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0. Introduction

Throughout this paper, we assume that X is a nonsingular z#-dimensional
toric Fano variety (defined over C), i.e., X is an n-dimensional connected pro-
jective algebraic manifold satisfying the following conditions:

(a) X admits an effective almost homogeneous algebraic group action of (G,,)"
(=¢(C*)" as a complex Lie group).

(b) The set K of all Kihler forms on X in the de Rham cohomology class
27 ¢,(X)g is non-empty.

For each w €K, by writing it as =v/—1 3 g(w).s d2* Adz® in terms of holo-
morphic local coordinates (2!, 2 +++, 2") of X, we have the corresponding Ricci
form Ric(w) cohomologous to w:

Ric(w): = /—100 log det(g(w)as) -

Then an element » of X is called an Einstein-Kihler form if Ric(w)=w. We
now pose the following:

Problem 0.1%. Classify all X which admit, at least, one Einstein-Kdhler
form.

Obviously, the Fubini-Study form on P*(C) is a typical Einstein-K#hler form.
This settles Problem 0.1 for n=1, because the only possible X with n=1 is
PY(C). However, the real difficulty comes up even at n=2: Let S; be the
projective algebraic surface obtained from P?(C) by blowing up ¢ points in
general position (where 1=<7=<3). Then, in spite of lots of efforts by differ-
ential geometers, it is still unknown whether or not the nonsingular toric Fano
variety .S, admits an Einstein-Kihler form.

The purpose of this paper is to give a brief survey of recent progress on
Problem 0.1 together with our related new results. Especially, in Sections 1~6

* This is also posed by T. Oda and Y.T. Siu.
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(though they are somewhat of expository nature), several key ideas are introduced
often without proofs, while technical details are given in the subsequent four
appendices. In particular, in Appendix C (see (9.2.3) for the most general
statement), we shall show that the Futaki invariants of an anti-canonically (re-
latively) polarized toric bundle Y over W can be regarded as the barycentre
of m(Y) in terms of “Duistermaat-Heckman’s measure”’, where m: Y —R"
(n=dim¢Y—dimgWW) denotes the associated ‘‘relative” moment map defined,
in Appendix B, without any ambiguity of translations (cf. (8.2)). Finally, in Ap-
pendix D, a very explicit description of Einstein-K#hler metrics for Sakane-
Koiso’s examples will be given (cf. (10.3.2), Step 4 of (10.3)).

Parts of this paper were given as a lecture at Ruhr-Universitit, Bochum in
April, 1986. The author wishes to thank Professors G. Ewald and P. Klein-
schmidt who invited me to give a talk on this subject. He is also grateful to
Professors T. Oda, H. Ozeki and I. Satake for helpful suggestions and encourage-
ments during the preparation of this paper. Finally, he wishes to thank the
Max-Planck-Institut fur Mathematik for constant assistance all through his stay
in Bonn.

1. Notation, conventions and preliminaries

Let Z, (resp. Z,) be the set of positive (resp. non-negative) integers and
R, (resp. R;) be the set of positive (resp. non-negative) real numbers. We
now put:

G:. = (Gm)" — {(tv by vy L) |1, ECH}
M: = {a=(a, a, *-, a,.)]a,-GZ} (EZ") ,

()

For ac M and b= N as above, we define (a, b)EZ, X*€Homaig ¢o(G, G,,) and
A, € Homaig ¢p(G,,, G) by

b,-EZ} (=Z").

(a’ b): = 't!-l a,‘ b,',
xa((tl’ tyy ooy tn)): = tlal tzaz oo t"an ,
Ao(2): = (24, t2, «oe, t07) |
where ¢, t,, -+, ,€G,(=C*). Then the correspondence ar>X* (resp. b—2,)

canonically induces an isomorphism between the additive group M (resp. N) and
the multiplicative group Homaig ¢p(G, G,,) (resp. Homaig ¢o(G,, G)). Note that

X*(\p(t)) = t@®  forall €@, (=C*).
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DeFINITION 1.1. A non-empty subset o of N is called a cone® if the
following conditions are satisfied:
(a) If bEN satisfies B bso for some BEZ,, then bEo.
(b) If 0%b<o, then —beo.
(¢) Oeo.
(d) In terms of the natural additive structure of N, o is a semigroup gen-
erated by a finite subset.
For a cone o, there exists a unique irredundant finite subset {b*, &, -+, 8"} of &
such that =337, Z,b*. These b, ¥, -+, b" are called the fundamental gener-
ators of the cone o.

DerFINITION 1.2. A non-empty subset 7 of a cone o is called a face of o,
denoted by =, if there exists an element a of M such that (a, 6)=0 for all &
in o and that 7={bEo|(a, b)=0}. A finite polyhedral decomposition of N is a
finite set A of cones in N such that
(a) if r=<oc€A, thenTEA;

(b) ifo,7€A, thenocNr=cand s N7=7;
() N= Useao.
For every finite polyhedral decomposition A of N, we put

A@G): = {c€A|dime =i}, 0=i<n,

where dim o denotes the dimension of the real vector space spanned by o in

NR::N®Z R.

DEerFINITION 1.3. A finite polyhedral decomposition A of NN is said to be
nonsingular if for each o € A(n), the set of fundamental generators of o consists
of n elements and forms a Z-basis for N. For every nonsingular A, the set of
fundamental generators of each element of A(7) consists of exactly ¢ elements and
can be completed to a Z-basis for V.

We shall now quote the following fundamental results due to Demazure
[6], Miyake and Oda [18], and Mumford et al. [19]:

Theorem 1.4. To every nonsingular finite polyhedral decomposition A of N,
one can uniquely associate an n-dimensional trreducible nonsingular G-equivariant
compactification G, of G possessing the following two properties :

(a) To each o €A(i), 0=i=mn, there corresponds a unique (n—i)-dimensional G-
orbit, denoted by 0°, such that G, is expressible as

Gy = UA 0° (disjoint union).

*) This notion of cones is slightly different from the ordinary one.
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Furthermore, the closure D(a) of 0° in G, is an irreducible nonsingular (n—i)-
dimensional G-stable subvariety of G, written in the form

D(o) = Tgw 0" (disjoint union).

(b) For each o €A(n), U,: = U,<,0" forms an affine open G-stable neighbourhood
of 0° in G, satisfying the conditions

GS U,=A"C)
and
GA - U Ud‘ .
ceAln)

Let {b(c)", b(c)?, +:+, b(c)"} be the set of fundamental generators of o (which
forms a Z-basis for N), and let {a(c)’, a(c)?, +++, a(c)"} be the dual basis for M
defined by the relation (a(a), b(c)’)=3;;. Then the corresponding characters

Xop:i: = X" EHomaig g5(G, G,), 1<i=<n,

extend to rational functions on G,, which are all regular on U,, forming a
system of coordinate functions on U, by the isomorphism

U,=A"(C)
u (X, 1(1‘)’ xa-:z(“)v Tty xd':n(u)) .

In terms of these coordinates, the G-action on U, is described by

(Xo:1(8°14)s Xo:2(g°%), =+, Xo s a(g*1))
= (xc;l(g)'xa':l(u)) Xa':z(g)'xa':z(u)) °t xo‘:n(g)‘xa-:n(u)) ’

where both g=G and us U, are arbitrary.

Theorem 1.5. Every n-dimensional irreducible nonsingular complete variety
endowed with an effective regular G-action is G-equivariantly isomorphic to G for
some nonsingular finite polyhedral decomposition A of N.

Finally, we remark the following:

(1.6) In terms of the holomorphic coordinates (¢, 2,, **+, t,) for G={(t;, ***, ,)
|t;&C*}, the G-invariant vector fields

t,0/0t;, i=1,2 1.

on G form a C-basis for Lie(G). Furthermore, these naturally extend to
holomorphic vector fields on Ga.
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2. Demazure’s results on toric varieties

Throughout this section, we fix a nonsingular finite polyhedral decomposi-
tion A of N. Put Mp:=MQ@  R. Furthermore, for each pA(1), let b, denote
the unique fundamental generator of p. We now consider the divisor

K:=— 3 D(p)

PEAM)
on G,. Recall the following fact due to Demazure [6]:

Theorem 2.1. K is a canonical divisor of G5. Moreover, the following are
equivalent:

(a) Ga is a toric Fano variety.

(b) —K is ample.

(c) —K is very ample.

(d) Z-k:={acsMg|(a,b,)<1 for all pA(1)} is an n-dimensional compact
convex polyhedron whose vertices are exactly {a.|TEA(n)}, where each a.
denotes the unique element of M such that (a,,b)=1 for all fundamental
generators b of T.

ReMARK 2.2. It is easily seen that P*C), P(C)XPYC), S(1=i=3) are
the only possible 2-dimensional nonsingular toric Fano varieties. Recently, for
dimension three also, all nonsingular toric Fano varieties were completely clas-
sified (cf. Batyrev [4], K. Watanabe and M. Watanabe [24]).

DErFINITION 2.3 (Demazure [6; p. 571]). An element @ of M is called a root
if there exists peA(1) such that (a, b,)=1 and that (a, b,)<0 for all c€A(1)
with o#p. Let R(A) be the set of all roots in M.

Now, as an immediate consequence of a result of Demazure [6; p. 581], one
obtains:

Theorem 2.4. Let Aut (G,) be the group of all holomorphic automorphisms
of Ga. Then Aut(G,) is a reductive algebraic group if and only if —R(A): ={—a
|laER(A)} coincides with R(A).

REMARK 2.5. In view of this theorem and (2.2), it is now possible to de-
termine all 3-dimensional nonsingular toric Fano varieties G, with reductive
Aut(G,). Such a G, is, actually, isomorphic to one of the following (we owe
the computation to T. Ashikaga):

P%(C), PX(C)x P\(C), P{C)x P{C)x P\C),
PI(C)XSM P(OPlXP1®OP1XP1(1’ _1))7 Ff ’

where we used the notation of K. Watanabe and M. Watanabe [24]. Obviously,
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the first three varieties admit an Einstein-Kihler form. Note that, for the last
three varieties, Aut(G,) cannot act transitively on G,. However, P(Opt«p®D
Op1«pi(1, —1)) still admits an Einstein-Kéahler form by virtue of a result of Sakane
[22], partly because in this case, every maximal compact subgroup of Aut(G,)
acts on G, with principal orbits of real codimension one (cf. Appendix D).

The importance of (2.4) comes from the following theorem in differential
geometry due to Matsushima [17]:

Theorem 2.6. Let Y be a compact complex connected manifold with dim¢
Aut’(Y)>O0 (where Aut’(Y) denotes the identity component of the group Aut(Y)
of holomorphic automorphisms of Y). If Y admits an Einstein-Kdhler form, then
Aut(Y) is a reductive algebraic group and furthermore, the group of holomorphic
isometries with respect to the corresponding Einstein-Kdhler metric in Aut’(Y) is
a maximal compact subgroup of Aut’(Y).

3. The Einstein equation

For X as in Introduction, there exists a nonsingular finite polyhedral de-
composition A of N such that X=G, and that A satisfies the condition (d) of
(2.1) (see (1.5) and (2.1)). In view of the inclusion

{(tlr °tty tn)ltiEC*}’ =GC GA ,

we may regard each #; as a rational function on G,. Consider the real-valued
C* functions x,, x,, ***, %, on G defined by

(%) LT =] =exp(—x), 1=<i<n.

Since 9t;=dt;, we have 0x;=—dt;[t; and 0x;——dZ,;/f;. Therefore, for each C*
function u=u(x,, -+, x,) defined on R"={(x,, -+, ,)|x;E R}, the following
identity holds:

3.1 00 u = 33;,(0° ufox; 0x;) (dt:[t;) A (dE;[E;) .
Let G, be the maximal compact subgroup
'{(tl) °°%y ttt)E(C*)’l I l ti l = 1} (g(Sl)”)

of G. Since the anti-canonical bundle K3' of X is ample, there exists a G,-
invariant fibre metric Q for K%' such that the corresponding first Chern form
is a positive definite (1, 1)-form. Namely, there exists a real-valued C* function
u=u(x,, -+, ¥,) on R" such that:

(3.2) exp(—u) IT7-1(v/ —1 dt; AdE,/|t;|?) extends to a volume form
on the whole X = G, ;
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(3.3) v/ —100u extends to a Kihler form on G, .

Note that the volume form in (3.2) is naturally identified with Q above (and
is denoted by the same Q). In view of (3.1), the statement (3.3) in particular
implies:

(3.4) At each point of R", the matrix (9* u/0x; 0x;) is positive definite.

Suppose now that X admits an Einstein-Kéhler form w €X. Then by Theorem
(2.6), we may assume that o is G,-invariant. Applying the above argument to
Q=0", we obtain a real-valued C* function u=u(x,, -+, ¥,) on R" satisfying the
conditions (3.2), (3.4) and furthermore, by Ric(w)=w,

(3.5) det (0°w/0x; 0x;) = exp(—u) on R".

Conversely, suppose that a real-valued C* function u on R" satisfies (3.2), (3.4)
and (3.5), where we return to our original situation that X(=G,) is just a non-
singular z-dimensional toric Fano variety without any assumption as to the
existence of Einstein-Kihler forms. Then w:=+/—1 00u turns out to be an
Einstein-Kihler form on X. We now define:

DeriNiTION 3.6. The equation (3.5) above (together with the “boundary”
condition (3.2) and the convexity (3.4) for u) is called the Einstein equation for
the toric Fano variety X=G,.

4. Moment maps on toric varieties

Fix a nonsingular finite polyhedral decomposition A of N. In this sec-
tion, we study the moment map (cf. Atiyah [1], Guillemin and Sternberg [11])
of the toric variety G, in terms of a suitable Kihler metric, if any, on G,.

(4.1) We first assume that G, is a (toric) Fano variety. Then in view of Sec-
tion 3, there exists a real-valued C* function « on R” satisfying (3.2) and (3.3).
Now, by the relation (*) in that section, we write each x; as x;(¢) with t=(¢,, -,
t,)EG. Hence, every C* function f=f(x,, -**, x,) on R" is regarded as a C*
function on G by f(¢): =f(%,(¢), *++, x,(t)) for t&G. Recall that Mp, is naturally
identified with R" (cf. Section 1). We now define the mapping m,: G—>Mp
(=R") by
ma(8): = (0u/ox,) (&), -+, (0ujox,) (1)), tEG.

Then the work of Atiyah [1] is reformulated in the following slightly stronger
form:

Theorem 4.2%. Assume that G, is a nonsingular toric Fano wvariety.

*) A more general statement will be proven in (8.2).
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Let Q be the closure of the image m,(G) in My Then Q=3]_g (cf. (2.1)).
Furthermore, m,: G— My, extends to a C* map m,: Gs—>Mpy. This m, satisfies

(a) the inverse image m;*(v) of each open face v of 3_g is a single G-orbit;
(b) m, induces a diffeomorphism (including the boundaries) between the manifolds
GA|G, and >} _g with corners.

RemaRk 4.3. (i) It is easily checked that m, above coincides with the
moment map: G,—>Lie(G,)*=<Mp, (cf. Atiyah [1], Guillemin and Sternberg [11])
associated with the Kahler form /—100u&X. (See Appendix B for the
proof.)

(ii) Consider the subgroup Ggr:={(t, *,t,)EG|t; =R, }(=(R,)") of G.
Then by the natural inclusions GRC GCG,, we may regard G as a subset of
Ga. Then the closure Gy of Gg in G, is a manifold with corners in the sense of
Borel-Serre (cf. Oda [20]) and has a natural differentiable structure as described
in Step 3 of (8.2). Note that G,/G, above is endowed with such a structure via
the natural identification of G,/G, with Gg.

(i) The difference of (4.2) from Atiyah’s result [1; Theorem 2] is that the
mapping between G,/G, and Q is, in our case, a diffeomorphism (instead of a
homeomorphism) even along their boundaries. This diffeomorphism is es-
sentially obtained from the ampleness of Kz, by the fact that a combination of
(3.2) and (3.3) keeps the Jacobian of m,|z,: Gg—Mjy nonvanishing also along
the boundary Gz— Gg.

(4.4) We now assume that G, is a projective variety (where G, is not necessarily
a Fano variety). Note that the corresponding hyperplane bundle L:=0g,(1) is
written as Og,(Zseaq vo D(0)) for some »,EZ,. Then

S = {a€Mgl(a, b,)<v, forall c=A(1)}

is an n-dimensional compact convex polyhedron (cf. Oda [21]). Since L is
ample, there exists a G,-invariant fibre metric 4 for L such that the correspond-
ing first Chern form is positive definite. Therefore, we obtain a real-valued C*
function # on R” satisfying the condition (3.3) and also

hle = exp(—u) E*@E*,

where & denotes the unique holomorphic section to L over Y identified, over G,
with the trivial section of constant value 1 in @; via the natural isomorphism
O6,(Zseaw ¥o D(0))|¢=0Og. Then by exactly the same formula as in (4.1), we
have a mapping m, ;: G—Mpy (we put L as a subscript to emphasize the line
bundle L). Now, in Theorem 4.2, replace the assumption of ampleness of K Ei
by that of L. Then (4.2) is still valid when we further replace m,, m,, >1_g,
respectively by m, ;, m,,;, >3, (cf. (8.2)).
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5. Futaki invariants for toric varieties

In [10], Futaki introduced an obstruction to the existence of Einstein-
Kihler forms as follows: Let Y be a compact connected complex manifold
and o a Kihler form on Y, if any, in the cohomology class 2z¢,(Y)g. Note
that the space X(Y) of all holomorphic vector fields on Y forms a Lie algebra.
Then a fundamental theorem of Futaki [10] states the following:

Theorem 5.1. Let f, be the real-valued C*= function on Y defined uniquely,
up to constant, by Ric(o)—w=+/—100f,. Put c:= (2= c(Y))"[Y])™, where
n=dim¢ Y. We further define a linear map F=Fy: X(Y)—R by

F(V):che(Sy(Vfw)m"), vex(y).

Then this map F does not depend on the choice of w. Moreover,
(a) F is trivial on the commutator subalgebra of X(Y).
(b) If Y admits an Einstein-Kdhler form, then F is trivial.

In order to compute this F for toric varieties, we introduce the following
quantities:

DerFiNITION 5.2. Let A be a nonsingular finite polyhedral decomposition
of N. If G, is a Fano variety (resp. a projective variety with its hyperplane
bundle L), then we define an element a, (resp. @, ;) of My to be the barycentre
of the polyhedron 33_g (resp. >3;). Nemaly, the i-th component of the vector
a, (resp. a,,;) in the vector space My(=R") is

g xidx,/\dsz---/\dx,,/S e Adx A - Adx, |
S_x 2k

(resp. Sz x; dx, Ndx, N\ -+ ANdx, | Sz dx, \dx,\ +++ Ndx,) ,
L L
where (x;, %, ***, %,) is the system of standard coordinates of Mz(=R"). Obvi-
ously, a, (resp. @,,;) is in Mo:=MQ® ,Q.

For toric Fano varieties, we can deduce from (4.2) the following simple
formula:

Theorem 5.3. Let G, be a nonsingular toric Fano viariety. In the notation
of (1.6) and (5.1), we put @;:=F (¢,0/0¢;) for each i=1,2, ---,n. Then
a, = (G, @y, -+, d,) .

ReEMARK 5.4. (i) In Appendix C, we shall prove a more general version

of (5.3) above (cf. (9.2.3)).
(i) We identify each element a=(a,, a,, **+, a,) of My with X}., a; dt;jt;E
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Lie(G)*. Then Theorem (5.3) shows that, for any nonsingular toric Fano
variety G,, the restriction F|y; ) of F: 22(G,)—R to Lie(G) coincides with a,.

In view of (5.3) and (5.4), we call the element a, of My the Futaki invariant
of the toric Fano variety G,. Recall that, for a reductive algebraic group H,

Lie(Center (H)) + [Lie(H), Lie(H)] = Lie(H),

and Lie(Center(H)) S Lie(T) for every maximal torus T of H. Since G is a
maximal torus of Aut(G,), (a) of (5.1) together with (5.3) implies

Corollary 5.5. Let G be a nonsingular toric Fano variety such that Aut(G,)
is reductive. Then F: 22(G,)—R 1s trivial if and only if a,=0.

Finally, note the following:

REMARK 5.6. Suppose that G, is a nonsingular projective variety with the
corresponding very ample line bundle L (where G, is not necessarily a Fano
variety). Even in this case, we have a theorem similar to (5.3). Actually, a,,,
coincides with

(27 (L)) [Ga]) (o) | Liet)

in the notation in Appendix A (see also (9.2.4)).

6. Concluding remarks

A finite polyhedral decomposition A of N is called canonically symmetric if
the following conditions are satisfied:
(i) A is nonsingular;
(if) A has the property (d) of (2.1);
(i) —R(A)=R(A);
(iv) a,=0.
Now, combining (1.5), (2.1), (2.4), (2.6), (b) of (5.1), (5.5), we obtain:

Theorem 6.1. Let X be as in Introduction. If X admits an Einstein-
Kdhler form, then there exists a canonically symmetric finite polyhedral decomposi-
tion A of N such that X is G-equivariantly isomorphic to G,.

In view of this theorem, (0.1) in Introduction is divided into the follow-
ing two problems:

Problem 6.2. Classify all canonically symmetric finite polyhedral decom-
positions of N (up to isomorphism).

Problme 6.3. Let A be a canonically symmetric finite polyhedral decom-
position of N.  Then does G5 admit an Einstein-Kahler metric?
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As for (6.2), if n=4, no definitive results are known so far except Voskre-
senskii and Klyachko [23] classified all centrally symmetric finite polyhedral
decompositions A of N satisfying (i) and (ii) above (where such a A is always
canonically symmetric). In the case #<3, we can classify all canonically sym-
metric finite polyhedral decompositions A of N. Namely, the corresponding
G, is one of the following:

(@) Forn=1: PYC).

(b) Form=2: P*¥C), P(C)xXPYC), S,

(c) Form=3: P¥C), PC)xPC), P(C)XP{C)xPYC), P(C)XS,,
P(Opxp®DOpixpi (1, —1)).

If n=3, for instance, this classification easily follows from (2.5), since we can

eliminate the possibility of F} as follows: Let &', 8", b® (0<k=6) be vectors

in N(=R?®) defined as

1 —1 0 0
b'=<0) b”:( 0) b<°>=b<6>=<1> b(1)=<0)
0 ’ \—1 ’ 0 ’ 1 ’

0 0 0 0

b® = <_1) H® — (_1> Y — ( 0) o — ( 1)
1’ 0 ’ —1 9 _1 .

In terms of these vectors, A for F?; is characterized by
AQB) = {Zb'+ Zp* V4 Zp®, Zb' +Zp* 4+ Zbp® |1 <k<6}
and hence the associated compact convex polyhedron 33_ has exactly 12 vertices:
(1,1,1),(,0,1), (1, —1,0), (1, —1, —1), (1,0, —1), (1, 1, 0),
(—2,1,1),(—2,0,1), (—1, —1,0), (0, —1, —1), (0,0, —1), (—1,1,0).
It then follows that @, 0.

As for (6.3), we have some results on S; and PY(C)X S, (cf. [16]) by the
method of Section 3, though we do not go into details.

7. Appendix A

We here fix, once for all, a holomorphic line bundle L over a d-dimensional
compact complex connected manifold Y. Assume that a complex Lie subgroup
S of Aut(Y) acts holomorphically on L as bundle isomorphisms covering the
S-action on Y. (If L=Kj3", then our S-action on L is always assumed to be
the standard one on K7') Let H be the set of all C= Hermitian fibre metrics
of the line bundle L over Y. For each H&h, we denote by ¢,(L; k) the first



716 T. MABUCHI

Chern form (\/—1/27) 00 log(k) of the metric &. Furthermore, note that .S
acts on H (from the right) by

HxS>(h, s)— s*heH ,

where s*h is defined by (s*h) (1, ): =h(s(},), s(%)) for all [}, &L in the same
fibre of L over Y. Now, to each pair (&', k') Hx H, we associate a real num-
ber R, (k’, K")ER by

Rotw, 1y = (3§, 47 2 eLs Y ) e,

{h;|a<t=b} being an arbitrary piecewise smooth path in H such that z,=h" and
hy=K’. Then by a result of Donaldson* applied to the line bundle L, the
number R, (%', ') above is independent of the choice of the path {h,|a<z=<b}
and therefore well-defined. Moreover, R; is S-invariant, i.e.,

R (s*h’, s*K") = Ry(h’, K’)  forall s&S andall K, K'E€H,
and satisfies the 1-cocycle condition, i.e.,
(1) Ry(A,H)+R,(K',h')=0 and
(i) Ry(h, A" )+Ry (K, K'Y +R, (K, h) =0,

for all &, &', "' €H. In particular, the number R,(k, s*k) depends only on s
and is independent of the choice of A& H. Now, by setting

r.(s): = exp(Ry(h, s*h)), s&S,
one easily obtains (see, for instance, [14; §5]):

Proposition 7.1. 7r,: S—R, is a Lie group homomorphism from S to the
multiplicative group R, of positive real numbers.

Let (.)%: Lie(S)—R be the Lie algebra homomorphism associated with r;, where
we always regard Lie(S) as a Lie subalgebra of 2(Y) (cf. §5). For each holo-
morphic vector field V€ X(Y), we denote by Vj the corresponding real vector
field ¥4V on Y. Then,

Proposition 7.2. (i) Let D(SY) be an S-stable closed analytic subset of
Y. Suppose there exists an S-invariant holomorphic section b over Y—D to the
dual bundle L* of L. For each he H, let u, be the real-valued C* function on Y —
D such that h=exp(—u,) b®b on Y—D. Then

*) See Proposition 6 of S.K. Donaldson’s paper ‘“Anti-self-dual Yang-Mills connections over
complex algebraic surfaces and stable vector bundles”, Proc. London Math. Soc. 50 (1985),
1-26.
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(72.) (V) = =2 | Valun) (V=T 930"

for all he H and all V € Lie(S).

(i1) Under the same assumption as in (i) above, we consider the case where L=K7%".
Suppose further that L is ample. Then the restriction Fy|y;.s) of Fy (cf. (5.1)) to
Lie(S) satisfies

(7.22) Fylviets) = (2 e L)Y YD) (o)« -

Proof. Since (7.2.1) is straightforward from the definition of R, it suffices
to show (7.2.2). From the assumption of ampleness of L, there exists a metric
heH for L=K3! such that w:=+/—1 00u, extends to a Kihler form on Y in
the cohomology class 27z ¢;(Y)g. Put Q:=(/—1)%—1)*“"Y2 exp(—u,) bAD.
Then Q is a volume form on Y satisfying

Ric(w)—w = /—100f,

where f: —log(Q/o?). In view of o’=exp(—f) Q, we obtain
0— —SY (Lie deriv. of exp(—f) Q w.r.t. Vg)
- SY Valf) wd—SY exp(—f) (Lie deriv. of Q w.r.t. V)
= Ve e +] Ve@) o =2Re(| V(Ha)+| Valw) ot

This together with (7.2.1) implies (7.2.2).

ReEMARK 7.3.  In a forthcoming paper (cf. Bando and Mabuchi [3]), we shall
give a little more systematic treatment of (7.2) above.

REMARK 7.4. In view of the definition of R, it is easy to extend the formula
(7.2.1) to the following slightly general case:

Fact. Let D, b, h, u,, be the same as in (i) of (7.2). We further assume that
there exists an S-invariant morphism §: Y—W of Y into a complex manifold W.
Fix an arbitrary line bundle L' on W and let h' be a C~ Hermitian metric for L'.
Put L":=C*L'QL. Then for all heH and all V & Lie(S), we have:

(741)  (ru)e(V) = —% SH Va(y) (v =1 88u,+-228%c(L'; B))° .

Remark 7.5. We here denote (7;)x by (7;,y)x to emphasize the base space
Y. Furthermore, assume that there exists a surjective S-equivariant morphism
A: Y=Y from a compact complex connected manifold ¥ endowed with a
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holomorphic S-action. Put L:=x*L. Note that the S-action on L naturally
induces one on L. Then obviously,

(7.5.1) (rz,7)x = (deg \) (7, -

8. Appendix B

The purpose of this appendix is to prove a relative version of (4.2) and
(44). Let G (resp. G,) be as in Section 1 (resp. 3), and P be a holomorphic
princiapl bundle over a complex connected manifold W with structure group G.
(Recall that, by standard definition, G acts on P from the right.) In our case,
however, G acts on P from the left by

GXP>(g,p)og-p: =p-gEP.

(Since G is abelian, there is no essential difference between left and right G-
actions.) Note that P is locally trivial, i.e., W is written as a union of its open
neighbourhoods W,, a € A4, such that for each «, we have a G-equivariant iso-
morphism

lyt lean’a’-"WaXG.

Let pr,: W,X G—G be the natural projection to the second factor and write G
as {(¢,, *++, t,)|t;=C*} (cf. Section 1).

(8.1) Let Y be a complex manifold with an effective holomorphic G-action

containing P as a G-stable Zariski-open dense subset. We further assume that

there exists a G-invariant morphism §: Y—W satisfying the following condi-

tions:

(8.1.1) 'The restriction §| : P—W coincides with the original principal bunlde
P over W;

(8.1.2) P,:=(f|p) }(w) is Zariski-open and dense in Y,:=¢"Yw) for each
weW,;

(8.1.3) ¢ is a projective morphism with the corresponding {-very ample line
bundle L: =0y (1)€Pic(Y);

(8.1.4) L is expressible as Oy(D) for some effective divisor D on Y satisfying
Supp (D)C Y—P.

We first observe that the G-action on Y naturally lifts to a linear G-action on

the line bundle L such that the following holds:

(8.1.5) Let £ be the holomorphic section® to L over Y which is identified, over
P, with the trivial section of constant value 1 in @, via the natural
isomorphism Oy(D)|p=<O0p. Then G acts identically on &.

*> This section ¢ vanishes along Supp(D) so that zero(¢)=D.
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Note also that the cohomology class 2z ¢;(L)g is represented by a G, -invariant
C= (1, 1)-form w on Y such that the pullback of « to Y,, denoted by w,, is a
Kihler form on Y, for each weW. Then there exists a G,-invariant Hermitian
C= metric 4 for L satisfying

(8.1.6) h|p = exp(—u) E*QE*, and
(8.1.7) wlp=+—100u

for some G, -invariant C* function # on P. We shall now define m: P—Mp,
A=A, 1=, (wEW) as follows: For each a4, put

£ = (pryoe)¥(t), 1=<i<n,
and consider the real-valued C* functions x{*, ", -+, x{” on P|y, defined by
£ FD = |67 = exp(—x®™), 1=<iZn.
(@)

Now, on P|y,, u above is regarded as a function % (w, x{*, -+, ) in @, 2§, «--,
2. By the same argument as in Section 3,

(8.1.8) 00u, = 3 ;(0* u/ox 0x) (AP [t A (AEP[EP) on P, (weW,),
where u,:=u|p,. Let m®: P|y,—Mp(=R") be the mapping defined by
m®(p): = ((0u/0x{”) (p), -+-, (0u[0%.”) (p)), PEP.

Then it is easily seen that m™®, a4, are glued together defining a global map-
ping m: P—>Mpg(=R") such that the restriction of m to each P |, coincides with
m™. Now, let w be an arbitrary point of W and choose an a4 such that
weEW,. We can then regard Y, as a nonsingular toric variety by

Gs(t(ld)(p)’ °tty tsva)(l’)) (E) PEPwC Yw .

Hence, there exists a unique nonsingular finite polyhedral decomposition A=A,
of NV such that

(1) A can depend only on @ and is independent of the choice of a.

(2) Y,=G, as a toric variety.
Furthermore, L,:=L|y, is written in the form

L, = O,(Zpeay vo D(p)) for some v,’s in Z;,

via the identification of Y, with G,. Letting b, be as in Section 2, we now define
an n-dimensional compact convex polyhedron 3}=33, in M by

(8.1.9) > = {acsMpg|(a, b,)<v, for all peA(1)} .

Since L, is ample, the vertices of >} are exactly {a,|ocEA(n)}, where each a,
denotes the unique element of M such that (a,, b,)=v, for all pA(1) with
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p=oc (cf. Oda [21]). Then we have:

Theorem 8.2. Let Q be the closure of the image m(P) in Mp. Then Q=33,
for all weW. (In particular, 33=31, and A=A, are both independent of w.)
Furthermore, m: P—Mpg, naturally extends to a C~ map m: Y—>Mpy. Let w be an
arbitrary point of W. Then m satisfies

(a) m Y(v)NY, is a single G-orbit for each open face vy of 33;

(b) m induces a diffeomorphism (including boundaries) between manifolds Y, |G, and
>3 (=2,) with corners;

(c) mly,: Y,—>Mpg coincides with the mapping m,;  in (4.4) via the identification
of Y, with Ga and is just the moment map: Y,—Lie(G,)*(=<Mp) associated
with the Kdahler form w,(=+/—100u,) on Y,.

RemARK 8.2.1. Consider the case where W consists of a single point.
Then (8.2) above implies (4.4). If we further assume L=Kj3', then (8.2)
shows nothing but (4.2) and (4.3).

Proof of (8.2). Step 1. Fix an a €A such that weW,. For simplicity,
put z;: = and x;: =x, i=1,2, .-, n. Let 0<6,<2z be such that z;—exp
((—=:/2)++/—16;). Then (2, -+, 2,) (resp. (%, **, Xy, 0,, *-+, 8,)) forms a
system of holomorphic local coordinates (resp. real local coordinates) of Y.
Note that

(8.2.2) 2,0/0%,42,0/0%, = —29/0x;, 1<i<n.

We now write the Kihler form o, as \/—1 33; ; u;; d2; AdZ; on P,, where
:=0; 0;(u,). Put

V. = t,0/0t,€Lie(G)C X (Y), 1<i<n,

in terms of the coordinates ¢, -, ¢, for G={(¢, --*, #,)|t;£C*}. Then there
exist real-valued C* functions ¢, ;, =1, 2, ---; n, on Y, such that

(8.2.3) Vily, = 234 4% (07 Pu,i) 0/02,, 1=i=m,

(47*) being the inverse matrix of (u;;) (see, for instance, Kobayashi [12; p.94]).
On the other hand, by (8.2.2), the real vector field (V;)g (cf. Appendix A) is
written as

(8.2.4) (V)r= —20[0x;, 1=<i=Zmn,
on Y,. Now, on P,, (8.2.3) above implies

(Lie deriv. of o, w.r.t. (V))g) =2/ —1009,,; .
Moreover, by (8.2.4),
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(Lie deriv. of o, w.r.t. (Vy)g) = —2+/—1 09(0u,/[dx;) .

Therefore, ou,[0x;=—¢, ;+C, ; on P, for some real constant C, ;ER. Hence
m|p, and —(@,,1, ***, Pu,») coincide up to translation, which implies the latter
half of (c). Since the former half of (c) is obvious, this proves (c).

Step 2. Put @, ;:=—¢,;+C,; Note that, for each 7, $,; depends smoothly
on w, because both 99, (= Lie deriv. of —27'w, w.r.t.(V;)g) and @, ;l5s,
(=0u,/0x;) depend smoothly on w. We then have a natural extension of m to a
C= mapping m: Y—Mj, by setting, for each fibre Y, (we W),

’Tt(y): = (¢w,1(y)’ ) @w,n(y)) , YEY,.

Let Q, be the image m(Y,) of Y, under this mapping m. Then by a result
of Atiyah [1; Theorem 2] applied to the compact Kihler manifold (Y, »,), our
0, forms a compact convex polyhedron in My such that

(@) m(y)NY, is a single G-orbit for each open face v of Q,;
(b)" m induces a homeomorphism of Y,/G, onto Q,.

(Without using Atiyah’s result, we can prove this by modifying the arguments
in Steps 3 and 4.) We now observe that >3}, is an n-dimensional compact
convex polyhedron in My only with integral verticese M. Therefore, if Q,=
>l (wEW), then the C~ dependence of m|y, on w implies that >3, does not
depend on w at all. Thus, the proof of (8.2) is reduced to showing the follow-
ing:

@ Qu=3;

(b)” im induces a diffeomorphism (including boundaries) between manifolds

Y,/G, and Q, with corners.

Step 3. We may now assume without loss of generality that I¥ consists of a
single point. Therefore, we may further assume P=G and Y=G,. Let G
and G be the same as in (ii) of (4.3). Then G is naturally identified with Y/G.,.
Note that
(_;R = U U aI‘e
cEAn)

in terms of the notation in (1.4), where UF: = U, N G is a coordinate open subset
of G identified (diffeomorphically) with the product (R,)" of n-copies of R, by

Uol'zg(RO)”7 yl'_)(lxo‘il(y)lzy |Xa';2(.y)lz7 % Ixo-:n(y)lz)'

Now, fix an arbitrary element o of A(n). Recall that the real-valued C* func-
tions x;=x,(¢), i=1, 2, --+, n, on G are defined by |¢;|*=exp (—«;) for t=(¢,, -,
t,)€G. Similarly, to the function X, ;;=X,;;(¢), we associate a new function
X,=Z,(t) on G by
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[Xs:4(t)|* = exp(—X%), teG.

Then, in terms of the notation in (1.4), we have

(8.2.5) % =(a(e),x), 1=izn,
where
%
x:=|%
w/ .

Furthermore, put
pli=Zyb(o)eA(), 1=izn.

Since exp(—u) E*¥*QE* (cf. (8.1.6)) extends to a C* Hermitian metric for L=
O s(Zecany vo D(p)), there exists a real-valued C= function H: (R;)"— R such
that

u= 3 Vi j’,". + H(rb "% 1‘,,) on UaIF ’
where 7;: =|X,;;|? (=exp(—%;)) and v;: =v,,. We can now give a closer look at

the function u=u(x,, -+, x,)=u (X, -+, %,). For example, their first and second
derivatives with respect to %, -+, X, are computed immediately:

(i) 7=1(0u/0x;) (0x;/0% ;) = 0u[0% ;=v;—(0H[0r;)1;,

(ii) 0’u[0X,0%; = (8°H|[ar;0r;) r; v;+ 8, ,(0H[0r;) r; .

Recall that (a(c), b(c)’)=3;;. Hence, combining (i) with (8.2.5), we obtain
@’ (m, b(c)’) = v;—(0H[or;)7;, 1=j=mn.

Let p, be the point& UZ corresponding to the origin of (Ry)" (i.€., 7,(Ps)=72(Ps)
=-+=7,(ps)=0). Then by (i)', (M (ps), b(c)’)=v; for all j. Thus,

(8.2.6) wi(ps) = a, .

Now, fix an arbitrary point y of UE and put I:={i{l, 2, -, n} |r,(y)=0}.
Then we may assume without loss of generality that /={1, 2, -+, g} for some
g with 0=¢=n (where if ¢g=0, we always assume I=¢). In view of (8.1.7)
and (8.1.8),

o= V=T 33 (FuloB0%) (A Xs %o : )N Ko /%)

on U, in terms of holomorphic local coordinates (X,;,, ***, Xs:4). Rewrite this
identity, using (i) above. Then, when evaluated at y,
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o(y) =V —1 3ie(8H/0r;) (y) dXo; i Ad Ry ;;
+V __1,%4(6%/61‘;653,.) () ([@%e:ilXe: YN (@R j[Re s 3) 5

where the last summation is taken over all 7, jE {1, 2, -+, n} such that :>q
and j>¢. Since w is a Kahler form, it follows that:

(8.2.7) (8H|or;)(y)>0  forall i€, and
(8.2.8) ((0°u/0%,0%;) (¥))s<i,jss 1s a positive definite matrix.

On the other hand, the Jacobian J (i), of the mapping m: U¥—> My, at the point
y in terms of the coordinates (ry, -+, r,) for UE is computed as follows:

J(m), = dee (AOUOR) (3)) et (AR (y))

— (0H[3r) (y)
—(@H[or) (5) O .
= ddet| g —(8H]or,) ()
—1 %%
0 (T ox, 0%, ))q<i.i§a } ,

where the last identity follows from

28U () — —(@*H[orar;) ri—8,(0Hory), (cF (i) -
j

Now, in view of (8.2.7) and (8.2.8), we obtain J(m),#0. This together with
(b)’ (cf. Step 2) yields (b)”. Hence, it suffices to show (a)”, i.e., Q=31. For
each j, let y; be the point in UZ such that r,(y;)=(1—38;;) 7:(y), 1=i=n. Then
by (i)', (m(y;), b(c))=v;. On the other hand, by (i), (i)’ and (8.2.8),

_,. 8m,b(a)) (_ 8(m,b(c)) _ g inze r
7; or, (— 5%, _au/ax,)go on UZ.

Therefore, we have
(8.29) (@), be)) S [@(y,), (o)) = v;, 1<jsn.

Step 4. In this final step, we complete the proof of Q=33, assuming that W is
asingle point. Let y be an arbitrary point of Gg. Then ye UE for all o € A(n).
Hence, by (8.2.9), (7 (y), b(c))<v; for all & and j, i.e., m(y)E>]. Since Q is
the closure of m(Gg) (=m(G)) in Mg, we now obtain Q< 37. Recall that Q is
a compact convex polyhedron in Mp (cf. Step 2). Therefore, (8.2.6) immediate-

ly implies Q=31.
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9. Appendix C

In this appendix, by using a measure dy of Duistermaat-Heckman’s type
(cf. [7]), we shall generalize the integral formula of Koiso and Sakane [13] on
Futaki invariants. Our present result includes, at the same time, (5.3) and
(5.6) in the earlier section as special cases.

DeriNiTION 9.1.1.  Let Y be a complex connected manifold endowed with
an effective holomorphic G-action, and A a nonsingular finite polyhedral
decomposition of N. Furthermore, let {: Y—=W be a proper G-invariant
morphism of Y onto a connected complex manifold W. Then a pair (§: Y—=W,
G,) is called a toric bundle if the following conditions are satisfied:

(a) p is locally trivial, i.e., W is a union U ,c, W, of its open subsets W,,
a4, such that for each «, there exists a G-equivariant isomorphism
ta: ST W)= WX Ga.

(b) If @, B A are such that W,N W= ¢, then there exists a holomorphic G-
valued function #,5=t#,4(w) on W, N W, such that

L0t (W, x) = (W, tup(w)+ )
for all we W, N Wy and all x&G,.

ReEMARK 9.1.2. In the above, let pr, ,: W, X G,—G, be the natural projec-
tion to the second factor. Put P: = U ,cs(pr1.4°t0) (G). Then §|p: P->Wis
naturally regarded as a principal bundle with structure group G.

DeriniTION 9.1.3. Let (§: Y—=W, G,) be a toric bundle and L a line
bundle over Y. Then a triple (§: Y—>W, G4, L) is called a polarized toric
bundle if there exists an effective divisor D on Y such that
(8) L—=0y(D);

(b) Supp(D)c Y—P, where P is as in (9.1.2);
(c) Dl|y, is an ample (or equivalently, very ample) divisor on Y, for each we W.

ReEMARK 9.1.4. For a polarized toric bundle (§: Y—=W, G4, L), one can
easily check that Y, W, P, L, D above always satisfy the conditions (8.1.1)~
(8.1.4) in Appendix B. Conversely, let Y, W, P, L, D be as in Appendix B
(satisfying the conditions (8.1.1)~(8.1.4)). Then by Theorem (8.2), the cor-
responding A=A, is independent of w, and it easily follows that the associated
triple (§: Y—W, G4, L) forms a polarized toric bundle.

(9.2) We now fix a polarized toric bundle (§: Y—W, G4, L). Then for each
pEA(1), the subsets (pry 40¢,) (D(p)), aE A, of Y are glued together defining
a global prime divisor, denoted by D(p), on Y. Hence, the divisor D (cf.
(a) of (9.1.3)) is written as 3,caqy ¥, D(p) for some »,’s in Z,. We thus have
the corresponding n#-dimensional compact convex polyhedron 33 in Mp defined
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by (8.1.9).

Remark 9.2.1. Let @, k=0, 1, :--, s, be the integral points in >}, i.e.,
SINM=4{a,|0=k=<s}. Furthermore, put

Xp: =X+, 0Zk<s,
where on the right-hand side, we used the notation in Section 1. Then the
mapping
Gt — (Xg(t): Xy(F): -+ : X,(2))EP(C)

extends to an embedding: G,GP’(C) such that the corresponding hyperplane
bundle on G, is O, (Zpeaw vo D(p)) (cf. Oda [21]). In particular, the pullback
(=v/ =100 log(Xi-01X|?)) of the Fubini-Study form on P°(C) to G, is
positive definite everywhere on G,.

DeriNITION 9.2.2. Since G=(C*)", we can componentwise express f,z=
t.p(w) in (b) of (9.1.1) in the form
tmﬂ(w) = (tf’ﬂlﬂ)(w)» tgﬁ)(w)9 ) tffs)(w)), we Wm n WB .

Hence for each 7, the system of transition functions {43}, g 4 defines a holomor-
phic line bundle L® over W. Let P®(:=L%® —(zero section)) be the C*-bundle
over W corresponding to L®. Then, in terms of the natural identification

P = P(l)x w P® X Xy P® ,
we can write each point p of P as

p= (P(l)’p(2)7 '"’P("))

with pWeP® =1,2, ---,n. For each 7, fix an arbitrary C~ Hermitian metric
h; on L® and define a C* function %;=Z%,(p) on P by

exp(—ZX(p)) = hi(p®, p?), pEP.
We shall now show the following formula:

Theorem 9.2.3. Put e:=dim¢W and v,,:=(n-+e)lle!l. Let L' be an
arbitrary line bundle over W and put L : =5*L'QL. We now assume that W is
compact. Furthermore, let x=(x,, x,, +++, x,) be the system of standard coordinates
on Mgp(=R"), and let T="T(x) be the polynomial in x,, -+, x, defined by T (x):=
YV (er(L)+ 201 % (L)) [W]. Then in terms of the notation in (1.6) and
Appendix A, we have:

(a) (ro/)x(t:0]0t;) = (2”)n+es
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(b) Ly vl = du,
where dp: =T (x) de, Adx, \ -+ \dx,.

ReMARK 9.2.4. In (9.2.3) above, assume that W is a single point. Then
by e=0, T'(x) is nothing but the constant function 1 on M. Hence, (5.6) is
straightforward from (9.2.3) above. We further obtain (5.3) by setting L=K7y"
(see also (7.2.2)).

Remark 9.2.5. Note that du is a polynomial measure on Mp. If L is
ample on the whole space Y, then this fact is already observed by Duistermaat
and Heckman [7] (see especially their formula (1.11)).

Proof of (9.2.3). Step 1. Let u=u(%(p), -+, X,(p)) be the C* function in
Z,=%(p), -+, X,=X,(p) defined by

u: = log (k-0 exp(as, X(p))) ,

where

z(p)
(p): = (-7:2(1’)) (pEP).
£.(p)

Let £ be the holomorphic section to L over Y as in (8.1.5). Then, in view
of (9.2.1), the metric exp(—u) E¥*QE* for L|, extends to a G.-invariant C*
Hermitian metric, denoted by #, for the whole line bundle L such that the
pullback of ¢,(L, k) to each fibre Y, is positive definite. We now have the cor-
responding m: P—Mp as in (8.1). Note that, for each weW, the image
m(P,) is just the interior of 3. Furthermore, one can easily check that the
mapping m is given by

m(p) = ((0u/0%,) (p), -+, (0u[0%,) (P)), PEP.

Step 2. Fix an arbitrary point w’ of W, and let U be a sufficiently small neigh-
bourhood of w’ in W. Over this U, choose a holomorphic local base s; for
each line bundle L® and write A% as f(w) s*®35¥ for some positive C* func-
tion f;=f;(w) on U. Note that, by a suitable choice of {s;}, we may assume

fi(w)=1 and (df)) (w')=0 for all 7.

We now choose a system (w;, ***, @,) of holomorphic local coordinates on U and
write each point w of U as w=(w,, *+, w,) in terms of these coordinates. Then
by the isomorphism
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Pl[](:P(l)Xw"‘ XW P(”)IU)QUXG
(tl sl(w)’ syl sn(w)) « (w’ t= (tl» ) t,,)) ’

we may regard (w,, -+, w,, ¢, **+, 1,) as a system of holomorphic local coordinates
on Pl,. Since

0%; = —(dt;[t))—E*(0f;lf;) and 08%; = —(di;/¢,)—E*(0filf3),
the following holds at each point of the fibre P,:

00u = 0{37-1(0u/0x,) (—(dZ,;/,;)—E*(Bf;(f;))}
= 3; (0°u[0%,0%;) (dt;[t;) \(d ;[ ;)4 337-1(0u/0%;) £*00 log(f;) .

Now, define real-valued functions 0=<6;<2z on P,/ by
t;=exp((—%;2)+v/—16;), j=12,-,n,

and set Vi:=¢0/0¢;, Furthermore, let 2’ be a C* Hermitian metric for L’ and
put:

't = Y da(L's B+ -1(0u/0X)) ¢(LO; BO)}e,
=, da(L; b))+ 200 x5 ¢ (L9 hO)}e

Then in view of (cf. (8.2.2))
At NdE,] [t = /—Td%;Ad0; and (Vi)g(u) = —2 0uf0%;

we have:

© (—172){, (Va0 (V=108 ut-2n¥e (L5 1)
— ) SPW,(G”/M") det (0°%/0%,0%,) (I1%-.(v/ =1 dt; NdE,{1£;1) ALH(7')
= (2m)"* S;ER” {(0u/0%;) det (0°u/0%,0%)) 7'(w")} X, AdZ A+ NdX,
— (2n)"e SE {x, (")} doy Adxy A -+ Adx,

where we obtain the last identity by setting x,=8u/8%;, j=1,2, .-, n. Similar
computations also show that:

(d) SP (v —1/27) 8Fut e (L'; b))+ = SET"(w') de Adxy A -+ Adx, .
Step 3. In view of (7.4.1), the integration of (c) over W yields (a). Since

(V=1/2%) 00u+c¢,(L"; k') represents ¢,(L”), we obtain (b) by integrating (d)
over W.
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(9.3) We here assume that n=1, i.e., G=C*. Fix a holomorphic line bundle
L, over a compact complex connected manifold W and consider the vector
bunlde E:=0OyBL, of rank 2 over W (where vector bundles and locally free
sheaves are used interchangeably if there is no fear of confusion). We now
put Y:=P(E*) and let {: Y—W be the natural projection. Then Y=(E—
(zero section))/C*, and L, is regarded as a Zariski-open subset of Y by

L~ PE*)(=Y), [+~ (1]) modulo C*.

Via this inclusion, the zero section of L, defines an effective prime divisor,
denoted by D,, on Y. Note that we have another divisor D..:=Y—L,&Div(Y)
on Y. Put P:=L,—D, Then the natural C*-action on the line bundle L,
extends to a holomorphic action of G=C* on Y with the fixed point set DyU D...
Furthermore, P is regarded as a principal bundle over W with structure group
G. Let(n',n") (%(0, 0)) be a pair of nonnegative integers which will be specifi-
ed later. Put D:=n'Dy+n"D.€Div(Y). Then L:=0y(D) is a {-very ample
line bundle on Y. We thus have a polarized toric bundle (§: Y—W, PY(C), L).

ReMARK 9.3.1.  Fix an arbitrary C* Hermitian metric 4, for the line bundle
L,. Now, recall the arguments in Step 1 of the proof of (9.2.3). Then, in view
of (9.2.2), we can define real-valued C* functions ¥=Z%(p) and u=u(p) on P by

exp(—%(p)): = h(p, 1) (pEP),
u(p): = log(3} exp(k%(p)) (pEP).

We also have the corresponding mapping m: P—Mpg(=R) as in (8.1) and more-
over, it is given by

m(p) = (0u/0%) (p), pEP.

Note that, for each we& W, the image m(P,) is the interior of the closed interval

2=[_n/l’ nl]-

DErFINITION 9.3.2. Let Y® (resp. Y®) be a compact complex connected
manifold on which G acts holomorphically and effectively with the corresponding
fixed point set D® (resp. D®). Furthermore, let {D®|i€1} be the set of all
connected components of D®. Then a surjective G-equivariant morphism A :
YO—-Y® is called a G-collapsing if the following conditions are satisfied:

(1) A maps Y®—D® jsomorphically onto Y®—D®,
(2) There exists a (possibly empty) subset J of I such that x: Y®¥—Y® js the
monoidal transformation of Y@ with centre U jey D?. (If J is empty, then

A is nothing but an isomorphism of Y™ onto Y®.)

We now fix an arbitrary G-collapsing A: Y— ¥ for Y above, and let n’, n”



EINSTEIN-KAHLER FORMS ON TORIC VARIETIES 729

be respectively the (complex) codimension of A (Dy), A(D.) in Y. Write G as
{t|teC*}. Then, Theorem (9.2.3) allows us to obtain the following refinement
of the integral formula of Koiso and Sakane [13] on Futaki invariants:

Theorem 9.3.3. Put e:=dimcW. Writing for brevity K3' as L, we have:
@  Cow/on) = ey e+ D) | s v () W] dv.

Suppose now that Y is a Fano manifold, i.e., L is ample. Let Fy|y ;o) be the
restriction of Fy: (Y)—>R to Lie(G) (cf. (5.1)). Then

®)  Frluwo =0 andonlyif | x(e(W)4x (L)) [W]ds = 0.

Proof. Note that Oy(A*L)=0Oy(K7)QOy((n'—1) Dy+-(n"' —1) D..) = Oy(
(E*K#')®L). Hence by (9.2.3) applied to L'=K3", the right-hand side of (a)
is (rw1,v)x(20/0t). This together with (7.5.1) yields (a). Now, (b) is straight-
forward from (a) in view of (7.2.2) applied to S=G.

(9.4) Now, let Y be a g-dimensional compact complex connected manifold
endowed with a holomorphic effective action of G=(C*)". Assume that there
exists an ample line bundle L on Y with a fibrewise-linear holomorphic G-action
which covers the action on Y. Then we have a Kahler form o on Y represent-
ing 27z ¢,(L)g. Express w as \/—1 3] g,5 d2° Adz® in terms of holomorphic local
coordinates (2, 2% -+, 2")on Y. Let V,€2X(Y) be the image of ¢,0/0t;€ Lie(G)
under the natural inclusion Lie(G)CX(Y). Now, for each 7, there exists a
real-valued C* function @, (which is unique up to an additive constant) such that

V= 3,8 059,080z, (cf. Step 1 of the proof of (8.2)).
For each a=(a,, a,, ***, a,) € R"(=Mp), we define a mapping m*: Y—Mp by
m*(y) = (—@u(9)+a, —@(y)+a =, —@u(y)+a), yEY.

Then the image >3*:=m?*(Y) is an n-dimensional compact convex polyhedron
in Mp (cf. Atiyah [1]). Recall that the push-forward by m* of the symplectic
measure (w/27)° is a piecewise polynomial measure, denoted by du, on My of
finite total volume ¢;(L)’[Y] (cf. Duistermaat and Heckman [7], Atiyah and Bott

[2])-

DEFINITION 9.4.1. Let a be the unique element of My such that
@y (. du = Groutefor), 1sisn,

where (xy, +:+, x,) is the system of standard coordinates on Mg(=R"). We then
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denote m® by m. Now, the mapping m: Y—Mp, is called the strict moment map
associated with the Hodge metric w on Y. Note that, in view of Theorem
(9.2.3), this m is compatible with the one defined in Appendix B.

REMARK 9.4.2. Suppose that the Kihler form o represents 2z ¢(Y)g. In
this special case, one has the following fact (which I owe to a suggestion by A.
Futaki): Let & be the Kihler form on Y such that Ric(@)=w and that & is
cohomologous to . Then the strict moment map m: Y— Mpz(=R") associated
with o is characterized by

m(y) = (_¢l(y)’ ‘¢2(.y)’ T —¢n(.y))’ yEY,

where each @; is a real-valued C*~ function on Y such that the following con-
ditions are satisfied:
(a) @; coincides with @; up to an additive constant;

(b) SY P, 5"=0.

10. Appendix D

In [22], Sakane constructed examples of Einstein-Kahler metrics on non-
homogeneous Fano manifolds. Afterwards, these were reformulated and gen-
eralized by Koiso and Sakane [13; Theorem 4.2], where almost at the same time,
the author found a very simple proof for their results. (A little later, Bando
also obtained a similar proof independently.) Since this new proof has the ad-
vantage of describing Einstein-Kihler metrics very explicitly, we here explain
the detail.

Assume now that n=1, i.e., G=C*. Let Y be a compact complex con-
nected manifold endowed with a holomorphic effective G-action such that the
corresponding fixed point set consists of just two connected components D, and
D... Furthermore, assume that ¥ is of class C, i.e., ¥ is bimeromorphic to a
compact Kihler manifold. Note that, via isotropy representation, our G-action
on ¥ naturally induces a G-action on the normal bundle N(D,: ¥) (resp.
N(D..: Y)) of D, (resp. D..) in Y. We finally assume that each element of G
acts on both N(D,: ¥) and N(D..: Y) as scalar multiplication of the vector
bundles.

RemArk 10.1.  Blow up Y along D, and D... We then have a G-collapsing
A Y=Y (cf. (9.3.2)) such that Dy: =n"YD,) and D..: =1 "(D..) are nonsingular
irreducible divisors on Y fixed by the G-action. Put P:=Y—(D,UD.). Then
by the generalized Bialynicki-Birula decomposition of Fujiki [8] (see also Fujiki
[9; (6.10)], Carrell and Sommese [5]), we have a natural G-equivariant identifica-
tion of PU D, (resp. PU D.,) with N(D,: Y) (resp. N(D: Y)) (cf. [15]). Hence,
by reversing the G-action, one obtains from N(D,:Y)— (zero section) the
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C*-bundle N(D..: Y)—(zero section) over W:=P|C*==Dy=D.. There now
exists a line bundle L, over W such that L,=N(D,: Y) and that Li'=N(D.: Y).
Put E:=0,PL,. We can thus regard Y as P(E*) and furthermore, exactly
the same situation as in (9.3) happens. (Therefore, until the end of this ap-
pendix, we freely use the notation of (9.3).) Let e:=dim¢Y—1. Then by (b)
of (9.3.3),

(10.1.1) F5|pe = O if and only if S w(e(W)+x (L) [W]dx =0,

where 7’ and #” are respectively the (complex) codimension of D, and D.. in Y.

DeriNITION 10.2.  For simplicity, put Z: =\(P). Recall that every element
of G acts on both N(D,: Y) and N(D..: Y) as scalar multiplication. Hence,
applying again the generalized Bialynicki-Birula decomposition of Fujiki [8] (see
also Fujiki [9; (6.10)]), we have a natural G-equivariant identification of PU D,
(resp. PUD..) with N(D,: ¥) (resp. N(D..: ¥)). Now, let & be an arbitrary
C= Hermitian metric on L,. Note that this % naturally induces a Hermitian
metric, denoted by #7%, on the dual bundle Li* of L,. In view of the identifica-
tions

(L,—(zero section)) = P=~P = (N(D,: ¥)—(zero section))
and
(Li'—(zero section)) = P=P = (N(D..: ¥)—(zero section)),

the Hermitian norm || |[[, (resp. || |[,-:) on L, (resp. L1') induces a norm on
N(D,: Y) (resp. N(D..: Y)). Then for a Kahler form o on W, (k, ) is said to

be a tight pair if the following conditions are satisfied:

(1) 'The norms on N(D,: Y¥)and N(D..: ¥) induced from % are those associated
with some C* Hermitian metrics of respective vector bundles.

(2) o is an Einstein-Kihler form satisfying Ric(w)=w.

(3) The eigenvalues of ¢,(L,; &) with respect to w are constant on W.

(4) N H*{M D(E*w) AOp ABp} (resp. MH {7 (L*w) AT ADT}) on P ex-
tends to a C* (nonvanishing) (e+1, e+1)-form on N(D,: ¥) (=P UD,)
(resp. N(D..: Y) (=PUD.)),

where {: Y(=P(E*))—W is the natural projection and p: L,—>R(resp. 7: Li'—
R) denotes the norm function defined by p(x): =||x||, (resp. T(x): =||x|[,-1) for x
in L, (resp. Li"). In particular, if n’=n"=1, then (h, ») is a tight pair if and
only if (2) and (3) are satisfied.

We shall now give a slight modification of the result of Koiso and Sakane
[13; Theorem 4.2]:
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Theorem 10.3. Assume that ¥ is a Fano manifold, ie., K3' is ample.
If there exists a tight pair (h, ), then the following are equivalent :
(@) Fzlpie=0;
(b) Y admits an Einstein-Kdhler form.

Proof. In view of (5.1), it suffices to show that (a) implies (b) under the
assumption that (%, ») as above exists. The proof consists of four steps.

Step 1. Let p=p,<--=p, be the constant eigenvalues of 27z ¢,(L,; k) with
respect to . Put D:=n'Dy+n""D.and L:=Oy(D). Then X*K;‘=L®§*Kp7‘
(see the proof of (9.3.3)). Hence, via the identification of D, (resp. D..) with W,
we have:

MK p, = LOE*Ki' | 5, = L QK"
(resp. A*K ;‘I b, = (Ll‘l)@”“®Kﬁ,1) .

Therefore, via the identification of W with D, (resp. D..), the cohomology class
n'c)(Ly) p+c;(W)g (resp. —n"’c)(Ly)r+c;(W)g) in HDy: R) (resp. H(D..: R)) is
represented by A*6, (resp. A*6..) for some positive definite (1, 1)-form 6, (resp.
6..) on D, (resp. D..). On the other hand, 2zc,(W)p is represented by the Kihler
form . We now have the following:

1) If —n"<w<n', then (& [W]) TTier (1+ p ¥) = {2 (& W) + e, (L)} [W]
>0 and in particular 14y, x>0 for all k.

2) The smallest nonnegative integer m such that (¢;(W)+n'c,(L,)))"** (resp. (¢,
(W)—n""¢,(L,))"*") is numerically trivial is dimg D, (resp. dim¢ D..). Hence
the order of zeroes of T]f-1(1+u, x) at x=n' (resp. x=—n") is n'—1 (resp.
n’—1).

Step 2. Define a polynomial A=A4(x) in x by

Ax): = —S;/,s THEor(1 4+ as) ds .

Note that, by our condition (a), we have A(n')=A(—n")=0 (cf. (10.1.1)). In

view of 2) of Step 1, the order of zeroes of A(x) at x=n' (resp. x=—n"") is n’

(resp. n””). Furthermore, by 1) of Step 1, both 0<<A(x)< A(0) and A'(x)/x<<0

hold for all nonzero x with —n”<x<n'. In particular, the rational function

A'(x)/(xA(x)) is free from poles and zeroes over the open interval (—n”, n’),

and has a pole of order 1 at both x=n' and x=—n". Now,
B(x): = ~S0 A'(5)/(sA(s)) ds

is monotone increasing over the interval (—n”, #') and moreover, B maps (—n",
n’) diffeomorphically onto R, because in a neighbourhood of x=n’ (resp. x=
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—n"), B(x) is written as —log(n'—x) + real analytic function (resp. log(x+#"")
+ real analytic function). Let B™': R—(—n", n’) be the inverse function of
B:(—n",n')—>R, and define a real-valued C* function r=r(3) on P by

exp(—7(B)) = {A"p) (B} (= {A"™7) (B} ™), PEP.

Note here that, since (%, w) is a tight pair, (1) of (10.2) shows that (A™"*p)* (resp.
(A"M*7)?) extends to a C* function on PU D, (resp. PUD..). We now define a
C= function x=x(r) in r by

x(r): = B™Xr) (i.e., r = B(x(r))) .
Then u(r): =—log(A(x(r))) satisfies (cf. (10.3.1))
*) W(7) Thiea(14 4 /(1)) = exp(—u(r)),
since we have the identities x'(r)=—x(r) A(x(r))/A'(x(r)), #'(r)=2x(r) and A'(x(r))
=—x(r) T15-1(14 pei 2(r)).
Step 3. Now, let » be the (e+1, e41)-form on P defined by

7t = /=T Ke-+1) exp(—u(r) A *(E*0) ABp ATplp)
(= vV —=14(e+1) exp (—u(r)) A *((§*w) NOTADT/TY)) .

In this step, we shall show that % extends to a volume form on Y. First, in
view of Step 2,

r = —log(n'—x(r)) + real analytic function in x(r),

(resp. r = log(n”’+x(r)) + real analytic function in x(r)) .

Hence, (A~"*p)? (resp. (A"*7)?) is written as a real analytic function in x(r) with
a simple zero at x(r)=n' (resp. —#”’). On the other hand, Step 2 shows also
that exp(—u(r)) is a real analytic function in x(r) with zeroes of order exactly »n’
(resp. #”’) at x(r)=n' (resp. —n’). Thus, in a neighbourhood of D; (resp. D..),
()~ exp(—u(r)) (resp. (M"*7)72*" exp(—u(r))) is written as a nonvanishing
real analytic function in (A""*p)? (resp. (A"**7)?).  Since (4, ) is a tight pair, (4)
of (10.2) now implies that 5 extends to a volume form on Y.

Step 4. Regarding 7 as a volume form on ¥ (cf. Step 3), we shall finally show
that &:=+/—100log» is an Einstein-K#hler form on ¥. Fix an arbitrary
point @, of W. Then over a sufficiently small open neighbourhood U of w,
in W, there exist a holomorphic local base o for L, and a system (2,, 2,, -+, 2,)
of holomorphic local coordinates on U such that

1) k|y=H(w)o*Q@s* for some positive real-valued C* function H=H(w) on U
satisfying both H(w,) = 1 and (dH)(w,) = 0;
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2) o(wy) =V —1 2.1 dz, A\dZ;
3) (90H)(wo) = VvV —1 Xi-1 pe d2s A d7,.

Via the identification
UxC*=P|,
(w, t) & teo(w),

we regard (2, 2,, ***, 2, t) as a system of holomorphic local coordinates on the
open subset P|; of Y. Then over P|y,

Ny = v/ (e+1) M(exp(—ul(r) (E*o) AdEAdE] 2]
Note that Ric(w)=+/—1090 log »*=w. Hence along the fibre P,,
A*& = /1089 M (u(r)) + $*o
=/ —1A*@"(r)) dtNdE||t]* + / —1A*w'(r)) 33 log H + {*w,

(see, for similar computations, Step 2 of the proof of (9.2.3)). Therefore, when
restricted to A(P,,), the (1, 1)-form & is written in the form

VT W) NHEENAE] [ 8]+ T a1+ 0'(7) M (dz AdE)

which is positive definite in view of () of Step 2. Consequently, along A (P,,),

we can express &°*! as

VT (e ) WL (1w O NS V=T duAdz) AdEAdE] 1217

and hence &°*'=n (cf. (%) of Step 2). Since w, is an arbitrary point of W, we
now have Ric(&)=& everywhere on ¥. Thus, & is an Einstein-Kihler form on

Y.

Remark 10.3.1. Let KER, and y, =R (k=1,2, ---,¢). Furthermore, let
a, b, ¢ be real numbers such that 1+ u, ¢#0 for any k.. Then, for a sufficiently
small £>0, we can here give a complete solution of the ordinary differential
equation

(1) ¥'(x) ia1(14- 2 ¥'(%)) = K exp(—y(x)), a—&<x<a+é€,
with the initial conditions
y(@=b and y'(a)=c.

In order to solve this, we put s: =y’(x) and 4: =exp(—y(x)). Since y”(x) does
not change its sign over the interval (a—¢&, a+€), the inverse function theorem
allows us to regard x as a C* function x(s) in s. Consequently, A4 is also regarded
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as a C* function A(s) ins. Then
A'(s) y"(x) = (dA[ds) (ds|dx) = dA[dx = —sA(s) .
In particular, multiplying both sides of (1) by A4'(s)/A(s), we have
—s IIi-1(l+ e ) = K-4'(s) .

Thus, x and y(x) are written in terms of the parameter s as follows:
@) y(x) = —log A(s),

where A(s) is the polynomial exp(—b) — K”‘S tTlici(14-u,t)dt in s. As for
x, we have ¢

dsjdx = 5/"(#) = (ITi=i(1+ms ) K- 4@, (cf. (1)),

and therefore,
) w=a+ | (ia(+m o) K4 dr

Now, (x, y(x)) moves along the curve parametrized by (2) and (3) above.

Remark 10.3.2. We apply the above construction of Einstein-K#hler metrics
to the case where Y=¥Y=P(E*) with E:=0r®Oy(k, —k) and W:=P"(C)x
P"(C)(meZ,, 1=k<m). Note that L;: =0Opy(k, —k) denotes the line bundle
pr¥Opn(k) @ prfOpn(—k) over W, where pr;: P"(C)x P"(C)— P™(C) is the
natural projection to the i-th factor (i=1,2). Now, let o: Q(C"*")—C"*! be
the blowing-up of C”*! at the origin 0=(0, -+, 0) of C™*!, and let

p:C"1— {0} — P"(C)

(Roy 21y ***y 2p) 2 (R01 211 001 2,)
be the natural projection. Then the rational map poo: Qy(C"*)—P™(C) easily
turns out to be a morphism, and via this morphism, we can regard Q,(C”*") as

the line bundle F:=QOp"(—1) over P"(C). Hence, via the identification of
C"*'— {0} with F—(zero section), the function

CmH {0} S(20, 21, ) 20) > V[ 2"+ [ [+ 2, P ER

is viewed as a Hermitian norm of the line bundle F. Since L,=prf(F® *)Qpr¥
(F®*), this Hermitian norm on F induces a natural norm || ||, on L, associated
with a Hermitian metric % for L;. We can now define p: L,—R by p(I): =||/||,
(!l€L,). Note moreover that the Fubini-Study form w, on P"(C) is defined by

p*wo = v/ —100 log(370|2:1%) .
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Then, w:=(m+1) (prfw,+priw,) is an Einstein-Kahler form on W such that
(h, ») is a tight pair (cf. (10.2)), because the eigenvalues p;<p,< - <pu,, of
2m ¢,(L,; k) with respect to o are all constant. In fact, we have

Ty = = ey = [y = Pomiz = = Pan = kf(m+1) .

Recall that G(: =C%) acts on the line bundle L, by scalar multiplication and
that Y(=Y) is naturally a G-equivariant compactification of L, (cf. (9.3)). Now
by

1 1

[ et toa@ymmmia = @mwy=m | o1 —# oim+1yydo =0,
we have Fy|;;.y)=0. Hence we can find an Einstein-K#hler metric on Y as

constructed in the proof of (10.3) (see also Sakane [22]). Let A(s) be the poly-
nomial in s defined by

Afs): = _S’ o(1—F o¥(m+1)"%" do .
-1
Furthermore, define a C= function x=x(p) in p by
o = exp {—L (1= £(m+1)"2)" A(s) ds} .

Then »: =+/—1 (8m-+4) A(x(p)) (§*w)*™ A0p ABp[p* extends to a volume form
on Y, where {: L,—W denotes the natural projection (cf. Step 3 of the proof of
(10.3)). Then in view of Step 4 of the proof of (10.3), we can now conclude that
&:=+/—100 log 5 is the Einstein-Kihler form on Y such that &*"+'=.
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