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Enhanced Method of Heat Sources in Welding and Plasma Spraying
(1st Report) - Overview of Simple Thermal Plasma Models -'

RONDA J acek*, MURAKAWA Hidekazu**, NOGI Kiyashi** and USHIO Masao**

Abstract

A complex model of energy flow from electrodes through ionized gas to a weld-pool (WP), stored there until
solidification and subsequently transferred to a heat affected zone (HAZ), is required for the better evaluation of
dimensions, microstructural composition and integrity of the sub-domain of arc welding. Such a model should
operate in a chain of three sub-regions: arc column with skin layers - sheaths coating electrodes, liquid metal
in the WP, and the HAZ. The description of thermal energy transfer between three sub-regions of the comples
welding domain involves a large number of processes observed in gaseous electronics, thermodynamics of reacting
gases, electro-dynamics of fluid, and micro-metallurgy. The first part of the paper consists a short presentation
of welding plasma model based mostly on the Magneto-Hydro-Dynamics (MHD) theory. The second part consists
of the review of models of welding plasma suitable for simulation of TIG and PAW welding, and plasma spraying

for which the numarical codes were developed successfully.

KEY WORDS: (Thermal plasma) (Local thermodynamic equilibrium) (Micro-state) (Macro state) (Bolzmann
transport equations) (Maxwell electrodynamic equations) (Magneto-hydro- dynamic equations)

(Distribution functions) (Electron density)

1 Introduction

1.1 Thermal Plasma Produced by Welding
Arc

All welding plasmas are classified as hot plasmas in
the American and European literature, while Russian
literature refers to low temperature plasmas to distin-
guish them from thermonuclear fusion plasmas. We
consider here the plasma that occurs during TIG and
PAW welding, and spraying.

Welding plasmas .belong to the sub-group known as
the thermal plasmas which are, by definition, in local
thermodynamic equilibrium (LTE) or close to such a
state.

Thermal plasmas are at near-atmospheric pressure
and they are considered to be in kinetic equilibrium
due to the very high number of collisions. They are
not in radiative equilibrium.

Generally the state of the thermal plasma is defined

by constitutive variables:
[ velocity temperature | plasma composition |
[v=(v,,v) | T n = (n®), nl) |

where the plasma composition (n(¢), n(?) is defined by

pressure | enthalpy current | electric magnetic
density | potentjal | field
P h J Vv B

This state description is true for the so called one-fluid
description of plasma flow in the frame of Magneto-
Hydro-Dynamics (MHD) when the temperature of
electrons is assumed to be the same as that of ions,
ie. 7@ =70 =T

It is assumed that a plasma in LTE is in kinetic equi-
librium, excitation equilibrium, and ionization equi-

librium, that is summarized in tables below

Type of equilib-
rium

Assumptions

Kinetic equilib-
rium

Each of the species of the dense, collision-
dominated, high-temperature plasma as-
sumes a Maxwellian temperature distri-
bution

Excitation equi-
librium

Every process that may lead to excitation
and de-excitation is taken into account:
- Excitation:

— electron collisions,

— photo-absorptions,

- De-excitation:

- collisions of the second kind,

— photo-emissions,

Tonization equi-
librium

Only the most prominent mechanisms
leading to ionization and recombination
are considered

- Ionization:

— electron collisions,

~ photo-absorptions

- Recombination:

- three-body recombination (fast elec-
tron, heavy ion and slower electron or
neutral particle combination),

— photo-recombination.

Type of equilib-
rium

Requirements

Kinetic equilib-
rium

The amount of energy that electrons pick
up along one mean free path has to be
very small compared with thermal energy
of the electrons

Excitation equi-
librium

The sum of mechanisms of excitation
and mechanisms of de-excitation have to
be equal for dominated collisional pro-
cesses (Boltzmann distribution of popu-
lation density).

Ionization equi-
librium

For sufficiently large electron densities
the particle densities are evaluated from
the Saha equation. For sinaller electron
densities the corona formula is used.

T Received on July 31, 2002
* Lecturer, University of Cape Town
** Professor

Transactions of JWRI is published by Joining and Welding
Research Institute of Osaka University, Ibaraki, Osaka 567-0047,
Japan




Enhanced Method of Heat Sources in Welding and Plasma Spraying (1st Report)

The plasma composition and density are unique func-
tions of the temperature in regions, where plasma
states can be qualified as close to LTE. When a plasma
interacts with a solid or liquid boundary, the boundary
layers are non-equilibrium regions. Therefore, the re-
gion of the welding arc is split into various sub-regions:
cathode space charge sheath, cathode pre-sheath, arc
column, anode pre-sheath, anode space charge sheath.
The arc column can be quite well described by two-
dimensional models due to the symmetry and quasi-
laminar flow in the arc root. The plasma behavior in
cathode and anode regions, which are turbulent (in the
sense of the magneto-hydro-dynamic fluid not the or-
dinary fluid) with strong deviations from LTE, should
be described by three-dimensional models. In thermal
plasma descriptions, two terms are necessary: magnet-
ically induced forces J x B in the equation of momen-
tum, and the Joule heating term J - E in the energy
equation. The balance equations for plasma are non-
linear PDEs because of the strong dependence of the
thermodynamic characteristics and plasma transport
properties on temperature and composition. The pres-
ence the of Joule heating term requires Ohm’s law pro-
viding the relation between current density and poten-
tial, and current conservation for dc arcs or Maxwell
equations for radio-frequency (rf) dischargers (impor-
tant in the case of plasma spraying). The Clapeyron
ideal gas law for plasmas, that are reactive (ionized)
gases, is supplemented by equations giving the com-
position. In LTE regions, e.g. in the arc column and
electrode pre-sheaths, the equation describing electron
densities, the product of thermal ionization, is known
as the Saha equation. It can be derived from the min-
imization of Gibbs’s free energy. In electrode bound-
ary layers which are non-equilibrium regions with re-
combination processes, a set of evolution equations for
electro-chemical reactions should be used. There are
several models of boundary layers given by [8], [10],
{16], [17], [18]. Unfortunately, none of them is so gen-
eral to be valid for all situations of thermal plasma
generation.

2 Subregions of Thermal Plasma in Welding

Welding plasmas are generated by passing an electric
current through a gas. The gas is not conducting a
current unless a sufficient number of charge carriers is
generated and then electrical breakdown establishes a
non-unique conducting path between electrodes. The
welding plasma exists in the area of a high intensity
arc where the potential distribution drops in front
of the electrodes and shows relatively small potential
gradient in the arc column. This observation allows for
splitting the arc into parts: solid or liquid electrodes
and their surfaces, thermal plasma column considered
to be in one of forms of thermal equilibrium (local or
partial local), and boundary layers, where any form of

equilibrium is not possible. The anode and cathode
boundary layers can be split further into space charge
sheaths, cathode ionization pre-sheath, and the diffu-
sion layer of the anode produced by the vaporization
of the weld pool. Regions of thermal plasma in TIG
welding are listed in the following table:

Physical regions | Sub-regions sub-sub-regions
in TIG welding

tungsten cathode | tungsten

rod (non-

consumable)

tungsten cone

(disintegration)

cathode layers space charge
sheath
cathode pre-
sheath  (ioniza-
tion zone)

gas tungsten | arc column

welding arc
anode layers anode pre-sheath
(diffusion layer)
space charge
sheath

weld pool
anode (work- | fusion zone
piece)
heat affected
zone

base metal

Processes occurring in subregions in TIG welding
plasma, weld pool and heat affected zone (HAZ) have
a thermo-mechanical or an electrical nature and can
be split into two groups:

Physical Thermodynamics Electricity
Subregions and and

Fluid Dynamics Gaseous Electronics
tungsten
rod

e conduction
and Ohmic

heating,
e radiation and

convection
cathode sur-
face (solid )
body), e conduction e cooling due
tungsten and Ohmic to thermionic
cone heating, emission of

electrons from
e black body ra- the surface,
diation
e heating due
to ion emis-
sion from
e energy flux the plasma
towards the impacting on
cathode  sur- the cathode,
face balanced

e convection

by heat con- e ion recombi-
duction  into nation
the solid
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Physical Thermodynamics Electricity Physical Thermodynamics and | Electricity and
Subregions and Fluid Dynamics and Gaseous Electron- Subregions Fluid Dynamics Gaseous Electron-
1C8 ics
cathode arc column
sheath cont.
(charge ® convection, space  charge
imbalance zone screening two separate
area, De- e radiation off the wall fluids flow
bye length, potential, (electrons and
collision ions),
free) electrical
boundary transport of
layer, metal vapor
(from TIG
sheath poten- anode),
tial drop,
thermo-
acceleration of diffusion of
ions towards metal vapor
cathode, into the shield-
ing gas,
electron emis-
sion at the heat flux given
sheath edge, by conduction,
enthalpy trans-
electrons re- port (by the
pelled by a current carry-
sheath poten- ing electrons),
tial and thermo-
diffusion,
cathode
pre-sheath
(collision e Local Thermo- Tonization  in anode pre-
dominated) dynamic Equi- electron col- sheath
librium (LTE) lision with LTE would pre- diffusion of
of plasma at neutrals, vail throughout charge carriers.
the plasma side this zone,
of pre-sheath, electron-ion col- potential drop,
lisions, transport of
e constant ther- metal vapor ion-electron col-
mal pressure energy transfer (from anode), lisions
between the
beam of elec- convection,
trons (emitted
by cathode) and radiation
heavy particles
(ions), anode
sheath
potential drop, (charge convection, space charge
imbalance zone screening
three-body re- area, Debye radiation off the wall
combination. length) potential,
metal evapora-
electron self- tion from the electrical
diffusion, weld pool sur- boundary
face layer,
thermal con-
ductivity of strong elec-
electrons tric field due
to deviations
arc column from the quasi-
neutrality,
e laminar fluid free of space
flow, charges, almost zero
electrical con-
e turbulent flow current driven ductivity in the
at the arc by the electric front of anode,
fringes, field and the
Hall-current, weld pool
e LTE
transport of buayancy generation  of
e governing equa- ionization driven by spa- magnetic field
tions deduced energy, tial variation by divergent
from magneto- of liquid metal current path,
hydro-dynamics thermal split of density and
(MHD), electrons and variations of lo- Lorentz force,
heavy ions, cal composition
e convection (temperature viscous drag
(loss), dependent), from plasma.,
e radiation (loss), Marangoni con-
vective flow,
heat transfer,
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Physical Thermodynamics and | Electricity and
Subre- Fluid Dynamics Gaseous Electron-
gions ics

weld

pool

cont. e Marangoni

force driven by
spatial (gradi-
ent) variation of
surface tension,

e surface tension,

fusion

zone

e solidification,

e solid-phase
transforma-
tions,

e conduction,

e convection,

e radiation,

3 Comprehensive theory of thermal plasma
3.1 General notions

Several processes occur in the plasma and they are
listed below respectively for the principal species:

particle process
electrons Tonization
excitation

penning ionization
elastic scattering
dissociation
dissociative ionization
dissociative attachment
particle process

ions charge exchange
elastic scattering
ionization
excitation
recombination
dissociation
chemical reaction

particle process

photons | photo excitation
photo dissociation
photo ionization
elastic scattering
ionization
dissociation
photo emission

Plasma [2], [12] consists of a very large number of in-
teracting particles and a statistical approach is appro-
priate to reduce the amount of information required
for the development of a phenomenological model of
thermal plasma and to provide a macroscopic descrip-
tion of plasma phenomena. The distribution function
for specific particle species is defined as the density of
particles in phase space f(x,v,t) = dn(x,v,t)/dxdv,
where f(x,v,t) € C, f is finite for any ¢, f — 0 as
v — oc. All macroscopic variables, in the thermal
plasma model, are deduced from the distribution func-
tion because the moments of this statistical function
are related to: number density n(x,v,t), average ve-
locity, momentum of flow , and energy of flow.

The Boltzmann equation [3], [4] gives the dependence
of the distribution function on the independent vari-

ables {x,v,t}. The Boltzmann equation for particles
of species i is

o F.;
50 T Vx(vifi) + Vv(#jfj) = ZJ: Cix (1)

Vv, fi) net flow
Vv(m_';fj) external forces

Cir net rate of increase of particles in the control
volume as a result of collisions between particles
of species j with particles of species k

F; either electric or magnetic forces acting
perpendicular to v

v velocity of species j

m; mass of j species

Vv, Vx divergence operator defined in Cartesian

coordinates x or v
Assuming f to be a function of energy &£, the solution
of Eq.(1) is called the Boltzmann distribution of en-
ergy and describes the energy distribution f(£) among
classical, eg. distinguishable particles

F(€) = Ae~e/kaT (2)

where A is a normalization constant. It can be used
to evaluate the average energy () = kpT per particle
when there is no energy-dependent density of states
to skew the statistics of the distribution.

The dynamics of plasma {2], [4] can be approximately
described considering that the motion of plasma par-
ticles is controlled by the applied external fields in
addition to the macroscopic average fields (smooth in
space and time) generated to the presence and motion
of all plasma, particles.

Similar approximate methods for derivation of macro-
scopic variables are needed because of difficulties in
solution of the time dependent Boltzmann equation.
Directly from this equation and without solving it, one
can derive differential equations governing the tempo-
ral and spatial variation of the macroscopic variables.
These differential equations are called the macroscopic
transport equations and can be obtained by taking
moments of the Boltzmann equation, Eq.(1). The first
three moments are

balance equation obtained by multiplying
equation type LHS & RHS of Eq.(1) by
conservation of | continuity m

mass equation

conservation of | equation of | mv

momentum motion

. v
conservation of | energy -
energy equation

Unfortunately, the resulting set of transport equations
is not complete for each stage of moments hierar-
chy. Attempting to obtain a complete set of trans-
port equations for a higher moment of the Boltzmann
equation leads to the introduction of a new macro-

scopic variable:
equation added new macroscopic variable
equation of motion | dyad of kinetic pressure
energy equation heat flow vector

Therefore, it is necessary to introduce a simplifying
assumption concerning the highest moment of the dis-
tribution function that appears in the system. Such




an assumption can truncate the system of equations
at some stages of moments hierarchy and create the
closed system of transport equations.

The basic plasma theories can be classified according
to the level of complication in the basic equations and
number of macroscopic variables
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state

molecular state

quantum numbers
A = {njz, njy:nj:}

state of a particle defined by quantum
numbers,

defined for the permitted values of
particle momentum, i.e. p; = i 2L
where L - side length of a control
volume, h - Planck’s constant

energy levels can be imagined as the set of shelves
at different elevations,
defined for different possible values of

ﬁ?, issued from the kinetic energy
2
Py 2 R2
.= — 52 _h
Ey; = TL =R ggT:

can be considered as the box of
particles with different states,
but all with the same energy,

compartment

energy states can be shown as the set of compart-

ments on each shelve,

degeneracy g; of
energy level j

number of compartments of the cor-
responding shelf,

micro-state specification of the total number of
particles in each energy state
macro-state specification of the total number of

particles N; in each energy level
and supports the table where items appropriate for
various levels of plasma modelling are listed subse-
quently from the molecular level up to the macro-state

level of plasma theory equations for each
difficulty particle species
low cold plasma conservation of mass
conservation of momentum
medium warm plasma conservation of mass
conservation of momentum
balance of adiabatic energy
high hot plasma conservation of mass,
conservation of momentum
conservation of energy
level of macroscopic variables approximations
difficulty
low number density kinetic pressure dyad
mean velocity i,j=1..K,pi; =0
temperature = 0
medium number density heat flux vector = 0
non-diagonal terms
scalar pressure of pressure dyad
i# . pi; =0
diagonal terms
of pressure dyad
high number density 17# J.,pi; =0
mean velocity 1=J.pi;=p
scalar pressure
temperature

Using simplified forms of Boltzmann’s transport equa-
tions and Maxwell’s electrodynamic equations: Fara-
day’s law, Ampere’s law, Poisson’s equation, and the
continuity of magnetic field equation, the magneto-
hydro-dynamic (MHD) theory can be developed. Fur-
ther approximations could be done either on the cold

or warm plasma, levels:
type of plasma or particles
isotropic plasma
anisotropic plasma
collisional plasma

plasma particles

approximations and assumptions
no external magnetic field
external magnetic field present
wave dumping

only electron gas considered or
electron and one or more ion
species gas mixture considered
or whole plasma considered as

a conducting fluid

3.2 Transmission of plasma characteristics
from the meolecular- via micro- to the
macro-theory of ionized fluid

Analysis of kinetic equations defined on the molecular
level in plasma and based on the concept of proba-
bility density in the six-dimensional phase space (6-
D PS) combining three-dimensional real geometrical
space and three-dimensional velocity space is rather
difficult and not very practical for the simulation of
manufacturing by welding. Therefore, thermal plasma
theories for the analysis on the macroscopic level are
more attractive for this purpose. The above table is
illustrating the transmission from the molecular- to
macro-level

Notion

Definition

state of every
particle

Position and momentum of every particle
in the system of NV particles can be
represented by a point in six-dimensional
phase space

{X x p} = {21, 22, ®3,P1. P2, P3} Or

{X x v} ={z1, 22, 23,v1.v2,v3}

X -position vector, p = mv -momentum,
m -mass of a particle

compartment

in phase space

Specified by six coordinates within a cell

(dvy) .
by g = —52 > 1,
where (dVy) . - is the minimum size of
volume element in phase space. Within the
compartments only the number of phase
points can be specified. There is no
specification of coordinates of an individual
phase point within a compartment.

cell in 6-D
space {X x p}

Consists of many compartments g.

Small volume element

dV; = dxidzxodczdpidp2dps,l = 1...k but
large enough to contain a large number
of phase points necessary for application
of statistical laws

micro-state

of the system
in quantum
statistics

Defined by a complete specification of
coordinates of compartments in cells.
Coordinates of phase points can not be
specified. All microstates are equally
possible.

macro-state of
the system in
Newtonian
mechanics

Given macro-state corresponds to large
number of various micro-states.
Distribution of phase points in phase space
for E N) = N is such that

N1 phase points fall into cell number 1,

N; phase points fall into cell number j,

N phase points fall into cell number k.
Only the number of phase points per cell is
specified. Individual coordinates of phase
points within a cell are not specified.

thermodynamic
probability W

The number of micro-states

W= H" (—}}-”-i_j\—:i%;— is associated

with any glven umcro-state where

gk represents the number of compartments
in cell & or the multiplicity (degeneracy)
of energy state Ej, or statistical weight

of excited atoms in quantum state k.

Max. thermodynamic probability defines
the max. number of micro-states for the
particular macro-state that corresponds

to the state of max. entropy S = kg logW
that defines the equilibrium state.
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cont. Notion
Maxwell-
Boltzmann
distribution of
energy of iden-
tical but dis-

cont. Definition

Describes the fractional population of
excited states in terms of phase points
Ny = =k g-exp( Ek/kBT)

or number densities

n= 2k = —&exp(—Ek/kBT)
®

tinguishable . np = =& - number density
particles V- volume of the system
multiplier Q Zk 9% exp(—BE}) -partition function,

= 1/ksT [J~!])-Lagrangian
The partition functlons Q;.5 € (1...,J) for the
plasma composed with J species establish the link
between the six-dimensional, 6-D, microscopic system
and macroscopic thermodynamic plasma properties in
three-dimensional, 3-D, space.

Thermodynamic and transport properties of plasma
depend on the plasma composition. For singly ionized
atoms the composition of plasma is defined by the
Saha-Eggert equation, Dalton’s law, and the condi-
tion for plasma quasi-neutrality. Formulaes for plasma
composition are given in the table

property

classical thermodynamic
variables and parameters

Name of the
relationship

Equation

9200 30®  2amThgT ©
R = 2 (FE BT exp(— £7)

1 | Saha-Eggert

equilibrium nl¢) _electron number density, [m3],

for thermal n® -ion number density, [m?’

ionization n -neutral number density,

derived by h = 6.6261 x 1073, [Js] -Planck’s const.,
minimizing E .ionization energy,

of Gibbs Q. @ -partition functions of ions and

neutrals,

QY = Z 9{ exp(~E{) kg T)

Q >, ysexp(~E, /kpT)

93 , gs -statistical weights of energy levels
of jons and neutrals

Eg"), E, -energy levels of ions and neutrals

m(®) -mass of electrons

kp -Boltzmann constant

free energy

2 | Dalton'slaw | P = (n(®) + n®® 4+ n)ksT

3 | quasi- n(¢) = o
neutrality
of plasma

The Saha-Eggert equation can be-used for evaluation
of n{¢) by using the following algorithm

e define function f(T) =RHS of the Saha-Eggert equation, ie.
20() (e) (4)
A(T) = 2 (BT exp(— £7)

e assume an initial value of n(®) = iniple)
e find E

e solve equation (n'®))? + 2f(T)n(¢) — Pk‘gT =0

e find the new *n(®)

e iterate unless ¥+ ple) _kple) <5,

Thermodynamic properties of plasma are defined by:
mass density, internal energy, enthalpy, specific heat,
and entropy. The following table shows expressions for
these properties both for the classical and statistical
(plasma) thermodynamics .

1 mass density p - density
independent variable
2a | internalenergy | U=F+TS
U -energy needed to create
the system
for system F-Helmholtz free energy
described by T -absolute temperature
T&YV S -final entropy
TS-energy imported from
system’s environment
by heating
2b | internal energy | U=G+ TS ~ PV
U -energy needed to create
the system
for system G -Gibbs free energy
described by P -absolute pressure
T&p V -final volume
PV - work to give
the system final
volume V at constant
pressure P
3 specific heat c=
-heat added
m -mass
AT -change in temperature
4a | enthalpy H=U-+ PV
energy for creation of the
system plus the work needed
to make room for it
5 entropy AS = 4
measure of energy amaount
which is unavailable to
do work
= (?)v N~ -alternative
deﬁmtnon of temperature
cont. forms for statistical
property thermodynamics
variables and parameters
1 mass p=Xingmy
" density n; - number density of
various species in plasma
m; - species mass
2a | internal Helmholtz free energy [9]
energy F — Fo = —2], N;kpT;(1+
n(Qs/N;)) = 5w
for system Fy -reference energy
described by | N; -total number of particles of species j
T&Y kp-Boltzmann constant,
1.3807 x 10723 [JK~'
T -kinetic temperature
$kaTy = jm;vt/?
v_j,l/z - rms or effechve velocity of
particle j
Q; -partition function of species
V -volume of the plasma [m®)
2% - Debye length [m)]
i&”%’_ -Debye correction for interaction
127X
energy due to long-range Coulomb
interactions between species
2b | internal Gibbs free energy [9]
energy G-Go=pV+F—-F v
==, N;ksTIn(Q;/N;) - ;f—%—
for system

described by
T&p

Gy -reference energy

N;kgT kpT
= —& —B— _pressure
p 241!')\D p




cont. forms for statistical
property | thermodynamics
variables and parameters

kg TV .
2b EfTaD_ -Debye correction
cont. Ap = ~i;.BL

2 2 .

e Z,-=1 z2n;
g0 -permittivity of free space (vacuum)
e -elementary charge, 1.6022 x 10~9[C]
Z; -number of ionic charges of species j

Trans. JWRI, Vol.31, (2002), No.1

3.3.1 Distribution functions

In this theory the following distribution functions are
fundamental issues:

distribution expression-definition

3 specific cp = 26%9-],;
s

heat Hy, = =1

Z = M;
-specific cnthalpy, [kJ/kg]
z; = Nj/Nio: -molar fraction of chemical
speciesj
N,ot -total number of all species
H; -enthalpy of one mole of species j
M; -mass of one mole of species j

particle distribution total number of particles
function F(x,v,t)d3xd®v in differential
six-dimensional phase space
element d3xd®v

particle number density | number of particles per unit
volume n(x,t) = / f(x,v. t)d3v

4a enthalpy | 1. when ¢, available from tables
H-H= foT cp(T)dT

H -total enthalpy of mixture at T and P
HC _total enthalpy at reference state
T=0,P=P,

P, -ambient pressure

¢p(T) -specific heat (capacity), [kJ/kgK]

The other quantities

quantity definition

fluid velocity u, = (v,)

mean thermal velocity Vs = {(vs — u,)z)%
mass density p=Xmgn,

vector of mean mass velocity | U, = %Z,m,nsu,
velocity of particle relative
to mean mass velocity

Wy = Vg —Us; {Wy) =us — U

41b enthalpy | 2. when ¢ calculated through partition

functions

Example for nitrogen Na:

composition of 1 mole of Ny at (T, p) gives

N2 = NFPINa + NFOIN + NTOINT+
+Nmol -

N;’"" = N; /N4 -number of moles of

species j

N4 - Avogadro number

Only two reactions occur:

N2 — 2N -dissociation

N — Nt 4 ¢ -ionization

Total enthalpy at (T, p)
Nma‘HNz +N °[HN +NmoIHN++

Nv:olH(e)

Enthalpy change to produce plasma

AH=H - HN

HN -enthalpy at (7o, po)

AH = AHny + 3(NF + NTIOVHR +
+N’molH1

AHN, - frozen entha]py with no reaction

while N2 heated from Ty to T

HE - reaction enthalpy due to dissociation

H] . - reaction enthalpy due to ionization

oy

entropy S=rkplogNW
and also
s= [T edqr
Jo
when ¢, is available from tables

3.3 Fluid and MHD theory of thermal plasma
for the arc beam

The plasma state in the arc column area is close to
LTE and such a state is called the partial local ther-
modynamic equilibrium (PLTE) and following that
observation it can be approximated by one of MHD
theories. Unfortunately the plasma theory for elec-
trode sheaths is much more complicated and can be
based on the analysis presented in [2], [13] [14] and
[15]. The theory of plasma in sheaths is not general
and refers deeply to the molecular physics and the na-
ture of plasma transport coefficients which are related
to the Coulomb collisions of species.

pressure tensor P i = msns(Ws jWs k)
are defined for particle species s, relatively to these
two basic notions as moments, following the general

definition of a moment of quantity Q(v):

1
Q) = ooy / fxv.0oWdEy  (3)

The distribution function f,(x,v,t) for species s sat-
isfies the Boltzmann equation [4] that is written here
both in the vector and tensor form

Q'%lcoll:

O v, Yt L (B4, xB) Ut g S
ofs
ot

oL 4 ng—ff + L (B; + ejkzkal)—f— + 9595 av; ()

where
- total time derivative of the distribution function,

O tv, Bl + L (B4v, x B+ Zeg). §le

- five-fold integral term accounting for
the change in f; due to molecular collisions,

82 |cou

- Lorentz force on charge g,.
¢:(E+v xB)

- electric field [volt/m].
E

- magnetic induction [tesla],
B

- charge of species s,
[coulomb] ¢,

- mass of species s, [kg],
ms

- velocity of species s and velocity component,
Vs, U5

- mass force per unit mass (eg. gravitational), g,
9;i

- unit permutation tensor,
Ejkl

- subscript for collision-related quantities,

coll
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3.3.2 Basic integro-differential system of
equations

When external fields E and B are known, Eq.(4) can
be solved as a linear differential equation. However
in plasma case, fields E and B are self-consistent
and then the Boltzmann equation is associated with
Maxwell’s equations which describe how charge and
current densities affect the magnetic and electric
fields. The velocity of a particle injected into a plasma
varies under the influence of E and B fields due to in-
teracting forces and that induce currents which in turn
alter the external fields. Maxwell’s equations read in
the form appropriate for SI-unit system

H

VxE= -2B Faraday’s law (6)
VxH= %—? +J Ampere’s law - (7
V-D= Peh Poisson’s equation  (8)

V-B= 0 absence of magnetic (9)

monopoles

with constitutive relations

¢eE=D transformation of electric field

E. [V/m] to displacement D, [C/m?]
p#H = B | transformation of magnetic induction
B, [T] to magnetic intensity H, [H]

and symbols

symbol | physical Value Units
quantity
Uo, 4 magnetic u e o Hm™ 7,
permeability =47 x 1077 H - henry.
magnetic
inductance
€0 € electric € R €g Fm™1,
permittivity | = 8.8542 x 10™'2 | F -farad,
electric
capacitance

and charge and current densities defined by

Pch = Yegsnis charge density (10)

J(x,t) = Tsgsng(vs) current density (11)

Integro-differential Eqs. (4) (or (5)), (7)., (8) and
Egs.(6), (9) with relations Eq.(10) and (11) are basic
expressions both for the kinetic and the fluid theories
of plasma.

3.3.3 Fluid theory

Assuming that only flow of electrons and ions is in-
volved in the transportation of energy in a welding
plasma beam, equations of motion for the two-fluid
flow theory are derived here. These equations are fun-
damental for the formulation of MHD theory.

By taking moments of Boltzmann’s equation Eq.(5),
the particle velocity distribution is replaced by val-
ues averaged over velocity space in the description of
plasma as a fluid. Moment equations are obtained by
multiplying Eq.(5) by an arbitrary function of veloc-
ity @(v) and integrating each term of the equation

following the Eq.(3). Moments of three LHS terms of
Eq.(5) are following

Ofs
ot

/”J' o Qv)d’v = i(nﬁ<Vj Q) (13)

Ox; Ox;
9 (g 4 GuOBL ma (Ofs s
/ms(E]+ c ng) v Qv)d'v =

gs " Ov;
% 592y _ % . 592,y 4002
__“Ejns<avj) mscejlel<avj vk) gjns<6vj> (14)

0
OW)dv = 2 (na(Q)) (12)

8

The general moment equation for the Boltzmann
Eq.(5) called also the general equation of change [1]
reads

1o} 0 as 0Q
E(ns(@) + 5;;(”.9(”_7' Q) — EEjns(a._vj)
qs 0Q

20 B
—;,—1;5115131(8—1}]_%) - 91".9(5}? =

/‘(%)IcouQcﬁv (15)

The zeroth moment, useful in derivation of two conser-
vation equations, is obtained by assuming Q(v) = 1
in Eq.(15) and is expressed in the form

On, | O(ngu;)
ot * ot

where u; is a component of fluid velocity and RHS
is zero assuming ideal plasma., ie. ignoring ionization,
three-body recombination and charge exchange effects
that can be expressed by relations: (%—'f)!cou =0,
('aal:)lcou = 0, where superscript ¢ stands for ions
and e for electrons. Two conservation equations: a
mass conservation equation, and a charge conserva-
tion equation, are obtained by multiplying Eq.(16) by
mass my or charge g,, respectively, and summation
over s:

0 (16)

7]
b—f+v-(m)=o (17)
with mass density p=3_;n;m;
6pch
-J = 18
R 4 V-3=0 (18)

The first moment of the Boltzmann equation with
Q = v is obtained by multiplying Eq.(5) by v, and
integrating over velocity space,

I(msnsum) + A(mgns{vjvm)) _
ot Ox
nsqs(Em — €mjkUjBi) — Nsgm = £Pm (19)



where the sign of the RHS momentum density is op-
posite for electrons and ions and reads

. af(i) ) .
= W [ o8 BB (d)
Pm m /( 5 Mottty d°v
ofle
= m® /(—];t leouvd®v(e)  (20)

with quantities appropriate for electrons and ions
marked with the upper-script e or 7 respectively.
Eq.(20) can be written when assuming that the to-
tal momentum density of the system do not vary due
to collisions between electrons and ions.

The fluid equation of motion can be derived from
Eq.(19) by using fluid quantities:

notation | components of
uj fluid velocity
U; mean mass velocity
wj particle velocity relative to mean mass velocity
Rjk pressure tensor
together with the relation for velocity dyad
(vjvw) = (U + w;) U + wy))

1
= oy, ik + Usug + Upuy — UUy. (21)

and finally it can be written in forms appropriate for
ions and electrons

+P = % (mDny,,)

+352- (PLD + mOn®D Uy, + Umu; — Ulhm))
g, (n¢nﬁﬁmﬁgk_nu@m (22)
+Pl = 2 (m®n@upy,)
+£4Pw+mMn”Wum+%ﬂg—%Mﬁ)
©)gOE,, —n()g®emiru; By — n® g, (23)

3.3.4 Magneto-hydro-dynamic (MHD) equa-
tions

Magneto-hydro-dynamic theory of plasma is the fur-
ther simplification of fluid theory. Two simplifications
of MHD are the most popular: two-fluid hydrodynam-
ics, and one-fluid hydrodynamics. In both of them the

following assumptions are involved:

ions and electron fluids | are combined and

possess a common flow velocity U
long in comparison to microscopic
particle motion time scales

long in comparison to the Debye
length Ap

relevant time scales

spatial scale lengths

long in comparison to the
thermal ion gyro-radius

The equation of motion for the MHD fluid can be de-
rived by adding Eq.(22) and (23). The MHD equation
of motion can be expressed both in terms of compo-
nents or vectors and reads in forms

at(pum) + 3;‘; (ij + PUJ m) -
PchEm - 6m]chjBk = Pdm = 0 (24)
p[E+WU-VIU =
—VP+pisE+J xB+pg (25)
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where pressure is a scalar P when velocity distribu-
tion is sufficiently random and P = P](f,f +P](:,)z = Pjn..
The Eulerian velocity of fluid U(x,t) refers to the ve-
locity of fluid element and it is contrasted with the
Langrangian velocity of fluid which is related to the
velocity of individual particles constituting that fluid
element at any time. The Lagrangian velocity is the
time derivative of the position vector of a particle and
is only a function of time.

The relation linking the current density J with B, E
and U, ie. the generalized Ohm’s law, can be derived
from Eq. 22 and 23 in the form

J+ampeE()3J+vm()JxB=
o(E+Ux B+ 2ZVP) (26)

following the procedure:

multiply Eq.(22) by (—e/m(e’)
multiply Eq.(23) by (e/m?))

add two equations and ignore terms with
L{J—uk, Uku_j 3 UjUk

write the equation
ple) ap(i) 2 (i) nl(€)
=% e te ("m + ey ) Bm
MOMO] nle) te)

_Eka(_(+ —(—g— Bk+5( m(g) )Pm

approxlmate

n(®) g nd) __%_7 uld) X Unm

wl®) Uy, — "CJ,,,

assume

momentum exchange between electrons and ions
is proportional to the relative velocity

approximate P, = Eﬂ(%"”-

where

electrical conductivity

w® .
1
o= e(]—pre, S/m

permittivity
eo = 8.8542 x 107'2, F/m

ion plasma frequency
wpi = 4.20m x 102272 (n)V/2, He
electron plasma frequency

wpe = 18.967 x 103 (n($))1/2, Hz

ion charge state
V4

ion-proton mass ratio
i
m
gy == Tl
Hi/p = )

proton mass
mP) = 1.6726 x 10727, kg

electron mass
m(®) =9.1094 x 10731, kg

ion mass

m®

elementary charge (charge of an electron)
e=1.6022x107'%, C

speed of light in vacuum
¢ =2.9979 x 10%, ms™?!
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Ohm’s law Eq.(26) can be further simplified assuming

assumption

approximation
om (i) m (%) ﬂ
pei =0

emyxB=0
(1) Y

wpi K Wpe

cyclotron frequency Q¢ & wpe

insignificant pressure gradient VP =0
and then written in the form

J=0c(E+U xB) (27)
Assuming that the internal energy of a fluid element
does not change when it propagates with pressure P
proportional to p? (Z -adiabatic index), ie. assuming
the adiabatic process and taking the second order mo-
ment of Boltzmann equation Eq.(4), the equation of
energy conservation can be expressed in the form

2
v-@qu+—£fu+—ExB =0
-1 Ko

'_T +qu) + (28)

where the adiabatic index for a mono-atomic gas is
Z =2 and || || is the vector quadratic norm.
The formulation of complete system of equations in

MHD requires further assumptions:

oD

. neglectmg the displacement term &= ~ 0in Am-

pere’s law gives

VxH=1J (29)

e taking the divergence of Eq.(29) gives LHS equal
tozeroand V-J =0

o using V-J = 0 in Eq.(18) leads to 22 b = pop =0

e eliminate E from the approximate Ohm’s law
Eq.(27) and Faraday’s law from Eqs.(6

— apply the operator curl Vx to Eq.(27), ie.
VxJ=0(VXE+Vx(UxB))

— V x J in terms of B can be obtained by
taking V2B =V(V-B) -V xV xB

~ the first RHS term V(V - B) = 0 because
of V-B =0 from Eq.(9)

— the second RHS term VXV xB = oV xJ
because of Eq.(29) and H = ﬁB
- then VxJ = ﬁV2B

— finally the induction equation can be ex-
pressed in terms of B or H

oB -
oH 1 o2
E— VX(HXH)JFMO—UVH (31)

e assuming the charge neutrality pe, = 0 (with

Q—g;—" = 0)the Poisson’s equation Eq.(8) is not

contributing to the final system of equations

10

e Eq.(9) can be treated as the initial condition be-
cause

— taking divergence of Eq.(6) V-V x E =
-V. BB note that LHS equals zero

— RHS can be re-formulated V - %’% = E(V-
B) to show that £ (V - B) = 0 during the
process

The final set of MHD equations [5] which determine
the time evolution reads:

conservation of mass
_ 12
—-VX(uXB)-F'“O—JV B
induction equation

V() =0

equation of motion
pl4+WU-VU] =-VP+IxB+pg

energy conservation

2 (sl + 2 + 1B + ]| B)?) +
(MWWu+f1Pu+2ExB) 0 (32)

with two scalar quantities: P and p, and two vector
quantities: B (or H) and U, as unknown “evolution”
quantities. The electric field E and the current density
J are determined by

modification of Eq.(29)

uwd =V xB (33)
modification of Eq.(27)
E=-UxB (34)

if the magnetic Reynolds number fulfils the require-
ment R, = aI J” > 1.

The auxiliary relations, that are subject of the plasma-
fluid approximation, in the case of the single-fluid
MHD theory, are expressed by

mass density
n(l) — n(e) =n=p= m(’)n (35)
fluid velocity
U=uU
temperature
T =T +T"
pressure
P =P 4+ PO
— kB(n(e)T(e) + n@AT0)
= nkBT

(36)



In MHD plasma literature there are several variations
of MHD theory with various sets of variables:

variables references
single-fluid “evolution™ variables [6]

o, P, U J, T

two-fluid “evolution” variables [6]

n, u(i)’ u(e)’ p(i)Y }:r(il7 J, T(i), T(e)

one-fluid all variables p, P, U,B, E, J [11]"
single-fluid “evolution” variables p, P, &, B | [3]

4 Conclusions

The MHD theory is not a powerful concept for mod-
elling of the microscopic phenomena observed in labo-
ratory plasma but it seems to be suitable for modelling
of welding and plasma spraying, where particular ve-
locity distribution and wave-particle interactions are
not the prime objectives. It has the advantage [11]
that the macroscopic dynamics of the self-magnetized
plasma can be analyzed for problems formulated in
three-dimensional space. In spite of that, the three
important ideas of modern physics [6]: relativity and
quantum mechanics, and the Maxwell equation with
wave propagation, are not contributing in MHD. Fol-
lowing this, processes in plasma such as: radiation, rf
heating, micro-instabilities of particular motions, clas-
sical transport, and resistive instabilities, are not ad-
equately described. But in welding plasma such flaws
of MHD can be seen as the secondary issues. Unfor-
tunately, the situation can be different in some cases
of plasma spraying. The most sophisticated models
should be used in electrode “skin” layers, where the
energy lost is significant. In this case the most engi-
neering oriented model of turbulent plasma can follow
the concept refined in [15]. The second part of this
paper is devoted to presentation of several “working”
models of welding and spraying as well as to numerical
methods effective in the solution of conducting fluid
problems.
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