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Introduction

of the free boundary s(t)

oiux(0, t)andux(l, t)
of the Stefan problem (S)
4, 5 and 6
1, 2, 3 and 4

We consider the behavior of the solution of the following one-dimensional
two phase Stefan problem with the unilateral boundary condition on the fixed
boundary: Given the initial data, / and φ(x), find a critical time T*, and
the two functions s=s(t) and u=u(x, t) defined on [0, T*] such that

(0.1) s(0) =

(0.2) uxx-cout = 0 (0<x<s(t\ 0<t<T*),

(0.3) u^-dUt = 0 (s(t)<x<l, 0<t<T*),

(a) «,(0, ί)eΎ0(«(0, ή) (0<t<T*),
( - ) (b) -« β (l,ί)e7 1 («(l,ί))(0<ί<Γ*),

(a) u(x, 0) = φ(x) (0<*</),
( > (b)

(0.6) u(s(t), t) = 0 (0<t^T*),

1(0.7) bS(t) = -uj(s(t), t)+ut(s(t), t) (0<t<T*).
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The critical time 71*, 0 < T * ^ o o , is defined to be the first time that the free
boundary x=s(t) touches the fixed boundary # = 0 or x=ί. The quantities
c0, cλ and b are positive physical parameters of the problem. The assumptions
for the boundary condition (0.4) at the fixed boundary are that 70 and rγ1 are
maximal monotone graphs in R2 such that both 7^(0) Π [0, oo[ and TΓ^^Π]
— oo, 0] are not empty sets. We put these assumptions from the physical
reasoning, that is, there are a kind of heater at x=0 and a kind of freezer at
x=\. (0.4) are the unilateral boundary conditions. (0.7) is the so-called
Stefan's condition. The author proved the existence and uniqueness of the
solution of (S) in [11].

The behvaior of solutions of the problems with the linear boundary condi-
tions on the fixed boundaries are considered by Rubinstein [7, p. 155-181],
Friedman [4, 5] and Cannon-Primicerio [2].

The plan of this paper is as follows. In §1 we state main theorems.
In §2 we give the proof of Theorem 1, 2 and 3 concerning stationary problems
corresponding to the Stefan problem (S). In §3 we state comparison theo-
rems of the solutions of (S). In §4 and §5 we give a priori estimates of the
free boundary s(ΐ) and the derivatives of u at the fixed boundary respectively.
In §6 we introduce a weak formulation of (S). The results of §4, §5 and §6
are used in the subsequent sections. In §7 and §8 we give the proof of Theorem
4, Theorem 5, Theorem 6 and Corollaries, which give some informations about
the solutions of (5). In §9 we give simple examples to clarify the meaning
of our results.

The author would like to express his gratitude to Professor H. Tanabe
for his useful advice and encouragement.

1. Statements of main results

We shall use the notations and definitions introduced in [11]. The as-
sumptions required on the Stefan data {/, φ} are the following (A).

ΓO</<1. φ(x)^0 (0<x<l)y φ(x)^

\φ(x) is bounded, and continuous for a.e. #e[0, 1] .

We know the uniqueness and existence of the solution (T1*, s, u) of (S) under
the assumption (A) by [11, Theorem 1].

We assume that {/, φ} satisfies (̂ 4) throughout this paper.
Now we introduce an elliptic unilateral problem (E) and (E') which are

closely related to (S).

'(1.1) ^ , ( * ) = 0 ( 0 < * < l ) , )

(1.2) «,(O)€=7o(w(O)), (£")

1(1.3) -^ljεγ^l)), j
(1.4) w(μ) = 0 for some μe[0 , 1] .

{ } 1
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DEFINITION 1.1. w(x) is a solution of (E) (resp. (E')) if w(x) is a linear
function satisfying (1.2), (1.3) and (1.4) (resp. (1.2) and (1.3)).

We state the existence theorem for (E').

Theorem 1. There exists a solution zu(x) of (£"). The constant wx(x) is
uniquely determined and wx(x)^§.

REMARK 1.1. (£") has either one solution or an infinite number of solu-
tions.

REMARK 1.2. w(x)=(B—A)x+A is a solution of (£"), if and only if (A,
B) is a solution of

((1.5) B-A^yo(A),

1(1.6) A—B^y^B).

REMARK 1.3. We put L=A—B. Thus (Ef) is equivalent to the following
nonlinear problem for {A, B, L),

((1.7) L = A-B,

(1.8) A(Ξ(-yo)-\L),

1(1.9)

(E*)

Thus it is easily seen that four points (B, 0), (A, 0), (A, L), (B, L)<=R2 are ver-
tices of a square satisfying (1.8) and (1.9). Consequently our geometrical intui-
tion is available when investigating (.£*), so (£").

We introduce notations to state a uniqueness theorem. Let L be the
constant —wx(x) uniquely defined by Theorem 1. We put

Ls = sup {P-ρ; Pe{-yoy\L), Q^T\L), P1>Q} ,

L{ = inf {P-Q; P<=(-70)-χL), Qeyτ\L), P^

It is easily seen from Theorem 1 that

Theorem 2. The solution of (£") is uniquely determined if and only if any
of the following conditions is satisfied,

( i ) (—Ύo)"1^) Π ΎT^L) is a one point set with L=0,
(ii) (—ΎQ)' 1^) is a one point set with L>0,
(iii) OT1^) is a one point set with L>0,
(iv) LS=L with L>0,
(v) Li=^L with L>0.

REMARK 1.4. (—yQ)~\L) and ΎT\L) are closed intervals, since τ 0 and
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7i are closed graphs in JB2.

Consequently we get informations about the existence and uniqueness of

solutions of (E) by virtue of Theorem 1 and Theorem 2. The structure of

solutions of (E) is as follows, when the set of solution of (E) is not empty.

Theorem 3. Suppose that (E) has a solution. Then there exist the mini-

mum solution w{x) and the maximum solution W(x). Furthermore the set W of

solutions of (E) is represented by

W= iw(x)+c; *e[0, W(0)-w(0)]} .

REMARK 1.5. The condition w(x) = 0 is equivalent to the condition, 70(0)

3 0 and 7i(O)3θ.

Now we state results concerning the behavior of the solutions of (S). We

define s and s by

fO iΐw(x) = 0,

[the unique zero point of w(x) if w(x) ̂  0 .

s = \ ' _ _
[the unique zero point of w(x) if w(x) 3β 0 .

In what follows let (Γ*, s, u) be the solution of (S) corresponding to the data

Theorem 4. Suppose that T*=oo. Then there exist a real number s*

with s^s*^,s, and a solution u*(x) of (E) such that

(1.10) lim *(*) = $*,

(1.11) lim u(x, t) = u*(x) in C([0, 1]),

(1.12) u*(x) = wx(0) (x-s*).

REMARK 1.6. ί* and u*{x) are determined by the initial data {/, φ(x)} in

general, when w(x)4zW(x).

We can determine J * and u*(x) of Theorem 4 in some cases.

Corollary 1. Let 70(0)Ξ>0 and 7i(0)^0. Suppose Γ*=oo. Then zee

have 0 ^ 5 * ^ 1 and #*(#)=0.

Corollary 2. Z^/ 70(0)φ0 or 7i(0)φ0, α^J to any one of the conditions in

Theorem 2 be satisfied. Suppose T*=oo. Then we have s*=s=S and u*(x)

Corollary 3. Let 70(0)φ0 or 7i(0)$0, and let φ(x)<^w(x) (resp.
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w(x)). Suppose T*=oo. Then we have s*=s (resp. s*—s) and u*(x)=w(x)
(resp. u*(x)=W(x)).

Corollary 4. Let γo(O)*O or 7^0)^0, and let w(x)^φ(x)<Lw(x). Sup-
pose Γ*=oo. Then s* is the unique real number such that

S s* Cl

u^(x)dx+cΛ u*(x)dx
= b l+co\ φ(x)dxJrc1\ φ(x)dx ,

Jo Ji

and w(x)^u*(x)=wx(0) (x-s*)^w(x).

We state some sufficient conditions for T*=°°.

Theorem 5. If any one of the following conditions is satisfied, then we
have T*=oo.

( i ) D(yo)$)O andDijjm.
(ii) D(γo)φO (resp. D ^ J φ O ) . (E) has a solution w(x) such that w(l)<0

(resp. zϋ(0)>0). The initial function satisfies φ(x)^w(x) (resp. φ(x)^.w(x)).
(iii) (E) has a solution wλ(x) and w2(x) such that w1(x)^w2(x)y w1(0)w1(l)<.

0, w2(0)w2(l)<0. The initial function satisfies wλ(x)tίφ(x)ίίw2(x).
(iv) (E) has a solution w(x) with a zero point satisfying 0 < m < l . The

initial data {/, φ} satisfies

where lo=min(l, m), φo=tnin(φy w), I1=max(l, m), φ1=max(φ> w),

φ<(x)dx}
i

w(x)dx+cΛ w(x)dx} .
0 Jm

We state a sufficient condition for Γ*<oo.

Theorem 6. Suppose that (E) has no solution, then Γ*<oo.

REMARK 1.7. The converse proposition does not hold. In fact, for exam-
ple, if 70=7! = 0, then (E) has a unique trivial solution w(x)=w(x) = 0, and
the behavior of the free boundary s(t) depends on the initial data {/, φ(x)}
(see [2, §5]).

In what follows we use the following notations.

Ho = min{tf^O; fleyiΓι(0)} ,
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2. Proof of Theorem 1, 2 and 3

In this section we give the proof of Theorem 1, 2 and 3. We introduce
a sequence {An}^i and {5n}Γ-i by

(2.1) A = flίf

(2.2) Bn-AnζΞ70(An) (i.e. A. = (I+yoy\Bn)),

(2.3) An-Bn+1<ΞΎl(Bn+1) (i.e. Bn+1 = (I+Ύl)-\An)).

We shall get several estimates for {An} amd {Bn}.

Lemma 2.1.

(i) Hι=Bι^H0.

(ii) If H^B.^Hi, then H^A^Ho.

(iii) IfHλ^An^HQy then H^B^H,.

Proof. ( i ) is trivial. We shall show (ii). It follows from (2.2), θGγo(iϊo)
and the monotonicity of y0 that

Thus we get Bn^An^H0 by Bn^H0. Hence we have Hλ^An^H0 by Hλ^
Consequently we obtain (ii). We get (iii) in the same way. q.e.d.

We get the following lemma from Lemma 2.1.

Lemma 2.2. Hx^An, Bn^H0 ( Λ = 1 , 2, •••).

We shall show the monotonicity of {An} and {Bn}.

Lemma 2.3.

( i) S i ^ £ 2

(ii) IfBn^Bn+1, then An£AΛ+ι.

(iii)

Proof. We have ( i ) by B1=H1 and Lemma 2.2. We shall show (ii).
We get (2.2) and

Bn+1-An+1<EΞ<γ0(An+1).

Hence we get by the monotonicity of 70 that

[(Bn+1-An+1)-(Bn-An)](An+1-An)^0

Thus we get

(Bn+1-B
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Thus we get An+l^tAn easily. Consequently we have (ii). We obtain (iii)
in the same way. q.e.d.

Thus we get the next lemma from Lemma 2.2 and 2.3.

Lemma 2.4.

Proof of Theorem 1. There exist A* and 5 * such that

lim An = A*, lim Bn = £ * ,

by Lemma 2.4. Hence we get (1.5), (1.6) with A=A*, B=B* in view of
(2.2), (2.3) and the closedness of 70 and Jx. Thus we get the existence of a
solution of (Ef) using Remark 1.2.

We shall show that wx(x) is uniquely determined. Let w1(x) and w2(x)
be solutions of (£"). It follows from the integration by parts, (1.1), (1.2), (1.3)
and the monotonicity of 70, 7! that

\\wl(x)-w2

x(x))2dx
Jo

= {wl{l)-wl{\))(w\\)-w\\))

-(wl(0)-w2

x(0)) (w\0)-w2(0))^0 .

Hence we have wl(x) = wl(x).
We shall show that wx(x) (=wx(0)=wx(l))^0. We put ^=α>(0), 5 = ^ ( 1 )

and L=—wx(x) (=A—B). Assume that L=A—B<0. Then we have from
(1.2) and (1.3) that

y -L>0>L .

Hence we get A^H0 (resp. H^B) from yQl(0)^HQ (resp. ^\0)^>Hx) and
the monotonicity of Ύό1 (resp. 7Γ1). Thus we have A^^^O^H^B,
which is a contradiction. Therefore we obtain L^O. q.e.d.

Proof of Theorem 2. We can easily get the conclusion using Remark 1.3,

Theorem 1 and the fact that (—TQ)" 1 ^) and ΎΓ1^) are closed intervals. q.e.d.

Proof of Theorem 3. It is easily seen from Theorem 1 and Remark 1.3
that the set W of solutions of (E) is represented by

W= {-Lx+A;
i = (-%r\L) n (I+ΎT1) (L) n [0, L],

where L is the non-negative constant — wx(x) uniquely defined by Theorem 1.
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It follows from the maximal monotonicity of Jo and rγι that (—yo)~\L) and
(/+7Γ1) (L) are closed intervals. Thus / is a bounded closed interval, q.e.d.

3. Comparison theorems

In this section we show the comparison theorems for the Stefan problem
(S). The following lemma shows that the free boundary s(t) varies continuously
with the continuous change of the initial data {/, φ(x)}.

Lemma 3.1. Let (Tf, sly %) and (Tf, s2> u2) be the solutions of (S) cor-
responding to the data {lly φλ} and {l2, φ2} respectively. Suppose that lλ^l2 and
φ1 ^ φ2. Then we have

(3.1) u,(x, t)^u2(x, t) (O^

(3.2)

where Tf=min(Tf, Tf), K=b"1 maxfo, cx).

Proof. We get u^u2 and s^s2 by [11, Proposition 15.1]. It follows
from the proof of [11, Proposition 15.1] that

(3.3) bis^ή

φ2dx-\ φιdx)+cA φ2dx-\ φxdx).
o Jo Jι2 J/i

Thus we get (3.2) easily. q.e.d.

We prepare simple lemmas which is useful when we investigate the be-
havior of the solutions of (S).

Lemma 3.2. Let w(x) be a solution of (E) with a zero point m,
(resp. O^m<ί). Let (Γ*, s, u) be the solution of (S) corresponding to the data
{/, φ). Suppose that

(3.4) l^m—p (resp. ^m+p),

(3.5) φ(x)^w(x)—X(ρ) (resp. ^w(x

where

K(O)lf */

and p is a sufficiently small positive real number, that is,

(3.6) Lp<m (resp.<l—m),
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(3.7) X(p)<w(0) (resp. <-w(l)) onlyifw^O.

Here Lp=(l+2KMp)p+KX(p), K=b~1 max(cOy c,) and MP=\\w\\L~(oA)+X(p)
Then we have

(3.8) s(t)^m-Lp (resp. ^m+Lp) for O^t^

(3.9) u(x, t)^w(x)-X(Lp) (resp. ^w

Proof. We shall prove the first case of the statement of the lemma. Let
(Γf, su #i) be the solution of (S) corresponding to the data {lu φλ}9 where

h = m—p ,

(msx(w(x)—X(ρ), 0) for 0
Φl^ = \w(x)-X(p) for m

Thus it follows from (3.4), (3.5), (3.6), (3.7) and Lemma 3.1 applied to {/, φ}
and {lu φ2} that T*£Tf and

(3.11) u(x, t)^ux(x, t) ( 0 ^ Λ ? ^ 1 , O ^ ί ^

Hence we obtain (3.8) using (3.10), Lemma 3.1 and the definition of {lu φ j .
We shall show (3.9). We regard u^x, t) as the solution of the moving boundary
problem with the curve s^t). It is easily seen from [11, Lemma 8.1] and the
proof of [10, Proposition 10.1] that

(3.12) Ul(xy t)^w(x)

Consequently we get (3.9) by (3.11) and (3.12). q.e.d.

Lemma 3.3. Let (T*, s, u) be the solution of (S) corresponding to the data
satisfying (A). Suppose Γ*=oo. Then for any p>0 there exists tp such that

(3.13) w\x)

where zt^(x) (&=0, 1) is the solution of the elliptic unilateral problem (Ek),

(3.14) «BL(*) = O

(3.15) w"(k) = O,

(3.16) (-I)1"

REMARK 3.1 If w(x) is a solution of (E) with a zero point m satisfying m
= 0 (resp. m = l ) , then we see that w(x)=w°(x) (resp. w(x)=w\x)).
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Proof. We shall show the right inequality of (3.13). It follows from
[10, Proposition 10.1] that

u(x, t)^v\x, t) (O^tf^l, t^O),

where v\x, t) is the solution of the parabolic unilateral problem (P^ with the
initial data ψ(x)=φ(x)> which is introduced in [12, §5]. Hence we get the
conclusion using [12, Proposition 5.1]. We can get the left inequality of (3.13)
in the same way. q.e.d.

4. A priori estimates of the free boundary s(t)

In this section we prove the following proposition which give some a priori
estimates of the free boundary s(t).

Proposition 4.1. Let (Γ*, s, u) be the solution of (S) corresponding to the
data {/, φ}.

( i ) If Z)(70)Φ0, then there exist positive constants 8 and 8σ depending on
σG]0, T*[ such that

s(t)>8 (O^

u(0,t)>Sσ

(ii) If Z)(7i)$0, then there exist positive constants 8 and δσ depending on
σG]0, T*[ such that

s(t)<ί-S (O^^Γ*),

(iii) If D(7Q)^0 and Z)(7i)$0, then r * = o o and there exist positive con-
stants 8 and 8σ depending o« σE]0, oo[ such that

8<s{t)<\-8 (0^

iι(0, t)^

We may assume that {/, φ} satisfies the following condition,

1 j φtΞC°'X[09 1]): \φ(x')-φ(x)\£K\x'-x\

since u satisfies (0.4) and [11, (1.14)]. In what follows we assume (H). We
note that the conclusions of [11, Theorem 2] hold by virtue of (H).

We shall show ( i ) of Proposition 4.1. We investiagte the behavior of
the free boundary according to the shape of 70 Since 70 is a maximal mono-
tone graph in R2 with Z>(70)^0 and 7o(#o)3O (JH" 0^0), we see that
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D(Ύ0)Π[0,H0] =

f ( i ) [B, Ho], where

(ϋ) ]B, Ho], where 0<B<H0 ,

l(iii) ]0,H0].

Lemma 4.1. Suppose that γ0 satisfies ( i ) or (ii). Then we have

(4.1)

(4.2)

where d=2-ιmm{BjAJ), ^=max[-min(-|IΦlL~(/,i)> Hλ)l{\-ΐ), K\.

Proof. Suppose that ί(ί)= r f f o r s o rne ίe[0, Γ*]. Let ί*=inf {fe[0, Γ*
[ j(ί)=έ/}. Clearly S(ί*)^0. Consider the function

ΪV(X, t) = A(d—x) (s(t)^x^l, O^t^t*),

which satisfies

Wxx — CiWt = 0 (s(t)<X<l, 0<t<t*) ,

w(s(t), t) = A(d-s(t))^0 = u(s(t), t) {O^t^t*),

l, t) = A(d-1)£A(I-1)

W(Λ, 0) = A(d-x)^K(d-x)^K(l-x)^φ(x)

by [11, (1.13)], (H) and the definition of ί*, rf, ̂ 4. Thus we have

by the elementary maximum principle. Hence we have

(4.3) ut{s(t*),t*)^-A.

Next we introduce the function

*(*, t) = B(l-x/d) (0^x^s(t), O^ί^ί*) .

It follows that

Zχχ—CoZt = 0 (0<x<s(t)9 0<t<t*),

z(s(ί), t) = B(l-s(t)ld)^0 = u(s(t), t) (O^ί^ί*),

z(0, t) = B^u(09 t) (O^t^t*),

z(x, 0)^B—Ax^φ(0)-Kx^φ(x) (O^x^l),

by (0.4), φ(0) <=£>(%,), (iί) and the definition of t*, d, A. Hence we have

z(x, t)^u{xy t) (0^x^s(t), O^t^t*)
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by the maximum principle. Thus we have

(4,4) uJ(s(t*),t*)£-Bld.

Consequently we see from (0.7), (4.3), (4.4) and the definition of d that

which is in contradiction to s(t*)^O. q.e.d.

Lemma 4.2. Suppose that y0 satisfies (iii). Then we have

(4.5) s(t)^

(4.6) ιι(0, t)^AA

where d1 = 2"1 mi

Bx= min(max{|; γo(ξ)=)-Aά, φ(0)),

A = max(-min(-|IΦlL~(/,i), #0/(1-/), ΛΓ).

Proof. Suppose that s(t)=d1 for some ίe[0, T*]. Let ί*=inf {ίG[0, 71*
[ ;s(t)=d1}. Clearly i(/*)^0. We can get

(4.7) u+(s(f*),t*)^-A

by the argument used in the proof of previous lemma. We introduce the
function

z(x, t) = Atfx—

It follows that

(4.8) zxx-cozt = 0 (0<x<s(t), 0<t<t*) ,

(4.9) z(s(t), t) = Λ(^i-^))^0 = u(s(t), t)

(4.10) z(x, 0)^A1d1-Kx^B1-Kx^φ(0)

(4.11) (*,(0, 0-^(0, ί)) W0f ί)-ιι(0f /))+

r = o f o r « ( , o Λ i ,

I fe ^ ) } ) (Λ^-^(0, t))
for <0,

by (H), (0.4) (a) and the definition £*, rfl9 4 Hence we have

z(x, t)^u(x, t) (0^x^s(t

by [10, Lemma 10.1]. Thus we have
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(4.12) M J « ί * ) , ί * ) ί S - Λ .

Consequently we see from (0.7), (4.7), (4.12) that

which is in contradiction to £(£*)^0. Thus we get (4.5). Therefore we obtain

*(*, t)^u(x, t) on D°τ* using (4.5), (4.8), (4.9), (4.10), (4.11) and [10, Lemma

10.1]. Hence we get (4.6) by *(0, t)£φ, t) (O^t^T*). q.e.d.

Proof of Proposition 4.1. We get ( i ) by Lemma 4.1 and 4.2, We get

(ii) by the argument similar to the proof of ( i ) . We obtain (iii) by ( i ) and

(ii). q.e.d.

5. A priori estimates of MX(0, t) and ux(l, t)

We show the following a priori estimates of the derivatives of the solution

of (S) at the fixed boundary.

Proposition 5.1. Let (T1*, s, u) be the solution of (S) corresponding to the

data {/, φ}. Then there exists a positive constant Cσ depending on σE]0, Γ*[

such that

(5.1) Inβ(0, 01 ̂
(5.2) \ux(l,t)\^Cσ a.e.teΞ[σ,T*[.

Proof. We may assume the condition (H) which is introduced in §4,

since u satisfies (0.4) and [11, (1.14)]. We shall show (5.1). It is easily seen

from [10, Lemma 10.1] and the proof of [10, Lemma 6.1] that

(5.3) «,(0,/)^C1 > σ a .e . ίe[σ, T*[,

where C l σ is a positive constant depending on cr. We shall obtain the esti-

mate from below. We consider two cases.

Case(i) . Z>(70)$0.

It is easily seen from [10, Lemma 10.1], Proposition 4.1 ( i ) and the proof of

[10, Lemma 6.1] that

(5.4) -C2tσ^ux(0,t) a.e.f€=[σ, Γ*[,

where C2>σ is a positive constant depending on cr.

Case(ii). D(7o)3θ.

It follows from [11, (1.12)] that ux(09 t)^Oif ux(0, t) exists and κ(0, t)=0. Thus

we have

(5.5) -C3^ux(0, t) a.e.ίe[σ,
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where C3t<r= —max {97;
Hence we obtain (5.1) by (5.3), (5.4), (5.5). We can get (5.2) in the same

way. q.e.d.

6. Weak formulation of the Stefan problem (S)

We give a weak formulation of the Stefan problem (£), which will be useful
for us to investigate the asymptotic behavior of the solutions.

Proposition 6.1. Let (T1*, s, u) be the solution of (S) corresponding to the
data {/, φ}, then we have

ί s(t) ri

coutv dx+1 cxutυ dx+b s(t) v(s(t))
+ [uxυx dx+ux(O, t) υ(O)—ux(l, t) v{\) = 0

Jo

a.e. *e[0, T*]y where v(x)^H\0, 1) is arbitrary.

REMARK 6.1. We put

:(*, t)+b for u(x,

{u{x,t) ϊoru(x,t)<$.

Then (6.1) is written formally as follows.

(6.2) dt J o J o

+70(/3-1(C/(0, t)))v(0)+71(β-\U(h t)))v(l)ΞB0.

It may be natural that (6.2) is a weak formulation of (S). However we do not
investigate (6.2) here.

REMARK 6.2. When γ0 and 7X are single valued functions, Cannon &
DiBenedetto [3], Visintin [8], Niezgodka-Pawlow-Visintin [6] investigated the
problem similar to (6.2) with some additional conditions in w-dimensional case.

Proof of Proposition 6.1. We have

rs(t) ( l

1 coutv dx-\~ I cλutv dx
Jo Js(t)
fs(t) f l

= \ uxxvdx+\ uxxv dx
Jθ Js(t)

J s(t) Γl

uxvx dx+[uxv]l(t)+ - \ uxvx dx
0 JsU)

= (u7(s(t)y t)-uΐ(s{t\ i)) υ(s(t))-ux(0, t) v(0)+ux(l, i) v{\)
— \ uxvx dx

Jo
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using [11, Theorem 1], (0.2), (0.3). Thus we get (6.1) by (0.7). q.e.d.

7. Proof of Theorem 4, 5 and 6

In this section we give the proof of Theorem 4, 5 and 6. Let Γ*=oo.
It follows from [11, Theorem 1] and Proposition 5.1 that

(7.1) \u(x, t) I ̂  const. on [0, 1] x [1, oo[,

(7.2) \u{x\ t)-u(xy t)\^ const, {x'-x^2 on [0, l ]x[ l , oo[,

(7.3) sup{Γ^(*, t)2dx}+\~\s(t)\*dt+ \~\lut(x9 t)2dxdt<oo ,
t^l JO J l J l J o

(7.4) «,(<),

Thus it is easily seen from (7.1), (7.2) and (7.3) that there exist a subsequence
{tn}, a real number s*e[0, 1] and a function M*(X)GC([0, 1]) such that

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

s(tn) -> 0,

u(x> tn) -*

{ut{x, tn)

>

• u*(x)

* uf(x)

2dx-+O

inC([O, 1]),

weakly in L2(0, 1),

as tn -*• oo. Moreover we may assume from (0.4), (7.4), (7.7) and the closedness
of To and TΊ that there exist real numbers g0 and gx such that

(7.10) ux(0,tn)->,

(7.11) - κ s ( l , *β) •

Consequently we see from (6.1), (7.6), (7.8), (7.9), (7.10) and (7.11) that

\ u*vx dx+g0 ί>(0)+£i ^ (l) = 0
Jo

for all w e ^ ( 0 , 1). Hence

,'«&(*) = 0 ( 0 < * < l ) ,

u*(0) = go<Ξ7o(u*(O)),

,u*(s*) = (

Therefore u*(x) is a solution of (E).
We shall show that
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(7.12) s(t)-*s*,

(7.13) u{x,t)^u*(x) i:

as t—> oo without taking a subsequence. For any given £>0, there exists tN

such that

(7.14) \s(tN)-s*\<6,

(7.15) \u(x, tN)-u*(x)\<S (0^Λ?^1)

by (7.5) and (7.7). Consequently for any £>0 there exists tz(^tN) such that

\u(x, t)—u*(x)\<6

from (7.14), (7.15), Lemma 3.2, Lemma 3.3 and Remark 3.1.

Thus we complete the proof of Theorem 4.

Theorem 6 is obvious from Theorem 4.

We obtain ( i ) , (ii), (iii) of Theorem 5 using Lemma 3.1 and Proposition

4.1. To prove Theorem 5 (iv), we can apply Lemma 3.1 and the inequality

(3.3) to the solutions of (S) corresponding to the data {/0, φ0}, {m, w} and the

data {my w}, {lly φi}.

8. Proof of Corollary 1, 2, 3 and 4

We give the proof of Corollaries.

Proof of Corollary 1. It is evident from Theorem 4, Theorem 3 and

Remark 1.5. q.e.d.

Proof of Corollary 2. It is obvious from Theorem 4 and Theorem 2.

q.e.d.

Proof of Corollary 3. It is obvious from Theorem 4, Lemma 3.1 and

the fact that w(x) (resp. W(x)) is the minimum (resp. maximum) solution of

(E).

Proof of Corollary 4. We may assume w(x)<w(x) in view of Corollary 2.

We see from Lemma 3.1 and [10, Proposition 10.1] that

(8.1) w{x)^u{x, t)^W(x) (t^O).

It is easily shown that Ύ0(u)= {wx(0)} (resp. rγ1(u)=={—wx(0)}) for u satisfying

w(0)<u<W(0) (resp. w(l)<u<W(ί)). Hence it is easily seen from (8.1) that

ux(0, t) = wx(0) (a.e. ί>0),

ux(l, t) = wx(0) (a.e. t>0).
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Thus it follows from [11, Proposition 9.1] that

u(x, t) dx+c-L \ u(x> t) dx

0 JsU)

S 5(σ) z l

u(x, σjdx+cλ u(x, σ) dx ,
0 Js(σ)

for any σG]0, t[. Letting ί-> oo and σ->0, we get (1.13) by Theorem 4 and

[11, Theorem 1]. We see the uniqueness of s* satisfying (1.13). In fact,

the function,

E(p) = bp+co\
Pwx{O) (x-p) dx+c, [wx(0) (x-p) dx ,

Jo Jp

is continuous and strictly increasing in^>, since «;*(()) <0 . q.e.d.

9. Some examples

To make clear the meaning of our results, we give some simple examples.

Let (Γ*, s, u) be the solution of (S) corresponding to the initial data {/, φ}.

The unilateral condition (0.4) will be taken concretely.

EXAMPLE 1. Let ux(0, t)==—a and «(1, t) = —βy where 0<^a<β. Then

y*<^oo and s(T*)=0.

In fact, we may apply Theorem 6 and Proposition 4.1 (ii) by taking

—a (u^M)

{]—oo col (u=—β)

0 (u>M)
where M is a sufficiently large real number (for example, M==||φ||L«>(0>/)+α+l).

EXAMPLE 2. Let ux(0, t)=—a and w(l, t)=—β, where 0<β^a. Then

either of the following situations occurs corresponding to the initial data.

(iϊ) Γ* = oo, lim s(t) = (a-β)/a and

lim u(x> t) = a(ί—x)—β .

Moreover a sufficient condition for (ii) is that a>β and φ(x)^a(ί—x)—β.

In fact, we may apply Theorem 4, Proposition 4.1 (ii) and Theorem 5

(ii) by taking y0 and 7X as above.

REMARK 9.1. From the physical intuition and numerical experiments by a

computer it may be thought that ( i ) occurs when

- {b l+co[ φ(x) dx+c, [lφ(x) dx}
Jo Ji
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is sufficiently large, though we do not have a mathematical proof at present.

EXAMPLE 3. Let ux(0, ΐ)=l-ί/u(0, t)9 and u(l, t)^-l, ux{\, t)^0, ux(l, t)
(w(l, ί)-f-l)=0 (Signorini type boundary condition). Then we have T*=oo9

lim u(x, t) = — v T a - f V T — 1 in C([0, 1]).

In fact, we may apply Theorem 4, Corollary 2 by taking jo(u)=l — ί/u and

jθ
(«)= [0,oo[

(

EXAMPLE 4. Let

on the fixed boundary Λ = 0 , and
tt^-1, « » ^ - 3 («= —1), «,= - 3 (—1>«>—2), «,= -«—5 (M^—2),

on the other fixed boundary * = 1 . Then we have T*= °°,

lim s(t) = s*, 1/3 ̂ ί * ^ 2/3,

lim «(*, t) = - 3 (*-*•) in C([0, 1]).

Moreover we have the following properties.
( i ) If φ(x)^-3x+l (resp. φ(x)^-3x+2), then ί*=l/3 (resp. J * = 2 / 3 ) .

(ii) If - 3 ^ + l ^ φ ( x ) ^ - 3 x + 2 (with 1/3^/^2/3), then ** is the unique
real number such that 1/3^^*^2/3 and

I φ(x) dx-\-cλ I φ(x) ̂ Λ: .
Jo Ji

In fact, we may apply Theorem 4, Corollary 3, Corollary 4 and Theorem

5 ( i ) by taking

Ύ0(u) =

(0 (
]_oo, -3] (ιι=l)

-3 (ί<u<2)

u-S («^

. Ti(«) =

(0
[3, oo[ (II = - 1 )
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