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Introduction

We consider the behavior of the solution of the following one-dimensional
two phase Stefan problem with the unilateral boundary condition on the fixed
boundary: Given the initial data, / and ¢(x), find a critical time T*, and
the two functions s=s(¢) and u=u(x, ¢) defined on [0, T*] such that

(0.1) s(0) =1, 0<s()<1 (0=t<T™),

0.2) u,,—ciu; = 0 (O<e<s(t), 0<t<T™),

(0.3) u,y—cu, = 0 (s(t)<x<1, 0<t<T¥),

(0.4) (a) u,(0, )7, (w0, 2)) (0<2<T¥),

(S) (b) —u.l, )evi(u(l, t)) (0<t<T*),

(2) ulx, 0) = p(x) (0<x<I),

(b)) u(x, 0) = p() (I<x<1),

(0.6) u(s(z), t) =0 (0<2=T™),

(0.7) b3(2) = —uz(s(z), £)+uz(s?), t) (0<t<T¥*).

(0.5)
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The critical time T*, 0<T*=< oo, is defined to be the first time that the free
boundary x=s(t) touches the fixed boundary ¥=0 or x=1. The quantities
¢, ¢ and b are positive physical parameters of the problem. The assumptions
for the boundary condition (0.4) at the fixed boundary are that v, and v, are
maximal monotone graphs in R? such that both v5'(0)N [0, co[ and ¥7'(0)N]
—oo, 0] are not empty sets. We put these assumptions from the physical
reasoning, that is, there are a kind of heater at ¥=0 and a kind of freezer at
x=1. (0.4) are the unilateral boundary conditions. (0.7) is the so-called
Stefan’s condition. The author proved the existence and uniqueness of the
solution of (.S) in [11].

The behvaior of solutions of the problems with the linear boundary condi-
tions on the fixed boundaries are considered by Rubinstein [7, p. 155-181],
Friedman [4, 5] and Cannon-Primicerio [2].

The plan of this paper is as follows. In §1 we state main theorems.
In §2 we give the proof of Theorem 1, 2 and 3 concerning stationary problems
corresponding to the Stefan problem (S). In §3 we state comparison theo-
rems of the solutions of (S). In §4 and §5 we give a priori estimates of the
free boundary s(f) and the derivatives of u at the fixed boundary respectively.
In §6 we introduce a weak formulation of (S). The results of §4, §5 and §6
are used in the subsequent sections. In §7 and §8 we give the proof of Theorem
4, Theorem 5, Theorem 6 and Corollaries, which give some informations about
the solutions of (S). In §9 we give simple examples to clarify the meaning

of our results.
The author would like to express his gratitude to Professor H. Tanabe

for his useful advice and encouragement.

1. Statements of main results

We shall use the notations and definitions introduced in [11]. The as-

sumptions required on the Stefan data {/, ¢} are the following (4).
) {0<l<1. P(x)=0 (0<x<]), p(x) =<0 (I<x<1).
¢(x) is bounded, and continuous for a.e. x&[0, 1] .

We know the uniqueness and existence of the solution (7%, s, u) of (S) under
the assumption (A) by [11, Theorem 1].

We assume that {/, ¢} satisfies (4) throughout this paper.

Now we introduce an elliptic unilateral problem (E) and (E’) which are
closely related to (S).
(1.1) w,(x)=0(0<x<1), )
(1.2) w,(0)E7y((0)), j (")
(1.3) —w,(l)En(w(1)),
(14) w(p) =0 for some pe|0,1].

(E)
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DerFiNITION 1.1, w(x) is a solution of (E) (resp. (E’)) if w(x) is a linear
function satisfying (1.2), (1.3) and (1.4) (resp. (1.2) and (1.3)).

We state the existence theorem for (E’).

Theorem 1. There exists a solution w(x) of (E'). The constant w.(x) is
uniquely determined and w,(x)=<0.

RemARk 1.1. (E’) has either one solution or an infinite number of solu-
tions.

ReMARK 1.2. w(x)=(B—A)x+A is a solution of (E’), if and only if (4,
B) is a solution of
() {(1.5) B—-Adev,(4),
(1.6) A—Bev,(B).
Remark 1.3. We put L=A—B. Thus (E) is equivalent to the following
nonlinear problem for (4, B, L),
(1.7 L=A4-B,
(E*){(1.8) Ae(—v)7(L),
(1.9) Beyr(L).
Thus it is easily seen that four points (B, 0), (4, 0), (4, L), (B, L)ER? are ver-

tices of a square satisfying (1.8) and (1.9). Consequently our geometrical intui-
tion is available when investigating (E£¥*), so (E’).

We introduce notations to state a uniqueness theorem. Let L be the
constant —w,(x) uniquely defined by Theorem 1. We put

L, = sup {P—Q; Pe(—vy) (L), Q€v7(L), P 0},

L; = inf {P—Q; P(—,)" (L), Qv (L), P=0Q} .
It is easily seen from Theorem 1 that

0=L,;sL,<0.

Theorem 2. The solution of (E') is uniquely determined if and only if any
of the following conditions is satisfied,

(1) (—7) M L)YNoTY(L) is a one point set with L=0,

(i1)  (—%) L) is a ome point set with L>>0,

(i) v7Y(L) is a one point set with L>0,

(iv) Ly=L with L>0,

(v) L;=L with L>0.

RemMARk 1.4. (—7%)"(L) and 97'(L) are closed intervals, since 7, and
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77, are closed graphs in RZ.

Consequently we get informations about the existence and uniqueness of
solutions of (E) by virtue of Theorem 1 and Theorem 2. The structure of
solutions of (E) is as follows, when the set of solution of (E) is not empty.

Theorem 3. Suppose that (E) has a solution. Then there exist the mini-
mum solution w(x) and the maximum solution W(x). Furthermore the set W of
solutions of (E) is represented by

W = {w(®)+c; c€[0, w(0)—w(0)]} .
Remark 1.5. The condition w(x)=0 is equivalent to the condition, v,(0)
50 and 7,(0)=0.

Now we state results concerning the behavior of the solutions of (S). We
define s and § by

{0 if w(x)=0,
§ =
the unique zero point of w(x) if w(x)=0.
_ {1 if w(x)=0,
~ lthe unique zero point of w(x) if w(x)=0.
In what follows let (T*, s, #) be the solution of (S) corresponding to the data
{, ¢}.
Theorem 4. Suppose that T*=oco. Then there exist a real number s*
with s<s*<s, and a solution u*(x) of (E) such that
(1.10)  lim s(2) = s*,
troo
(1.11)  lim u(x, t) = w*(x) in C([O, 1]),
tpoo
(L12)  w¥(x) = w,(0) (3—s%).
ReEMARK 1.6. s* and #*(x) are determined by the initial data {/, ¢(x)} in
general, when w(x) +w(x).
We can determine s* and »*(x) of Theorem 4 in some cases.
Corollary 1. Let v,(0)20 and 7v,(0)20. Suppose T*=oo. Then we

have 0=s*=<1 and u*(x)=0.

Corollary 2. Let 7,(0)p0 or v,(0)50, and let any one of the conditions in
Theorem 2 be satisfied. Suppose T*=oco. Then we have s*=s=3§ and u*(x)
=w(x)=w(x)=+0.

Corollary 3. Let v, (0)30 or v,(0)B0, and let p(x)=w(x) (resp. Pp(x)=
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w(x)). Suppose T*=oco. Then we have s*=s (resp. s¥*=3) and u*(x)=w(x)
(resp. u*(x)=w(x)).

Corollary 4. Let v,(0)0 or 7v,(0)P0, and let w(x)=P(x)=w(x). Sup-
pose T*=co, Then s* is the unique real number such that

b s* —I—COSs*u*(x)dx—l—clgl*u*(x)dx
(1.13) . e
=b l—l—cos qb(x)dx—l—clslqs(x)dx ,

and w(x) Su*(x)=w,(0) (x—s*) < W(x).
We state some sufficient conditions for T*=oo.

Theorem 5. If any one of the following conditions is satisfied, then we
have T*=co.

(i) D(7,)%0 and D(v,)30.

(ii) D(7v,)B0 (resp. D(7v,)P0). (E) has a solution w(x) such that w(1)<<O
(resp. w(0)>0). The initial function satisfies p(x)=w(x) (resp. p(x)=w(x)).

(iii) (E) has a solution w,(x) and wy(x) such that w(x)=w,(x), w,(0)w, (1)<
0, wy(0)aw,(1)<<0. The initial function satisfies w,(x)= p(x)=w,(x).

(iv) (E) has a solution w(x) with a zero point satisfying 0<m<<l. The
initial data {l, ¢} satisfies

0<ly—&=L+6&<1,
where ly=min (I, m), py=min (P, w), L=max (I, m), p=max (¢, w),
(—1)g, = —b“{cog:icp,-(x)dx—}—clgji(]),-(x)dx}
+b7! {coS:w(x) dx—l—qS;w(x) dx} .
We state a sufficient condition for T#<<oo.

Theorem 6. Suppose that (E) has no solution, then T* <o,

RemMark 1.7. The converse proposition does not hold. In fact, for exam-
ple, if 7,=v,=0, then (E) has a unique trivial solution w(x)=w(x)=0, and
the behavior of the free boundary s(tf) depends on the initial data {I, ¢(x)}
(see [2, §5]).

In what follows we use the following notations.

H, — min {H=0; Hev:'(0)} ,
, = max{H=<0; Hevy7'(0)} .
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2. Proof of Theorem 1, 2 and 3

In this section we give the proof of Theorem 1, 2 and 3. We introduce
a sequence {4,},.: and {B,};-: by

2.1) B, =H,,

(22)  B,—4,&v(4,) (ie. 4, = (I+7)7(B,),

23)  A—Buu€%(Bu) (e By = (I+7)7(4,) -
We shall get several estimates for {4,} amd {B,}.

Lemma 2.1.

( i) -H1=Bl§Ho~

(i) If H,=<B,<H,, then H<A,<H,.
(i) If H,=<A,<H,, then H <B,.,<H,.

Proof. (i) is trivial. We shall show (ii). It follows from (2.2), 0&v,(H,)
and the monotonicity of 7, that

(Bn—Atl) (An_“HO) 20.

Thus we get B,<A4,=<H, by B,<H,. Hencewe have H,<A4,<H, by H,<B,.
Consequently we obtain (ii). We get (iii) in the same way. q.e.d.

We get the following lemma from Lemma 2.1.
Lemma 2.2. H,<A4, B,<H, (n=1,2, ).
We shall show the monotonicity of {4,} and {B,}.

Lemma 2.3.

(i) B,=B;

(ii) If B,<By4, then A,<A4,4,.
(iti) If A,=<A,+, then B, ;< B,.,.

Proof. We have (i) by B,=H, and Lemma 2.2. We shall show (ii).
We get (2.2) and

B,y —Ap1 EVo(Ayry) -
Hence we get by the monotonicity of v, that
[(Buti—Aur)—(Bu—A4,)] (Ayri—A,) 20
Thus we get
(Bun—B,) (Aun—A) Z(Ayn—4) (20).
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Thus we get 4,.,=4, easily. Consequently we have (ii). We obtain (iii)

in the same way. q.e.d.

Thus we get the next lemma from Lemma 2.2 and 2.3.

Lemma 2.4.
H1§A1§A1§_ éHo
H,=B,<B,< - <H,.

Proof of Theorem 1. There exist A* and B* such that

lim A, — A*, lim B, — B*,

by Lemma 2.4. Hence we get (1.5), (1.6) with A=A4*, B=B* in view of
(2.2), (2.3) and the closedness of ¥, and 7;. Thus we get the existence of a
solution of (E’) using Remark 1.2.

We shall show that w,(x) is uniquely determined. Let w'(x) and w’(x)
be solutions of (E’). It follows from the integration by parts, (1.1), (1.2), (1.3)
and the monotonicity of 7,, ¥, that

[ —uioyas
= (wx(1)—wi(1)) (w'(1)— (1))
— (w}(0) —w(0)) (w}(0)—u*(0)) <O
Hence we have w;(x)=w}(x).
We shall show that w,(x) (=w,(0)=w,(1))<0. We put 4=w(0), B=w(1)

and L=—w,(x) (=4A—B). Assume that L=4—B<0. Then we have from
(1.2) and (1.3) that

vo'(—L)24, v7(L)>B, —L>0>L.
Hence we get A2H,y (resp. H,2B) from v5'(0)2H, (resp. 77'(0)SH) and

the monotonicity of ¥5' (resp. ¥1r'). Thus we have A=(H,=0=H,=)B,
which is a contradiction. Therefore we obtain L=0. q.e.d.

Proof of Theorem 2. We can easily get the conclusion using Remark 1.3,
Theorem 1 and the fact that (—v,)"(L) and v7'(L) are closed intervals. q.e.d.

Proof of Theorem 3. It is easily seen from Theorem 1 and Remark 1.3
that the set W of solutions of (E) is represented by

W= {—Lx+4; A1},
I=(—=v) (L)NI+y)(L)N[O, L],

where L is the non-negative constant —w,(x) uniquely defined by Theorem 1.
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It follows from the maximal monotonicity of ¥, and 7, that (—v,)"%L) and
(I+v1") (L) are closed intervals. Thus I is a bounded closed interval. q.e.d.

3. Comparison theorems

In this section we show the comparison theorems for the Stefan problem
(S). The following lemma shows that the free boundary s(#) varies continuously
with the continuous change of the initial data {J, ¢(x)}.

Lemma 3.1. Let (T¥, s, w;) and (T%, s,, u,) be the solutions of (S) cor-
responding to the data {l,, ¢} and {l,, ¢p,} respectively. Suppose that I,<1, and
01=¢,. Then we have

(B.1)  wx Su(x, ) (0<x=<1,0<:<T¥),
(32)  0=s(t)—s(t)
= [1 +K(”¢2”L°°(o,1)‘|‘”¢‘1”L°°(o,1))] (lz—ll)
+K|lp2— $ull 20,0 »

where T¥=min(T¥, T¥), K=b"" max(c,, ¢,)-
Proof. We get v;<u, and s5;=s, by [11, Proposition 15.1]. It follows
from the proof of [11, Proposition 15.1] that
(3.3) @) —s@)=bl—h)
1, 1 1 1
—l—co(So ¢, dx— So [ dx)—l—cl(slchz dx—slltpl dx) .

Thus we get (3.2) easily. q.e.d.

We prepare simple lemmas which is useful when we investigate the be-
havior of the solutions of (S).

Lemma 3.2. Let w(x) be a solution of (E) with a zero point m, 0<m=1
(resp. 0<m<1). Let (T*, s, u) be the solution of (S) corresponding to the data

{l, p}. Suppose that
(34) I=zm—p (resp. =m-+-p),
(35) S0 —X(p) (resp. Su(x)+X(p)),

where
|2,(0)| & if wx0

X = X(§; = ’
® = xesw = | A
and p is a sufficiently small positive real number, that is,

(3.6) L<m (resp. <l—m),
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3.7 X(p)<w(0) (resp. <—w(1)) onlyif w=0.

Here L,=(1+2KM,)p+KX(p), K=b"'max (cy, ¢;) and M,=/||w|| =0 1n+X(p)
Then we have

(3.8) s(ty=m—L, (resp. =m-+L,) for 0=t<T*,
(.9)  ulx )Zw(x)—X(Ly) (resp. <w(x)+X(Ly))
for 0=x<1, 0<:<T*.

Proof. We shall prove the first case of the statement of the lemma. Let
(T¥, 51, w) be the solution of (S) corresponding to the data {l;, ¢}, where

ll =m—p,
)= max (w(x)—X(p), 0) for 0=x<m—p
i) = w(x)—X(p) form—p<x=<1’

Thus it follows from (3.4), (3.5), (3.6), (3.7) and Lemma 3.1 applied to {, ¢}
and {/;, ¢} that T*< T¥ and

(3.10) s()=s,(t) (0=t=T%),
@A) w(x, )=uy(x, t) (0=x=1, 0=t<T¥).

Hence we obtain (3.8) using (3.10), Lemma 3.1 and the definition of {/;, ¢,}.
We shall show (3.9). We regard %(x, #) as the solution of the moving boundary
problem with the curve s(f). It is easily seen from [11, Lemma 8.1] and the
proof of [10, Proposition 10.1] that

(3.12)  wy(x, t)=w(x)—X(L,) (0=x=1,0=<:<T%).
Consequently we get (3.9) by (3.11) and (3.12). q.e.d.

Lemma 3.3. Let (T*, s, u) be the solution of (S) corresponding to the data
satisfying (A). Suppose T*=oco. Then for any p>0 there exists t, such that

(3.13)  w(x)—p=u(x, )Sw'(x)+p (221),
where w*(x) (k=0, 1) is the solution of the elliptic unilateral problem (E,),
(3.14) wh(x)=0 (O<x<l),
(En4(3.15) w*k)=0,
(3.16) (—1)*wi(1—k) 7, (w*(1—F)).

RemMARk 3.1 If w(x) is a solution of (E) with a zero point m satisfying m
=0 (resp. m=1), then we see that w(x)=u"(x) (resp. w(x)=w'(x)).
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Proof. We shall show the right inequality of (3.13). It follows from
[10, Proposition 10.1] that

u(x, 1) =ol(x, t) (0=x=1,:=0),

where v'(x, #) is the solution of the parabolic unilateral problem (P;) with the
initial data «Jr(x)=¢(x), which is introduced in [12, §5]. Hence we get the
conclusion using [12, Proposition 5.1]. We can get the left inequality of (3.13)
in the same way. q.e.d.

4. A priori estimates of the free boundary s(¢)

In this section we prove the following proposition which give some a priori
estimates of the free boundary s(z).

Proposition 4.1. Let (T*, s, u) be the solution of (S) corresponding to the
data {l, ¢}.
(1) If D(7v,)B0, then there exist positive constants & and 3, depending on
o]0, T*[ such that
s(#))>8 (0=:<T%),
w0, £)>8, (o=t=T%).
(ii) If D(v,)3O0, then there exist positive constants & and 8, depending on
o]0, T*[ such that
s(H<1—8 (0=t<T%),
u(l, H)<—98, (c=t=T%).
(i) If D(v,)P0 and D(v,)PO0, then T*=oco and there exist positive con-
stants 8 and 8, depending on o €]0, oo[ such that

d<s(t)<1—8 (0=t< ),
u(0, )=06, (c=t<o0),
u(l, )= -0, (c=t<).

We may assume that {/, ¢} satisfies the following condition,

(a7 V<11 HOSDE), 91 = 0, 4D,
$ECO(0, 11): |$(x)—p(®)| <K |x'—x| (0=x=a'<1),

since u satisfies (0.4) and [11, (1.14)]. In what follows we assume (H). We
note that the conclusions of [11, Theorem 2] hold by virtue of (H).

We shall show (i) of Proposition 4.1. We investiagte the behavior of
the free boundary according to the shape of v,. Since 7, is a maximal mono-
tone graph in R? with D(7,)30 and v(H,)=0 (H,=0), we see that



STEFAN PROBLEMS WITH THE UNILATERAL BOUNDARY ConbpITION IV 159

(1) [B, Hy], where 0<B=<H,,
D(7,) N[0, H)] = {(ii) ]B, H,], where 0<B<H,,
(i) 10, Hql -
Lemma 4.1.  Suppose that 7, satisfies (1) or (ii). Then we have
(4.1) s()=d (0=:=T%),
4.2) uw(0,)=B (0=t=T%),
where d=2"'min(B/4, l), A=max[—min(—||$||.=¢n, H1)/(1—1), K].

Proof. Suppose that s(f)=d for some t<[0, T*]. Let t*=inf {t[0, T*
[ ;s(t)=d}. Clearly §(#*)<0. Consider the function

w(x, t) = A(d—=x) (s@)=x=1, 0= <t*),
which satisfies

w..—aw, = 0 (s()<x<1, 0<z<t*),
w(s(2), t) = A(d—s(£)) <0 = u(s(2), £) (0=z=¢t*),
w(l, ) = A(d—1)=<A(I-1)
= min(—|$llz=q,0, Hi)Su(l, 1) (0=t=2¥),
w(x, 0) = A(d—x)SK(d—x)=K(I—x)<¢(x) (I=x=1),
by [11, (1.13)], (H) and the definition of #¥, d, A. Thus we have
w(x, ) Su(x, t) (sE)=x=1, 0=151%)
by the elementary maximum principle. Hence we have
4.3) u; (s(2¥), t*)=—4.
Next we introduce the function
2(x, t) = B(1—x/d) (0=x=s(t), 0=t<t*).
It follows that
Zee—Co% = 0 (0<x<s(2), 0<z<<t¥),
2(s(2), t) = B(1—s(2)/d) =0 = u(s(?), t) (0=t=1¥*),
2(0, t) = BZu(0, t) (0=t=t*),
2(x, 0)=SB—Ax=¢(0)—Kx=¢(x) (0=x=1),
by (0.4), $(0)ED(7,), (H) and the definition of #*, d, 4. Hence we have

2(x, )Su(x, t) (0=x=s(2), 0=t =1¥)
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by the maximum principle. Thus we have
(4-4) u; (s(t*), t*)<—B/d .
Consequently we see from (0.7), (4.3), (4.4) and the definition of 4 that
bi(t*)=Bld—A>0,
which is in contradiction to §(2*¥)=<0. q.e.d.
Lemma 4.2. Suppose that v, satisfies (iii). Then we have
45)  s)=d (0S=T*),
(4.6) u(0, t)=A4,d, (0=t<T%),
where  dy = 27" min(B,/4,, 1), A, = A+1,
B, = min(max {£; 7(8)>—4,}, ¢(0)),
A = max(—min(—||¢||,=qn, H)/(1-1), K).
Proof. Suppose that s(f)=d; for some ¢&[0, T*]. Let t*=inf {&][0, T*
[; s(t)=d}. Clearly $(z¥)<0. We can get
4.7) u; (s(2*), t*)=—4
by‘ the argument used in the proof of previous lemma. We introduce the
function
2(x, t) = Ay(di—x) (0=x=s(t), 0=t=1¥).
It follows that
(4.8) Res— G2 = 0 (0<x<s(2), 0<t<<t¥),
4.9) 2(s(t), t) = Ay (di—s(t)) =0 = u(s(z), t) (0=t<t*),
(4.10)  2(x, 0)=A4,d,—Kx<B,—Kx=¢p(0)—Kx=¢p(x) (0=x=<]),
(411) (20, )—ux(0, 1)) (2(0, 2)—u(0, 2))*
= (—A4,—u,(0, t)) (4:d,—u(0, £))*
=0 for u(0, t)=A4.4, ,
= (—A,—min {n; E7(By)}) (4idi—u(0, t))
for u(0, t)<A4,d, (<B,),

[\

0
by (H), (0.4) (a) and the definition #*, d;, 4,. Hence we have

2(x, ) Su(x, ) (0=x=s(t), 0=t=¢t¥),

by [10, Lemma 10.1]. Thus we have
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(4.12)  ur(s(t*), t)=—4, .
Consequently we see from (0.7), (4.7), (4.12) that
b$(t*)=4,—A=1>0,

which is in contradiction to §(#*)=<0. Thus we get (4.5). Therefore we obtain
2(x, t)<u(x, t) on D%+ using (4.5), (4.8), (4.9), (4.10), (4.11) and [10, Lemma
10.1]. Hence we get (4.6) by 2(0, £)<«(0, £) (0=t T*). q.e.d.

Proof of Proposition 4.1. We get (i) by Lemma 4.1 and 4.2. We get
(ii) by the argument similar to the proof of (i). We obtain (iii) by (i) and
(ii). q.e.d.

5. A priori estimates of u,(0, ¢) and u,(1, t)

We show the following a priori estimates of the derivatives of the solution
of (S) at the fixed boundary.

Proposition 5.1. Let (T*, s, u) be the solution of (S) corresponding to the
data {l, ¢}. Then there exists a positive constant C, depending on o<]0, T*[
such that

(5.1) |40, 2)| =C, a.e. tE[a, TH,
(5.2) lu (1, )| =C;  ae tE[a, TH[.
Proof. We may assume the condition (H) which is introduced in §4,

since u satisfies (0.4) and [11, (1.14)]. We shall show (5.1). It is easily seen
from [10, Lemma 10.1] and the proof of [10, Lemma 6.1] that

(5.3) 1, (0, )=C,, ae. t€[o, TH[,

where C,, is a positive constant depending on o. We shall obtain the esti-
mate from below. We consider two cases.

Case (i). D(7,)%0.
It is easily seen from [10, Lemma 10.1], Proposition 4.1 (i) and the proof of
[10, Lemma 6.1] that

(5.4) —C, ;=u,(0,t) ae. t€[o, T,

where C, , is a positive constant depending on .

Case (ii). D(v,)20.
It follows from [11, (1.12)] that #,(0, £) =0 if %,(0, ¢) exists and #%(0, £)=0. Thus
we have

(5.5) —C3.=u,(0,2) ae. t€[o, T¥,



162 S. YoTsutani

where C; ;=—max {n; 7€ 7,(0)} 0.
Hence we obtain (5.1) by (5.3), (5.4), (5.5). We can get (5.2) in the same
way. q.e.d.

6. Weak formulation of the Stefan problem (S)
We give a weak formulation of the Stefan problem (S), which will be useful

for us to investigate the asymptotic behavior of the solutions.

Proposition 6.1. Let (T*, s, u) be the solution of (S) corresponding to the
data {l, ¢}, then we have

ssmcou,'v dx—}—gl cuyv dx—+b 5(t) v(s(2))

0 s(2)

(6.1) .

+s u,v, dx+u,(0, ) v(0)—u. (1, £) v(1) = 0
0

a.e. tE[0, T*], where v(x) H'(0, 1) is arbitrary.

RemMARKk 6.1. We put
_ _ [ecoulx, £)+b  for u(x, )20,
Utw, 1) = Blu(x, 1)) = {cl u(x, 1) for u(x, £)<<0.
Then (6.1) is written formally as follows.
d(! !l
N\ Uvdx+\ B7Y(U),v, dx
(6.2) dt So so ( )
+%(B7HU(O, 1))2(0)+7(B87(U(L, 1))) »(1)=0 .

It may be natural that (6.2) is a weak formulation of (S). However we do not
investigate (6.2) here.

ReMark 6.2. When v, and v, are single valued functions, Cannon &
DiBenedetto [3], Visintin [8], Niezgodka-Pawlow-Visintin [6] investigated the
problem similar to (6.2) with some additional conditions in #-dimensional case.

Proof of Proposition 6.1. We have
s(t) 1
S ColdsV dx—l—S cu,v dx
0 s(8)

s(t) 1
= S Uyy dx—f—S U,, 0 dx
0 s(t)
s(t) 1
= [u,v]f,(”"—go U0, dx—i—[u,v]i(,p,—g Vs dx
S

= (uz(s(2), ) —u: (s(2), 1)) v(s(2))—u(0, ) v(0)+u,(1, 2) (1)
——flu,'v, dx
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using [11, Theorem 1], (0.2), (0.3). Thus we get (6.1) by (0.7). q.e.d.

7. Proof of Theorem 4, 5 and 6

In this section we give the proof of Theorem 4, 5 and 6. Let T*=co.
It follows from [11, Theorem 1] and Proposition 5.1 that

(7.1) |u(x, t)| = const. on [0, 1] [1, o[,

(7.2) lu(x', t)—u(x, t)| < const. |x'—x|¥>  on [0, 1]X[1, oo,
(73)  sup {S:u,(x, oy s+ (15 1° de-+ Sjs:u,(x #)? dndt < oo |
74) w0, YeL(1, ), u(l, -)eL (1, ).

Thus it is easily seen from (7.1), (7.2) and (7.3) that there exist a subsequence
{t,}, a real number s*€[0, 1] and a function w*(x)=C([0, 1]) such that

(75) sty —s*,

76 (t)—0,

(7)) ulx, 1) —>u*x)  in C(0, 1]),

(7.8) u (%, t,) —> uf(x)  weakly in L*0, 1),
(7.9) S:ut(x, 1,2 dx — 0

as t,—> oo, Moreover we may assume from (0.4), (7.4), (7.7) and the closedness
of v, and v, that there exist real numbers g, and g; such that

(710) w0, £,) > &ENWH0)),

(7.11)  —u,(1, t,) = gi=€7:(u*(1)) .

Consequently we see from (6.1), (7.6), (7.8), (7.9), (7.10) and (7.11) that
[0, dr+er 00+ 0(1) = 0

for all ve HY(0, 1). Hence

uh(x)=0 (0<x<1),
u¥(0) = g E7,(w*(0)),

—uX(1) = pEn@H(1)),
w¥(s*) =0, O0=<s*=<1.

Therefore #*(x) is a solution of (E).
We shall show that
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(7.12)  s(2) — s*,

(7.13)  u(x, ) > u*(x)  in C([0, 1]),

as t— oo without taking a subsequence. For any given £>0, there exists zy
such that

(7.14)  |s(ty)—s*|<eE,

(7.15)  |u(x, ty)—u¥(x)| <€  (0=x=1)

by (7.5) and (7.7). Consequently for any £>0 there exists £, (Zty) such that

[s(t)—s*|<€e  (t=t,),
|u(x, t)—u*(x)| <& 0=x=1, t=1,),
from (7.14), (7.15), Lemma 3.2, Lemma 3.3 and Remark 3.1.
Thus we complete the proof of Theorem 4.
Theorem 6 is obvious from Theorem 4.
We obtain (i), (ii), (iii) of Theorem 5 using Lemma 3.1 and Proposition
4.1. To prove Theorem 5 (iv), we can apply Lemma 3.1 and the inequality
(3.3) to the solutions of (S) corresponding to the data {l,, ¢}, {m, w} and the

data {m, ZU}, {ln ¢1}

8. Proof of Corollary 1, 2, 3 and 4

We give the proof of Corollaries.

Proof of Corollary 1. It is evident from Theorem 4, Theorem 3 and
Remark 1.5. q.e.d.

Proof of Corollary 2. It is obvious from Theorem 4 and Theorem 2.
q.e.d.

Proof of Corollary 3. It is obvious from Theorem 4, Lemma 3.1 and
the fact that w(x) (resp. w(x)) is the minimum (resp. maximum) solution of

(E)-

Proof of Corollary 4. We may assume w(x)<#@(x) in view of Corollary 2.
We see from Lemma 3.1 and [10, Proposition 10.1] that

8.1)  wx)Sulx, )<w(x) (t=0).

It is easily shown that ¥,(u)= {w,(0)} (resp. 7y(#)={—w,(0)}) for u satisfying
w(0)<<u<w(0) (resp. w(l)<u<w(1)). Hence it is easily seen from (8.1) that
u, 0, t) = w,(0) (a.e. £>0),
u, (1, t) = w,(0) (ae. t>0).
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Thus it follows from [11, Proposition 9.1] that

s(t) 1
b s(t) 4, S u(x, t) de+c, S ( )u(x, t) dx
0 s(t
(o) 1
=b s(o-)—l—coS u(, o-)dx—}—clg . )u(x, a)dx,
0 slo
for any o]0, t[. Letting ¢— oo and ¢—0, we get (1.13) by Theorem 4 and
[11, Theorem 1]. We see the uniqueness of s* satisfying (1.13). In fact,
the function,

E(p) = bp-+a w.0) (—p) dv-ta, | .0) (e—p) d,

is continuous and strictly increasing in p, since w,(0)<<0. q.e.d.

9. Some examples

To make clear the meaning of our results, we give some simple examples.
Let (T*, s, u) be the solution of (S) corresponding to the initial data {I, ¢}.
The unilateral condition (0.4) will be taken concretely.

ExampLE 1. Let %,(0, )= —a and u(1, t)=—208, where 0=a<B. Then
T*< oo and s(T*)=0.
In fact, we may apply Theorem 6 and Proposition 4.1 (ii) by taking

—a ®=M) e ol
Yo(#) = j[—a, o[ (u=M), ’Yl(“):{]ﬁ i Eu:t:~gi,
0 (u> M)

where M is a sufficiently large real number (for example, M=||¢|| ¢ n+a+1).

ExampLE 2. Let #,(0, {)=—a and (1, {)=—8, where 0<B8=a. Then
either of the following situations occurs corresponding to the initial data.

(1) T*<oo and s(T*)=0,
(ii) T*= o, lim s() = (a—@)/a and
tl-]-f}} u(x, t) = a(l—x)—p0.
Moreover a sufficient condition for (ii) is that > and ¢(x)=a(l—x)—g.

In fact, we may apply Theorem 4, Proposition 4.1 (ii) and Theorem 5
(ii) by taking 7, and 7, as above.

ReMARK 9.1. From the physical intuition and numerical experiments by a
computer it may be thought that (i) occurs when

— Z+COS:¢(x) dxtc, Si¢(x) dx}
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is sufficiently large, though we do not have a mathematical proof at present.

ExampLE 3. Let %,(0, £)=1—1/u(0, 2), and %(1, )< —1, u,(1, £)=0, u.(1, ?)
(u(1, )+1)=0 (Signorini type boundary condition). Then we have T*=oo,
lim s(2) = 1—1/V 2,

tpoo

lim u(x, ) = —V 2x+V 2 -1 in C([0, 1]).

tpoo

In fact, we may apply Theorem 4, Corollary 2 by taking ¥,(#)=1—1/u and

0 (< —1)
") =400, o[ (u=-1).
0 (>—1)

ExampLE 4. Let

uzl, u,<-3 (u=1), u,=—3 (I<u<2), u,=u—5 (u=2),
on the fixed boundary x=0, and

u=—1, u.=-3 (u=-1), u,=—3 (—1>u>-2), u,=—u—5 (u=<-2),
on the other fixed boundary x=1. Then we have T*=oco,

lim s(2) = s*, 13=5s%<2/3,
lim u(x, t) = —3 (x—s*) in C([0, 1]).

Moreover we have the following properties.

(i) If ¢p(x)<—3x+1 (resp. p(x)=—3x+2), then s¥*=1/3 (resp. s¥=2/3).

(ii) If —3x4+1=¢(x)=—3x+2 (with 1/3<1=<2/3), then s* is the unique
real number such that 1/3=<s*<2/3 and

b s*13{cy (%) —cy (1—s*)} 2
— blte S: (%) dx+c, Sz () dx .

In fact, we may apply Theorem 4, Corollary 3, Corollary 4 and Theorem
5 (1) by taking

0 (u<l) 0 (@w>-—1),
_Jl=ee, 3] (w=1) _ By ool (w=—1)
L A B O A G PR S
u—5 (u=2) u+5 (=-2)
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