの直接観察を行い、湯境、湯じわ欠陥の予測法を提 案した。板状鋳物の実験の結果、流動停止後に溶湯が合流した場合は湯境欠陥が、流動状態 で溶湯が合流した場合は湯じわ欠陥が発生した。合流する溶湯温度が低くなるに従い、合流 部での組織差が明瞭になり、特に湯境欠陥の試料では合流部には明瞭な界面が存在し、かつ 多数の空隙が観察された。溶湯合流個所を温度法、固相率法、速度ベクトル法の3種類の方 法で判定したところ、速度ベクトル法が実験結果と最も良い一致を示した。さらに、速度ベ クトルと固相率を合わせた評価法により湯境および湯じわの予測を試みた。板状鋳物と堰の 位置を変化させた2種類の合計3種類の鋳物を用いて実験を行ったところ、数値解析で固相 率fs が 0.05-0.52 の範囲の合流点は湯じわに、0.52-1.0 の範囲の合流点は湯境に対応した。以 上により、速度ベクトルと固相率を併せた評価方法により湯境および湯じわの数値予測の可 能性を示した。

第4章では、重力鋳造法で製造されているアルミニウム製タイヤモールド鋳物を事例とし て、凝固、湯流れ解析および直接観察からピンホールなどのガス欠陥の欠陥評価とその対策 について検討した。湯流れの直接観察および水モデルを用いた流れ可視化実験より、湯口境 界条件の設定が湯流れ解析の精度に大きく影響することを示した。湯口境界条件として単純 に圧力境界条件を用いた場合、実際の湯流れを精度良く再現できないこと、湯口直上の湯だ まりを考慮し圧力境界条件を用いて計算を行うことで水モデルとよく一致した解析結果が得 られることを示した。湯流れ解析および水モデル実験から、リブ部のポロシティは堰から流 入時に巻き込まれたガスがリブ部で捕捉されたために発生したと推定した。堰から鋳物内に 溶湯が流入する角度を鋳物円周の接線方向に変更することで、リブ部でのガス捕捉の低減が 可能となことを湯流れ解析により示した。これらの結果をもとに実生産されている鋳物の湯 口方案を改良し、欠陥を低減した。

第5章では、鋳型内のガスを吸引し圧力差により鋳造する吸引鋳造法の湯流れ状態予測を 行った。吸引鋳造の湯流れ状態については明らかではないため、X線透視装置を用いて直接 観察した。さらに背圧と吸引チャンバの圧力変化を考慮した湯流れ解析を提案し、解析結果 と直接観察結果と比較した。直接観察では、残留ガスによるガス巻込み、背圧の発生により 非対称的な溶湯充てん挙動が生じることなど、吸引により生じる特有の湯流れ状態を確認し た。また、減圧速度が大きい場合、溶湯は湯口から一気に鋳型上部まで噴出すること、適切 な減圧速度を設定することによりガス巻き込みや未充てん部分のない良好な湯流れが得られ ること、すなわち吸引速度の設定が鋳物の製造に重要であることを示した。鋳型内の背圧(減 圧)を考慮した数値解析では大まかな充てん時間、自由表面形態、ガス巻込み位置、非対称 の溶湯充てん挙動および背圧による未充てん状態など観察結果と良い一致が見られ、本研究 で提案した数値解析法により吸引鋳造法の湯流れ予測が可能であることを示した。

第6章では本研究を総括した。

ダイカストをはじめとした薄肉鋳物では、流動中に容易に固相が析出し固液共存状態での 湯流れ現象が生じることが知られている。さらにレオキャスティング、チクソキャスティン グなど半溶融・凝固状態での鋳造も広く行われている。このため、固液共存状態での湯流れ 解析は今後も重要な課題である。本研究では、固相は液相とともに流動すると仮定し、固液 共存溶液の見かけの粘性を固相率の関数として取り扱う方法が、湯回り不良、湯境、湯じわ の欠陥予測に有効であることを示した。しかし、高速あるいは高圧で溶湯を射出する場合に は、見かけ粘性に対するせん断応力の影響が無視出来ないと考えられる。また固相が停止し 液相がデンドライト間を流動するダルシー流れを取り扱うための直接観察実験も重要である。 また、溶液の粘性は流動中の鋳型への熱移動の状態によっても大きく変化する。本研究では 熱伝達係数は一定としているが、熱伝達係数の設定により湯流れ状態は大きく変化すること から、粘性変化を考慮した湯流れ解析においては熱伝達係数の設定が重要であり、さらに湯

-79-

本実験で介在物、気泡の移動が観察されたが、介在物や気泡の移動については本研究では考慮していない。今後 particle traking 法などによる検討が必要である。

湯じわの予測については実験結果の発生位置とほぼ一致した結果が得られたが、その形状 (模様)については現状では一致するまでに至っていない。これは粘性が低い湯流れでの合 流判定精度が低いこと、湯溶表面での酸化被膜の生成や表面張力の考慮をしていないことな どが要因であると考えられるが、今後これらを考慮した欠陥予測の検討が必要である。また、 粘性のせん断速度依存性の考慮、熱伝達係数の速度あるいは時間依存性の考慮が湯回り不良 予測の場合と同様に必要である。さらに、溶湯の合流部では溶湯の衝突によるガス巻き込み や表面酸化物の破砕、巻き込みが発生し、鋳造欠陥につながることが知られていることから、 これらを同時に考慮した欠陥予測が今後不可欠である。

ガス巻き込みについては、吸引鋳造のガス巻き込み挙動の直接観察を行うことで、背圧を 考慮した湯流れ解析の妥当性を示すことが出来た。さらに、湯口系での巻き込み現象が鋳造 欠陥に影響していることを示した。しかし、ガス巻き込み欠陥の直接予測法については研究 報告が少ないことから、ダイカストなどの高速充てん時のガス巻き込み挙動、半溶融・半凝 固スラリーを用いた場合の湯流れ状態の直接観察を行い、ガス巻き込みと鋳造欠陥の関係を 明らかにすることが必要であると考えられる。

謝 辞

本研究遂行ならびに本論文の執筆に当たりご親切なご指導とご鞭撻を賜った大阪大学工 学部 大中逸雄名誉教授、大阪大学大学院工学研究科 安田秀幸教授に深く感謝の意を表し ます。また、種々の御助言、御教示を頂きました Multi-Flow software Co., Ltd 朱 金東先生 に心から感謝申し上げます。

さらに本研究における実験の実施に当たり多岐にわたり御助言、御指導を賜りました兵庫 県立工業技術センター 兼吉高宏様、平井章雄様、株式会社 IHI 木間塚明彦様、大阪大学 工学研究科 大道徹太郎技官、株式会社ヤマニシ 呉田博司様、江川勝一様に厚くお礼申し 上げます。

研究を側面から支えてくれました妻朋枝および家族に心から感謝いたします。

最後に、兵庫県立工業技術センター、株式会社ヤマニシ、株式会社 IHI など、本研究の実施に当たり多大な協力を頂きました皆様に深く感謝いたします。

本論文に関する公表論文 (5件)

1.「タイヤモールド鋳物の湯流れ数値解析と直接観察との比較」

柏井茂雄、呉田博司、大中逸雄、朱金東、江川勝一

铸造工学 75(2003),682

2.「吸引鋳造における湯流れ挙動の直接挙動の観察と数値予測」

柏井茂雄、大中逸雄、木間塚明彦、兼吉高宏、大道徹太郎、朱金東 鋳造工学 76(2004),309

3. [Numerical simulation and X-ray direct observation of mold filling

during vacuum suction casting J

S.Kashiwai, I.Ohnaka, A.Kimatsuka, T.Kaneyoshi, T.Ohmichi, J.Zhu

International Journal of Cast Metals Research 18(2005),144

4.「AC4C 合金板状鋳物の湯流れ及び流動停止の数値予測」

柏井茂雄、朱金東、大中逸雄

鋳造工学 73(2001),592

2001年鋳造工学会論文賞受賞

5.「AC4C アルミニウム合金鋳物の湯境・湯じわの観察と湯流れ解析による数値予測」 柏井茂雄、大中逸雄、兼吉高宏、朱金東

鋳造工学 78(2006),245

本論文に関する国際学会プロシーディング (3件)

1. Numerical simulation and X-ray direct observation of mold filling

during vacuum suction casting」

S.Kashiwai, I.Ohnaka, A.Kimatsuka, T.Kaneyoshi, T.Ohmichi, J.D.Zhu

Modeling of Casting and solidification Processes VI (Kaohsiung) (2004),107

2. [Effect of Meshing and Viscosity on Mold Filling Simulation]

S.Kashiwai, J.D.Zhu, I.Ohnaka

Modeling of Casting and solidification Processes IV (Seoul) (1999) ,169

3. [Effect of Viscosity and Solidification on Mold Filling Behaviour]

S.Kashiwai, J.D.Zhu, I.Ohnaka

本論文に関連する共同発表 (1件)

1. [Computer Simulation of Casting -Recent Development-]

I.Ohnaka, J.D.Zhu, T.Ohmichi, S.Kashiwai and H.Yasuda Second Internatinal Conference on Processing Materials for Properities (TMS) (2000),1043

本論文に関する口頭発表 (10件)

1.「タイヤモールドモールドの流動解析」

柏井茂雄、呉田博司、江川勝一、朱金東、大中逸雄

日本鋳造工学会関西支部秋季大会(2000)

2.「重力鋳造の湯流れシミュレーションにおける湯口境界条件の設定」

柏井茂雄、呉田博司、江川勝一、朱金東、大中逸雄

日本鋳造工学会関西支部秋季大会(2001)

3.「リング状アルミニウム合金鋳物の湯流れ解析」

柏井茂雄、呉田博司、江川勝一

日本鋳造工学会第139回全国大会 (2001)

4. [Numerical simulation and X-ray direct observation of mold filling

during vacuum suction casting

S.Kashiwai, I.Ohnaka, A.Kimatsuka, T.Kaneyoshi, T.Ohmichi, J.D.Zhu

Modeling of Casting and solidification Processes VI (Kohsiung) (2004),107

5.「吸引鋳造法における湯流れ挙動の直接観察及び数値予測」

柏井茂雄、大中逸雄、木間塚明彦、兼吉高宏、大道徹太郎、朱金東

日本鋳造工学会第143回全国大会(2003)

6.「溶湯粘性を考慮した湯流れ解析」

柏井茂雄、朱金東、大中逸雄

日本鋳造工学会第137回全国大会発表(2000)

7. [Effect of Meshing and Viscosity on Mold Filling Simulation]

S.Kashiwai, J.D.Zhu,I.Ohnaka

Modeling of Casting and solidification Processes IV (Seoul) (1999),169

8. [Effect of Viscosity and Solidification on Mold Filling Behaviour]

S.Kashiwai, J.D.Zhu,I.Ohnaka

Modering of Casting, Welding and Advanced Solidification Processes IX

(Aachen) (TMS) (2000),326

9.「AC4C 合金板状鋳物の湯流れ及び流動停止の数値予測」

柏井茂雄、朱金東、大中逸雄

日本鋳造工学会第140回全国大会発表(2002)

論文賞記念講演

10.「AC4Cアルミニウム合金鋳物の湯境と湯じわの観察と数値予測」

柏井茂雄、大中逸雄、兼吉高宏、朱金東

平成18年度日本鋳造工学会関西支部秋期支部講演大会(2006)