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0. Introduction

Throughout this paper, we assume that X is a nonsingular w-dimensional
toric Fano variety (defined over C), i.e., X is an w-dimensional connected pro-
jective algebraic manifold satisfying the following conditions:

(a) X admits an effective almost homogeneous algebraic group action of (Gm)n

(&z(C*)n as a complex Lie group).
(b) The set JC of all Kahler forms on X in the de Rham cohomology class

2π cl(X)R is non-empty.

For each ω&JC, by writing it as ω=\/— 1 Σ £(<*>)*£ dz* /\dz* in terms of holo-
morphic local coordinates (zl, z2, •••, zn) of X, we have the corresponding Ricci
form Ric(ω) cohomologous to ω:

Ric(ω): = V^ϊdd log

Then an element ω of JC is called an Einstein-Kahler form if Ric(ω)=ω. We
now pose the following:

Problem O.I*'. Classify all X which admit, at least, one Einstein-Kahler

form.

Obviously, the Fubini-Study form on P*(C) is a typical Einstein-Kahler form.
This settles Problem 0.1 for w=l, because the only possible X with n=l is
P\C). However, the real difficulty comes up even at n=2: Let S{ be the
projective algebraic surface obtained from P2(C) by blowing up / points in
general position (where l^/^3). Then, in spite of lots of efforts by differ-
ential geometers, it is still unknown whether or not the nonsingular toric Fano
variety S3 admits an Einstein-Kahler form.

The purpose of this paper is to give a brief survey of recent progress on
Problem 0.1 together with our related new results. Especially, in Sections

*) This is also posed by T. Oda and Y.T. Siu.
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(though they are somewhat of expository nature), several key ideas are introduced
often without proofs, while technical details are given in the subsequent four

appendices. In particular, in Appendix C (see (9.2.3) for the most general

statement), we shall show that the Futaki invariants of an anti-canonically (re-

latively) polarized toric bundle Y over W can be regarded as the barycentre

of m(Y) in terms of "Duistermaat-Heckman's measure", where m: Y-+R"

(n=dimcY—dimcW) denotes the associated "relative" moment map defined,

in Appendix B, without any ambiguity of translations (cf. (8.2)). Finally, in Ap-

pendix D, a very explicit description of Einstein-Kahler metrics for Sakane-

Koiso's examples will be given (cf. (10.3.2), Step 4 of (10.3)).
Parts of this paper were given as a lecture at Ruhr-Universitat, Bochum in

April, 1986. The author wishes to thank Professors G. Ewald and P. Klein-
schmidt who invited me to give a talk on this subject. He is also grateful to

Professors T. Oda, H. Ozeki and I. Satake for helpful suggestions and encourage-

ments during the preparation of this paper. Finally, he wishes to thank the
Max-Planck-Institut fur Mathematik for constant assistance all through his stay

in Bonn.

1. Notation, conventions and preliminaries

Let Z+ (resp. ZQ) be the set of positive (resp. non-negative) integers and

R+ (resp. JR0) be the set of positive (resp. non-negative) real numbers. We

now put:

M: = {o = (a,, 02, -, β.)|α,eZ} (^Z*),

N: = \b = ί I1

For a^M and b^N as above, we define (α, b)^Z, %αeHomaιggP(G, Gm) and

aig SP(Gm9 G) by

where t, tly •••, ίΛe<τw(=C*). Then the correspondence απ-»%α (resp.

canonically induces an isomorphism between the additive group M (resp. N) and

the multiplicative group HomaiggP(G, Gm) (resp. Homaιg ep(Gm, G)). Note that

%«λ f t ί = ί(β'6) for all
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DEFINITION 1.1. A non-empty subset σ of N is called a cone** if the
following conditions are satisfied:
(a) If 6eΛΓ satisfies βb^σ for some β^Z+y then δeσ.
(b) If Oφδeσ, then — 6<£eτ.

(c) Oe<r.
(d) In terms of the natural additive structure of ΛΓ, σ is a semigroup gen-

erated by a finite subset.

For a cone σ, there exists a unique irredundant finite subset {61, 62, •••, 6W} of <r

such that σ =ΣΓ=ι ^o **• These 61, ft2, •••, 6W are called the fundamental gener-
ators of the cone σ.

DEFINITION 1.2. A non-empty subset r of a cone σ is called a /#c£ of σ ,

denoted by r^σ, if there exists an element α of M such that (α, 6)^0 for all ft
in σ and that r— {b^σ\(a, δ)=0}. A finite polyhedral decomposition of N is a
finite set Δ of cones in N such that

(a) if r^σ eΔ, thenreΔ;

(b) if σ, reΔ, then σΠr^σ and σ(Ίτ^τ;

(c) ΛΓ= U,eΔσ.

For every finite polyhedral decomposition Δ of N9 we put

where dim σ denotes the dimension of the real vector space spanned by σ in
NR:=N®ZR.

DEFINITION 1.3. A finite polyhedral decomposition Δ of N is said to be

nonsίngular if for each σ^Δ(w), the set of fundamental generators of σ consists

of n elements and forms a J2Γ-basis for N. For every nonsingular Δ, the set of
fundamental generators of each element of Δ(ί) consists of exactly / elements and

can be completed to a -Z-basis for N.

We shall now quote the following fundamental results due to Demazure
[6], Miyake and Oda [18], and Mumford et al. [19]:

Theorem 1.4. To every nonsingular finite polyhedral decomposition Δ of Ny

one can uniquely associate an n-dimensional irreducible nonsίngular G-equivariant

compactification GΔ of G possessing the following two properties :

(a) To each σeΔ(z'), Q^i^n, there corresponds a unique (n—ί)-dimensional G-

orbit, denoted by Oσ, such that GΔ is expressible as

GΔ = U 0" (disjoint union).

*} This notion of cones is slightly different from the ordinary one.
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Furthermore, the closure D(σ) of 0σ in GΔ is an irreducible nonsingular (n—i)~

dimensional G-stable subvariety of GΔ Written in the form

D(σ) ~ U 0T (disjoint union).

(b) For each σeΔ(w), Uσ:— \Jr^<rO
r forms an affine open G-stable neighbourhood

of 0* in GΔ satisfying the conditions

and

GΔ = U U9.
σeΔOO

Let {δ(σ )1, 6(σ)2, •••, b(σ)n} be the set of fundamental generators of σ (which

forms a Z -basis for N), and let {α(σ)1, α(σ)2, •••, a(σ)n} be the dual basis for M

defined by the relation (α(σ)', 6(σ)y)=δf ; . Then the corresponding characters

extend to rational functions on GΔj which are all regular on Uσy forming a

system of coordinate functions on Z7σ by the isomorphism

In terms of these coordinates, the G-action on Uσ is described by

are arbitrary.

Theorem 1.5. Every n-dimensional irreducible nonsingular complete variety

endowed with an effective regular G-action is G-equivariantly isomorphic to GΔ for

some nonsingular finite polyhedral decomposition Δ of N.

Finally, we remark the following:

(1.6) In terms of the holomorphic coordinates (tl9 t2, •••, tn) for G={(tl9 •••, tn)

, the G-invariant vector fields

> ί=l,2, -,».

on G form a C-basis for Lie(G). Furthermore, these naturally extend to

holomorphic vector fields on GΔ.
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2. Demazure's results on toric varieties

Throughout this section, we fix a nonsingular finite polyhedral decomposi-
tion Δ of N. Put MR:=M®ZR. Furthermore, for each peΔ(l), let bp denote
the unique fundamental generator of p. We now consider the divisor

K: = - Σ D(p)
P6ΞΔCO

on GΔ. Recall the following fact due to Demazure [6]:

Theorem 2.1. K is a canonical divisor of CrΔ. Moreover, the following are
equivalent:
(a) (7Δ is a toric Fano variety.
(b) — K is ample.
(c) — K is very ample.
(d) *Σ_κ: = {a^MR\(a, 6P)^1 /or #// peΔ(l)} ά αw n-dimensional compact

convex polyhedron whose vertices are exactly {ατ|τeΔ(w)}, where each ar

denotes the unique element of M such that (aτ,b)=l for all fundamental
generators b of τ.

REMARK 2.2. It is easily seen that P\C\ P\C)xP\C), Sj(l^i^3) are
the only possible 2-dimensional nonsingular toric Fano varieties. Recently, for
dimension three also, all nonsingular toric Fano varieties were completely clas-
sified (cf. Batyrev [4], K. Watanabe and M. Watanabe [24]).

DEFINITION 2.3 (Demazure [6; p. 571]). An element a of M is called a root
if there exists peΔ(l) such that (α, 6P) = 1 and that (α, frσ)^0 for all σ eΔ(l)
with σφp. Let -ft(Δ) be the set of all roots in M.

Now, as an immediate consequence of a result of Demazure [6; p. 581], one
obtains:

Theorem 2.4. Let Aut (<7Δ) be the group of all holomorphίc automorphisms
of <7Δ. Then Aut(GΔ) is a reductive algebraic group if and only if — ̂ ?(Δ) : = { — a
|αeJ2(Δ)} coincides with Λ(Δ).

REMARK 2.5. In view of this theorem and (2.2), it is now possible to de-
termine all 3 -dimensional nonsingular toric Fano varieties (7Δ with reductive
Aut(GΔ). Such a GΔ is, actually, isomorphic to one of the following (we owe
the computation to T. Ashikaga) :

P3(C), P2(C)XP1(C), P\C)XP\C)XP\C) ,

P\C)xS» P(0piχPιθ(Vχpi(l, -1)), Fΐ ,

where we used the notation of K. Watanabe and M. Watanabe [24]. Obviously,
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the first three varieties admit an Einstein-Kahler form. Note that, for the last
three varieties, Aut(GΔ) cannot act transitively on GΔ. However, P((?pixpi®
(3pixpι(l, — 1)) still admits an Einstein-Kahler form by virtue of a result of Sakane
[22], partly because in this case, every maximal compact subgroup of Aut(GΔ)
acts on GΔ with principal orbits of real codimension one (cf. Appendix D).

The importance of (2.4) comes from the following theorem in differential
geometry due to Matsushima [17]:

Theorem 2.6. Let Y be a compact complex connected manifold with dimc

Aut°(y)>0 (where Aut°(F) denotes the identity component of the group Aut(Y)
of holomorphίc automorphisms of Y). If Y admits an Einstein-Kahler form, then
Aut( Y) is a reductive algebraic group and furthermore, the group of holomorphic
isometries with respect to the corresponding Einstein- Kάhler metric in Aut°(Y) is
a maximal compact subgroup of Aut°(y).

3. The Einstein equation

For X as in Introduction, there exists a nonsingular finite polyhedral de-

composition Δ of N such that X=G± and that Δ satisfies the condition (d) of
(2.1) (see (1.5) and (2.1)). In view of the inclusion

we may regard each t{ as a rational function on GΔ. Consider the real-valued
C°° functions xly x2, •••, xn on G defined by

(*) tf ti = \ti\
2= exp(— #,-), ί^i^n.

Since dti=dth we have dxi=~dti/ti and ^xi=— έf ?,-/?,-. Therefore, for each C°°
function u=u(xly ••-,#„) defined on R"={(xly •••, ̂ rt)|^eJK}, the following

identity holds:

(3.1) 8 5 u = Σu(8
2 ujdxt dxj

Let Gc be the maximal compact subgroup

of G. Since the anti-canonical bundle Kχl of X is ample, there exists a Gc-
invariant fibre metric Ω for Kx1 such that the corresponding first Chern form
is a positive definite (1, l)-form. Namely, there exists a real-valued C°° function
u= u(x^ •••, xn) on Rn such that:

(3.2) exp (— u) Πί-iίV^ dti Λ dϊij \ t{ \ 2) extends to a volume form

on the whole X = GΔ
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(3.3) V^T 9 5 u extends to a Kahler form on GΔ .

Note that the volume form in (3.2) is naturally identified with Ω above (and
is denoted by the same Ω). In view of (3.1), the statement (3.3) in particular
implies:

(3.4) At each point of R", the matrix (32 u/dXi dXj) is positive definite.

Suppose now that X admits an Einstein-Kahler form ω e JC. Then by Theorem
(2.6), we may assume that ω is Gc-invariant. Applying the above argument to
Ω—ω", we obtain a real -valued C°° function u=u(xly •••, xn) on Rn satisfying the
conditions (3.2), (3.4) and furthermore, by Ric(ω)=ω,

(3.5) det (d2ulQx{ Qxj) = exp (— t*) on R" .

Conversely, suppose that a real-valued C°° function u on Rn satisfies (3.2), (3.4)
and (3.5), where we return to our original situation that X(= GΔ) is just a non-
singular w-dimensional toric Fano variety without any assumption as to the
existence of Einstein-Kahler forms. Then ω:=\/^ΐddu turns out to be an
Einstein-Kahler form on X. We now define:

DEFINITION 3.6. The equation (3.5) above (together with the "boundary"
condition (3.2) and the convexity (3.4) for u) is called the Einstein equation for
the toric Fano variety X=G&.

4. Moment maps on toric varieties

Fix a nonsingular finite polyhedral decomposition Δ of N. In this sec-
tion, we study the moment map (cf. Atiyah [1], Guillemin and Sternberg [11])
of the toric variety GΔ in terms of a suitable Kahler metric, if any, on GΔ.

(4.1) We first assume that GΔ is a (toric) Fano variety. Then in view of Sec-
tion 3, there exists a real-valued C°° function u on R* satisfying (3.2) and (3.3).
Now, by the relation (*) in that section, we write each x{ as x^t) with t=(tl9 •••,
tn)^G. Hence, every C°° function/—/^, •••,#„) on Rn is regarded as a C°°
function on G byf(t): ^/(^(ί), •••, xn(t)) for t eG. Recall that MR is naturally
identified with Rn (cf. Section 1). We now define the mapping mu: G-*MR

(=Rn) by

mu(t) : = ((du/dxj (t), - , (θιι/8*.) (<)) , t e G .

Then the work of Atiyah [1] is reformulated in the following slightly stronger
form:

Theorem 4.2*). Assume that GΔ is a nonsingular toric Fano variety.

*) A more general statement will be proven in (8.2).
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Let Q be the closure of the image mu(G) in MR. Then Q=*Σ-κ (cf. (2.1)).
Furthermore, mu: G-+MR extends to a C°° map mu: GΔ— >MΛ. This ΐnu satisfies

(a) the inverse image mu\7) of each open face 7of^Σ_κisa single G-orbίt\
(b) ΐntt induces a dίffeomorphism (including the boundaries) between the manifolds

GΔ/GC and Σ-JΓ with corners.

REMARK 4.3. (i) It is easily checked that fnu above coincides with the
moment map: GΔ-*Lie(Gc)*^Mβ (cf. Atiyah [1], Guillemin and Sternberg [11])
associated with the Kahler form \/^ϊddu^JC. (See Appendix B for the
proof.)

(ii) Consider the subgroup GR: = {(tly ••-, ΐn)^G\ti^R+}(^(R+)n) of G.
Then by the natural inclusions GΛcGcGΔ, we may regard GR as a subset of
GΔ. Then the closure GR of GR in GΔ is a manifold with corners in the sense of
Borel-Serre (cf. Oda [20]) and has a natural differentiable structure as described
in Step 3 of (8.2). Note that GΔ/GC above is endowed with such a structure via
the natural identification of GΔ/G, with GR.
(iii) The difference of (4.2) from Atiyah's result [1 Theorem 2] is that the
mapping between GΔ/GC and Q is, in our case, a diffeomorphism (instead of a
homeomorphism) even along their boundaries. This diffeomorphism is es-

sentially obtained from the ampleness of KGI by the fact that a combination of
(3.2) and (3.3) keeps the Jacobian of mu\GR: GR-^MR nonvanishing also along
the boundary GR—GR.

(4.4) We now assume that GΔ is a projective variety (where GΔ is not necessarily
a Fano variety). Note that the corresponding hyperplane bundle L:=<9GΔ(1) is

written as <?cΔ(ΣσeΔω "*&(<?)) f°r some p,€Z0. Then

ΣL: = {a^MR\(a, bσ)^vσ for all σ€=Δ(l)}

is an ^-dimensional compact convex polyhedron (cf. Oda [21]). Since L is
ample, there exists a Gc-invariant fibre metric h for L such that the correspond-
ing first Chern form is positive definite. Therefore, we obtain a real-valued C°°
function u on Rn satisfying the condition (3.3) and also

where ξ denotes the unique holomorphic section to L over Y identified, over G,
with the trivial section of constant value 1 in OG via the natural isomorphism
0cΔ(Σ<reΔ(ι) *V D(<r)) I G^OG. Then by exactly the same formula as in (4.1), we
have a mapping τnUtL: G->MR (we put L as a subscript to emphasize the line
bundle L). Now, in Theorem 4.2, replace the assumption of ampleness of Kό1^
by that of L. Then (4.2) is still valid when we further replace mu, mu, Σ-#>

respectively by mu>L> ίήUtL, ΣL (cf. (8.2)).
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5. Futaki invariants for toric varieties

In [10], Futaki introduced an obstruction to the existence of Einstein-
Kahler forms as follows: Let Y be a compact connected complex manifold
and ω a Kahler form on Y, if any, in the cohomology class 2πcl( Y)R. Note
that the space 3£(Y) of all holomorphic vector fields on Y forms a Lie algebra.
Then a fundamental theorem of Futaki [10] states the following:

Theorem 5.1. Letfω be the real-valued C°° function on Y defined uniquely,

up to constant, by Ric(ω)—ω = \/^ϊdϋfω. Put c: = ((2π c^Y^Y])'1, where
n=dimc Y. We further define a linear map F=FY: 3£(Y)-*R by

Then this map F does not depend on the choice of ω. Moreover,
(a) F is trivial on the commutator subalgebra of 3£(Y).

(b) If Y admits an Einsteίn-Kάhler form, then F is trivial.

In order to compute this F for toric varieties, we introduce the following
quantities :

DEFINITION 5.2. Let Δ be a nonsingular finite polyhedral decomposition
of N. If GΔ is a Fano variety (resp. a projective variety with its hyperplane
bundle L), then we define an element αΔ(resp. «Δ,L) of MR to be the barycentre
of the polyhedron Σ-JΓ (resp. ΣL). Nemaly, the z'-th component of the vector
αΔ (resp. αΔf£) in the vector space MR(=Rn) is

I xidx1/\dx2Λ /\dxn / \ dx1/\dx2/\ /\dxn ,
JZ-K JZ-K

(resp. \ xidxl/\dx2/\--f\dxnl \ ^ Λ έfofe Λ Λ <&,,),
J^L J^ L

where (xly x2, •••, xn) is the system of standard coordinates of MR(=Rn). Obvi-
ously, αΔ (resp. αΔ>jL) is in MQ:=M®ZQ.

For toric Fano varieties, we can deduce from (4.2) the following simple
formula:

Theorem 5.3. Let GΔ be a nonsingular toric Fano viariety. In the notation

of (1.6) and (5.1), we put aι.:=jP(ίί8/9ίί) for each ί=l, 2, •••, n. Then

αΔ = (alya2y ••-,«„).

REMARK 5.4. (i) In Appendix C, we shall prove a more general version
of (5.3) above (cf. (9.2.3)).

(ii) We identify each element a = (alίo2y •••, αn) of MR with Σ?-ι didti/t^
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Lie(G)*. Then Theorem (5.3) shows that, for any nonsingular toric Fano
variety GΔ, the restriction F\Lie(G) of F: 3£(G±)-*R to Lie(G) coincides with αΔ.

In view of (5.3) and (5.4), we call the element αΔ of MR the Futakί invariant

of the toric Fano variety GΔ. Recall that, for a reductive algebraic group Hy

Lie (Center (H)) + [Lie (5), Lie(fl)] = Lie(fl) ,

and Lie (Center (H)) <ΞΞLie(T) for every maximal torus T of H. Since G is a

maximal torus of Aut(GΔ), (a) of (5.1) together with (5.3) implies

Corollary 5.5. Let G be a nonsingular toric Fano variety such that Aut(GΔ)
is reductive. Then F: 3£(G±)-»R is trivial if and only if αΔ=0.

Finally, note the following:

REMARK 5.6. Suppose that GΔ is a nonsingular protective variety with the

corresponding very ample line bundle L (where GΔ is not necessarily a Fano
variety). Even in this case, we have a theorem similar to (5.3). Actually, αΔ>L

coincides with

in the notation in Appendix A (see also (9.2.4)).

6. Concluding remarks

A finite polyhedral decomposition Δ of N is called canonically symmetric if
the following conditions are satisfied:
(i) Δ is nonsingular;

(ii) Δ has the property (d) of (2.1);

(iii) -1Z(Δ)=1Z(Δ);
(iv) αΔ=0.

Now, combining (1.5), (2.1), (2.4), (2.6), (b) of (5.1), (5.5), we obtain:

Theorem 6.1. Let X be as in Introduction. If X admits an Einstein-
Kahler form, then there exists a canonically symmetric finite polyhedral decomposi-

tion A of N such that X is G-equivarίantly isomorphic to GΔ.

In view of this theorem, (0.1) in Introduction is divided into the follow-

ing two problems :

Problem 6.2. Classify all canonically symmetric finite polyhedral decom-

positions of N (up to isomorphism).

Problme 6.3. Let Δ be a canonically symmetric finite polyhedral decom-

position of N. Then does GΔ admit an Einstein-Kάhler metric ?
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As for (6.2), if «^4, no definitive results are known so far except Voskre-
senskiϊ and Klyachko [23] classified all centrally symmetric finite polyhedral
decompositions Δ of N satisfying (i) and (ii) above (where such a Δ is always
canonically symmetric). In the case n^3, we can classify all canonically sym-
metric finite polyhedral decompositions Δ of N. Namely, the corresponding
GΔ is one of the following:

(a) For n =1: Pl(C).
(b) For n = 2: P\C)y P\C)xPl(C), S3.
(c) Forn = 3 : P\C), P\C) X P\C\ P\C) X P\C) X Pl(C), P\C) X 53,

-1)).

If n— 3, for instance, this classification easily follows from (2.5), since we can
eliminate the possibility of F\ as follows: Let 6', ft", 6(*} (0^&^6) be vectors
in N(=R3) defined as

b' =

In terms of these vectors, Δ for F* is characterized by

Δ(3) = {ZJb'+ZJbW+ZJbV, Z0b"+Z0b

and hence the associated compact convex polyhedron Σ-# has exactly 12 vertices:

(1,1,1), (1, 0,1), (1, -1, 0), (1, -1, -1), (1, 0, -1), (1, 1, 0),

(-2,1,1), (-2, 0, 1), (-1, -1, 0), (0, -1, -1), (0, 0, -1), (-1,1, 0).

It then follows that αΔΦθ.

As for (6.3), we have some results on S3 and P\C)xS3 (cf. [16]) by the
method of Section 3, though we do not go into details.

7. Appendix A

We here fix, once for all, a holomorphic line bundle L over a ^-dimensional
compact complex connected manifold Y. Assume that a complex Lie subgroup
S of Aut(Y) acts holomorphically on L as bundle isomorphisms covering the
^-action on Y. (If L=Kγ1^ then our 5-action on L is always assumed to be
the standard one on Kγl.) Let H be the set of all C°° Hermitian fibre metrics
of the line bundle L over Y. For each H&h, we denote by c^L; h) the first
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Chern form (V — l/2τr)ϋ3 log (h) of the metric h. Furthermore, note that S

acts on H (from the right) by

where s*h is defined by (s*h) (119 4): =A($(/ι), s(l2)) for all 4, /2eL in the same

fibre of L over Y. Now, to each pair (hr, h"}^HxH, we associate a real num-

ber RL(h', h")(=R by

RL(h', V'y. = l AΓ1 (2* ^(L; A,)

{Λf I a^t^b} being an arbitrary piecewise smooth path in H such that ha=h' and

hb=h". Then by a result of Donaldson*} applied to the line bundle L, the

number RL(h'y h") above is independent of the choice of the path {ht\

and therefore well-defined. Moreover, RL is S-invariant, i.e.,

RL(s*h',s*h") = RL(h',h") for all s^S and all A',

and satisfies the 1-cocycle condition, i.e.,

(i) RL(h',h")+RL(h",h') = 0 and

(ii) RL(h, h')+RL(hf, h")+RL(h", h) = Q,

for all hy h', h"^H. In particular, the number RL(hy s*h) depends only on s
and is independent of the choice of h^H. Now, by setting

one easily obtains (see, for instance, [14; §5]):

Proposition 7.1. rL: S-*R+ is a Lie group homomorphism from S to the

multiplicative group R+ of positive real numbers.

Let (rL)* : Lie(5)— >R be the Lie algebra homomorphism associated with rLy where

we always regard Lie(iS) as a Lie subalgebra of 3£(Y) (cf. §5). For each holo-

morphic vector field Fe3?( Y), we denote by VR the corresponding real vector

field F+Fon Y. Then,

Proposition 7.2. (i) Let D( £ Y) be an S-stable closed analytic subset of

Y. Suppose there exists an S -invariant holomorphίc section b over Y—D to the
dual bundle L* of L. For each h^H, let uh be the real-valued C°° function on Y—

D such that h=exp(—uh)b(&b on Y—D. Then

*) See Proposition 6 of S.K. Donaldson's paper "Anti-self-dual Yang-Mills connections over
complex algebraic surfaces and stable vector bundles", Proc. London Math. Soc. 50 (1985),
1-26.
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(7.2.1) (rL^(V) = - ^ VR(uh) (vd

/or all htΞH and all V^Lie(S).

(ii) Under the same assumption as in (i) above, we consider the case where L^Ky1.

Suppose further that L is ample. Then the restriction ίVLieCs) of Fγ (cf. (5.1)) to
Lie(S) satisfies

(7.2.2) Fr I Lie(s) = ((2π c^nF])-1 )̂* .

Proof. Since (7.2.1) is straightforward from the definition of RL, it suffices
to show (7.2.2). From the assumption of ampleness of L, there exists a metric
h^H for L=Kγl such that ω:=\/— 1 35wΛ extends to a Kahler form on Y in

the cohomology class 27rr1(F)Λ. Put Ω:=(\/^ϊ)rf(— l)^-1^ exp(-wA)
Then Ω is a volume form on Y satisfying

Ric(ω)— ω = \/^

where/: =log(Ω/α/). In view of ωrf=exp( — /) Ω, we obtain

0 == — 1 (Lie deriv. of exρ(— /) Ω w.r.t. VR)

ω<ί- ί exP(-/) (Lίe deriv of Ω w.r.t. ΓΛ)
v y

d = 2 Re ( V(f) ωd)+ VR(uh) ωd .

This together with (7.2.1) implies (7.2.2).

REMARK 7.3. In a forthcoming paper (cf. Bando and Mabuchi [3]), we shall

give a little more systematic treatment of (7.2) above.

REMARK 7.4. In view of the definition of RL, it is easy to extend the formula
(7.2.1) to the following slightly general case:

Fact. Let D, b, hy uh be the same as in (i) of (7.2). We further assume that

there exists an S-ίnvarίant morphism ζ: Y-*W of Y into a complex manifold W.
Fix an arbitrary line bundle L' on W and let hr be a C°° Hermitian metric for L'.
Put L"\ =ζ*L'®L. Then for all h^H and all V<=ΞLίe(S), we have:

(7.4.1) (rL,,}*(V) = — ^ VR(uh) (χ/=T 85ifjk+2rf**1(L'; h'})d .

REMARK 7.5. We here denote (rL)* by (rLtY)* to emphasize the base space
Y. Furthermore, assume that there exists a surjective S-equivariant morphism
λ: Ϋ-+Y from a compact complex connected manifold Ϋ endowed with a
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holomorphic S-action. Put L:=\*L. Note that the S-action on L naturally
induces one on L. Then obviously,

(7.5.1) (^Z.?)* = (degλ)(rLfr)J l t.

8. Appendix B

The purpose of this appendix is to prove a relative version of (4.2) and
(4.4). Let G (resp. Gc) be as in Section 1 (resp. 3), and P be a holomorphic
princiapl bundle over a complex connected manifold W with structure group G.
(Recall that, by standard definition, G acts on P from the right.) In our case,
however, G acts on P from the left by

(Since G is abelian, there is no essential difference between left and right fr-
actions.) Note that P is locally trivial, i.e., Wis written as a union of its open
neighbourhoods Wa, cίξΞA, such that for each α, we have a G-equivariant iso-
morphism

Let pr2: WΛxG-^G be the natural projection to the second factor and write G
as {ft, — , *n)U, <ΞC*} (cf. Section 1).

(8.1) Let Y be a complex manifold with an effective holomorphic G-action
containing P as a G-stable Zariski-open dense subset. We further assume that
there exists a G-invariant morphism ζ: Y—>W satisfying the following condi-
tions :

(8.1.1) The restriction ζ\P: P-+W coincides with the original principal bunlde
P over W\

(8.1.2) Pn:=(ζ\p)~l(ιo) is Zariski-open and dense in Yw:=ζ~\w) for each

(8.1.3) ζ is a protective morphism with the corresponding £-very ample line
bundle L: =0F(l)ePic(F);

(8.1.4) L is expressible as OY(D) for some effective divisor D on Y satisfying
Supp(Z>)cY-P.

We first observe that the G-action on Y naturally lifts to a linear G-action on
the line bundle L such that the following holds :

(8.1.5) Let ζ be the holomorphic section5*0 to L over Y which is identified, over
P, with the trivial section of constant value 1 in OP via the natural
isomorphism OY(D) \ P^OP. Then G acts identically on ξ.

*) This section ξ vanishes along Supp(D) so that zero(<f)=Z>.
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Note also that the cohomology class 2π £I(£)Λ *s represented by a Gc-invariant
C°° (1, l)-form ω on Y such that the pullback of ω to Ywy denoted by ωw, is a
Kahler form on Yw for each wt=W. Then there exists a Ge-invariant Hermitian
C°° metric h for L satisfying

(8.1.6) λ |p = exp(-w)f*®f*, and

(8.1.7) ω\P

for some Gc-invariant C°° function w on P. We shall now define in: P->MΛ,
Δ=ΔW, Σ= Σ3ι, («>ePF) as follows: For each a^A, put

and consider the real-valued C°° functions Λ:(IΛ), ̂ Λ), •••, x^ on P\Woί defined by

Now, on P| jpΛ, w above is regarded as a function #(20, x{*\ •••, Λ?S*}) in eσ, x(*\ •••,
^Λ). By the same argument as in Section 3,

(8.1.8) 95ww = Σ,.,X32 M/94α> 8«?°) (dt(fηt(V)Λ(dtfβW) on P. (we W.) ,

where «„, : =« | j,β. Let /n(α>) : P | w β-*ΛfB(=lZ*) be the mapping defined by

), -, (8«/8*«)

Then it is easily seen that m(Λ\ a^Ay are glued together defining a global map-
ping m: P->MR(=Rn) such that the restriction of m to each P | W<A coincides with
m(Λ). Now, let w be an arbitrary point of W and choose an a^A such that

. We can then regard Yw as a nonsingular toric variety by

Hence, there exists a unique nonsingular finite polyhedral decomposition Δ=ΔW

of N such that
(1) Δ can depend only on w and is independent of the choice of a.
(2) YW^GΔ as a toric variety.

Furthermore, Lw: —L\Yw is written in the form

L* = 0GΔ(ΣpeΔ(ι) I'P ^(p)) for some i p's in Z0 ,

via the identification of Yw with GΔ. Letting 6P be as in Section 2, we now define
an /z-dimensional compact convex polyhedron Σ^Σw in MR by

(8.1.9) Σ: = {αeMΛ|(α,&p)^z/p for all pSΔ(l)} .

Since !/„, is ample, the vertices of Σ are exactly {ασ|σeΔ(w)}, where each a9

denotes the unique element of M such that (ασ, &p)=z/p for all pGΔ(l) with
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^σ (cf. Oda [21]). Then we have:

Theorem 8.2. Let Q be the closure of the image τn(P) in MR. Then Q=Σ»
for all zϋ^W. (In particular, Σ— Σ«; and Δ^Δ^ are both independent of w.)
Furthermore, m: P-+MR naturally extends to a C°° map m: Y-+MR. Let vΰ be an
arbitrary point of W. Then m satisfies

(a) mΓ1^} Π Yw ^ ̂  single G-orbίt for each open face γ of Σ;
(b) m induces a diffeomorphism (including boundaries) between manifolds YW/GC and

Σ (=Σ«;) with corner s\
(c) m\γu\ YW-*MR coincides with the mapping τnUwtLw in (4.4) via the identification

of Yw with GΔ and is just the moment map: Yw->Lie(Gc)*(^MR) associated
with the Kahlerform ωw(=^/~^\ dduw) on Yw.

REMARK 8.2.1. Consider the case where W consists of a single point.
Then (8.2) above implies (4.4). If we further assume L=Kγ\ then (8.2)
shows nothing but (4.2) and (4.3).

Proof of (8.2). Step 1. Fix an a^A such that w^WΛ. For simplicity,
put #f : =#° and x{: =Λ#*), ι=l, 2, •••, n. Let 0^^, <2^ be such that ^=exρ
((— ̂ -/2)+\/^i^). Then (̂ , — , ZΛ) (resp. (xl9 — , xn, θly — , ΘΛ)) forms a
system of holomorphic local coordinates (resp. real local coordinates) of Yw.
Note that

(8.2.2) ZiQIQZi+ZiQIQz, = -2 8/8^ , l£i£n .

We now write the Kahler form ωw as V— 1 Σ, ,y Ujj dz^dZj on Pwy where u^
:=didj(uw). Put

in terms of the coordinates tl9 •••, ίn for G={(^, •••, ίn)|ί, eC*}. Then there
exist real-valued C°° functions ί̂̂ ^ , /=!, 2, ••-, w, on Y^ such that

(8.2.3) Vi\Yw = "Σj>kuϊk(djφWti) 8/8*4 , l^ί^n ,

(u?k) being the inverse matrix of (u^) (see, for instance, Kobayashi [12; p. 94]).
On the other hand, by (8.2.2), the real vector field (Vi)R (cf. Appendix A) is
written as

(8.2.4) (Vj)Λ = -2 8/8*, , l^i^n ,

on Yw. Now, on PW9 (8.2.3) above implies

(Lie deriv. of ωw w.r.t. (Ft )Λ) = 2^~^l dΰφWti .

Moreover, by (8.2.4),
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(Lie deriv. of ωw w.r.t. (Vt)R) = —2^/^\ 9^(8^/9^) .

Therefore, duw/dXi=—φWιi+CWti on Pw for some real constant CWti^R. Hence

rn\Pυj and — (φWtu *">9V») coincide up to translation, which implies the latter
half of (c). Since the former half of (c) is obvious, this proves (c).

Step 2. Put φwti\ ~—φw,i
JrCWti. Note that, for each i, φWti depends smoothly

on w, because both ddφwti( = Lie deriv. of — 2~lωw w.r.t. (F, )Λ) and φWti\pw

(=QuwldXi) depend smoothly on w. We then have a natural extension of m to a

C°° mapping ΐn: Y-*MR by setting, for each fibre Yw (zflG W),

m(y}: = (φwΛ(y), -, 9...(y)) , y^Ya.

Let Qw be the image rn(Yw) of Yw under this mapping m. Then by a result

of Atiyah [1; Theorem 2] applied to the compact Kahler manifold (Y^, ωw), our
Qw forms a compact convex polyhedron in MR such that

(a)' m"1(γ)Π Yw is a single G-orbit for each open face γ of Qw\
(b)' m induces a homeomorphism of Y^/G, onto Qw.

(Without using Atiyah's result, we can prove this by modifying the arguments

in Steps 3 and 4.) We now observe that Σ^ is an n-dimensional compact
convex polyhedron in MR only with integral vertices eM. Therefore, if Qw=

Σw (w&W), then the C°° dependence of tn\γu on w implies that Σw does not
depend on w at all. Thus, the proof of (8.2) is reduced to showing the follow-

ing:

(a)" ft,==Σ.;
(b)" m induces a diffeomorphism (including boundaries) between manifolds

YW/GC and Qw with corners.

Step 3. We may now assume without loss of generality that W consists of a
single point. Therefore, we may further assume P— G and Y=GΔ. Let GR

and GR be the same as in (ii) of (4.3). Then GR is naturally identified with Y/Ge.
Note that

GR= U C7?
σeΔOO

in terms of the notation in (1.4), where U*: = UσΓ\GRisa. coordinate open subset

of GR identified (diffeomorphically) with the product (RQ)n of /z-copies of R0 by

Now, fix an arbitrary element σ of Δ(n). Recall that the real-valued C°° func-

tions Xj=Xj(t), /=!, 2, •••, 7z, on G are defined by l ^ l 2— exp( — Xi) for t=(tl9 •••,

tn)EiG. Similarly, to the function %<Γ;i=X< Γ;f(ί)> we associate a new function
*,.=*,(*) on G by
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Then, in terms of the notation in (1.4), we have

(8.2.5) *, = (β(σ)', Jc) ,

where

Furthermore, put

Since exp(-u) £*®f* (cf. (8.1.6)) extends to a C°° Hermitian metric for L=

(?cΔ(ΣpeΔd) VpD(p)}> there exists a real-valued C°° function H: (RQ)"-+R such
that

n = Σϊ-i *< *< + flfa, -,r.) on £7*,

where rf : = | %σ ; , |
 2 (=exp (—#,-)) and v{ : =vpr We can now give a closer look at

the function u=u(xly •••, xn)=u(Xly •••, ̂ Λ). For example, their first and second

derivatives with respect to X19 •••, %n are computed immediately:

(i)

(ii)

Recall that (α(σ)1, &(σ)y)— δ, ; . Hence, combining (i) with (8.2.5), we obtain

rjy n.

be the points U? corresponding to the origin of (R0)
n (i.e., r1(p<r)=r2(p<r)

==...=Γjι(ίσ)==0). Then by (i)', (m(p9\ b(σ)i)=vj for ally. Thus,

(8.2.6) m(pσ) = aσ.

Now, fix an arbitrary point y of t/£ and put 7: = {ίe{l, 2, •••, w} 1^(3;)= 0}.

Then we may assume without loss of generality that /={!, 2, •••,?} for some

q with Q^q^n (where if q=Q, we always assume /— φ). In view of (8.1.7)

and (8.1.8),

ω = X/=T Σ (8^/8*f.8*y) (rf %σ ̂  0 Λ (rf Xσ y/^σ y)
*»/ = !

on ί7σ in terms of holomorphic local coordinates ( X v ; ί y •••, %<r;») Rewrite this
identity, using (ii) above. Then, when evaluated at y,
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ω(y) = ,/ ΐ̂ Σ/β/(afl/8r4) (y) dX. . t

=ϊ Σ

723

where the last summation is taken over all f,/e{l, 2, •••, n} such that /
and j>q. Since ω is a Kahler form, it follows that:

(8.2.7) (9tf/8r,) (j)>0 for all ιe/, and

(8.2.8) ((QfaldXidXj) (y))ι<ijzH is a positive definite matrix.

On the other hand, the Jacobian/(m)y of the mapping m: U?-*MR at the point
y in terms of the coordinates (rl9 •••, rn) for U* is computed as follows:

(fn)y = detV ^

= ±det

= ±det

\
0

«<, ,ys»/ ,

where the last identity follows from

(y) = -(β fl/βΓiβr,) rt-Bt , (cf. (ii)) .

Now, in view of (8.2.7) and (8.2.8), we obtain /(m),Φθ. This together with
(b)' (cf. Step 2) yields (b)/x. Hence, it suffices to show (a)", i.e., 0=Σ For
eachj, let jy be the point in f/f such that ri(yj)=(l—Sij) rt(y), l^i^n. Then
by (i)', (m(yy), 6(σX)=^. On the other hand, by (i), (i)' and (8.2.8),

_

9r
on

Therefore, we have

(8.2.9) (m(y),b(<r)')^(

Step 4. In this final step, we complete the proof of Q=*Σ, assuming that W is
a single point. Let y be an arbitrary point of GR. Then y e U* for all σ e Δ(n).
Hence, by (8.2.9), (fn(y), b(σ)j)^Vj for all σ and;, i.e., m(j)eΣ. Since Q is
the closure of ϊn(GR) (=m(G)) in MΛ, we now obtain Q^Σ Recall that Q is
a compact convex polyhedron in MR (cf. Step 2). Therefore, (8.2.6) immediate-
ly implies 0=Σ
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9. Appendix C

In this appendix, by using a measure dμ of Duistermaat-Heckman's type
(cf. [7]), we shall generalize the integral formula of Koiso and Sakane [13] on
Futaki invariants. Our present result includes, at the same time, (5.3) and
(5.6) in the earlier section as special cases.

DEFINITION 9.1.1. Let Y be a complex connected manifold endowed with
an effective holomorphic G-action, and Δ a nonsingular finite polyhedral
decomposition of N. Furthermore, let ζ: Y—*W be a proper G-invariant
morphism of Y onto a connected complex manifold W. Then a pair (ζ: Y-*W,
GΔ) is called a torίc bundle if the following conditions are satisfied:

(a) p is locally trivial, i.e., IF is a union U Λ^A WΛ of its open subsets WΛy

such that for each a, there exists a G-equivariant isomorphism

(b) If a, β^A are such that WΛΓ\ W^Φφ, then there exists a holomorphic G-

valued function tΛβ=tΛβ(w) on WaΓi Wβ such that

'α^βV, X) = («>, tΛβ(w) x)

for all 10 e WΛ Π H^ and all # e GΔ.

REMARK 9.1.2. In the above, let ̂ rltΛ: Pt^X GΔ->GΔ be the natural projec-

tion to the second factor. Put P: == U ae^M.*0*-)""1^)- Then ? I P P~*W is
naturally regarded as a principal bundle with structure group G.

DEFINITION 9.1.3. Let (ζ: Y-*W, GΔ) be a toric bundle and L a line
bundle over F. Then a triple (£: Y-*W, GΔ, L) is called a polarized toric

bundle if there exists an effective divisor D on y such that
(a) L=0Y(D)-,
(b) Supp(D) c y— P, where P is as in (9. 1 .2)
(c) Z> I ΎW is an ample (or equivalently, very ample) divisor on Yw for each w^W.

REMARK 9.1.4. For a polarized toric bundle (ζ: Y-+W, GΔ, L), one can
easily check that y, W, P, L, D above always satisfy the conditions (8.1.1)~
(8.1.4) in Appendix B. Conversely, let Y, W, P, L, D be as in Appendix B
(satisfying the conditions (8.1.1)^(8.1.4)). Then by Theorem (8.2), the cor-
responding Δ— ΔH, is independent of 20, and it easily follows that the associated
triple (ζ: Y->W, GΔ, L) forms a polarized toric bundle.

(9.2) We now fix a polarized toric bundle (ζ: Y-+W, GΔ, L). Then for each

peΔ(l), the subsets (^ι,Λ°O~1(^(p))> &^A, of Y are glued together defining
a global prime divisor, denoted by D(ρ)> on Y. Hence, the divisor D (cf.

(a) of (9.1.3)) is written as ΣpeΔd) *>P D(p) f°r some pp's in Z0. We thus have
the corresponding rc-dimensional compact convex polyhedron Σ in MR defined
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by (8.1.9).

REMARK 9.2.1. Let ak, k=Q, 1, ••-, s, be the integral points in Σ> i.e.,

Σ Π M = {α k\ 0 ̂  A ̂  j} . Furthermore, put

where on the right-hand side, we used the notation in Section 1. Then the
mapping

extends to an embedding: GΔζPs(C) such that the corresponding hyperplane

bundle on GΔ is <9GΔ(ΣpeΔ(ι) ^P ̂ (p)) (cf. Oda [21]). In particular, the pullback
(=V~^ϊdd log(Σί-o|%*|2)) of the Fubini-Study form on PS(C) to GΔ is
positive definite everywhere on GΔ.

DEFINITION 9.2.2. Since G— (C*)n, we can componentwise express tΛβ—
tΛβ(w) in (b) of (9.1.1) in the form

U«0 = (*$(«0> *(-?(«0> -> 4}H)> ™^wΛ π wβ .
Hence for each z, the system of transition functions {t(dβ}ΛtβeA defines a holomor-
phic line bundle L(ί) over W. Let P(i\ : =L(i>— (zero section)) be the C*-bundle
over W corresponding to L(ί). Then, in terms of the natural identification

we can write each point p of P as

with />(ί)eP(ί), ί=l, 2, ••-, n. For each /, fix an arbitrary C°° Hermitian metric
hf on L(0 and define a C°° function Z—Z^p) on P by

exp (-*,(#)) = Aί(ίW,ί«)>

We shall now show the following formula:

Theorem 9.2.3. Put e: = dimcW and <γnfe: = (n+e)\/e\. Let L' be an
arbitrary line bundle over W and put L": =ξ*L'®L. We now assume that W is
compact. Furthermore, let x=(xί9 x2, •••, xn) be the system of standard coordinates
on MR(=Rn), and let T=T(x) be the polynomial in xl9 ••-, xn defined by T(x): =

7nΛcι(LΊ+^^xjcι(LU)))e[w]' τhen in terms °f tne notation in (1.6) and
Appendix A, we have:

(a) (rL»)*(tidldti) = (2π)n+e x< dμ , l^i^n ,
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(b) c,(L"

where dμ : = T(x) dx1/\dx2/\

REMARK 9.2.4. In (9.2.3) above, assume that W is a single point. Then
by e=Q, T(x) is nothing but the constant function 1 on MR. Hence, (5.6) is

straightforward from (9.2.3) above. We further obtain (5.3) by setting L=Kγ1

(see also (7.2.2)).

REMARK 9.2.5. Note that dμ is a polynomial measure on MR. If L is

ample on the whole space Y, then this fact is already observed by Duistermaat

and Heckman [7] (see especially their formula (1.11)).

Proof of (9.2.3). Step 1. Let u=u(X1(p), •••, $H(p)) be the C°° function in

ZI=ZI(P), -, %n=Zn(p) defined by

u: = log(ΣLo

where

l*ι(P)

x(p): = TO) (p<ΞP).

Let ξ be the holomorphic section to L over Y as in (8.1.5). Then, in view
of (9.2.1), the metric exp(— u) £*®|* for L\P extends to a Gc-invariant C°°

Hermitian metric, denoted by h, for the whole line bundle L such that the

pullback of ^(L, h) to each fibre Yw is positive definite. We now have the cor-
responding m:P-+MR as in (8.1). Note that, for each w^W, the image

m(Pw) is just the interior of Σ Furthermore, one can easily check that the

mapping m is given by

m(p) = ((du/dSί,) (p), .», (duldXn) (p)) , p<ΞP .

Step 2. Fix an arbitrary point to' of W, and let U be a sufficiently small neigh-

bourhood of vΰ' in W. Over this Uy choose a holomorphic local base ^ for

each line bundle L(ί) and write Λ(ί) as/i(zo)sf ®5f for some positive C°° func-

tion /,•=/,•(«>) on U. Note that, by a suitable choice of -fo}, we may assume

/,(«>') = 1 and (if/,) («>') - 0 for all i.

We now choose a system (w^, •••, we) of holomorphic local coordinates on U and

write each point w of [7 as w=(wly •••, «?β) in terms of these coordinates. Then

by the isomorphism
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» (W, ί = («!, -, *„)) ,

we may regard (zθj, •••, w4) ίj, •••, <β) as a system of holomorphic local coordinates
onP\u. Since

the following holds at each point of the fibre Pw> :

83u = 8{ΣJ-ι(8«/8*y) (-W?/)-

- Σ, .y(8Vί/3*, 8*y) (dtilti)

Now, define real-valued functions 0;S#y<2;r on Pw/ by

t} = exp((-*y/2)+V=ϊ ̂  ) , j=l, 2, -, H ,

and set Vi:=tidldti. Furthermore, let h' be a C" Hermitian metric for L' and

put:

T": = Y^feίL'; A')+Σ5-ι *> ̂ ω;

Then in view of (cf. (8.2.2))

d t j Λ d ϊ j l l t j l * = V^ϊdXjΛdθj and

we have:

(c) (-

= (2π)° \
J

= (2^)»+ί f.
J χ

= (2π)"+e \ {Xί τ"(w')} dxι/\dx2/\ /\ dxn ,
J 2

where we obtain the last identity by setting xj=duld%jί ./=!, 2, •••, w. Similar
computations also show that:

(d)

Step 3. In view of (7.4.1), the integration of (c) over W yields (a). Since

(\/ —\j2π) dfiu+c^L'', h') represents c1(L//)> we obtain (b) by integrating (d)
over W.
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(9.3) We here assume that n— 1, i.e., G— C*. Fix a holomorphic line bundle
Ll over a compact complex connected manifold W and consider the vector
bunlde E:=OWΦL1 of rank 2 over W (where vector bundles and locally free
sheaves are used interchangeably if there is no fear of confusion). We now
put Y:=P(E*) and let ξ: Y-+W be the natural projection. Then Y= (E—
(zero section) )/C*, and L1 is regarded as a Zariski-open subset of Y by

L! c-» P(E*) (= 7) , / h-> (10/) modulo C* .

Via this inclusion, the zero section of L± defines an effective prime divisor,
denoted by D0, on Y. Note that we have another divisor 0^:= Y—L^Ό'^Y)
on Y. Put P:==L1—D0. Then the natural C*-action on the line bundle L}

extends to a holomorphic action of G=C* on Y with the fixed point set D0 U Λ».
Furthermore, P is regarded as a principal bundle over W with structure group
G. Let (n'y n") (Φ(0, 0)) be a pair of nonnegative integers which will be specifi-
ed later. Put D: =nfD0+n//D00^Όiv(Y). Then L: =OY(D) is a f-very ample
line bundle on Y. We thus have a polarized toric bundle ( ξ : Y-»W, Pl(C), L).

REMARK 9.3.1. Fix an arbitrary C°° Hermitian metric hλ for the line bundle
LI. Now, recall the arguments in Step 1 of the proof of (9.2.3). Then, in view
of (9.2.2), we can define real-valued C°° functions %=%(p] and u=u(p) on P by

u(p): = Λ

We also have the corresponding mapping m: P-*MR(=R) as in (8.1) and more-
over, it is given by

Note that, for each w^Wy the image m(Pw) is the interior of the closed interval
Σ=[_n",w'].

DEFINITION 9.3.2. Let Y(1) (resp. F(2)) be a compact complex connected
manifold on which G acts holomorphically and effectively with the corresponding
fixed point set D(1) (resp. D(2)). Furthermore, let {D(

t

2)|z'e/} be the set of all
connected components of Z)(2). Then a surjective G-equivariant morphism λ:
y(i)_>y(2) jg caιiecι a G-collapsing if the following conditions are satisfied:
(1) λ maps yw— ZJW isomorphically onto y<2)-D(2).
(2) There exists a (possibly empty) subset /of 7 such that λ : y(1)-» Y (2) is the

monoidal transformation of y(2) with centre U ;e/ D(f\ (If/ is empty, then
X is nothing but an isomorphism of y(1) onto y(2).)

We now fix an arbitrary G-collapsing λ: Y-*Ϋ for Y above, and let n'y n"
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be respectively the (complex) codimension of λ(Z>0)> λ(ZXo) in Y. Write G as
{t 1 1 eC*} . Then, Theorem (9.2.3) allows us to obtain the following refinement
of the integral formula of Koiso and Sakane [13] on Futaki invariants:

Theorem 9.3.3. Put e: =dimcW^ Writing for brevity K^1 as L3 we have:

(a) (>7.?)*(f8/80 = (2π)e+1(e+l) f" x(Cl(W)+x ^(^[W] dx .
J -n"

Suppose now that Ϋ is a Fano manifold, i.e., L is ample. Let F? |Lie(c) be the

restriction of F? : 3£ (Ϋ)-»R to Lie(G) (cf. (5.1)). Then

(b) FHLiβte> = 0 if and only if x(Cl(W)+x ^(^[W] dx = 0 .

Proof. Note that Oγ(\^L)=Oγ(Kγ1)®Oγ((nf-l) ZVf(tf"— 1) D00} = OY(
(ζ*Kwl}®L). Hence by (9.2.3) applied to L'=Kw\ the right-hand side of (a)

is (*λ*Z,r)*(*9/90 This together with (7.5.1) yields (a). Now, (b) is straight-
forward from (a) in view of (7.2.2) applied to S=G.

(9.4) Now, let Y be a ^-dimensional compact complex connected manifold
endowed with a holomorphic effective action of G=(C*)n. Assume that there
exists an ample line bundle L on Y with a fibrewise-linear holomorphic G-action
which covers the action on Y. Then we have a Kahler form ω on Y represent-

ing 2π £I(£)Λ Express ω as >/— 1 Σ g«β dz* /\dz^ in terms of holomorphic local
coordinates (z\ z2, •••, zq) on F. Let V^!£(Y) be the image of ί,3/9ίteLie(G)

under the natural inclusion Lie(G)C«3ί(50 Now, for each /, there exists a
real-valued C°° function φ{ (which is unique up to an additive constant) such that

Vi = Σ*,β /" 9β <Pi 9/9^ (cf . Step 1 of the proof of (8.2)) .

For each a=(aly a2, •••, αΛ)eΛM(=MΛ), we define a mapping mα: Y-*MR by

Then the image ^a:=ma(Y) is an w-dimensional compact convex polyhedron
in MR (cf. Atiyah [1]). Recall that the push-forward by ma of the symplectic

measure (ω/2π)q is a piecewise polynomial measure, denoted by dμy on MR of
finite total volume Cj(L)9[F] (cf. Duistermaat and Heckman [7], Atiyah and Bott

[2])

DEFINITION 9.4.1. Let α be the unique element of MR such that

(2π)q jsα *, dμ = (rL)*(tflldt,) , l^i^n ,

where (xlt •••, xn) is the system of standard coordinates on MR(=R"). We then
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denote ma by m. Now, the mapping m: Ύ-*MR is called the -strict moment map

associated with the Hodge metric ω on Y. Note that, in view of Theorem

(9.2.3), this m is compatible with the one defined in Appendix B.

REMARK 9.4.2. Suppose that the Kahler form ω represents 2π q( Y)R. In

this special case, one has the following fact (which I owe to a suggestion by A.
Futaki): Let ω be the Kahler form on Y such that Ric(ώ)=ω and that ώ is

cohomologous to ω. Then the strict moment map m: Y-^MR(=Rn) associated
with ω is characterized by

m(y) = (-

where each φ{ is a real-valued C°° function on Y such that the following con-
ditions are satisfied:

(a) φ{ coincides with φ{ up to an additive constant;

(b)

10. Appendix D

In [22], Sakane constructed examples of Einstein-Kahler metrics on non-

homogeneous Fano manifolds. Afterwards, these were reformulated and gen-

eralized by Koiso and Sakane [13 Theorem 4.2], where almost at the same time,

the author found a very simple proof for their results. (A little later, Bando
also obtained a similar proof independently.) Since this new proof has the ad-

vantage of describing Einstein-Kahler metrics very explicitly, we here explain
the detail.

Assume now that w=l, i.e., G=C*. Let Ϋ be a compact complex con-

nected manifold endowed with a holomorphic effective G-action such that the
corresponding fixed point set consists of just two connected components DQ and

JDoo. Furthermore, assume that Ϋ is of class C, i.e., Ϋ is bimeromorphic to a

compact Kahler manifold. Note that, via isotropy representation, our G-action

on Ϋ naturally induces a G-action on the normal bundle N(D0: Ϋ) (resp.

N(Doo: Ϋ)) of DQ (resp. ZL) in Ϋ. We finally assume that each element of G
acts on both N(DQ: Ϋ) and N(DCX): Ϋ) as scalar multiplication of the vector

bundles.

REMARK 10.1. Blow up Ϋ along D0 and ZL. We then have a G-collapsing

λ: Y-»Ϋ(cf. (9.3.2)) such that DQ: =\~\DQ) and Z)ββ:=λ"1(-Dβo) are nonsingular

irreducible divisors on Y fixed by the G-action. Put P: = Y— (DQ U Zλ.). Then
by the generalized Bialynicki-Birula decomposition of Fujiki [8] (see also Fujiki
[9; (6.10)], Carrell and Sommese [5]), we have a natural G-equivariant identifica-

tion of P U A (resp. P U Zλ,) with N(D0 : Y) (resp. N(DM : Y)) (cf . [15]). Hence,
by reversing the G-action, one obtains from N(D0 : Y) — (zero section) the
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C*-bundle N(D00: Y)— (zero section) over W:=P/C*^DQ£*D00. There now

exists a line bundle LΊ over W such that L1=N(DQ: Y) and that Lϊl=N(D00: Y).

Put JF:=Oιr0L1. We can thus regard F as P(E"*) and furthermore, exactly

the same situation as in (9.3) happens. (Therefore, until the end of this ap-

pendix, we freely use the notation of (9.3).) Let e: =dimcy— 1. Then by (b)

of (9.3.3),

(10.1.1) Frluefc) = 0 ifandonlyif //x(c1(W)+X ^(^[W] dx = 0 ,

where ri and n" are respectively the (complex) codimension of DQ and ZL in Ϋ.

DEFINITION 10.2. For simplicity, put P\ =λ(P). Recall that every element

of G acts on both N(D0: Ϋ) and N(D00: Ϋ) as scalar multiplication. Hence,
applying again the generalized Bialynicki-Birula decomposition of Fujiki [8] (see
also Fujiki [9; (6.10)]), we have a natural G-equivariant identification of P\J D0

(resp. jPuAo) with N(D0: Ϋ) (resp. Λ^ZL: Ϋ)). Now, let h be an arbitrary

C°° Hermitian metric on Lλ. Note that this h naturally induces a Hermitian

metric, denoted by /Γ1, on the dual bundle Lΐl of Lλ. In view of the identifica-

tions

(Lj— (zero section)) = P^P = (N(D0: Ϋ)— (zero section))

and

(Lr1— (zero section)) = P^P = (N(D00: Ϋ)— (zero section)) ,

the Hermitian norm || ||A (resp. || ||Λ-ι) on Lλ (resp. Z/Γ1) induces a norm on

N(DQ: Ϋ) (resp. ΛΓ(J5o.: Ϋ)). Then for a Kahler form ω on W, (h, ω) is said to

be a tight pair if the following conditions are satisfied :

(1) The norms on N(OQ: Ϋ) and N(D«, : Ϋ) induced from h are those associated
with some C°° Hermitian metrics of respective vector bundles.

(2) ω is an Einstein-Kahler form satisfying Ric(ω)— ω.

(3) The eigenvalues of c^L^ h) with respect to ω are constant on W.
(4) λ-^V^-^ωXΛΘpΛSp} (resp. \-» {-,**" ~l> (f*ω)'Λ8τΛ3τ}) on P ex-

tends to a C00 (nonvanishing) (e+1, ^+l)-form on N(D0: Ϋ)(=P\jΰ0)

(resp.ΛΓ(J5«

where ξ: Y(—P(E*))->Wis the natural projection and p: ^^^^(resp. r: Z/Γ1-*

K) denotes the norm function defined by p(x): =| |Λ?| |A (resp. τ(x): =||^|L-1) for x
in L! (resp. Lr1). In particular, if n'=n"=l, then (hy ω) is a tight pair if and

only if (2) and (3) are satisfied.

We shall now give a slight modification of the result of Koiso and Sakane
[13; Theorem 4.2]:
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Theorem 10.3. Assume that Ϋ is a Fano manifold, i.e., K^1 is ample.
If there exists a tight pair (h, ω), then the following are equivalent :

(a) *>lLie(G>=0;
(b) Ϋ admits an Einstein-Ktthler form.

Proof. In view of (5.1), it suffices to show that (a) implies (b) under the

assumption that (h, ω) as above exists. The proof consists of four steps.

Step 1. Let μι^μ2^
tt '^μe be the constant eigenvalues of 2πcl(Ll\h) with

respect to ω. Put D: =nfD0+n//D00 and L: =OY(D). Then \*Kγl=L®ζ*Kwl

(see the proof of (9.3.3)). Hence, via the identification of D0 (resp. /)„,) with W,

we have :

(resp. λ**;1!*.. - (LΓ1)*1"®**) -

Therefore, via the identification of W with D0 (resp. /)«>), the cohomology class
n'cl(L1)R+c1(W)R (resp. -n^c^L^^c^W)^ in H2(DQ: R) (resp. H*(D»: R)) is

represented by λ*00 (resp. λ*0oo) for some positive definite (1, l)-form 00 (resp.
0oo ) on DQ (resp. jDoo). On the other hand, 2πc1(W)R is represented by the Kahler
form ω. We now have the following:

1) If -fl"<*<n', then (ωe[W])Ul^(l + μk

χ)=i2π(c1(W) + xc1(Ll))}e[W]

>0 and in particular 1+μ* #>0 for all k.
2) The smallest nonnegative integer m such that (c1(W)-{-nfcl(Ll))m+1 (resp. (^

(W)— n//c1(L1))m+l) is numerically trivial is dim^ DQ (resp. dimCjDoo). Hence

the order of zeroes of Πί-ι(l+μ* x) at x= n' (r^sp. x=— n") is n' — 1 (resp.

Step 2. Define a polynomial A=A(x) in x by

Note that, by our condition (a), we have A(n')=A(—n")=Q (cf. (10.1.1)). In

view of 2) of Step 1, the order of zeroes of A(x) at x=nr (resp. x=—n") is n'
(resp. n"). Furthermore, by 1) of Step 1, both 0<A(x)^A(0) and A'(x)lx<0

hold for all nonzero x with —n"<x<n'. In particular, the rational function

Af(x)l(xA(x)) is free from poles and zeroes over the open interval ( — n" , n')y

and has a pole of order 1 at both x=n' and x=—n". Now,

is monotone increasing over the interval (—nf/, n') and moreover, B maps (—n",
n') diffeomorphically onto Λ, because in a neighbourhood of x=n' (resp. x=
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—n"), B(x) is written as —log(n'—x) + real analytic function (resp. log(x-\-n")
+ real analytic function). Let B~l: R-*(— n", ri) be the inverse function of
B: (—rir, ri)-*Ry and define a real-valued C°° function r=r($) on P by

Note here that, since (A, ω) is a tight pair, (1) of (10.2) shows that (λ"1*/))2 (resp.
(λ"1Hίτ)2) extends to a C~ function on Pu A (resp. PU^L). We now define a
C°° function #— #(r) in r by

*(r):=5-V ) (i.e., r = B(x(r}}} .

Then ιι(r): = -log(A(x(r))) satisfies (cf. (10.3.1))

(*) u"(r) Πi-ι(l+/** t/'(r)) - exp(-κ(r)) ,

since we have the identities χ'(r) = — x(r)A(x(r))/A'(x(r)), u'(r)=x(r) and A'(x(r))

3. Now, let η be the (έ?+l, £+l)-form on P defined by

η: = x/^ϊ 4(^+1) expί-^r^λ-^r

(= v/IΓϊ 4(^+1) expί-^^λ-

In this step, we shall show that 97 extends to a volume form on Ϋ. First, in

view of Step 2,

r = — log(n'— x(r)) -f real analytic function in x(r) ,

(resp. r = log(w"+#(r)) -f real analytic function in x(r)} .

Hence, (λ"1*^)2 (resp. (λ-1*τ)2) is written as a real analytic function in x(r) with
a simple zero at x(r)= n' (resp. —n"). On the other hand, Step 2 shows also
that exp(— u(r)) is a real analytic function in x(r) with zeroes of order exactly n'

(resp. n") at x(r)= n' (resp. —n"). Thus, in a neighbourhood of D0 (resp. /)«,),
(λ~1*p)~2Λ/exρ(— u(r)) (resp. (λ~1*τ)~2w//exp(— w(r))) is written as a nonvanishing

real analytic function in (X-1*p)2 (resp. (λ'^r)2). Since (A, ω) is a tight pair, (4)
of (10.2) now implies that η extends to a volume form on Ϋ.

Step 4. Regarding η as a volume form on Ϋ (cf. Step 3), we shall finally show

that ώ:=\/— 1 99 log η is an Einstein-Kahler form on Ϋ. Fix an arbitrary
point WQ of W. Then over a sufficiently small open neighbourhood U of w0

in ίF, there exist a holomorphic local base σ for Z/x and a system (zί9 #2> "*> #«)
of holomorphic local coordinates on U such that

1) h\u=H(w)σ*®σ* for some positive real-valued C°° function H—H(w) on U
satisfying both H(wQ) = 1 and (dH)(wQ) = 0;
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2) ω(zΰ0) = \/^T Σ* - 1 d*k Λ dzk

3) (38ff)(»o) - X/17! Σi-i /** dz

Via the identification

we regard (#!, #2> •••, %ey t) as a system of holomorphic local coordinates on the

open subset P \ υ of Y. Then over P \ Uy

Note that Ric(ω)=\/^Γϊ <53 log ωe=ω. Hence along the fibre PWQ,

χ*α> - x/^ϊ 33λ*(tt(r)) + £*ω

"M) dt/\dtl\t\z + V^ϊ λ*(w'(r)) 93 log

(see, for similar computations, Step 2 of the proof of (9.2.3)). Therefore, when

restricted to \(PWQ)y the (1, l)-form ώ is written in the form

v/=ϊ u"(r) \-l*(dt/\dt\ I ί 1 2)+\/=Ί Σi-ι(l+^ u'(r)) \-l*(dzk/\dzk) ,

which is positive definite in view of (*) of Step 2. Consequently, along λ(PWo),
we can express ώe+l as

!+/»* «'(»•))> λ-1* {(23 v/^Ϊ
^1 *=1

and hence ώ*+1=?7 (cf. (*) of Step 2). Since a?0 is an arbitrary point of Wy we

now have Ric(ω)=ω everywhere on Ϋ. Thus, ώ is an Einstein-Kahler form on

Ϋ.

REMARK 10.3.1. Let K^R+ and μk^R (Λ=l, 2, •••, e). Furthermore, let
α, ό, c be real numbers such that l-\-μk c^=Q for any &. Then, for a sufficiently

small £>0, we can here give a complete solution of the ordinary differential
equation

(1) /'(*) Πί-ι(l+A**/(*)) - ̂  exp(-y(Λ?)) , a-e<x«z+ε ,

with the initial conditions

y(a) — ό and y'(a) = c .

In order to solve this, we put s: —y'(χ) and yl: — exρ(— y(x)). Since yx(^) does

not change its sign over the interval (a—£, #+£), the inverse function theorem

allows us to regard x as a C°° function x(s) in s. Consequently, A is also regarded
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as a C°° function A(s) in s. Then

A'(s}y"(x) = (dA/ds) (ds/dx) = dA/dx = -sA(s) .

In particular, multiplying both sides of (1) by A'(s)/A(s), we have

Thus, x and y(x) are written in terms of the parameter s as follows:

(2) y(X)=-logA(s),

where A(s) is the polynomial exp(— b) — K'1 \ t Πl-ι(l+^* t) dt in s. As for
x, we have

ds/dx = /'(*) = (Πi-iO+A** ί)Γl K A(s) , (cf. (1)) ,

and therefore,

(3) * = «+ Γ(Πi-ι(l +/**«)) ^•'ΛW'A.
Jc

Now, (#, y(x)) moves along the curve parametrized by (2) and (3) above.

REMARK 10.3.2. We apply the above construction of Einstein-Kahler metrics
to the case where Y=Ϋ=P(E*) with E:=Ow®Ow(ky -k) and W:=Pm(C)x
Pm(C) (m<=Z+y l^k^m). Note that Lx: =Ow(k, —k) denotes the line bundle

prfOp»(k)®prtOp»(--k) over W, where prt: Pm(C) X P*(C)-+Pm(C) is the
natural projection to the i-th factor (i=l, 2). Now, let σ: QQ(Cm+l)-*Cm+l be
the blowing-up of Cm+1 at the origin 0=(0, •-, 0) of Cm+\ and let

p:Cm+1-{0} ^Pm(C)

be the natural projection. Then the rational map poσ: QQ(Cm+1)-*Pm(C) easily
turns out to be a morphism, and via this morphism, we can regard Qo(Cm+1) as
the line bundle F:=OP

m(— 1) over Pm(C). Hence, via the identification of
Cm+1— {0} with F— (zero section), the function

Cm+1- {0} 3(*0, «ι, -, *«) H» \/|^0 |
2+|^|2+ . +|^

is viewed as a Hermitian norm of the line bundle F. Since L1=pr?(F®~k)®prf
(ί1®*), this Hermitian norm on F induces a natural norm || ||Λ on Lλ associated
with a Hermitian metric h for Lλ. We can now define p: L^R by p(ϊ): =|| / | | A

Note moreover that the Fubini-Study form ω0 on Pm(C) is defined by
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Then, ω:=(m+l) (pr?ω0+pr$ωo) is an Einstein-Kahler form on W such that
(h, ω) is a tight pair (cf. (10.2)), because the eigenvalues μ^μz^ ••• ^μ2m of
2π (̂ίq h) with respect to ω are all constant. In fact, we have

Recall that G(:=C*) acts on the line bundle Lx by scalar multiplication and
that Y(=Ϋ) is naturally a G-equivariant compactification of Lx (cf. (9.3)). Now
by

we have ^r|Lie(G)— 0. Hence we can find an Einstein-Kahler metric on F as
constructed in the proof of (10.3) (see also Sakane [22]). Let A(s) be the poly-
nomial in s defined by

A(s): = - v(l-k2 v2(m+\Y2)m dv .
J-i

Furthermore, define a C°° function x= x(ρ) in p by

p2 - exp -(!-

Then97:-=v/z:T(8m+4)^(Λ;(p))(ξ'*ω)2mΛ3pΛ5p/ρ2 extends to a volume form
on y, where ?: L^W denotes the natural projection (cf. Step 3 of the proof of
(10.3)). Then in view of Step 4 of the proof of (10.3), we can now conclude that
ώ:— >/— 1 S3 log -η is the Einstein-Kahler form on Y such that ω2m+l=η.
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