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1. Introduction

It was proved by H. Nagao that a finite group which has the same
table of characters as a symmetric group S, is isomorphic to S,. The
purpose of this paper is to prove the following theorem.

Theorem. If a finite group G has the same table of characters as
an alternating group A,, then G is isomorphic to A,.

As is shown in [2], a group G as in the theorem has the same
order as A,, therefore the theorem is trivial for n=2 and 3. Further-
more, the degrees of corresponding irreducible characters of G and A,
coincide with each other, the numbers of elements of corresponding con-
jugate classes of G and A, are the same, and G has the same multipli-
cation table of conjugate classes as A,. From the last fact it follows that
G is simple for #=5. Since it is known that a simple group of order
60 or 360 is isomorphic to A, or A,, the theorem is true for =5 and 6.

Now we shall give here an outline of the proof of the theorem
which will be given in the next section. An alternating group A, is
isomorphic to the group generated by a,, a,,-:+, a,-, with the following
defining relations;

ad=1la=a==a,=1
() (@@’ =1 (G =12,,n-3)
(@a,f =1 (=12, n—4, i+1<7)

(For the proof, see [1], Note C). The proof of the theorem is carried
out by showing the existence of elements «,,::, a,_, in G which satisfy
the above relations.

Let C*(i{*, i32,---) be the totality of elements of A, which can be
expressed as a product of «, cycles of length i,, «, cycles of length 7,, -
such as each of letters occurs in only one cycle of them, where we as-
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sume i, >1 except for C¥(1). In A,, C¥i%', i%%,---) is itself a conjugate
class or a union of two conjugate classes with the same number of
elements. Let G be a group with the same table of characters as A,,
and let C(:}', i32,---) be the conjugate class or the union of two conjugate
classes corresponding to C*(i%', %,---). Then {C(:}*, #%%,---)} has the
same multiplication table as {C*(:}*, i3%,---)} and the number of elements
of Clith ¥, 18 o Z;l.a o Where i= T1ati,. The follow-
ing multiplication tables will be used frequently.

(M,) C(22)-C(22)—~£T—)—C(1)+{(n £)n—5)+2}-C(@)+->- 5 (#—=3)

(n—4)C(3)+5C(5)+4C(2, 4)+6C(2?% 3)+ 6C(2‘) +9C(3%)

M, C3)-C3) = WC(1)+{1+3(71 3)}-C(3)+8C(2%) + 2C(3%)

+5C(5).
M,) C(3)-C(2*) = C(2% 3)+4C(2,4) +4(n—4)C(2*) +5C(5) + 3(n—3)C(3).

Lemma 1 and 2 in the next section will be useful to determine
the orders of elements in C(3), C(2?) and C(5). After proving several
lemmas, we shall show that there are elements «, in C(3) and a,, b,,---,
b,_, in C(2*) such that a,a,€ C(3), a,b; € C(2%), a,b; € C(3) (Lemma 11, 12,
13). Then it will be proved that the elements a,, a,, a,=b,, a,=b,b,b,,-,
a, ,=b, b, b, s satisfy the relations (x).

2. Proof of Theorem

In this section, we assume that G is a finite group with the same
table of characters as A, with »=4 or n=>7.

Lemma 1. If the order of an element of C(i%',i3,---) is a prime
power p™, then i= >\ a,i, =0 (p).

Proof. As A, is a doubly transitive group G has a irreducible
character X of degree n—1 such that X(¢)=n—1—i for a€ C (i}, i32,---).
Since a?"=1, we have X(a)= >'o,, where ?"=1. Thus SNo,=n—1—i,

r=1

and (n—1—i)?" =3 0,)" =N w?"=n—1 (p), where p is a prime ipeal
divisor of p in the field of p™th root of unity. Therefore n—1=n?"—1
—i?"=n—1—i (), and hence i=0 (D).
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Lemma 2. Let a€ C(E%, i%%,---). If C(%, i%%,-+) is a conjugate class
of G, and a*e CQA)VC(GY, i%2,---) for any k, then the order of a is a
prime number.

Proof. Suppose that the order of a is kk,, where k,==1, k,==1.
By the assumption a*1€ C(i!, i%2,---), and the order of a* is k,, which is
less than kk,. This is a contradiction. Therefore the order of a is a
prime.

Lemma 3. If G has the same table of characters as A,, then G is
isomorphic to A,.

Proof. Now G=C(1)VYC(2*)V(C(3), where C(2*) is a conjugate class
and C(3) is a union of two conjugate classes C,(3) and C,3).

Since the order of G is 12, G has elements of the order 3 and 2.
Let @ be an element of order 2, then by Lemma 1 « is not in C(3),
therefore a€ C(2?), and an element b of order 3 is in C(3) =C,(3)VYC,(3).
Let be C,(3). Since C,(3)-C(2)>C,(3), there exist elements ¢, and a, such
that a,€ C(3), a,€ C(2*) and a,a,€ C(3), i.e. a}=1, d3=1 and (aa.)’=1.
Therefore H={a,, a,} is a homomorphic image of A,. If the order of
H is 6, then A, has a normal subgroup K of the order 2 such that A,/K
is isomorphic to H. But A, has no normal subgroup of the order 2.
Therefore the order of H is 12, and so G is isomorphic to A,.

From now on we assume that #==7. Then C(:{*, i%?,---) occuring in
the multiplication tables (M,), (M,) and (M,) are themselves conjugate
classes in G. We shall denote by #(x) the order of the normalizer N(x)
of an elemente x, and if xis in a conjugate class C(:§, i32,---) then n(x)
is also denoted by n(s$', 3%,---). Since N(x)Z N(x*), n(x) is a divisor of
n(x®).

Lemma 4. If a€ C(3), then a*€ C(3)VYC(1) and the order of a is 3.

Proof. From the multiplication table (M,) C(3)-C(3)=C(1) VY C(3) VY C(2%)
V()Y C(5). Since n(3) does not divide n(2?), n(3*) and n(5), a* does
not belong to C(2)VYC(3F)VYC(5). Thus a*e CB)VCA). If a**eC(3)
VC(1), then a*=a*'-ae C(3)-C(3) and hence a*€ C(3)VYC(1). Therefore
by an induction on k, we have a*e C(3)VYC(1). for all &. By Lemma 2
the order of @ is a prime, and by Lemma 1 it is 3.

Lemma 5. If ae C(2%), then a*=1.

Proof. From the multiplication table (M,) C(2%)-C(2%)=C(1)VY C(2?)
VCB)VYCB)VYC(2, 4)VYC(2%, 3)VYC(2Y)VYC(3?), where C(2) is omitted for
n=7, By the same argument as in the proof of Lemma 4, a* ¢ C(5)VYC(2, 4)
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n(2)_41:2«(n—8)!
(2 8-(n—4)!

must be an integer. But this is impossible

V(22 3)YC(3?). If a* is contained in C(2Y), then

_ 2.3
(n—4)n—5) n—6)n—7)
except for n=_8.

Now in the case of #=8, since n(2?) does not divide #(3), a* ¢ C(3).
Therefore it is easily seen that a*€ C(1)YC(2*)YC(2*). From the multili-
cation table (M,), there are two elements b,, b, of C(3) such that a=b,b,,
and @*=0b,b,b,b,=(b,b,b7")-b7'-b,€ C(3)°. It is easily seen that C(3)* does
not contain C(2*), hence a*¢ C(2'), and 4’ € C(2*)VY C(Q).

Suppose that a*¢ C(1). Then a*€ C(2)). If a*e C(2') for some &, then
a*=(a®)k € C(2"). Since a** € C(2*)VC(2*)YC(1), and n(2*) does not divide
n(2?), a**' € C(2)VC(1) for all #, Hence by Lemma 1 and 2, the order
of an element of C(2*) is 2, and therefore @**=1. This is a contradiction.
Thus a* ¢ C(2*) and a*€ C(2*)VYCQ1) for all k. By Lemma 1 and 2, we
have a*=1, which contradicts the first assumption. Thus this lemma is
proved for n=8.

In the case of #n==8, we have seen a* ¢ C(2') for any integer k, hence
e C(2)VYCB)VYC(). Now a*=a*-ac {C2)VYCEB)VYC1)}-C(2%), and so
from the multiplication tables (M,) and (M,) and by considering the
orders of normalizers of elements it is seen that «°e C(2°)VYC(3)VC(1).
Now if a*€ (C(3), then by Lemma 4 (¢*)’=1, but by Lemma 1 the order
of @ can not be 3, a*¢ C(1), thus a’€ C(2°). If a*e€ C(3) for some %, then
for b=a* b*€ C(3) since be C(2*). On the other hand, b*=(a*)’=1 since
a* € C(3) and the order of an element of C(3)is 3. This is a contradiction.
Thus a* ¢ C(3), therefore a°€ C(2°)YC(1). By the same argument as in
the proof of Lemma 4, we have now a*=1.

Lemma 6. Any element x of C(3%) is uniquely expressed as a product
of two commutative elements a, b of C(3) disregarding their arrangement,
and x*=1.

Proof. From C(3)-C(3)=2C(3*)+---, x can be expressed in exactly
two ways as a product of two elements of C(3). If x=ab with a, be C(3),
then x=a-b=0b"'ab)=(b"'ab)(b~'a"'bab). It is easily seen that a==b and
b==b0"'ab. Hence a=b"'ab i.e. ab=ba, and we have (ab)’=1 by Lemma 4.

Lemma 7. Any element x of C(2%, 3) can be expressed uniquely as a
product of an element a of C(3) and an element b of C(2%). Two elements
a and b are commutative and the order of x is 6.

Proof. From C(3)-C(2*)=1.C(2 3)+ .-+, the first half of the lemma
is evident. Now x=a-b=(bab)(ba 'bab), babe C(3) and ba ‘babe C(2%),
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therefore a=bab i.e. ab=ba, and so from &*=1 and b°=1, the order of
x is 6.

Lemma 8. The oder of an element x of C(5) is 5, and x*€ C(5) for
k==0 (5).

Proof. From C(2?).C(2*)=5C(5)+ .-+ there exist two elements ¢ and
b of C(2*) such that x=ab, and x is expressed in exactly five ways as a
product of two elements of C(2°). Now x=ab=>b(bab)=(bab)(babab)
= (babab)(bababab)=(bababab)(babababab), and by Lemma 1 the order of
element of C(5) can not be 2, 3 and 4, and therefore it is easily seen
that these five expressions of x as a product of two elements of C(2%)
are all distinct. Since x=(babababab)(bababababab) is also an expression
as a product of two elements of C(2°), and b(ab)* is not equal to
b, bab, b(aby® and b(ab)’, b(ab)® must be equal to a i.e. (aby=1. Since
(aby¥=(aba)b and (ab)*=(ab)™?, these are contained in C(2%).-C(2°) and from
the multiplication table (M,) and Lemma 1, except the elements of C(5),
the order of any element of cojugate classes in C(2°)-C(2°) is not 5.
Therefore both (ab)’ and (ab)’ are contained in C(5) and (ab)'=(ab)™' is
also in C(5).

Lemma 9. [f x€C(2, 4), then x*€ C(2%) and x'=1.

Proof. Since C(2, 4) is contained in C(3).C(2%), there exist an element
a of C(3) and an element b of C(2°) such that x=ab. If x’=1 then
abab=1, aba=b, hence a ‘ba=ab, but a'ba is contained in C(2?), which
is a contradiction. If x*=1, then ababab=1. ababa=>, hence a 'baba=ab,
but @ 'baba~a € C(3), which is a contradiction. (Here x~y means that
x is conjugate to y.)

Since C(2%)-C(2*)=4C(2,4)+--- and the order of x is not 2 and 3 as
proved above, we can show that the order of x is 4 by the same argu-
ment as in the proof of Lemma 8. Now x*=a(bab) € C(3)-C(3) and the
only conjugate class in C(3)-C(3) whose elements have order 2 is C(2?),
therefore x*¢€ C(2?).

Lemma 10.

(1) Let x=abeC(5), where a and b belong to C(2°), then setting
a*=x"iaxi, x=a*'b* (i=0,1,2,3,4) are all of the ways to express x
as a product of two elements of C(2)). The same holds for a, be C(3)
or a€ C(3), be C(2%).

(2) For elements a and b of C(2%), if there exists an element y such
that y does not belong to C(5)V C(1), ay belongs to C(2°) and y~'b belongs
to C(2%), then ab does not belong to C(5).
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(3) For an element a of C(3) and an element b of C(2°), if there
exists an element y such that y does not belong to C(3)VC(5)VYC(Q), ay
belongs to C(3) and y='b belongs to C(2°), then ab does not belong to C(5).

Proof. (1) Since C(2%)-C(2°)=5C(5)+---, it is enough to prove that
five elements @*(0<<i<_4) are all different. If a*'=a*’/, where 0<<i<i< 4,
then ax/~i=x/"ig. Since the oder of x is 5, ax=xa, hence ab=ba, which
shows that the order of x is not 5. Thisis a contradiction. The proof
for a, b€ C(3) or a€ C(3), be C(2?) is similer.

(2) Suppose x=abeC(5). Then since x=(ay)(y~'b) and ay, y~'b
€C(2%), by (1) ay=a**=b(ab)*~'. Hence y=(ab)* and therefore ye€ C(5)
VY C(1), which is a contradiction.

(3) Assume x=abe C(5), then by (1) ay is equal to some a**. ay
is not equal to a. If ay=da", then ay=ba‘aab=>bab. Hence y=a ‘bab
=a~'ba~'-a'b=bababab-a *b~aba=a '-a"'b-a € C(5), which is a contradic-
tion. If ay=a*’, then ay=abababaabab. Hence y=bababa*bab=bababa™
-ba'a"‘b~baba-‘ba~'=ba-ababab~a & C(3), which is a contradiction. If
ay=a*’, then ay=ababaababab. Hence y=baba*babab=ba '-a 'ba 'babab
~a~'ba'bab—=bababaab~a c C(3), which is a contradiction. If ay=a*",
then ay=ab-a-abababab. Hence y=ba*bababab~aba=a'-a 'b-ac€ C(5),
which is also a contradiction. From these, x can not belong to C(5).

Lemma 11. For an element a, of C(3), there exists an element a, of
C(2%) such that a,a,€ C(3).

Proof. FromC(3)-C(2))>(C(3), this lemma is evident.

Lemma 12. Let a, € C(3), a,€ C(2*) and a.a,€ C(3). The number of
the elements b's in C(2%) such that abe C(2°) and a,be C(2%) is ¥(n—4)
(n—=5). If be(C(2%), a, be C(3), a,be C(2*) them b is either aa.ai* or
arlaa,.

Proof. From C(2%).C(2%)={(n—4)n—5)+2}C(2*)+ -+, for the element
a, there are (n—4)(n—5)+2 elements &'s in C(2?) such that a,b€ C(2%).
Let b be one of such elements. Then a.,b € C(2°) and a,(a.,b) € C(2*), hence
the element a,b is also one of elements as above. Now a,be€ C(3)-C(2?)
=C(28,3)YC(B)VYC(2)VYC(2,4)VYC(3).

(1) a,b is not contained in C(2%,3)VY C(5).

Since a,b=(a,a,)a,b), a,a,€ C(3) and a,be C(2°), by Lemma 10 a,b
¢ C(5). If a,beC(2% 3) then by Lemma 7, a,=a,a,, which is a contradic-
tion. Therefore a,b ¢ C(2? 3).

(2) If there are elements &’s such that a,b€ C(2,4) or abe C(2?),
then the number of elements &’s such that a,b€ C(2, 4) are equal to the
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number of elements b’s such that a,b€ C(2%).

If x=abecC@ 4), then from C(3).C(2*)=4C(2,4)+ -, x=a?'b*
(1=0, 1, 2, 3) are all of the ways to express x as a product of an element
of C(3) and an element of C(2°). For, if a,=af then a,=bai'a.a,b="bab,
hence ar'=(a,b)} but ai'e C(3) and (a,b)* € C(2°), which is a contradiction.
If a,=a” then a,=bai'ba,ba,b=ba,-bat?, hence ba,-ba,=1, which is a con-
tradiction. If a,=a?’ then a,=ababar’, hence a7'=(a,b)’, which is a
contradiction. Thus a* are all distinct from each other. On the other
hand, a,b=(a.a,)a.b), aa,€ C(3) and a,be C(2?), therefore a,a, must be
equal to some a&**. aa, is not equal to a,. If aa,=a’ then a,a,=bab,
hence ai'a,=(a.b), but ai'a,€ C(3) and (a,b) € C(2*), which is a contradic-
tion. If aa,=a* then aa,=ababar’, hence a,a7'=(ba,)?, which is a
contradiction. Therefore a,a, must be equal to a¥*=ba,bar?, and therefore
a,a,b=babar*b~be C(2*). Thus we can conclude that if abe C(2, 4),
a,a,b belongs to C(2%).

Conversely suppose ab€ C(2?). Now a,abe C(3)-C(2°), and (a,a,b)
=a,a,ba,a,b=a,a,a7'ba,b=a.a,a7'a,=a7*a.a, € C(2*). But for a conjugate
class in C(3)-C(2?), if a square of it’s element belongs to C(2%), then this
class must be C(2,4). Therefore a,a,b€ C(2,4). Thus our assertion is
proved.

(3) If abe C(3), then b is either a,a,a7’ or aila,a,.

Let b, and b, belong to C(2%), and a,b; € C(2*), a.b;€ C(3), and b,=Fb,
(i=1,2). From (1) aab;e C(3)YC(2, 4)VYC(2?) and a,a,-a,b€ C(3), hence
from (2) a,a,b;€ C(3). Now bb,=ba,-ar*be C(3)-C(3)=C(1)VYC(3)VY (2
VY C(3*)VYC() and b,=kb,, therefore the order of b, is 2, 3 or 5.

Assume a,b,b,=F1. As a,(bb,)=(b.b,)a,, the order of a,b,b, is 2, 6 or
10. Butab.b,=ab.a,-a7*be€ C(3)-C(3). Thus from the multiplication table
(M,) a,b,b,€ C(2*) and therefore b,b,€ C(2°), and hence by (1) a,bb,€ C(3)
VC(2, )V C(2%. If abb,e C(2%), then abb,-abb,=1, a,bb,abb =1, hence
bab,ar'b,at*=1, and therefore b,a,b,a,=ab,a7’, but the left belongs to
C(3) and the right belongs to C(2?), which is a contradiction. If a,b,b,
€ C(2, 4), then by C(3)-C(2°)=4C(2, 4)+ -+, a;b,b, is expressed in exactly
four ways as a product of an element of C(3) and an element of C(2?).
But a,(b,6,)=(a,b,)b,=(a,b,)b,=(a,a,)a,bb,)=(a,a,b,)b,a,), and it is easily
seen that these are distinct five ways of expressions of «,b,b, as a product
of an element of C(3) and an element of C(2?), which is a contradiction.
Thus a,b,b,¢ C(2, 4). If abb,e€ C(3), then by C(3)-C(3)=8C(2%)+ -+, b, is
expressed in exactly eight ways as a product of two elements of C(3).
But bzz(blal)(alele)=(bleal)(al_lbl):(bla;l)(alblbz) = (blbzal_l)(albl) = al(arlbz)
=(ba,)ar=ar'(a.b,)=(b,a7")a,=(b,a,a7")a,a,b,b,), and it is easily seen that
these are distnct nine ways of expressions of b, as a product of two elements
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of C(3), which is a contradiction. Thus a,b,0, ¢ C(3). Hence a,b,b, must
be equal to I, and therefore b,=a,b,, which means that b, is uniquely
determined by b,. Now take a,z,a7!, then a,a,a7* € C(2%), a(a.a,a7")=a,a.a,
€ C(3), and a,(a,a,a:')=a7'a,a, € C(2?). Therefore b such that a,b€ C(3)
and b€ C(2) is either aa,a7! or a,-a,a,a7'=a7'a,a,.

(4) From the proofs above, there are exactly 4(n—4)n—5) elements
b’s such that a,b € C(2).

Lemma 13. Let a,€C(3), a,€ C(2%), aa,€ C(3), then there are n—4
elements b's in C(2%) such that abe C(2%), a,be C(3).

Proof. From C(3)-C(2)=4(n—4)C(2?)+ -+, for a, there are 3(n—3)
(n—4) elements b’s such that a,be€ C(2%), and for such b’s, since a,b and
ar'b belong to C(2?) and a,(ab) and a,(a7'd) belong to C(2*), a,b and ar'b
are included 3(n—3)(n—4) element &’s, and b, a,b and a;'b are all distinct.
For such elements b,, b, the sets {b,, a.b,, a7*b,} and {b,, a,b,, a7'b,} are
the same set or have no common element. Now a,b=a,a,-a,b€ C(3)-C(2%)
=C(2%, 3)VYC(2, 4)VYC(2H VY C(5)VYC(3).

(1) a,b is not in C(2% 3).

a,b=a,a,-av*'b=a,a7'-a,b, hence by Lemma 7 if a,b € C(2% 3), then a.a,
=a,a7’, and this is a contradiction. Therefore a,b ¢ C(2%, 3).

(2) There are i(n—4)n—5) elements &’s such that a,be€ C(2%), and
for such b, a,a,b and a,a7'd belong to C(2, 4).

By Lemma 12 there are 4(n—4)n—>5) elements &’s such that ab
€ C(2%). Now a,a.be C(3)-C(2%) and (a,a.b)’=a,aba,ab=a,aaa7'=ai'a,a,
€ C(2%), hence from the multiplication table (M,), @,a,b€ C(2, 4) and in
the same way we have a,a7*be C(2, 4).

3) If a,beC(3), then a,a,b and a,a7'be C(5).

a,a.be C(3)-C(2%) and a,a.b=a,a,a,-a,b € C(3)-C(3), therefore a,a,b € C(2?)
VCB)VYCEB). If aabeC(2?), then by (2) a,-ai’ab=abe C(2, 4), which
is a contradiction. If a,abe C(3), then a,aba,aba,ab=1, therefore
b=at'a.ar'a,babasta.a,~ababa, = ba,a,~a,abe C(3), which is a contradic-
tion, Thus a@,a,b€ C(5), and in the same way we have a,a;*be C(5).

4) If abeC(2, 4), then a,a,b or aai'be C(2%).

For ba,b, which belongs to C(2?), a,-ba,be C(2?), and a,-ba,b=ba; a,b
€C(3). By Lemma 12 ba,b must be equal to ai‘a,a, or aa,ar'. If bab
=a;'a,a, then ab-a,=a,-ab, hence (a,a,b)’=1, but a,abe C(3)-C(2?), and
from the multiplication table (M,), a,a.b€ C(2?). If ba,b=a.aar’, then
a,+ba,=ba,-a,, and in the same way we have a,ba,=a,a7*be C(2?).

(5) From (2), (4) there are $(n—4)(n—5) elements b’s such that a,b
€ C(2°)V(C(2, 4), and since $(n—3)(n—4)—3(n—4)n—5)=3(n—4), there are
3(n—4) elements s such that a,be€ C(3)VYC(5).
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(6) There are n—4 elements &’s such that b€ C(3).

From (3), (5), the number of elements b’s such that b€ C(5) is at
least 2(n—4). Let a,b,€ C(5), a,b,€ C5) and b,==b,, then &;, bab;,
b;a.b;ab; and b,a.b;abab; (i=1,2) are all distinct elements in C(2°) and
their products with @, belong to C(5). For, if b,(abY=>b{ab,)*, (0<j,
k<3), then (a,b,Y*"'=(a,b,)*"!, and as the order of @b, and a,b, are 5,
there exists an integer 7 such that a,b,=(a,b,)’. Hence bb,=(b,a,) " i.e.
b.b,e C(5). But bb,=b,a,-a7'b, and by Lemma 10 b,b,¢ C(5), which is a
contradiction. Thus for the element a,, the number of the elements d’s
such that d € C(2?) and a,d € C(5) is at least 8(n—4). But from C(2%)-C(2?)
=5C(5)+ --+, the number of such d’s is just 8(n—4). Therefore there are
2(n—4) elements b’s such that a,b€ C(5), and so the number of elements
b’s such thac a,be C(3) is n—4.

Lemma 14. If a,€C(3), a,€ C(2), aa,€ C(3), and b;€C(2*) (i=1,2,
3,4), ab;€ C(2°), a,b;€ C(3) and b;==b; (i==j), then

(1) bib; e C(3), (i==7).

(2)  abibbi € C2), (i=j).

(3) bi-bbb; € C(2), for distinct i, j and k.

(4) bbb+ bbby € C(2%), for distinct i, j, k and |.

Proof. (1) bb;=b.a,-ab;€ C(3)-C(3)=C(1)VYC(3)YC(2*)VYC(3)VYC(5).
Since b;==b;, b;b;¢ C(1). Since bb;=ba,-a1'b;, b;a, € C(2°), a7'b;e C(2%),
and @, € C(3), by Lemma 10 b;0;¢ C(5). If b;b;€ C(3°), then b;b;=b;a,-a.b;
and by Lemma 6 b;0;=a,b;-b;a, and so a,b;-b;=b;b,a,. Therefore (a,a,b;b;)
=a,a,b;b;0,a.b;b,2,a,b;b;=a,a,a,a,b;;0;0;0,a,b;6;,=b;b;€ C(3*). On the other
hand, a,a,b;b;=a,b; b;a,€ C(2*)-C(3) and from the multiplication table (M,),
there is no element of C(2%)-C(3) such that it’s third power belongs to
C(3?). Therefore b;b; ¢ C(3*). If b;b;€ C(2%), then b; and b; are commu-
tative with each other. Now 0;0;a,0,0;€ C(2%), a,-b;b;a,b;b;=a,b;a,b;a,b;
=b,a,b;b;a,b;~b;b;€ C(2%), and a,-b;b;a,b;b;=b;b;a,a,b;b;~a,a,€ C(3), hence
by Lemma 12, b,b;a,b;5; must be equal to ay'a,a, or aaar’. If bbabb;
=a7'a,a,, then abb;=a,abb;a,=(aaa,)abb;a,), but a(bb;)e C(3).-C(2%)
and by the commutativity of @, and 0;0;, the order of ,b,b; is 6, and
so a(bb;)eC(2%, 3). Hence by Lemma 7 b;b;=abb;a, i.e. (a,b;b;=1,
which is a contradiction. In the same way 6;0;a,0;b;,=a,a,a7'. Therefore
bib; ¢ C(2°). Thus bb;e C(3).

(2) ab;-bb;€C(3)-C(3) and a,b;bb;=(a,a,)ai'b;b;b;)=(a.a,)b;a,b;b;)
€ C(2%)-C(3), hence from the multiplication tables (M,) and (M,) a,b;b;b;
eCB)VYCHB)VC(2Y). If abbb;eC(5), then from C(3)-C(3)=5C(5)+ -,
ab;b;b; is expressed in exactly five ways as a product of two elements
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of C(3). But by (1) bb;6;,=0;b;b;, hence (a,b;)(b;b;)=(b;b:)b:b;a.b;b;b;)
=(b;b;8,0:b ;b;)(b:b 10,a,b 16:a,0;0 ;0;)=(a,b ;)(b:b;)=(b:b;)(b jb;a,b ib;b;)=(b b;a,b ;b:b ;)
(b;bib;a,b:b,a,b,;0;0;), and these six expressions are all distinct. For if a,b;
=b,;b,;a,b;0;0; then (b;b;Xa,b;)=(a.b;)b;b;), therefore (a,b;b;b;)*=1, which is
a contradiction. If a,b;=0b;a,0;0;b; then bb,a,b;=ab;b;b; and the left
belongs to C(3), and the right belongs to C(5), which is a contradiction.
In the other cases, the proofs are similar. Thus a,b;b,b; ¢ C(5).

If a,b;bb;eC3), then ab;b;b;a.b;b;b;ab;b;b;=1, hence a,b;b;a.ba,
<bbiabbib;=1, and so b;b;a.b;b;a,b:b;a,b;a.b;a,b;=1, therefore (ab:b;
cababab;a,=1. But ab;ababa,~b;eC2), therefore (ab;b;) e C(2?),
and from the multiplication table (M,), a,b;b;€ C(2)VC(2, 3). If a,b;b;
€ C(2%), then a,b;b,;b;=>b;a7'b;b; € C(2*) and by the proof of (3) in Lemma 13,
a,a,b;b;b; € C(5). Since a,a,b;b;b;=a,(b;a7*bb;)=(a,b:b;)b;b:b.arb;b;)=(abib;)
(a;b;), this contradicts (2) in Lemma 10. Thus a@,b;b;b; ¢ C(3). Therefore
ab;bb; € C(2%).

() (bib;)Xbibj) = (bia,)azbbib;) € (C(3)- C(3)) A (C(3)- C(2%)) = C(3) Y C(2%)
VC(5). Assume that b;==0;0,0,0;b;6,b;, in which both sides belong
to C(2°). By (2) a,b;b,h;b:b;bph;=b;bb;a,b;0,b:b;€ C(3), a,+b,bb,0:b;b,b;
=b;bb ;a7 b;b;bpb ;€ C(27). From (2) a,-b;-b;bubbibbyb;-b;=0b;b;b,b;b;b;bb;
- b;+ a,, thus the left side=a,-b;b;b;+ b;byb;-b;b;+b;b;b;-b;b.b; bbb, =b;b b+ b;byb;
«@bib;b;b,b;-b;byb;-b;bb;, and transforming the right side in the same
way, we have a,b;b;=0b;b;a,. Hence a,b;b;b;=bb,a,b;, but ab,b;b;€ C(2%)
and b;b;ab; € C(3), which is a contradiction. Thus b;=0;b,b;b;b;b:b; i.e.
(b;0,b,0,Y=1. Consequently, b;0;b,b;€ C(2°).

(4) bibjbi-bpbib=(b:b,)b:bh,b;) € C(3)-C(2%). From (3) (b;b;b;byh,b,) =
bbb bybibyb;b,b;behby = bbby b;00;- 0,00, - bbb, =1.  Therefore by the
multiplication table (M,), b;0;b;-b,b,b, € C(2%).

Lemma 15. There are n—2 elements a; (i=1,2,---,n—2) such that
a,€C(3), a,,++,a,,€C(2°) and a;a;,,€C3) (i=1,2,-,n—-3), a;a,c C(2?)
(G=1,2,-,n—4,7 >i+1).

Proof. By Lemma 13, for a,€ C(3), a,€ C(2?), and a,a, € C(3), there
are n—4 elements b,,b,,-+,b,_, such that b, € C(2%), a,b; € C(2*) and a,b;
€C@3), (i=1,2,-,n—4). Put a,=b,, a,=bbb,,--,a;=0b;_3b;_b; s, a,_,
=b,_b,-b,_s, then a,a,, -, a,_,€ C(2%.

For i=4, aa;=ab;_b; ,b; ,=b; _,a7’*b; ,b;_,€ C(2*), and by (2) of
Lemma 14 a,a;,=ab; b, ,b;_,€ C(2*). By (1) of Lemma 14 a,a,=b,-b,b,b,
=b,b,€ C(3). For i=5, by (3) of Lemma 14 a,a;=b,-b;_.b;_,b;_,€ C(2).
For i=4, aiaiﬂ:bi—abi—zbi—a'bi—zbi—lbi—z=bi—zbi—sbi-lbi—zeC(3)~ For i=4
and j>i+1, by (4) of Lemma 14 a,a;=b;_b;_;b;_5-b,_,b;_,b;_, € C(2°).
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Proof of Theorem:

By Lemma 15, there is a homomorphism from A, to a subgroup H
of G generated by «,, a,,---,a,-,. But since A, is a simple group, A4,
is isomorphic to H, and comparing the orders we have H=G and A,=G.

Sumrvosur HicH ScuooL
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