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1. Introduction

Real analytic actions of the special linear group SL(n, F) on analytic mani-
folds M are classified by C.R. Schneider [6] in case that n=2, F=R and M is
any closed surface, and by F. Uchida [7-8] in case that M is the m-sphere S™ with
5=n=m=<2n—2if F=R and 14<2n=m=<4n—2 if F=C.

In this paper we are concerned with smooth SL(2, C)-actions on closed 3-
manifolds M? Note that SL(2, C) is simple and contains SU(2) as a maximal
compact subgroup. Then we have the following (cf. [1; Th.1.3])

(1.1) If SL(2, C) acts non-trivially on M3, then so does SU(2) and M? is a
quotient space of S® or S?X S*; S%Z, or (S X SY)Z, (Z, is a cyclic group of order
n).

By this reason we are concerned mainly for the case M*=S? and we study

the equivariant homeomorphism classes of such actions.
In case of transitive actions, we see the following

Theorem 1.2. There are real analytic SL(2, C)-actions ¢, on S® for rER,
which are not equivariantly homeomorphic to each other, and any transitive SL(2, C)-
action on S® is equivariantly diffeomorphic to some ¢, (see (4.1) for the definition

of ¢)-

In case of non-transitive actions, the classification of SL(2, C)-action on S*
can be reduced to that of pairs of a one-parameter transformation group on
S*(cC) and a real valued smooth function on S'— {--1}; and further to that of
triads of subsets 4 and B; (i=1, 2) of S* satisfying

(1.3) (A1) A(=¢) is a finite union of closed intervals, AN J(A)=¢ and
the components of A alternate with those of J(A), where ] is the reflections on S* in
the real line.

(A2) B;(i=1, 2) are open in S* and B,U B,C A—0dA.

Such triads (A, B;) and (A’, Bf) are called A-equivalent if there is an orienta-

tion preserving homeomorphis ® of S* onto itself such that ®J=J® and
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(1) &) =A', ®B;)=Bior (2) D) =J(A), DB;) = J(Bi:)
(=1,2).

Theorem 1.4. There is a one-to-one correspondence between the equivariant
homeomorphism classes of non-transitive smooth SL(2, C)-actions on S* and the A-
equivalence classes of triads with (A1-2).

As the corollary to these theorems, we see the following

Corollary 1.5. (i) Any smooth SL(2, C)-actions on S* has no fixed points,
and 1t is transitive if and only if so is its restricted SU(2)-action.

(ii) There are infinitely many (non-equivalent) smooth SL(2, C)-actions on
S® which are not equivariantly homeomorphic to any real analytic one.

(i) Amny real analytic SL(2, C)-action on S* has a finite (odd) number of
orbits, and non-transitive real analytic ones are determined by the number of their
orbits ; among them the unique linear action has five orbits.

After preparing some results on subalgebras of 8[(2, C) in §2 and subgroups
of SL(2, C) in §3, we prove Theorem 1.2 in §4. In §5 we recall some basic
facts on smooth actions. The proof of Theorem 1.4 consists of two parts:
We first study in §8§6-8 the relation between the equivariant homeomorphism
classes of our non-transitive actions and B-equivalence classes defined in (6.8)
(see Theorem 8.1), and secondly that between A- and B-equivalence ones in
§89-11 (see Theorem 11.1).

2. Subalgebras of 3[(2, C)

Let g be a semi-simple Lie algebra over R, and let ad: g—GL(g) and B: g X
g—R denote respectively the adjoint representation and the Killing form of g,
i.e. ad(X)Y=[X,Y] and B(X,Y)=Trace(ad(X) ad(Y)) for X,YEg. Then we
have a direct sum decomposition (a Cartan decomposition)

g =1!4+p (Iis asubalgebra, and p is a subspace)
satisfying the following conditions (cf. [3; Ch. III, Prop. 7.4]).

(2.1) Let s: g—g and B,: § X §—R be defined by
S(X+Y)=X-Y(Xel, Yep), B(X, Y)= —B(X, s(Y)) (X, YEg9).

Then s is an involutive automorphism of §, and B, is a positive definite symmetric
bilinear form of §. Therefore

(if) By(X, Y)=B,(s(X), s(Y)), B,(X, ad(Y)Z)=—B,(ad(sY) X, Z) (X, Y, Ze
9)-

In the followings, we consider the orthogonality with respect to B, in (2.1).
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Lemma 2.2. (i) £ s orthogonal to p.
(i) Any Yeg is orthogonal to ad(X)Y if Xt
Proof. The lemma follows immediately from (2.1) (ii). ged.
Let u be a subalgebra of g, and set
(2.3) t'=tNu, p'=pNu and m=the orthogonal complement of t'4-p" in u.
Hence u=%'-4p’+m, where ¥’ and ¥'4-p’ are s-invariant subalgebras of 1.

Lemma 2.4. (i) The projections p,: g—¥ and p,: g—p are injective on m.
(i) mcm+m, for my=p,(m) (i=1, 2), and ¥’ (resp. ") is orthogonal to m,

(resp. my).
(i) m s ad(Y'+p’)-itnvariant, and m; are ad(t’)-invariant.

Proof. (i) follows from Ker p; Nm={0} (i=1, 2). (ii) mCm,+my, is clear,
and the latter half follows from Lemma 2.2 (i).

(ii) ad(sX)Y €t +p’ holds for X, YEL'-+p’, since §'4-p’ is an s-invariant
subalgebra. Then by (2.1) (ii)

B,(Y,ad(X) Z) = —B,(ad(sX) ¥, Z) = 0 forany Ze&m.

This shows ad(X) Z&m, and hence ad(X) mcm. Since ad(X) Z=ad(X) Z,+
ad(X) Z,(Z;=pi(Z)), we see that ad(X) Z;€m, if X}’ by (2.1) (i), and thus m;
are ad(?’)-invariant. g.e.d.

In the rest of this section we consider the case that
g = 38l(2, C) = {XeM(2, C); Trace X = 0}

with the bracket operation [X, Y]=XY— YX, which is the Lie algebra of G=
SL(2, C). This has a R-basis

E=1(0 N g=i(0&=L(0)n-iKi=-129.
=5 o) K= 5 K= (L7 o) H= 1Kl )

These satisfy the following relations:

25)  —[Ko K=K, =[H, H],—[K, H]=H.= K, H] and
[K,, H]=0 for (a,b,¢)=(1,23),(2 3 1) and(3,1,2).

Now we have a Cartan decomposition g=%+p by setting

(2.6) = 81(2) = {Xeg; X+ X* = 0} =<K, K,, K> and
p={Xeg; X=X* =<H, H,Hy,

where { > denotes a R-vector space spanned by the elements in the angle
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bracket. By (2.5-6) we see immediately the followings

27) () [XiiaH, 3.0H] = —[Xi aK;, 2. b6:K))
= (ab;—ash,) K +(ash,—ab;) K,+(ab,—ahy) K.
(i) A{K;, H;; 1=1=<3} is an orthogonal basis of g.

Let Ad be the adjoint representation of G,
Ad: G— GL(g) givenby Ad(g) X =gXg™' (geC, Xe<g).

We say that subalgebras 1t and u’ are conjugate in G if Ad(g) u=1u’ for some
g€G. We notice the following

(2.8) For any X<t (resp. XEP), there exists g K such that Ad(g) X&
KK (resp. Ad(g) Xe<HD).

We prove the following Lemmas 2.9-11 under the condition:

(C1) uis a proper subalgebra of g with dim u=3, and t', P’ and m are given by
(2.3) for t and p in (2.6).

Lemma 2.9. (i) dim #'#2. If dim ¥'=3, then u=_%t.
(i) dim p’'=2. If dim p'=2, then dim ¥'=1.
(i) 1=dim m=3. If dim m=3, then ¥'4p'={0}.

Proof. (i) The first half follows from (2.7) (i). Assume that dim ¥'=3,
ie t'=%f. By (2.5) we see that [, X]=p for 0= X &P, whence p'= {0} by (C1).
Furthermore m= {0} follows from m,;= {0} and Lemma 2.4 (i). Therefore n=t.

(if) Assume that dim p'=3, i.e. p’=p. Then (2.7) (i) implies 1=g, and
this is contrary to (C1). Thus dim p’'=<2.

If dim p'=2, then dim ¥'=1 by (2.7) (i), and the desired result follows from
().

(iii) By Lemma 2.4 (i)—(ii), ¥'+p’+m,+m,(Cg) is a direct sum with dim
m;=dim m(i=1, 2). Hence dim m=3, and '+ ¢'= {0} if dim m=3.

Assume that dim m=1, and set m=<X)>. Let YEl'. Then ad(Y)Xcm
is orthogonal to X by Lemmas 2.2 (ii) and 2.4 (iii), whence ad(Y)X=0. So

0 = ad(Y)X = ad(V)X,+ad(Y)X, for 0£X, =p(X)em; (i=1,2).

Here ad(Y)X;em; by Lemma 2.4 (iii). Hence [Y, X;]=0, and further Y is
orthogonal to X;#+0 by Lemma 2.4 (ii). These imply Y=0 by (2.7) (i), and thus
t'={0}. From (ii) we see that dim p'<1, and so dim u=dim p’+dim m=2.
This is contrary to (C1), and thus we obtain dim m==1. g.ed.

Lemma 2.10. If dim m=3, then u is conjugate to <K,+rH,, K,—Hj,
K+ H,) for some 0rER.
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Proof. By Lemma 2.9 (iii) and m;=%, we may set
n=m=<X,, X, Xy for X;=K;+>.,1a;H;(j=1,2,3).

Put A=(a;;). Thena=det A0, becauset’'={0}. Also rank(ﬁ ;E+£>
—r.

=3 by (2.5) and (2.7) (i), where r=Trace 4 and A is the matrix with ‘A4A=A4'A
=aFE. 'Then

(* B+4+rE=A+'4 and B='B for B=AA.
Thus we get
(r—a) (A—'A) = (B+7E) A—'A(B+7E) = (A+'4A) A—'A(4+'4) = 0.

If A=A, then A="4 and so (a+7r)E=2A4 by (*), which is contrary to r="Trace
A and 0%a=det 4. Therefore r=a.
Also by (*), it holds

rA+r'A ='A(B+rE) =rE+B and Trace B= —r.
Then Trace A=1, and so the eigen-polynomial of 4 is
(**) det (A—«E) = —x*+(Trace A) x¥*—(Trace A) x+det 4
= (—x+7) (£*+1).
Put C=AA4. Then BC=7’E and Trace C=—r. Similarly to (**), the
eigen-polynomial of B is det(B—xE)=(—x-7)(x+7)2. This implies B=C,

because BC=7?E and B is symmetric. Therefore AA=AA, and hence 4A'A=
tAA.

Since A is normal with eigen-polynomial (**), we have PA'P=(6 })) (J=

(L9 ) for some PESO().  Further Ad(g)—PEGL() for some g&K, be-

cause the adjoint representation Ad: K—SO(3) (C GL(Y)) is epimorphic; and so
Ad(g) <X, X,, X;p=<K,+rH,, K,—H;, K;+H,> as desired. g.ed.

Lemma 2.11. JIf dimt'=0, dim p'=1 and dim m=2, then 1 is conjugate
to <H,, K,—Hj;, Ks-+H,).
Proof. We may assume p'=<{H,> by (2.8). Then m,=<{H,, H;> by Lemma
2.4 (ii) and (2.7) (ii), and we set
m=<X, X, for X;=>V¢a4;K;+H;,, (j=1,2).
Put Y;=[H,, X;] (=1, 2). Then by (2.5)
Yj - a3j Hz_azj H3—(—1)1K4_I and
[H, Yj] =2t a; Kit-Hin (j=1,2),
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which are in m by Lemma 2.4 (iii). Then a,;=0 by X;—[H,, Y;]€t'={0}.
Put A=(a;4, ;) (i,j=1,2), and a=det 4, r=Trace 4. Then a=1, be-
cause u3[Y,, Y,]=(a—1) K,+rH,. Also we see rank <g _t§—1)=2' Thus
E+A4'A7'=0, and hence r=0. Therefore the eigen-polynomial of A4 is
det(A—xE)=x?+1, and this implies the lemma by the same proof as that of the
above lemma. g.ed.

Proposition 2.12. Let u be a proper subalgebra with dim u=3. If t'=
{0}, then u is conjugate to

w, = <rK,+H,, K,—H;, K;+H,> for some r&ER.
Proof. By Lemma 2.9 (ii) the assumption implies dim p'<1 and dim

m=dim u—dim p’=2. Then, by Lemma 2.9 (iii) we see dim m=3 or dim
m=2, dim p’=1. Thus the proposition follows from Lemmas 2.10-11. g.e.d.

In the next place we prove the following lemma, when
(C2) 1 in (C1) satisfies t'=<K,).

Lemma 2.13. (i) u=<KX,, H,, H;) if dim p'=2.
(i) u=u, for some 0rER if dim p'=0, and v, for some E=+1 if dim
p’'=1, where

2.14) w, = <K, tK,—Hy, rK, - H,> and
bz = <K1) Hlv Kz—’eHa, K3+EH2> .

Proof. (i) We see m={0} by Lemmas 2.4 (i) and 2.9 (iii). Put p’'=<X,
Y>. Then 0+[X, Y]et'=<K,> by (2.7) (i). Also from (2.7) (i), this implies
X, Ye<H,, H;>. Thus p'=<H,, H;», and (i) holds.

(ii) Assume dim p’<1. Then dim m=dim 1—(dim ¥'4dim p’)=1, and
Lemma 2.9 (iii) shows dim m=2. Hence m,=<{K,, K;> by Lemma 2.4 (ii) and
(2.7) (ii), and we set

m=<X, V> for X=K+X,Y=K+Y (0+X,Y emcCp).

Here we have X'=[K,, Y'] and Y'=—[K,, X'], since [K,, X]=—K;+[K;, X],
[K;, Y]=K,+[K,, Y']em and [K,, X'], [K,, Y']em, by Lemma 2.4 (iii). By
(2.5) these imply

X' = aH,+bH, and Y' = —bH,+aH, for some a,bER,

which are orthogonal by Lemma 2.2 (ii).
If dim p'=0, then aH,&p'={0} from [X, Y]=(a*+b*—1) K,—2aH,En,
and hence a=0.
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If dimp’'=1, then m,=<{H,, H;> because X' and Y’ are orthogonal in
{H,, H;>. Hence p'=<H,> by Lemma 2.4 (ii) and (2.7) (ii). Thus <X, Y)>=
m>3[H,, X]=—bK,+aK;—H;, and so —bX'+aY'=—H, This shows a=0
and #°=1, as desired. g.ed.

Proposition 2.15. Let u be a proper subalgebra of g with dimu=3. If K,
eu, then nis t=<{K,, K,, K;>, 1, (rER) or b, (€=+1) givenin (2.14). Here 1, is
conjugate to ¥, 1y and 1, if |v|>1, |r| <1 and |r| =1, respectively, and further v,
is conjugate to 9_,.

Proof. The first half follows from Lemmas 2.9 (i) and 2.13. By the ele-
ments Iz:( 0 1) and g,:(z 0 ) (*=(1+7r)¥|1—#*|, 1) in G, we see that

—-10 0 1/z
Ad(k) () =u_;,, Ad(h)(b)=b_, and
Ad(g,) (n,) =1t if |r[>1, and u, if [r|<1l. g.ed.

Corollary 2.16. Any proper subalgebra 1 of g with dim u=3 s conjugate to
one of

b, =<K, H, K,—H,, K;-+Hy), v, = <"K1+H1, K,—H,, K,+H,> (VER) ’
P =<K, K, K, o =<K, Hy, Hy and w, =<K, K,—H,, K;+-H,>,

and these subalgebras are not conjugate to each other in G.

Proof. The first half follows from Propositions 2.12 and 2.15. Consider
the map d: g5 X—det X&C, which is Ad(G)-invariant. By routine calcula-
tions we have

d(w,) = R {—(1—ri)>>, d(t) =d(n,) = R* and d(u) =R.

Furthermore the Killing form of g, which is also Ad(G)-invariant, is negative
definite on £ and positive definite on p. These observations show the second
half. q.ed.

3. Subgroups and coset spaces of SL(2,C)

In this section we prepare some results on connected subgroups and coset
spaces of SL(2, C).

Consider the following subalgebras of g=3I(2, C') and connected subgroups
of G=SL(2, C),

b(a) = {(ax 0

& ); xER, z€C}cg and
—ax

V(a)={(eXp(ax) 0 );xeR, 2€C}CG for acC.
2 exp (—ax)
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Then b(a) is the Lie algebra of V(a). Now we set

(3.1) W,=V(ri—1) and U,—{g=G; gI, g* =L} for r& R, where I,:(’El i )
7
Here U,:{( o (ril)w>; | 2|24 (P—1)|w|?=1} is connected, and U,=
—(r 1wz

V@), U_="V(i).

Lemma 3.2. The subalgebras o, in Proposition 2.12 and n, in (2.14) are
the Lie algebras of W, and U,, respectively.

Proof. The lemma holds for fv,=b(ri—1), u,=b(i) and u_,="(i). By
definition we see that Xeu, if and only if Trace X=0 and XI,+I,X*=0.
When 7251, these are equivalent to

det (exp 2X) =1 and exp(—tX*)= I;%exp tX)I, forany tER.

This shows exp tX& U, for any tER, and thus the lemma for 1,(*=1) also
holds. g.ed.

Lemma 3.3. The coset space G|U, is homeomorphic to
R* if |r|>1, and S*%<R i |r|=1.

Proof. By Proposition 2.15 and Lemma 3.2, we see that U, is conjugate
to K=SU(2) if |r|>1, U,if |r| <1, and U, if |r|=1. Thus it is sufficient to
show

(i) G/K~R and (i) G/U~S*XR(r =0,1).

(i) holds, because K is a maximal compact subgroup of G with dim G—
dim K=3 (cf. [3; Ch. VI, Th. 2.2 (iii)]).
(ii) Consider the quotient space N;=C%?— {0} /S* (S'cC) and the G-action

b1: GXN—>N,, ¢:(X, [P]) = [XP] (XEG, PeC?—{0}).

Then this action is transitive, and U, is the isotropy subgroup at [?]ENI.
Hence G/U;~N,~S?XR.

Consider the quotient space N,=H~|R" of H-={P=M(2, C); 0&P=P%*,
det P<<0} and the G-action

¢2: GXN;—N,, ¢(X, [P]) = [XPX*] (XeG, PeH").
Then we see that ¢, is transitive, and U, is the isotropy subgroup at [I)]EN,
(£, :(—-(1) (1)) ). Hence G/Uy=~N,. Moreover the mapping N,—N;=((RXC)
— {0}/R")X R~S*x R, sending | * ﬂeNz to ([(x—)/2, =], (x-19)/29) EN; (s=
(|2]*—xy)?), is homeomorphic. Thus G/Uy~S?x R. g.e.d.
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Lemma 34. G=KLU,—KLK (r&R) for L={ (g 1‘; ); x>0}
x
Proof. G=KLU,, is obtained by the Gram-Schmidt orthonormalization

process.

Assume 7?#=1. Then gI, g*(g=G) is a Hermitian matrix, and its eigen-
values are positive if »>1, negative if r<<—1, and their product is negative if
r*<1. Hence we can find k€K such that kgl, g*k* is diagonal and I;!kgl, g*
k*eL. Put

I kgl g*k* =172 for I€L, and u=Ikg.

Then u= U,, and so the decomposition G=KLU, holds.
Also we have G=KLK by setting I,=F in the above proof. g.ed.

4. Transitive actions

In this section we state an immediate consequence of the previous sections,
and prove Theorem 1.2.

For each &R, consider the analytic G=SL(2, C)-action on S3=C?— {0} /R*
defined by

(4.1)  ¢,(X, [P]) = [exp(ir log(|IXP||/IIP])) XP] (X€G, PeC*—{0}).
Then we have the following lemma.

Lemma 4.2. The action ¢, is transitive, and its isotropy subgroup is con-
jugate to W, of (3.1).

Proof. The restricted SU(2)-action of ¢, is transitive, and hence so is ¢,.

Further W, is the isotropy subgroup of ¢, at [ (1) ]ES“. Thus the lemma holds.
g.ed.

Proof of Theorem 1.2. The equivariant homeomorphism classes of transi-
tive G-actions on S* is classified by the conjugacy classes of connected sub-
groups U of G with G/U~S? Therefore the theorem follows from Corollary
2.16 and Lemmas 3.2, 3.3 and 4.2. 7.e.d.

5. Smooth actions

In this section let G be a Lie group, M be a smooth manifold, and assume
that there is a smooth G-action ¢: GXM—M on M. Denote by g and %(M)
the Lie algebras of G and smooth vector fields on M, respectively. The follow-
ing result is known (cf. [5; Ch. II, Th. II]).

(5.1) The map ¢p*: g—% (M), given by
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¢*(X),h = lim {0 (¢ (exp(—1X), ) —h(p)}/t (X<0)
for any smooth function h around pM, is a Lie algebra homomorphism.

In case that g is simple and ¢ is non-trivial, ¢* is monomorphic, and so
g may be regarded as a subalgebra of X(A) by identifying X=¢*(X).

We call g,={Xeg; ¢"(X),=0} the isotropy subalgebra of g at p&M.
Clearly pe M is fixed under the subgroup {exp tX; teR} (X&g) if and only if
¢*(X),=0. Therefore

(5.2) The isotropy subalgebra g, is the Lie algebra of the isotropy subgroup G,
of G at p.
6. Non-transitive actions

In the rest of this paper, we shall classify non-transitive smooth SL(2, C)-
actions on 8%, and set

G =512, 0), K=50@), T={(% 2)ek; Is|= 1} (=U),
g=8l(2,C) =<K, Hy;i=1,2,3), t=2581(2) and
S*= H|R* for H= {PeM(2,(C); 0P = P*}.

To begin with we prepare some results on K-actions on S The follow-
ing (6.1) is known (cf. [1; Th. 1.3]).

(6.1) Any non-transitive (and non-trivial) smooth K-action on S* is equi-
variantly diffeomorphic to

Yot KX 8* = 8% (X, [P]) = [XPX*] (X€K, PEH).
The fixed point sets of 4, under T and K are
(6.2) (CD)8'=F(T, S)DF(K, S = {+1},

by the diffeomorphism S'Sx+tiy — |:x+y 0 ]EF (T, S3 (x,yER). Then
the reflection J of S* is given by 0 x—y

(6.3) J(2) = ¥u(d, 5) for =S and j:(? —(l))eK.

By Theorem 1.2, any smooth G-action on S® is transitive iff so is its re-
stricted K-action (see Corollary 1.5 (i)). Thus, to classify non-transitive ones,
we assume by (6.1)

(6.4) ¢ is a smooth G-action on S® such that its restricted K-action coincides with
Yo, 1. | KX S*=nn,.
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Under this condition we prove the following lemmas.
Lemma 6.5. (i) The map ¢: RXF(T, S® — F(T, S%), given by
(6.6)  @(t 2) = p(exp(—tH,), 2) (<R, z€F(T, S?) for H,eg,

is a one-parameter transformation group on F(T, S%).
(ii) There exists uniquely a real valued smooth function f on F(T, S*)—
F(K, S3) such that

6.7) f(z)(Ks). = (H), (:€F(T, SY—F(K, §%) for K, H,egC¥(S%).

Proof. (i) is clear, because exp(—tH,)EN(T, G). (ii) The isotropy sub-
algebra g, at € F(T, S*)—F (K, S°) satisfies

dim g,=3, K,=g, and Idg,.

By Proposition 2.15 we can find f(2)ER such that f(2)K,—H,;<g,, and hence
f(?) (K;),=(H;),. Choose a Riemannian metric {, ) on S%. Then f(2)(K,, K5),
=(K,, H3), and (K,, K;),#+0. These show that f is unique and smooth on
F(T, 83 —F(K, S?. g.ed.

(6.8) Let (@, f) be a pair of one-parameter transformation group @: Rx S' —
S* and a smooth function f: S'— {+1}— R, and consider the following conditions :
For teR and z=x+iyeS* (x, yER),
(B) @(t, J()=Jp(—t, ),
(B2) f(p(t, ))=(f(x)—tanh ))(1—f(z) tanh ) for z, p(t, B)+£1,
(B3) f(2)=—f(J(2)), and there is a smooth function F: S'—R satisfying F(2)=
yf(2) (%= 41) and F(+1)==0.

We say that pairs (@, f) and (@', f') with (B1-3) are B-equivalent if there
is a homeomorphism ¥ of S* onto itself such that W J=J¥ and the following diagram
commutes,

Rx8*-Zs 80 5 S {11} g
~
1xw| B |v |w R
RxS'—— S§' o S'— {41} f
where ¥ ({+1})={+1} follows from ¥]=]J¥.

Then we have the following lemma.
Lemma 6.9. The pair (@, f) in Lemma 6.5 satisfies (B1-3) under (6.2).
Proof. (B1) follows from (6.3) and (6.6). Since f(2)K,—H;Eg,, we have
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8ect,0 = Ad(exp (—2H,)) 8,2 Ad(exp (—tH,)) (f(2) K;—Hy)
= (f(2) cosh t—sinh t) K,—(cosh ¢—f(2) sinh #) H; and
81 = Ad(J) 6.2 Ad(J) (f(2) K;—Hy) = —f(2) Ky—H .
These show (B2) and the first half of (B3), respectively.

Consider the smooth function 4: S®*-—R, h([P])=Trace (jP/\/ 2 |P||i)
(P€H). Then k(¢ (exp (—tKy), 2))=y sin ¢ for z=x+iyeS’, and hence

(). = lim {h($ (exp (—2Ko), 2)—h(a)}Jt = .
Thus F(2)=(Hj;), h is smooth on S, and F(2)=yf(2) if 2 +1.
Assume F(a)=0 for a=1 or —1. Then lim f(2)=lim F(2)/y=0, since F

is smooth and F=F]. Hence we can find an open interval U in S* such that
ac€U and | f|<1/2 on U—{a}. Moreover H;=g,(>D¥) by (6.7), and so g,=g
by Lemma 2.9 (i). Thus a is stationary under ¢, and hence lim ¢(¢, 2)€ U

(z€U—A{a}) for s=o0 or —oo. Therefore 1/2= |lim f(e (¢, 2))| =1 by (B2),
and this leads a contradiction. o g.e.d.

Proposition 6.10. Let ¢ and ¢’ be smooth G-actions on S* with (6.4).
Then the corresponding pairs with (B1-3), given by (6.6-7), are B-equivalent if ¢
is equivariantly homeomorphic to ¢'.

Proof. Denote by (@, f) and (@', f') the corresponding pairs of ¢ and ¢’,
respectively. Let @: S3%—S® be an equivariant homeomorphism beiween ¢ and
o', ie. D(op(g,2)=0¢'(g, P(p)) (€6, pS®), and set ¥=D|S* for S'=F(T,
S3) by (6.2). Then

Y(p(J, 2)) = ¢'(J, ¥(2)), ¥(p(exp (—tH,), 2)) = ¢'(exp (—tH)), ¥(3))

for any t€R, 2 S". These imply ¥/=]J¥ and Yo=¢'(1 X P).
For a vector field Xegc¥(S?% and a smooth function % around @®(2)
(xS, we have

*) Xo h = lim {h(¢" (exp(—1X), D()))—h(P(2))}/t
= lim {h® (¢ (exp(—tX), ))—hD ()}t -

Suppose (H,),=*0, i.e. H&g,. Then dimg,=3 by Proposition 2.15, and the
orbit Gz is of dimension 3. Hence @ is locally diffeomorphic at 2, and so (*)
shows Xy yh=X,(h®). Applying this for X=K, and H;, we get f(2) (K)o =
(H3)on (=+1) by (6.7). Thus f'(®(2))=f(z). Next suppose (H,),=0.
Then (¢, )=z for any t=R, and thus f(z)=-41 by (B2). Further (*) for
X=H, shows (H))e(y=0, whence f'(®(2))=-+1. Therefore f=f & follows
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from the continuity of f and f’. g.ed.

7. Construction of SL(2, C)-actions

In this section we construct a smooth G=SL(2, C)-action on S* from a pair
with (B1-3) so that the corresponding pair is the given one itself.
Let (@, f) be a pair with (B1-3), and set

_(F®)—y 0 R
I(z)__( 20 yF(z)-{—y):hO (2 =xtiyeSh

for the smooth function F in (B3). Consider the subgroup of G
U(z) = {XeG; XI(z) X*=1(2)},

which coincides with K if z=+1 and Uy, of (3.1) otherwise. Then G=
KLU(z) for any € S* by Lemma 3.4.
Take (X, p)GxS% Let us choose

g€K, ze8' = F(T, S®) (by (6.2)) with ¥r,(g,2) =p and
k€K, teR, ucU(z) with Xg=klu(l,=exp(—tH,)EL),

and set
(7.1) ¢ (X, p) = Yo(k, (2, z))ESa .
Then we have the following proposition.

Proposition 7.2. ¢: GX S*—S8% of (7.1) is a smooth G-action with (6.4),
and the given pair (@, f) satisfies (6.6-7) under (6.2).

To prove this proposition we state some results on the pair (@, f) with
(B1-3). By (B2-3) we get

(73) F(p(t, =) (y—F(2) tanh #) = y,(F(z)—y tanh 1)

when 2=x-+iy=++41 and @(t, 2)=x,+iy,&41. This also holds for any (¢, 2)
€RXx S, because F is continuous and {(¢, )ERXS'; 241, (¢, 2)+=+1} is
open dence in RX S

Lemma 7.4. There is uniquely a smooth function a: RX S'—>R satisfying

(7.5) F(p(t, 2)) = a(t, 2) (F(=) cosh t—y sinh ¢) and
y: = a(t, 2) (y cosh t—F(2) sinh ?)

for tER, z=x+iyeS' and @(t, )=x,+1iy, i.e.
(7.6) Ip(t, %) = alt, ) b 1(3)
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Furthermore the following conditions are satisfied ;

(7.7)  a(0,2) =1, a(t+s,2) = a(t, 2) a(s, (¢ 2)),
a(t,z)=a(—t J(2), a(t, ) a(—t, ¢t 2)=1, a(t,2)>0.

Proof. From F(41)=0 it follows that y—F () tanh ¢ and F(2)—y tanh ¢
are not simultaneously equal to zero in (7.3). Then we obtain uniquely a
smooth function ¢ satisfying (7.5).

By (7.6) we get

1(z) = a(0,2) I(2), a(t+s,2) bovo 1(2) = L(p(s, 2(2, 2))) =
al(s, o(t, ) b I((t, 2)) = a(s, p(t, 2)) a(t, 2) b+ 1(2) and
a(t, 2) b I(z) = JjI(Jp(, 2)) i* = il(p(—t, J()) J* =
a(—2, J(2) Jl2 I(J(2)) 7* = a(—t, J(2)) & 1(3) .

These show the first three equalities of (7.7) by I(2)=0. Thus a(t, 2) a(—¢,
o(t, 2))=a(0, 2)=1, and hence a(¢, 2)>0 because & is continuous. q.ed.

Lemma 7.8. If kl,; 1(2) k*=1, I(2) for some kK, then t=s or @(t, 2)=
J@(s, 2), and further a.(t, 2)=a(s, 2).

Proof. From Trace b, I(2)=2(F(2) cosh t—y sinh t), the assumption im-
plies (1) t=s or (2) F(=) tanh (¢+s5)/2=y.

In case (1) the lemma is clear. In case (2), @((t-+9)/2, 2)=-41 by (7.5).
Then 9((t45)/2, 2)=J((t+5)/2, )=@(—(t+9)/2, J(2)), and hence (t, 2)=
@(—s, J(2))=Jo(s, 2). Furthermore, by (7.7),

a(t+s, 2)/a(t, 2) = a(s, (i, 2)) = a(s, Jo(s, 2) = 1/a(s, 2),
and similarly a(¢-+s, 2)/a(s, 2)=1/a(t, 2). These show a(s, 2)=a(t, 2) (>0).
g.ed.

Consider the smooth function @: S'—R, B(2)=F(2)+x(z=x+iyeS").
Then we get

(79) B =BU() ad ==[B(x)E-I()]ES = F(T, 5.

Lemma 7.10. Let keK and zS'. Then
(1) Yolk, 2)=weS* if and only if kI(2)k*=1(w) and w=z or J(=2).
(i) If kL I(2)k* =1, I(w) for w=2z or J(2), then (R, ¢(t, 2))=(s, ).

Proof. (i) Assume yry(k, 2)=w. When z=+1€F(K, S?), the result is
clear. Suppose 2#=41. Then keN(T, K)=TU jT, because T is the isotropy
subgroup of yry at S'— {4-1}. Therefore w=z, kI()k*=1I(z) if k€T, and w=
J(2), RI(x)k*=1(](2)) if k€ jT.
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Conversely, yr(k, 2) = [B(2) E—kI(2)k*]=w by (7.9).

(ii) When w=z, we see that a (¢, 2)=a(s, 2) and @ (¢, 2)=(s, 2) or Jo(s, 2)
by Lemma 7.8. Thus kI(@(, 2))k*=I(p(s, 2)), and so the desired result fol-
lows from (i). In case w=J(2), it holds j*kb, I(2)k*j=j*l,, I( J(2)) j=I_5 1(2),
and the above result implies

ol (1 ) = Vol (=5, ) = @(s, () - ged.
In (7.1) we obtain the following by (7.6).
(7.11) Xgl(z) g*X* = kb, I(2)k* = RI(p(2, 2))k*[a(t, 2) .

Lemma 7.12. ¢ of (7.1) defines a G-action on S® such that ¢|K X S*=n,
and ¢|LX S'=0o.

Proof. For (X, p)eG X S? let us choose as in (7.1);
(*) ‘I’O(g’ .2‘) :P’ Xg = kltu and \I’o(é", Z’) = P, -Xg’ = kl lt’ u' .

Then gI(2) g*=g'I(z") g'* and 2=z’ or J(2') by Lemma 7.10 (i). Hence &,
I()k*=Fk'Ly I(2")k'* by (7.11). Thus Jr(k, @(t, 2))=r(k’, @(t’, 2")) by Lem-
ma 7.10 (ii), and this shows that ¢ is a mapping from G'X.S* to S°
When (X, p)eK X S® (resp. (X, p)L X S"), we can choose +ry(g, 2)=p,
Xg=Fk (resp. 2=p, X=/,) in (*). Thus
(X, p) = Yo(k, 2) = Vo(X, p) (resp. $(X, p) = 9(t, 2)) -

Therefore ¢| K X S*=nJr, (resp. ¢|L X S'=¢), and further ¢(E, p)=p.
Let YEG, and choose meK, s€R, ve U(p(t, 2)) with Yk=ml,v. Then

o(Y, ¢(X) P)) = ro(m, p(s, p(t, z))) = "I"o(m’ P(t+s, 2)) -

On the other hand YXg=ml,,, wu for w=I_,vl,, where we U(z) by wl(2)w*=
15, I(p(2, 2))a(t, 2)=1(2)/a(t, ) a(—t, ¢(t, 2))=1I(z). Therefore

(YX, p) = Yo(m, p(t+s, %)) = (Y, $(X, 1)) - ged.
(7.13) (The standard G-action) Let ¢p: GX S3—S3,
éo X, [P]) = [XPX*] (XeG,PH).

Then ¢, is an analytic G-action on S® with ¢o| KX S*=+r,. Denote by @, the one-
parameter transformation group on S'=F(T, S%) induced from ¢o; @o(t, 2)=
ooy, 2) (ER, z€8Y).

Lemma 7.14. Let v: S'—S" be a smooth map given by v(2)=[1(z)] (€ S").
Then v is locally diffeomorphic at z< S* if det I(2)=0.



286 T. Ason

Proof. For each zS* we put

PO = gty o) and @'(t) = plt,2) (FER).
Assume @ @(t)=v(2) (resp. @'(f)==). Then h, I(z)=rI(z) for some A>0
(resp. I(z)=a(t, 2) b 1(2) by (7.6)). If det I(2)=0, then =0, whence @y and
@’ are locally diffeomorphic at 0&R. Therefore » is also locally diffeomorphic
at 2, because @y @=vg" by (7.6). g.ed.

By using the Taylor developments, we see the following (cf. [2; Ch. VIII,
§14, Problem 6-c]).

(7.15) Let h be a smooth even function around 0 R(h(t)=h(—t)). Then
h(||x]]) (x&R") is also smooth at the origin in R".

Put Y=+ KX Si: KXS.i—S, and its induced map Jry: K/T X S.—S,
for S, (resp. S_.)={x+iyeS'; y>0 (resp. y<0)} and S;=S°—{+1}. Then

Jr. are diffeomorphic and so 4. are submersions.

Lemma 7.16. (i) For each pc.S3, let us choose geK, 2 S* with p=
Yo g, 2), and set E(p)=gI(z) g*. Then&: S*—>H(C M (2, C))is a smooth mapping.

(ii) The composition E: S° —E> D 5 locally diffeomorphic at pe.S? if
det E(p)=+0, and is equivariant between ¢ and ¢y, i.e. Ep(X, p)=do(X, E(p)) (X
eG, peSd).

Proof. (i) In the proof of Lemma 7.12, we have already seen that &
gives a mapping from S® to H. By the commutative diagram

SocS3—E>H
. T o for &g, 2)=gl(2)g*,
Kx S, &

we see that & is smooth on Sy because . is a submersion.
Put p,=[EE], N,={[P]<S?; & Trace P>0} for £&=4-1, and denote by DC
RX C an open unit disk. Let p,: D—>N,,

_[e(l—s)"+x a
pt )= [ 5075 8(1—s2)1/2—x] for (wa)eD,

where s’=x’+ |a|?<1 (s>0). Then (IV,, p,) is a local chart at p,, and

E pa(, @) = (F (j)a—x F(;)i x) for = — &(1—s?)"tis.

Consider a smooth function h(t)=F(&(1—#)"*+it) (|¢|<1), which is an even
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function since F=F]. From (7.15) it follows that A(s)=F(2) is smooth on D,
and hence so is £p,. 'Therefore £ is also smooth at p,.
(i) Let ¢p(X, p)=1r(k, @(t, 2)) for p=1Jr(g,2) asin (7.1). Then, by (7.11),

Ed(X, p) = [RI(p(t, 2)k*] = [XgI(2) g*X*] = ol X, E(p)) -
By Lemma 7.14 and the commutative diagram
K|Tx S, 2% s,
xSy | . | s,
K|TXS.— S8,

we see that £ is locally diffeomorphic at pE.S, if det £(p) =0, because det E(p)=
det I(2) for p=ny(g, ?) (¢€K, 2€S,). Furthermore, by using the local chart
(Ne, pe) at p,, the routine calculation shows that the Jacobian of £ at p, is non-
zero. Thus £ is also locally diffeomorphic at p,. g.ed.

Consider the subsets

U= (GxS)N$Sy), V=(RxS)Np™(S,) and
W=(1x¥)(U) for 1Xgr: GXKIT)X S, — GXS,.

Clearly V is open in RxS'. Also, since S,=£(S,) and £ is equivariant by
Lemma 7.16, we see that U is open in G X .S?% and hence so is W in GX(K/T)
x St

Lemma 7.17. For any w=(X, gT, 2)E W, there exists uniquely tER such
that

* (t, 2)EV and Xg=Fkl, u for some ke K, uc U(z).
Furthermore 8: Wow—>(t, 2)EV is smooth.

Proof. (i) Choose meK, sER and ve U(z) with Xg=ml,v. If (s, 2)E
S,, then (*) is clear. Suppose @(s, 2)€S,, whence @(s,2)ES_ by weW.
Then (0<) y<F(2) tanh s (z=x-+iy) by (7.5) and (7.7), and we can find tER
satisfying y=F () tanh ((¢+s5)/2). By easy calculations this implies ly.q I(2)=
J*1(2) j, and hence jl,,,€U(2). Also ¢((t+5)/2,2)=+1€F(K, S*) by (7.5).
Thus p((t-+5)/2, 2)=Jo((t+5)/2, 9)=p(—(t+9/2, J (%), and so @(t, 2)=p(—s,
J(2)=Jo(s, 2)S,. This shows (¢, 2)eV. Now we set

k=mj*eK and u=jl,,v€U(R).

Then kI, u=mj*l, jl,,, v=ml, v=Xg. Therefore (*) holds.
Assume (s, )€V and Xg=mlw for some me K, ve U(z). Then kl, I(z)
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k*=ml,, I(z)m* by (7.11), and t=s follows from Lemma 7.8.
(i) Consider the smooth mappings

8;: W—RxS,, 8(X,¢gT,=)= ((Trace XgI(z)g*X*)/2,2z) and
8,: V—=RxS,, 8t 2) = (F(pt 2))lalt, 2),=).

Then 8,=6,8 by (7.11). By (7.5), the routine calculation shows that the
Jacobian of §, is non-zero, and so §, is locally diffeomorphic. Therefore & is
smooth. g.e.d.

Proof of Proposition 7.2. By Lemma 7.12, it is sufficient to show that ¢
of (7.1) is smooth and satisfies (6.7).
Let us set as in (7.1);

$(X,0) = Wlk, 9(t,))  for p=1(g,z) and Xg=Hl,u.

Assume p or ¢(X, p)=41F(X, S%. Then det £(¢p(X, p))=0, because
E(+1D)=F(4+1)E and E(¢(X, p))=a(t, 2) kl,, I(2)k* by (7.6). From Lemma
7.16 (ii) it follows that ¢ is smooth at (X, p). Next assume (X, p)E(G X Sy) N
¢ 1(Sp)=U. Consider the map

$1: U—H, (X, p) = (B(p(t, 2))e(t, 2)) E—XE(p) X*.

Then ¢, is smooth, since &(p) and (¢, 2)=8(1x¥r)}(X, p) are smooth by

Lemmas 7.16 (i) and 7.17. Further the composition (G X S*D) U—¢1—+H—p—r'-)S3

coincides with ¢ | U by (7.9) and (7.11). Thus ¢ is also smooth at (X, p)e U.
Put A=f(2)K,—-H;Eu,,)(Cg) for z&S'—{+1}. Hence ¢ (exp (—24), 2)
=2, and this implies 0=¢*(4),=f(2) (K,),—(H;),. Therefore (6.7) holds.
The proof of the proposition is thus completed. g.ed.

8. B-equivalence classes
In this section we show the following theorem.
Theorem 8.1. There is a one-to-one correspondence between the equivariant

homeomorphism classes of non-transitive smooth G-actions on S® and the B-equi-
valence classes of pairs with (B1-3).

To prove this theorem we prepare the following Lemmas 8.2-3.

Lemma 8.2. If pairs with (B1-3) are B-equivalent, then the corresponding
G-actions on S3, constructed by (7.1), are equivariantly homeomorphic to each
other.

Proof. Assume that pairs (@,f) and (¢’,f’) are B-equivalent by a
homeomorphism ¥ of S* onto itself, and let ¢ and ¢’ be respectively the G-
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actions on S° by (7.1). Then there is a K-equivariant homeomorphism & of S*
onto itself satisfying ®(vr(g, 2))=v(g, Y (?)) (¢€K, z€S"), since ¥]J=]¥
and 4| KX S': KxS'—>S?% is closed and surjective. Let (X, p)€Gx .S3, and
set as in (7.1); (X, p)=r(k, @(2, 2)) for p=qlr(g, 2), Xg=kl,u (ucU(2)),
where U(2)=K if =41, and U;,=Upy(, if z&=+1. Thus

¢'(X, D(p)) = ¢'(X, ¥ro(g, ¥(2))) = Yrolk, @'(2, ¥(2))
= Yo(k, ¥p(t, 2)) = DY (k, (2, 2)) = PH(X, p) .

This shows that ® is G-equivariant, and hence the lemma holds. g.ed.

Lemma 8.3. Let (p,f) be a pair with (B1-3) defined from ¢ of (6.4) by
(6.6-7). Then the G-action on S°, constructed from (@, f) by (7.1), coincides with
the given one ¢.

Proof. Let (X, p)eG X S% and set ¢'(X, p)=r(k, @(2, 2)) for p=1(g, )
and Xg=~l, u as in (7.1).

Now we show ¢(u, 2)==z. Clearly this holds when =1, since uc U(%)
=K and z€F(K, S%. Suppose z#-41. Then f(2)K,—H;<g, by (6.7), K,
8., and so f()K;+H,=[f(2)K,—H,;, K|]€g,. These show 1, Cg, by (2.14).
Thus U(2)=U,,CG,, and hence ¢(u, )=z holds. Therefore

b (X, p) = (kL ug™, (g, 2)) = d(kly, 2) = Yro(k, @(t, ?)) = ¢'(X, P) -
g.ed.

Proof of Theorem 8.1. By Propositions 6.10, 7.2 and Lemmas 8.2-3, we
see that the correspondence defined by (6.6-7) and (7.1) is one-to-one between
the equivariant homeomorphism classes of (6.4) and the B-equivalence classes.
Moreover; by (6.1), the former coincides with the equivariant homeomorphism
classes of non-transitive smooth G-actions on S°. q.e.d.

9. Pairs with (B1-3)

In this section we restate pairs with (B1-3), and show that a triad of sub-
sets with (A1-2) in (1.3) is obtained from a pair with (B1-3).

It is well-known that a one-parameter transformation group ¢ on S' is
regarded as a vector field on S?, and so a smooth function g on S* as follows;

(9.1) g()L, h=[dhep(t, 2)[dt),—y for amy smooth function h around € S*.

Here L is the unit vector field on S*, L,=—y(8/0x),+x(8/0y), (z=x+iyeS'C
C).

(9.2) Let g and f be respectively smooth functions on S* and S'— {4-1}, and
consider the following conditions ;
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(Bl) g(x)=g(JR), (B2 gR)L.f=/[(z)—1(z+L]).
Then, for @ and g in (9.1), we have the following lemma.

Lemma 9.3. (i) (B1)’ s equivalent to (B1).
(i) If f satisfies (B3), then (B2) is equivalent to (B2).

Proof. (i) By definition we get
* L,h=—L;,(h]J) for any smooth function % around z& S*.
If @ satisfies (B1), then (B1) follows from
2(R) Lk = [dh @(t, 2)/dt] ;= = [dh Jp(—1, ] (2))/dt] =
= —8(J(®) Liw(]) = g(J(2)) L. .

Suppose that g satisfies (B1)’. Then Jyx(gL)=—gL, because Ju«(gL),h=
g(J(®) Lyy(h))=—g(?) L,h. Hence

Jo(t, J(2)) = J(Exp t(gL)) J (=) = (Exp ¢/x(gL)) (%)
= (Exp (=) (g1)) () = (4, 2) .

(if) By routine calculations, (B2)’ follows immediately from (B2). To see
the converse, let us fix x&S'— {1} and set

H(t) = f(p(t,2)) forany t=R with o, 2)+41.
Then H(t) satisfies the differential equation
(**) dH(t)/dt=H(t)*—1 by (B2)’

and the initial condition H(0)=f(2). Clearly H,(#)=(c—tanh #)/(1—c tanh 2)
(cER) are solutions of (**), and their maximal interval of existence are

R if |c|=1, (—o0,a) if ¢>1, and (a, ) if c<—1,
where ¢ tanh a=1 and l’imlH,(t) | =co.
Let N={teR; @(t, 2)=-+1}. Then H(?) is smooth on R—N, ltim |H()|

=oo for s&N by (B3), and N is discrete. Therefore H(t)=H s,(¢) follows from
the initial condition, and thus (B2) holds. g.ed.

In the rest of this section we assume that a pair (@, f) with (B1-3) is given,
and hence so is a smooth function g with (B1-2)". Set

A= {ze84 f(x)=(—1)"}1(¢=1,2), A=4,U4,,
C; = {z€4,; (—1)'g()>0} (=1,2) and Cy= 4,—(C,UC,).

Then we have the following Lemmas 9.4-6.
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Lemma 9.4. (i) A4; (=1, 2) and C, are p-invariant closed subsets of S'.
In particular C, is the fixed point set of @.
(i) J(4i)=A;-(i=1, 2) and J(C;)=C; (j=1, 2, 3).

Proof. (i) If f(2)=4-1, then (B2) shows that f(p(#, 2))=-1 for any tER.
Hence A4,(i=1, 2) are g-invariant and closed in S".

The fixed point set of @ is given by F={z& S"; g(2)=0}. Then C;=4,N
F, and further FC 4, by (B2)’. Thus C,=F.

(i) follows immediately from f/=—f and gJ=g. g.ed.

Lemma 9.5. (i) 4,N4,=¢, AN {+1} =¢ and Ay*¢.
(i) A, is a finite union of closed intervals.
(i) The components of A, alternate with those of A,.

Proof. (i) The first result is clear, and the second follows from (B3).
From (7.5) it follows that 41 are not in the same orbit of @, and hence @ is not
transitive on S'. Then lim @(f, 2)=acS' (z€S"), and +1=lim f(p(¢, 2))=

1> t->oo

f(a) (= +1) by (B2). These imply 4,3 ¢.

(i) Regard S,={x+iyeS'; ¥>0} as a bounded open interval. Since 4,
N {41} =¢ and A4, is closed, we see that A;N S, is also closed in S*. Thus, by
J(Ao)=A,, it is sufficient to show that the components of 4,N S, is finite.

Assume the contrary. Then we can find a monotone increasing sequence
{z,} of AyN S, such that 2, and =z, (n=m) are not in the same component.
Moreover, let us choose v, &S, satisfying v, 4,N S and 2,<v,<=2,4;. Then
[f(v,)|<1 by (B2), and so f(v,)=tanh s for some s€R. Put w,=e(s, v,).
Then

f(w,) =0 by (B2), and =z,<w,<zu4-
Hence zzlirg z,,:lirz} w,eA4A,NS;, since 4,NS, is closed and bounded.
Therefore f'x (z):lirg ;:(z,,):lirg f(w,), and this leads a contradiction.
(iii) By (B?:l;we have il}g. flop(t, 2))=—1 and‘!’ir_ri f(o(t, 2))=1 for any z€

S'—(4,U {4-1}), whence lim @(¢, )4, and lim ¢(¢, ) 4,. Clearly these
show our desired result. o g.ed.

Lemma 9.6. C(i=1, 2) are open in S*, and CyD084,.

Proof. By Lemmas 9.4 (i) and 9.5 (ii), 84, is a @-invariant finite subset,
whence is fixed by @. Thus 84,CC, follows from Lemma 9.4 (i). Since C;
(¢=1, 2) are open in 4, and C;C A,—03A,, they are also open in S*. g.ed.

Proposition 9.7. Let (p, f) be a pair with (B1-3), and set
9.8) A=A, and B;=4,NC; (i=1,2).
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Then the triad (A, B;) satisfies (A1-2). If pairs with (B1-3) are B-equivalent,
then the corresponding triads with (A1-2) are A-equivalent.

Proof. The first half follows from Lemmas 9.4-6.
Let ¥ be a homeomorphism of S* onto itself, which gives B-equivalence

between (g, f) and (¢, f'), i.e.
V=], f=fT and Vet z)=o'(t ¥(R)) (tER, zES",

and let (4, B;) and (4’, B}) be the corresponding triads with (A1-2) respec-
tively. Then the above last two equalities imply

W(A4) = A', ¥(Cy) = C§{ and hence W¥(B,UB,)= B{UB},

where C, and Cj§ are the fixed point sets of @ and @’ respectively.

Fix z&B,UB,. 'Then g(2)=0 and g'(¥(2))=0 for the smooth functions g
and g’ of (9.1) by @ and @' respectively. Hence @*()=g(t, 2) and @"¥®)(t)=
@'(t, ¥(2)) are locally diffeomorphic at =0, whence so is ¥ at z. 'Thus

2'(¥(2)) Lywyh = [dh @'(t, V(2))[dt];—o = [dh T p(t, 2)|dt];—0 = &(2) L(AT)
= g(8) ¥x(L,) h for any smooth function % around ¥(2).

Therefore g(z)g'(¥(2))>0 (resp. <0) if ¥ is orientation preserving (resp.
reversing), and hence W(B)=B} (resp. ¥(B;)=Bj_;) (i=1,2). Thus, by
Lemma 9.4 (ii),

{ ¥ if W is orientation preserving ,
~ l¥J otherwise

gives the A-equivalence between (4, B;) and (4', BY). g.e.d.

10. Construction of smooth functions

In this section we construct smooth functions with (B1-2)" and (B3) from
a triad of subsets of S! with (A1-2).

Lemma 10.1. There exist smooth functions & and B on R satisfying the
Jollowing conditions ;
(1) A) (dax)fd) = ax(xf— 1.
(2) lax)|<1 and da(x)/dx>0 if |x| <1, a(x)=—11if x=—1, a(x)=1if x=1,
and a is an odd function.
(3) (sin x)/ar(x) (x==0) can be extended to a smooth function & on R with &(0)=0.
4) B(x)=01f |x| =1, and B is an even function.

Proof. Put
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exp (—1/¥%) if x>0,

0 i emo 4 )= ple).

)= |
Then, by routine calculations,
a(x) = (n(%)—7(%))/(n(%)+7(x)) and
B(x) = —ai x5 p(x,)? p(xo)'/(%} p(%)* 422 p(%2)’)
for x,=(1-+x)/2 and x,=(1—x)/2, satisfy (1)—~(4). ged.

Lemma 10.2. Let a and B be as in the above lemma, and set v(x)=1/a(x)
(x0). Then
(1) B) (dv(x)/d)=v(x}—1 (x0).
2) v (%)]|>1 and dv(x)[dx<<0 if 0<|x| <1, y(x)=—1 if x=<—1, y(x)=1 if
x=1, and 7y is an odd function.
(3) v(x) sin x can be extended to a smooth function (x) on R with 7(0)=0.

Proof. The lemma follows from Lemma 10.1. ged.

Lemma 10.3. Let N,(i=1,2) be disjoint open subsets of R. Then there
exists a smooth function u on R satisfying N;={x€R; (—1)'"! p(x)>0} (¢=1, 2).

Proof. It is well-known that there are smooth functions u;(7=1,2) on R
such that R—N;={xER; u;(x)=0} (cf.[4; Ch.1, Th. 1.5]). Then the desired
function is obtained by setting (%)= p(x)*— p,(x)> q.ed.

Let (4, B;) be a triad of subsets of S' with (A1-2), and put
SiNdy= Ulli[r, 5] (0<r,=5,<r;.,<7) for A,=AUJ(4).

Here S, is regarded as the open interval (0, z) by sending e?®& S, to §&(0, z).
Also put u;=(714,45,)/2, v,=(r141—5;)/2 and ©,(0)=(0—u,)/v, (0=SI<E) for s,=
—r, and 7,.,=27—s,. By using @, 8 and 7 in Lemmas 10.1-2, consider the
smooth functions

a(6) = &v(wy(0)) v(wi(0)) IT}=} a(w(0)) (0<f<=) and
b(6) = & Sluo (—1)**" v, B(w(6)) (0=b=n),

where é=—1 if [r;, 5,] CA, =1 if [r, s)] ©J(4). Then

(104) S,NA={e?;a(0) =1}, SiNJ(A4) = {e*;a(d)=—1},
S, NAy= {e°; b(0)=0} and b(0) (da/d0) = a(0)*—1 (0<b<7).

By Lemma 10.3 there is a smooth function ¢ on [0, z] such that

(10.5) S, NC; = {e; (—1)1e(6)>0} (i =1,2) for C;=B;UJ(B)).
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Then ¢=0 on a neighbourhood of {0, z}, since 4,N {1} =¢ and C,UC,C 4,
""6140.
(10.6) Let us set
a(6) if 0<b<nm,
—a(—0) if —=<6<0,
b(8)+-<(6) if 0=0==,
b(—0)+c(—0) if —m<6<O0.

e ={

g = |

Then we have the following proposition.

Proposition 10.7. Let (A4, B;) be a triad with (A1-2). Then the smooth
functions f and g of (10.6) satisfy (B1-2)' and (B3). Furthermore the triad of
(9.8) by f and g coincides with the given one (4, B;).

Proof. We notice that there is a smooth function F on S satisfying (B3)
by Lemma 10.2(3). Therefore (B1)’ and (B3) follows immediately from defini-
tion (10.6).

For z=e?€S,, a(0)=f(2) and da/d0=L, f, whence b(0)L, f=f(2)*—1 by
(10.4). Here f(2)=41 if z&C,UCy(C;=B;UJ(B;)) by (10.4) (hence L,f=0),
and g(2)=>5(0) if z£C,U C, by (10.5). Thus

g(R)L,f = f(z)*—1 forany =z&S,.
Also, by (*) in the proof of Lemma 9.3, we get
8(2) L.f = —&(2) Liw(f)) = 8(J (2)) L1e(f) =f(J ())'—1
= f(z)*—1 forany =2&J(S,).

Therefore (B2)" holds.
The latter half of the proposition follows from (10.4-6). g.ed.

11. A-equivalence classes

In this section we show the following theorem, and prove Theorem 1.4.

Theorem 11.1. There is a one-to-ome correspondence between A- and B-
equivalence classes, induced from (9.8) and (10.6).

Let @ be a one-parameter transformation group on a closed interval I,
and regard this as a smooth function g(x)=[dp(¢, x)/dt],—(x<I). Consider the
subsets of I,

Cip) = {xeI; (—1)y'gx)>0} ¢=1,2) and
Cop) = I=(Ci(p) U Co(9)) -
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Then Cy(e) (D0I) is the fixed point set of @. For each xeCy(p) (i=1, 2), the
mapping @*: R—I, ¢*(£)=o(t, x) (t€R), is diffeomorphic onto the component
of Ci(p) containing x.

Also, let @" be a one-parameter transformation group on a closed interval
I’, and assume that

(11.2) There is an increasing homeomorphism ®: I—I' such that D(Cyp))=
Cip') (=1, 2).

Then we have the following Lemmas 11.34.

Lemma 11.3. Suppose I—0I=C;i(p) (=1 or 2).

(1) Choose base points meI—d8l and m'eI'—0I'. Then there exists an
equivariant map ¥: I—1' such that ¥(m)=m' and ¥=3® on 01

(i) Any equivariant map V: I—1" is an increasing homeomorphism if W=
on 1.

Proof. (i) Since " is diffeomorphic onto I—9I, the desired equivariant

map is obtained by
D if xeol,
vw={o
@'(t,m') if x= p(t,m)el—0ol.

(i) Fix meI—0l, and put m'=¥(m)el'—3l'. Since ¥ is equivariant, it fol-
lows that ¥ is diffeomorphic on I—8/=C(p), and

g'(¥(x)) = g(x) (d¥ (x)/dx) for xeI—dl,

where g and g’ are the corresponding smooth functions of @ and @’ respectively.
Then d¥(x)/dx>0 by (11.2). Thus ¥ is an increasing homeomorphism on
I—01, whence so on I because ¥=® on 8] and @ is an increasing homeomo-
rphism. g.ed.

Lemma 11.4. There exists an equivariant homeomorphism
W:I—1" suchthat ¥ =& on Cyp).

Proof. Put Cy(p) U Cy(@)= U -1 I, the disjoint union of open intervals I,
and let m, I, and m; = ®(1,) be the middle points. Then, by the same method
as in the above lemma, we obtain an increasing equivariant bijection ¥ with
W= on Cy(@) U {m}.

We show that

(*) W is right continuous at a& /.

If I(a) N Cy(p)=¢ for some £>0, where [(a)={x&I; a<x<<a+tE&}, then I(a)
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c1, for some k, and thus (*) follows from Lemma 11.3 (ii). Suppose I(a)N
Cy(p)#*¢ for any €>0. Then acCy(p) and ¥(a)=(a). Choose y. =1 (a)N
Cy(p). Then, for any a<<x<y,, ¥(x)=D(x)<D(y.) if x=Cy(p) and =¢'(z, m;)
<D(y,) if x=op(t, m)E1,. Thus

0<¥ (1)~ ¥ (a)<D(y)— D(A)<D(a+6)—B(a),
and so (*) holds.

By the same method as above, we see that W is left continuous. Therefore
W is continuous on /, and similarly so is ¥~! on I'. g.ed.

Let (@, f) be a pair with (B1-3), and (4, B;) be the corresponding triad with
(A1-2). By (B1), put S'—4,= U%.: N, the disjoint union of g-invariant open
intervals with (—1Y'eN; (j=1, 2) for A;=AUJ(A4). Hence, for the middle
points m,EN,,

(11.5) J{m})={m} and m;=(—1Y"'(j=1,2).
Let g be the smooth function by ¢, and set
Cip) = {z€8%; (—1)'g(z)>0} andso B;=ANCi{p) (i=1,2).

Also, let (@', f’) be a pair with (B1-3), (4’, B/) be the corresponding triad
with (A1-2), and assume that

(11.6) There is an orientation preserving homeomorphism @ of S* onto itself such
that

O] = Jb, P(A)=A" and ®B,)=Bi(i=12).
Then we have the following Lemmas 11.7-8.

Lemma 11.7. (i) For each [ =3, there exists mj = ®(N,) such that f(m;,)=
f'(m?).  Furthermore J(m,)'=](m}) for 1 SI<k, where m;=®(m;) (=1, 2).
(i) B(Ci)=Cile) (=1, 2).

Proof. (i) If /=3, then f(m,)tanh t==1 and f'(®(m,)) tanh ¢==1 for any
teR by (B2). Thus | f(m;)| <1 and | f'(®(m,))| <1, whence we can find s&€R
such that tanhs={f(m)—f (D (m,))}/{f(m)f (D(m))—1}. Set mi=p'(s,
®(m,;)). Then

mie®D(N,) and f(m;)) = f'(mi) by (B2).
The latter half is clear for [=1, 2, and
J(m) = @'(—s, ®J(m)) = Jo'(s, (m;)) = J(mi) for 1=3.

(if) The sign of the smooth function g (resp. g’) by @(resp. @) is invariant
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on each orbit. Then, by (11.6), it is sufficient to show g(2) g'(w)>0 for some
2€N,; and weP(N,). Put z=m;, w=mj it =3, and z=ep(t, m,), w=¢'(t, m])
for some 40 if /=1, 2. Then f(2)=f"(w), and hence

8= L.f =¢g'(w) Lof* by (B2)'.
Here (L,f) (L, f")>0 follows from ®(A)=A’. Therefore (ii) holds. ged.

Lemma 11.8. (o, f) is B-equivalent to (@', f').

Proof. By Lemma 11.4, there is an orientation preserving equivariant
homeomorphism

¥,:4—>A" suchthat ¥,=& on 04.
Also, by Lemmas 11.3 and 11.7 (ii), there is an orientation preserving equivariant
homeomorphism
v,: S'—(4,—04,) - S'—(A4;—04t) such that Wy(m;)) =m| and
¥,=® on 94, for Ay=AUJ(A) and Ai=A'UJ(A’).
Then, for z=¢(t, m)eN,C.S'—A4,, we get
JEA2) = Jp'(t, Wo(m)) = @'(—1, J(m1)) = @'(—2, J(m))
= @'(—t, ¥, J(m))) = ¥, p(—1¢, J(m)) = ¥, J(2) and
f(2) =f('(t, mi)) = [ Wy(t, m;) = ' ¥,(2) when z++1.
Therefore the homeomorphism ¥ of S onto itself,
=% ond, =J¥ Jon J(A) and =¥, on S'—4,,
gives a B-equivalence between (¢, f) and (¢, f'). g.ed.

Proposition 11.9. Pairs with (B1-3) are B-equivalent if the corresponding
triads with (A1-2) are A-equivalent.

Proof. Let (@, f) and (@', f') be pairs with (B1-3), and assume that the
corresponding triads (4, B;) and (4’, Bf) are A-equivalent by an orientation
preserving homeomorphism & of S* onto itself; ®J=J® and

(1) (4) = 4', ®(B) = Bi or (2) B(4)=J(4"), BB) =J(Bi-) (i =1,2).

For the case (1), the proposition follows from Lemma 11.8.

In case (2), consider the one-parameter transformation group on S, (¢, 2)
=@'(—t, 2) ((ER, 2€8"). Then (¢”, —f') satisfies (B1-3), and is B-equivalent
to (@', f') by the reflection J. Furthermore its corresponding triad is given by
(J(A4", J(Bji-i)). Therefore (¢”, —f') is B-equivalent to (@, f) by Lemma 11.8,
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and hence so is (@', f'). g.ed.

Proof of Theorem 11.1. By Proposition 9.7, there is a mapping from B-
equivalence classes to A-equivalence ones, which is surjective by Proposition 10.7

and injective by Proposition 11.9. Therefore the theorem holds. g.ed.
Proof of Theorem 1.4. The theorem follows from Theorems 8.1 and 11.1.
q.ed.

Proof of Corollary 1.5. (i) Since the G=SL(2, C)-action of (7.1) has no
fixed points by (7.3), the first half holds. The latter half follows from Theorem
1.2.

a pair (@, f) with (B1-3), and so a triad (4, B;) with (A1-2). If ¢ is real
analytic, then so is f, and hence 4 is finite and B;=¢(=1, 2). Thus Theorem
1.4 shows that the equivariant homeomorphism class of ¢ is determined by
the order |A| of A. Moreover, the action of (7.1) constructed from (g, f)

has precisely 2| 4|41 orbits. These imply (ii) and (iii). g.ed.
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