

| Title        | On the groups with the same table of characters as alternating groups |
|--------------|-----------------------------------------------------------------------|
| Author(s)    | Oyama, Tuyosi                                                         |
| Citation     | Osaka Journal of Mathematics. 1964, 1(1), p. 91–<br>101               |
| Version Type | VoR                                                                   |
| URL          | https://doi.org/10.18910/11860                                        |
| rights       |                                                                       |
| Note         |                                                                       |

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

# ON THE GROUPS WITH THE SAME TABLE OF CHARACTERS AS ALTERNATING GROUPS

# Tuyosi OYAMA

## (Received May 26, 1964)

# 1. Introduction

It was proved by H. Nagao that a finite group which has the same table of characters as a symmetric group  $S_n$  is isomorphic to  $S_n$ . The purpose of this paper is to prove the following theorem.

**Theorem.** If a finite group G has the same table of characters as an alternating group  $A_n$ , then G is isomorphic to  $A_n$ .

As is shown in [2], a group G as in the theorem has the same order as  $A_n$ , therefore the theorem is trivial for n=2 and 3. Furthermore, the degrees of corresponding irreducible characters of G and  $A_n$ coincide with each other, the numbers of elements of corresponding conjugate classes of G and  $A_n$  are the same, and G has the same multiplication table of conjugate classes as  $A_n$ . From the last fact it follows that G is simple for  $n \ge 5$ . Since it is known that a simple group of order 60 or 360 is isomorphic to  $A_5$  or  $A_6$ , the theorem is true for n=5 and 6.

Now we shall give here an outline of the proof of the theorem which will be given in the next section. An alternating group  $A_n$  is isomorphic to the group generated by  $a_1, a_2, \dots, a_{n-2}$  with the following defining relations;

(\*) 
$$\begin{cases} a_1^3 = 1, \ a_2^2 = a_3^2 = \dots = a_{n-2}^2 = 1\\ (a_i a_{i+1})^3 = 1 \qquad (i = 1, 2, \dots, n-3)\\ (a_i a_j)^2 = 1 \qquad (i = 1, 2, \dots, n-4, \ i+1 < j) \end{cases}$$

(For the proof, see [1], Note C). The proof of the theorem is carried out by showing the existence of elements  $a_1, \dots, a_{n-2}$  in G which satisfy the above relations.

Let  $C^*(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  be the totality of elements of  $A_n$  which can be expressed as a product of  $\alpha_1$  cycles of length  $i_1, \alpha_2$  cycles of length  $i_2, \cdots$  such as each of letters occurs in only one cycle of them, where we as-

#### Т. Оуама

sume  $i_r > 1$  except for  $C^*(1)$ . In  $A_n$ ,  $C^*(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  is itself a conjugate class or a union of two conjugate classes with the same number of elements. Let G be a group with the same table of characters as  $A_n$ , and let  $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  be the conjugate class or the union of two conjugate classes corresponding to  $C^*(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ . Then  $\{C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)\}$  has the same multiplication table as  $\{C^*(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)\}$  and the number of elements of  $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  is  $\frac{n!}{(n-i)! \cdot \alpha_1! \cdot i_1^{\alpha_1} \cdot \alpha_2! \cdot i_2^{\alpha_2} \cdots}$ , where  $i = \sum_r \alpha_r i_r$ . The following multiplication tables will be used frequently.

(M<sub>1</sub>) 
$$C(2^2) \cdot C(2^2) = \frac{n!}{8 \cdot (n-4)!} C(1) + \{(n-4)(n-5)+2\} \cdot C(2^2) + \frac{3}{2}(n-3)$$
  
 $(n-4)C(3) + 5C(5) + 4C(2, 4) + 6C(2^2, 3) + 6C(2^4) + 9C(3^2)$ 

(M<sub>2</sub>) 
$$C(3) \cdot C(3) = \frac{n!}{3(n-3)!}C(1) + \{1+3(n-3)\} \cdot C(3) + 8C(2^2) + 2C(3^2) + 5C(5).$$

$$(\mathbf{M}_{3}) \quad C(3) \cdot C(2^{2}) = C(2^{2}, 3) + 4C(2, 4) + 4(n-4)C(2^{2}) + 5C(5) + 3(n-3)C(3).$$

Lemma 1 and 2 in the next section will be useful to determine the orders of elements in C(3),  $C(2^2)$  and C(5). After proving several lemmas, we shall show that there are elements  $a_1$  in C(3) and  $a_2$ ,  $b_1, \dots, b_{n-4}$  in  $C(2^2)$  such that  $a_1a_2 \in C(3)$ ,  $a_1b_i \in C(2^2)$ ,  $a_2b_i \in C(3)$  (Lemma 11, 12, 13). Then it will be proved that the elements  $a_1$ ,  $a_2$ ,  $a_3=b_1$ ,  $a_4=b_1b_2b_1, \dots, a_{n-2}=b_{n-5}b_{n-4}b_{n-5}$  satisfy the relations (\*).

#### 2. Proof of Theorem

In this section, we assume that G is a finite group with the same table of characters as  $A_n$  with n=4 or  $n \ge 7$ .

**Lemma 1.** If the order of an element of  $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  is a prime power  $p^m$ , then  $i = \sum_r \alpha_r i_r \equiv 0$  (p).

Proof. As  $A_n$  is a doubly transitive group G has a irreducible character  $\mathfrak{X}$  of degree n-1 such that  $\mathfrak{X}(a)=n-1-i$  for  $a \in C$   $(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ . Since  $a^{p^m}=1$ , we have  $\mathfrak{X}(a)=\sum_{r=1}^{n-1}\omega_r$ , where  $\omega_r^{p^m}=1$ . Thus  $\sum \omega_r=n-1-i$ , and  $(n-1-i)^{p^m}=(\sum \omega_r)^{p^m}\equiv \sum \omega_r^{p^m}\equiv n-1$  ( $\mathfrak{p}$ ), where  $\mathfrak{p}$  is a prime ipeal divisor of p in the field of  $p^m$ th root of unity. Therefore  $n-1\equiv n^{p^m}-1$  $-i^{p^m}\equiv n-1-i$  (p), and hence  $i\equiv 0$  (p). **Lemma 2.** Let  $a \in C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ . If  $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  is a conjugate class of G, and  $a^k \in C(1) \cup C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  for any k, then the order of a is a prime number.

Proof. Suppose that the order of a is  $k_1k_2$ , where  $k_1 \neq 1$ ,  $k_2 \neq 1$ . By the assumption  $a^{k_1} \in C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ , and the order of  $a^{k_1}$  is  $k_2$ , which is less than  $k_1k_2$ . This is a contradiction. Therefore the order of a is a prime.

**Lemma 3.** If G has the same table of characters as  $A_4$ , then G is isomorphic to  $A_4$ .

Proof. Now  $G = C(1) \cup C(2^2) \cup C(3)$ , where  $C(2^2)$  is a conjugate class and C(3) is a union of two conjugate classes  $C_1(3)$  and  $C_2(3)$ .

Since the order of G is 12, G has elements of the order 3 and 2. Let a be an element of order 2, then by Lemma 1 a is not in C(3), therefore  $a \in C(2^2)$ , and an element b of order 3 is in  $C(3) = C_1(3) \cup C_2(3)$ . Let  $b \in C_1(3)$ . Since  $C_1(3) \cdot C(2^2) \supset C_1(3)$ , there exist elements  $a_1$  and  $a_2$  such that  $a_1 \in C_1(3)$ ,  $a_2 \in C(2^2)$  and  $a_1a_2 \in C_1(3)$ , i.e.  $a_1^3 = 1$ ,  $a_2^2 = 1$  and  $(a_1a_2)^3 = 1$ . Therefore  $H = \{a_1, a_2\}$  is a homomorphic image of  $A_4$ . If the order of H is 6, then  $A_4$  has a normal subgroup K of the order 2 such that  $A_4/K$  is isomorphic to H. But  $A_4$  has no normal subgroup of the order 2. Therefore the order of H is 12, and so G is isomorphic to  $A_4$ .

From now on we assume that  $n \ge 7$ . Then  $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  occuring in the multiplication tables  $(M_1)$ ,  $(M_2)$  and  $(M_3)$  are themselves conjugate classes in G. We shall denote by n(x) the order of the normalizer N(x)of an elemente x, and if x is in a conjugate class  $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$  then n(x)is also denoted by  $n(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ . Since  $N(x) \subseteq N(x^k)$ , n(x) is a divisor of  $n(x^k)$ .

**Lemma 4.** If  $a \in C(3)$ , then  $a^k \in C(3) \cup C(1)$  and the order of a is 3.

Proof. From the multiplication table  $(M_2) C(3) \cdot C(3) = C(1) \cup C(3) \cup C(2^2)$  $\cup C(3^2) \cup C(5)$ . Since n(3) does not divide  $n(2^2)$ ,  $n(3^2)$  and n(5),  $a^k$  does not belong to  $C(2^2) \cup C(3^2) \cup C(5)$ . Thus  $a^2 \in C(3) \cup C(1)$ . If  $a^{k-1} \in C(3)$  $\cup C(1)$ , then  $a^k = a^{k-1} \cdot a \in C(3) \cdot C(3)$  and hence  $a^k \in C(3) \cup C(1)$ . Therefore by an induction on k, we have  $a^k \in C(3) \cup C(1)$ . for all k. By Lemma 2 the order of a is a prime, and by Lemma 1 it is 3.

**Lemma 5.** If  $a \in C(2^2)$ , then  $a^2 = 1$ .

Proof. From the multiplication table  $(M_1) C(2^2) \cdot C(2^2) = C(1) \cup C(2^2)$  $\cup C(3) \cup C(5) \cup C(2, 4) \cup C(2^2, 3) \cup C(2^4) \cup C(3^2)$ , where  $C(2^4)$  is omitted for n=7. By the same argument as in the proof of Lemma 4,  $a^k \notin C(5) \cup C(2, 4)$   $\cup C(2^2, 3) \cup C(3^2).$  If  $a^k$  is contained in  $C(2^4)$ , then  $\frac{n(2^4)}{n(2^2)} = \frac{4! \cdot 2^4 \cdot (n-8)!}{8 \cdot (n-4)!}$ =  $\frac{2^4 \cdot 3}{(n-4)(n-5)(n-6)(n-7)}$  must be an integer. But this is impossible

except for n=8.

Now in the case of n=8, since  $n(2^2)$  does not divide n(3),  $a^k \notin C(3)$ . Therefore it is easily seen that  $a^k \in C(1) \cup C(2^2) \cup C(2^4)$ . From the multilication table  $(M_2)$ , there are two elements  $b_1$ ,  $b_2$  of C(3) such that  $a=b_1b_2$ , and  $a^2=b_1b_2b_1b_2=(b_1b_2b_1^{-1})\cdot b_1^{-1}\cdot b_2 \in C(3)^3$ . It is easily seen that  $C(3)^3$  does not contain  $C(2^4)$ , hence  $a^2 \notin C(2^4)$ , and  $a^2 \in C(2^2) \cup C(1)$ .

Suppose that  $a^2 \notin C(1)$ . Then  $a^2 \in C(2^2)$ . If  $a^k \in C(2^4)$  for some k, then  $a^{2k} = (a^2)^k \in C(2^4)$ . Since  $a^{kk'} \in C(2^2) \cup C(2^4) \cup C(1)$ , and  $n(2^4)$  does not divide  $n(2^2)$ ,  $a^{kk'} \in C(2^4) \cup C(1)$  for all k'. Hence by Lemma 1 and 2, the order of an element of  $C(2^4)$  is 2, and therefore  $a^{2k} = 1$ . This is a contradiction. Thus  $a^k \notin C(2^4)$  and  $a^k \in C(2^2) \cup C(1)$  for all k. By Lemma 1 and 2, we have  $a^2 = 1$ , which contradicts the first assumption. Thus this lemma is proved for n = 8.

In the case of  $n \neq 8$ , we have seen  $a^k \notin C(2^4)$  for any integer k, hence  $a^2 \in C(2^2) \cup C(3) \cup C(1)$ . Now  $a^3 = a^2 \cdot a \in \{C(2^2) \cup C(3) \cup C(1)\} \cdot C(2^2)$ , and so from the multiplication tables  $(M_1)$  and  $(M_3)$  and by considering the orders of normalizers of elements it is seen that  $a^3 \in C(2^2) \cup C(3) \cup C(1)$ . Now if  $a^3 \in C(3)$ , then by Lemma 4  $(a^3)^3 = 1$ , but by Lemma 1 the order of a can not be  $3^2$ ,  $a^3 \notin C(1)$ , thus  $a^3 \in C(2^2)$ . If  $a^k \in C(3)$  for some k, then for  $b = a^3$ ,  $b^k \in C(3)$  since  $b \in C(2^2)$ . On the other hand,  $b^k = (a^k)^3 = 1$  since  $a^k \in C(3)$  and the order of an element of C(3) is 3. This is a contradiction. Thus  $a^k \notin C(3)$ , therefore  $a^2 \in C(2^2) \cup C(1)$ . By the same argument as in the proof of Lemma 4, we have now  $a^2 = 1$ .

**Lemma 6.** Any element x of  $C(3^2)$  is uniquely expressed as a product of two commutative elements a, b of C(3) disregarding their arrangement, and  $x^3=1$ .

Proof. From  $C(3) \cdot C(3) = 2C(3^2) + \cdots$ , x can be expressed in exactly two ways as a product of two elements of C(3). If x = ab with  $a, b \in C(3)$ , then  $x = a \cdot b = b(b^{-1}ab) = (b^{-1}ab)(b^{-1}a^{-1}bab)$ . It is easily seen that  $a \neq b$  and  $b \neq b^{-1}ab$ . Hence  $a = b^{-1}ab$  i.e. ab = ba, and we have  $(ab)^3 = 1$  by Lemma 4.

**Lemma 7.** Any element x of  $C(2^2, 3)$  can be expressed uniquely as a product of an element a of C(3) and an element b of  $C(2^2)$ . Two elements a and b are commutative and the order of x is 6.

Proof. From  $C(3) \cdot C(2^2) = 1 \cdot C(2^2, 3) + \cdots$ , the first half of the lemma is evident. Now  $x = a \cdot b = (bab)(ba^{-1}bab)$ ,  $bab \in C(3)$  and  $ba^{-1}bab \in C(2^2)$ ,

therefore a=bab i.e. ab=ba, and so from  $a^3=1$  and  $b^2=1$ , the order of x is 6.

**Lemma 8.** The oder of an element x of C(5) is 5, and  $x^k \in C(5)$  for  $k \equiv 0$  (5).

Proof. From  $C(2^2) \cdot C(2^2) = 5C(5) + \cdots$  there exist two elements *a* and *b* of  $C(2^2)$  such that x = ab, and *x* is expressed in exactly five ways as a product of two elements of  $C(2^2)$ . Now x = ab = b(bab) = (bab)(babab) = (bababb)(bababab) = (bababb)(babababb), and by Lemma 1 the order of element of <math>C(5) can not be 2, 3 and 4, and therefore it is easily seen that these five expressions of *x* as a product of two elements of  $C(2^2)$  are all distinct. Since x = (bababababb)(babababababb) is also an expression as a product of two elements of  $C(2^2)$ , and  $b(ab)^4$  is not equal to *b*, bab,  $b(ab)^2$  and  $b(ab)^3$ ,  $b(ab)^4$  must be equal to *a* i. e.  $(ab)^5 = 1$ . Since  $(ab)^2 = (aba)b$  and  $(ab)^3 = (ab)^{-2}$ , these are contained in  $C(2^2) \cdot C(2^2)$  and from the multiplication table  $(M_1)$  and Lemma 1, except the elements of C(5), the order of any element of cojugate classes in  $C(2^2) \cdot C(2^2)$  is not 5. Therefore both  $(ab)^2$  and  $(ab)^3$  are contained in C(5) and  $(ab)^4 = (ab)^{-1}$  is also in C(5).

Lemma 9. If  $x \in C(2, 4)$ , then  $x^2 \in C(2^2)$  and  $x^4 = 1$ .

Proof. Since C(2, 4) is contained in  $C(3) \cdot C(2^2)$ , there exist an element a of C(3) and an element b of  $C(2^2)$  such that x=ab. If  $x^2=1$  then abab=1, aba=b, hence  $a^{-1}ba=ab$ , but  $a^{-1}ba$  is contained in  $C(2^2)$ , which is a contradiction. If  $x^3=1$ , then ababab=1. ababa=b, hence  $a^{-1}baba=ab$ , but  $a^{-1}baba=ab$ , hence  $a^{-1}baba=ab$ , but  $a^{-1}baba=ab$ , hence  $a^{-1}baba=ab$ , hence  $x \sim y$  means that x is conjugate to y.)

Since  $C(2^2) \cdot C(2^2) = 4C(2,4) + \cdots$  and the order of x is not 2 and 3 as proved above, we can show that the order of x is 4 by the same argument as in the proof of Lemma 8. Now  $x^2 = a(bab) \in C(3) \cdot C(3)$  and the only conjugate class in  $C(3) \cdot C(3)$  whose elements have order 2 is  $C(2^2)$ , therefore  $x^2 \in C(2^2)$ .

## Lemma 10.

(1) Let  $x=ab \in C(5)$ , where a and b belong to  $C(2^2)$ , then setting  $a^{x^i}=x^{-i}ax^i$ ,  $x=a^{x^i}b^{x^i}$  (i=0, 1, 2, 3, 4) are all of the ways to express x as a product of two elements of  $C(2^2)$ . The same holds for  $a, b \in C(3)$  or  $a \in C(3)$ ,  $b \in C(2^2)$ .

(2) For elements a and b of  $C(2^2)$ , if there exists an element y such that y does not belong to  $C(5) \cup C(1)$ , ay belongs to  $C(2^2)$  and  $y^{-1}b$  belongs to  $C(2^2)$ , then ab does not belong to C(5).

#### Τ. ΟΥΑΜΑ

(3) For an element a of C(3) and an element b of C(2<sup>2</sup>), if there exists an element y such that y does not belong to  $C(3) \cup C(5) \cup C(1)$ , ay belongs to C(3) and y<sup>-1</sup>b belongs to C(2<sup>2</sup>), then ab does not belong to C(5).

Proof. (1) Since  $C(2^2) \cdot C(2^2) = 5C(5) + \cdots$ , it is enough to prove that five elements  $a^{xi}(0 \le i \le 4)$  are all different. If  $a^{xi} = a^{xj}$ , where  $0 \le i < j \le 4$ , then  $ax^{j-i} = x^{j-i}a$ . Since the oder of x is 5, ax = xa, hence ab = ba, which shows that the order of x is not 5. This is a contradiction. The proof for  $a, b \in C(3)$  or  $a \in C(3), b \in C(2^2)$  is similer.

(2) Suppose  $x=ab \in C(5)$ . Then since  $x=(ay)(y^{-1}b)$  and  $ay, y^{-1}b \in C(2^2)$ , by (1)  $ay=a^{xi}=b(ab)^{2i-1}$ . Hence  $y=(ab)^{2i}$  and therefore  $y \in C(5) \cup C(1)$ , which is a contradiction.

(3) Assume  $x=ab \in C(5)$ , then by (1) ay is equal to some  $a^{x^i}$ . ay is not equal to a. If  $ay=a^x$ , then  $ay=ba^{-1}aab=bab$ . Hence  $y=a^{-1}bab$  $=a^{-1}ba^{-1}\cdot a^{-1}b=bababab\cdot a^{-1}b\sim aba=a^{-1}\cdot a^{-1}b\cdot a\in C(5)$ , which is a contradiction. If  $ay=a^{x^2}$ , then ay=abababababab. Hence  $y=bababa^2bab=bababa^{-1}$  $\cdot ba^{-1}a^{-1}b\sim baba^{-1}ba^{-1}=ba\cdot ababab\sim a\in C(3)$ , which is a contradiction. If  $ay=a^{x^3}$ , then ay=ababaababab. Hence  $y=baba^2babab=ba^{-1}\cdot a^{-1}ba^{-1}babab$  $\sim a^{-1}ba^{-1}bab=bababaaba\sim a\in C(3)$ , which is a contradiction. If  $ay=a^{x^4}$ , then  $ay=ab\cdot a \cdot abababab$ . Hence  $y=ba^2bababab\sim aba=a^{-1}\cdot a^{-1}b \cdot a\in C(5)$ , which is also a contradiction. From these, x can not belong to C(5).

**Lemma 11.** For an element  $a_1$  of C(3), there exists an element  $a_2$  of  $C(2^2)$  such that  $a_1a_2 \in C(3)$ .

Proof. From  $C(3) \cdot C(2^2) \supset C(3)$ , this lemma is evident.

**Lemma 12.** Let  $a_1 \in C(3)$ ,  $a_2 \in C(2^2)$  and  $a_1a_2 \in C(3)$ . The number of the elements b's in  $C(2^2)$  such that  $a_1b \in C(2^2)$  and  $a_2b \in C(2^2)$  is  $\frac{1}{2}(n-4)$  (n-5). If  $b \in C(2^2)$ ,  $a_1 \ b \in C(3)$ ,  $a_2b \in C(2^2)$  then b is either  $a_1a_2a_1^{-1}$  or  $a_1^{-1}a_2a_1$ .

Proof. From  $C(2^2) \cdot C(2^2) = \{(n-4)(n-5)+2\}C(2^2) + \cdots$ , for the element  $a_2$  there are (n-4)(n-5)+2 elements b's in  $C(2^2)$  such that  $a_2b \in C(2^2)$ . Let b be one of such elements. Then  $a_2b \in C(2^2)$  and  $a_2(a_2b) \in C(2^2)$ , hence the element  $a_2b$  is also one of elements as above. Now  $a_1b \in C(3) \cdot C(2^2) = C(2^2, 3) \cup C(5) \cup C(2^2) \cup C(2, 4) \cup C(3)$ .

(1)  $a_1b$  is not contained in  $C(2^2,3) \cup C(5)$ .

Since  $a_1b = (a_1a_2)(a_2b)$ ,  $a_1a_2 \in C(3)$  and  $a_2b \in C(2^2)$ , by Lemma 10  $a_1b \notin C(5)$ . If  $a_1b \in C(2^2, 3)$  then by Lemma 7,  $a_1 = a_1a_2$ , which is a contradiction. Therefore  $a_1b \notin C(2^2, 3)$ .

(2) If there are elements b's such that  $a_1b \in C(2, 4)$  or  $a_1b \in C(2^2)$ , then the number of elements b's such that  $a_1b \in C(2, 4)$  are equal to the

96

number of elements b's such that  $a_1 b \in C(2^2)$ .

then from  $C(3) \cdot C(2^2) = 4C(2,4) + \cdots, x = a_1^{x^i} b^{x^i}$ If  $x = a_1 b \in C(2, 4),$ (i=0, 1, 2, 3) are all of the ways to express x as a product of an element of C(3) and an element of C(2<sup>2</sup>). For, if  $a_1 = a_1^x$  then  $a_1 = ba_1^{-1}a_1a_1b = ba_1b$ , hence  $a_1^{-1} = (a_1b)^2$ , but  $a_1^{-1} \in C(3)$  and  $(a_1b)^2 \in C(2^2)$ , which is a contradiction. If  $a_1 = a_1^{x^2}$  then  $a_1 = ba_1^{-1}ba_1ba_1b = ba_1 \cdot ba_1^{-1}$ , hence  $ba_1 \cdot ba_1 = 1$ , which is a contradiction. If  $a_1 = a_1^{x^3}$  then  $a_1 = a_1 b a_1 b a_1^{-1}$ , hence  $a_1^{-1} = (a_1 b)^2$ , which is a contradiction. Thus  $a_1^{xi}$  are all distinct from each other. On the other hand,  $a_1b = (a_1a_2)(a_2b)$ ,  $a_1a_2 \in C(3)$  and  $a_2b \in C(2^2)$ , therefore  $a_1a_2$  must be equal to some  $a_1^{x^i}$ .  $a_1a_2$  is not equal to  $a_1$ . If  $a_1a_2 = a_1^x$  then  $a_1a_2 = ba_1b$ , hence  $a_1^{-1}a_2 = (a_1b)^2$ , but  $a_1^{-1}a_2 \in C(3)$  and  $(a_1b)^2 \in C(2^2)$ , which is a contradiction. If  $a_1a_2 = a_1^{x^3}$  then  $a_1a_2 = a_1ba_1ba_1^{-1}$ , hence  $a_2a_1^{-1} = (ba_1)^2$ , which is a contradiction. Therefore  $a_1a_2$  must be equal to  $a_1^{x^2} = ba_1ba_1^{-1}$ , and therefore  $a_1a_2b = ba_1ba_1^{-1}b \sim b \in C(2^2)$ . Thus we can conclude that if  $a_1b \in C(2, 4)$ ,  $a_1a_2b$  belongs to  $C(2^2)$ .

Conversely suppose  $a_1b \in C(2^2)$ . Now  $a_1a_2b \in C(3) \cdot C(2^2)$ , and  $(a_1a_2b)^2 = a_1a_2ba_1a_2b = a_1a_2a_1^{-1}ba_2b = a_1a_2a_1^{-1}a_2 = a_1^{-1}a_2a_1 \in C(2^2)$ . But for a conjugate class in  $C(3) \cdot C(2^2)$ , if a square of it's element belongs to  $C(2^2)$ , then this class must be C(2, 4). Therefore  $a_1a_2b \in C(2, 4)$ . Thus our assertion is proved.

(3) If  $a_1b \in C(3)$ , then b is either  $a_1a_2a_1^{-1}$  or  $a_1^{-1}a_2a_1$ .

Let  $b_1$  and  $b_2$  belong to  $C(2^2)$ , and  $a_2b_i \in C(2^2)$ ,  $a_1b_i \in C(3)$ , and  $b_1 \neq b_2$ (*i*=1, 2). From (1)  $a_1a_2b_i \in C(3) \cup C(2, 4) \cup C(2^2)$  and  $a_1a_2 \cdot a_2b \in C(3)$ , hence from (2)  $a_1a_2b_i \in C(3)$ . Now  $b_1b_2 = b_1a_1 \cdot a_1^{-1}b \in C(3) \cdot C(3) = C(1) \cup C(3) \cup C(2^2)$  $\cup C(3^2) \cup C(5)$  and  $b_1 \neq b_2$ , therefore the order of  $b_1b_2$  is 2, 3 or 5.

Assume  $a_2b_1b_2 \neq 1$ . As  $a_2(b_1b_2) = (b_1b_2)a_2$ , the order of  $a_2b_1b_2$  is 2, 6 or 10. But  $a_2b_1b_2 = a_2b_1a_1 \cdot a_1^{-1}b \in C(3) \cdot C(3)$ . Thus from the multiplication table  $(M_2)$   $a_2b_1b_2 \in C(2^2)$  and therefore  $b_1b_2 \in C(2^2)$ , and hence by (1)  $a_1b_1b_2 \in C(3)$  $\cup C(2, 4) \cup C(2^2)$ . If  $a_1b_1b_2 \in C(2^2)$ , then  $a_1b_1b_2 \cdot a_1b_1b_2 = 1$ ,  $a_1b_1b_2a_1b_2b_1 = 1$ , hence  $b_1a_1b_1a_1^{-1}b_2a_1^{-1}=1$ , and therefore  $b_1a_1b_1a_1=a_1b_2a_1^{-1}$ , but the left belongs to C(3) and the right belongs to  $C(2^2)$ , which is a contradiction. If  $a_1b_1b_2$  $\in C(2, 4)$ , then by  $C(3) \cdot C(2^2) = 4C(2, 4) + \cdots$ ,  $a_1b_1b_2$  is expressed in exactly four ways as a product of an element of C(3) and an element of  $C(2^2)$ . But  $a_1(b_1b_2) = (a_1b_1)b_2 = (a_1b_2)b_1 = (a_1a_2)(a_2b_1b_2) = (a_1a_2b_1)(b_2a_2)$ , and it is easily seen that these are distinct five ways of expressions of  $a_1b_1b_2$  as a product of an element of C(3) and an element of  $C(2^2)$ , which is a contradiction. Thus  $a_1b_1b_2 \notin C(2, 4)$ . If  $a_1b_1b_2 \in C(3)$ , then by  $C(3) \cdot C(3) = 8C(2^2) + \cdots, b_2$  is expressed in exactly eight ways as a product of two elements of C(3). But  $b_2 = (b_1a_1)(a_1^{-1}b_1b_2) = (b_1b_2a_1)(a_1^{-1}b_1) = (b_1a_1^{-1})(a_1b_1b_2) = (b_1b_2a_1^{-1})(a_1b_1) = a_1(a_1^{-1}b_2)$  $=(b_2a_1)a_1^{-1}=a_1^{-1}(a_1b_2)=(b_2a_1^{-1})a_1=(b_1a_2a_1^{-1})(a_1a_2b_1b_2)$ , and it is easily seen that these are distict nine ways of expressions of  $b_2$  as a product of two elements of C(3), which is a contradiction. Thus  $a_1b_1b_2 \notin C(3)$ . Hence  $a_2b_1b_2$  must be equal to I, and therefore  $b_2 = a_2b_1$ , which means that  $b_2$  is uniquely determined by  $b_1$ . Now take  $a_1a_2a_1^{-1}$ , then  $a_1a_2a_1^{-1} \in C(2^2)$ ,  $a_1(a_1a_2a_1^{-1}) = a_2a_1a_2$  $\in C(3)$ , and  $a_2(a_1a_2a_1^{-1}) = a_1^{-1}a_2a_1 \in C(2^2)$ . Therefore b such that  $a_1b \in C(3)$ and  $a_2b \in C(2^2)$  is either  $a_1a_2a_1^{-1}$  or  $a_2 \cdot a_1a_2a_1^{-1} = a_1^{-1}a_2a_1$ .

(4) From the proofs above, there are exactly  $\frac{1}{2}(n-4)(n-5)$  elements b's such that  $a_1b \in C(2^2)$ .

**Lemma 13.** Let  $a_1 \in C(3)$ ,  $a_2 \in C(2^2)$ ,  $a_1a_2 \in C(3)$ , then there are n-4 elements b's in  $C(2^2)$  such that  $a_1b \in C(2^2)$ ,  $a_2b \in C(3)$ .

Proof. From  $C(3) \cdot C(2^2) = 4(n-4)C(2^2) + \cdots$ , for  $a_1$  there are  $\frac{3}{2}(n-3)$ (n-4) elements b's such that  $a_1b \in C(2^2)$ , and for such b's, since  $a_1b$  and  $a_1^{-1}b$  belong to  $C(2^2)$  and  $a_1(a_1b)$  and  $a_1(a_1^{-1}b)$  belong to  $C(2^2)$ ,  $a_1b$  and  $a_1^{-1}b$  are included  $\frac{3}{2}(n-3)(n-4)$  element b's, and b,  $a_1b$  and  $a_1^{-1}b$  are all distinct. For such elements  $b_1$ ,  $b_2$  the sets  $\{b_1, a_1b_1, a_1^{-1}b_1\}$  and  $\{b_2, a_1b_2, a_1^{-1}b_2\}$  are the same set or have no common element. Now  $a_2b=a_2a_1\cdot a_1b\in C(3)\cdot C(2^2)$  $=C(2^2, 3) \cup C(2, 4) \cup C(2^2) \cup C(5) \cup C(3)$ .

(1)  $a_2b$  is not in  $C(2^2, 3)$ .

 $a_2b = a_2a_1 \cdot a_1^{-1}b = a_2a_1^{-1} \cdot a_1b$ , hence by Lemma 7 if  $a_2b \in C(2^2, 3)$ , then  $a_2a_1 = a_2a_1^{-1}$ , and this is a contradiction. Therefore  $a_2b \notin C(2^2, 3)$ .

(2) There are  $\frac{1}{2}(n-4)(n-5)$  elements b's such that  $a_2b \in C(2^2)$ , and for such b,  $a_2a_1b$  and  $a_2a_1^{-1}b$  belong to C(2, 4).

By Lemma 12 there are  $\frac{1}{2}(n-4)(n-5)$  elements b's such that  $a_2b \in C(2^2)$ . Now  $a_2a_1b \in C(3) \cdot C(2^2)$  and  $(a_2a_1b)^2 = a_2a_1ba_2a_1b = a_2a_1a_2a_1^{-1} = a_1^{-1}a_2a_1 \in C(2^2)$ , hence from the multiplication table  $(M_3)$ ,  $a_2a_1b \in C(2, 4)$  and in the same way we have  $a_2a_1^{-1}b \in C(2, 4)$ .

(3) If  $a_2b \in C(3)$ , then  $a_2a_1b$  and  $a_2a_1^{-1}b \in C(5)$ .

 $a_2a_1b \in C(3) \cdot C(2^2)$  and  $a_2a_1b = a_2a_1a_2 \cdot a_2b \in C(3) \cdot C(3)$ , therefore  $a_2a_1b \in C(2^2) \cup C(3) \cup C(5)$ . If  $a_2a_1b \in C(2^2)$ , then by (2)  $a_2 \cdot a_1^{-1}a_1b = a_2b \in C(2, 4)$ , which is a contradiction. If  $a_2a_1b \in C(3)$ , then  $a_2a_1ba_2a_1ba_2a_1b = 1$ , therefore  $b = a_1^{-1}a_2a_1^{-1}a_2ba_2ba_1^{-1}a_2a_1 \sim a_2ba_2ba_1 = ba_2a_1 \sim a_2a_1b \in C(3)$ , which is a contradiction, Thus  $a_2a_1b \in C(5)$ , and in the same way we have  $a_2a_1^{-1}b \in C(5)$ .

(4) If  $a_2b \in C(2, 4)$ , then  $a_2a_1b$  or  $a_2a_1^{-1}b \in C(2^2)$ .

For  $ba_2b$ , which belongs to  $C(2^2)$ ,  $a_2 \cdot ba_2b \in C(2^2)$ , and  $a_1 \cdot ba_2b = ba_1^{-1}a_2b \in C(3)$ . By Lemma 12  $ba_2b$  must be equal to  $a_1^{-1}a_2a_1$  or  $a_1a_2a_1^{-1}$ . If  $ba_2b = a_1^{-1}a_2a_1$  then  $a_1b \cdot a_2 = a_2 \cdot a_1b$ , hence  $(a_2a_1b)^2 = 1$ , but  $a_2a_1b \in C(3) \cdot C(2^2)$ , and from the multiplication table  $(M_3)$ ,  $a_2a_1b \in C(2^2)$ . If  $ba_2b = a_1a_2a_1^{-1}$ , then  $a_2 \cdot ba_1 = ba_1 \cdot a_2$ , and in the same way we have  $a_2ba_1 = a_2a_1^{-1}b \in C(2^2)$ .

(5) From (2), (4) there are  $\frac{3}{2}(n-4)(n-5)$  elements b's such that  $a_2b \in C(2^2) \cup C(2, 4)$ , and since  $\frac{3}{2}(n-3)(n-4) - \frac{3}{2}(n-4)(n-5) = 3(n-4)$ , there are 3(n-4) elements b's such that  $a_2b \in C(3) \cup C(5)$ .

#### (6) There are n-4 elements b's such that $a_2 b \in C(3)$ .

From (3), (5), the number of elements b's such that  $a_2b \in C(5)$  is at least 2(n-4). Let  $a_2b_1 \in C(5)$ ,  $a_2b_2 \in C(5)$  and  $b_1 \neq b_2$ , then  $b_i$ ,  $b_ia_2b_i$ ,  $b_ia_2b_ia_2b_i$  and  $b_ia_2b_ia_2b_ia_2b_i$  (i=1, 2) are all distinct elements in  $C(2^2)$  and their products with  $a_2$  belong to C(5). For, if  $b_1(a_2b_1)^j = b_2(a_2b_2)^k$ ,  $(0 \leq j, k \leq 3)$ , then  $(a_2b_1)^{j+1} = (a_2b_2)^{k+1}$ , and as the order of  $a_2b_1$  and  $a_2b_2$  are 5, there exists an integer r such that  $a_2b_1 = (a_2b_2)^r$ . Hence  $b_1b_2 = (b_2a_2)^{r-1}$  i. e.  $b_1b_2 \in C(5)$ . But  $b_1b_2 = b_1a_1 \cdot a_1^{-1}b_2$  and by Lemma 10  $b_1b_2 \notin C(5)$ , which is a contradiction. Thus for the element  $a_2$ , the number of the elements d's such that  $d \in C(2^2)$  and  $a_2d \in C(5)$  is at least 8(n-4). But from  $C(2^2) \cdot C(2^2) = 5C(5) + \cdots$ , the number of such d's is just 8(n-4). Therefore there are 2(n-4) elements b's such that  $a_2b \in C(5)$ , and so the number of elements b's such that  $a_2b \in C(3)$  is n-4.

Lemma 14. If  $a_1 \in C(3)$ ,  $a_2 \in C(2^2)$ ,  $a_1a_2 \in C(3)$ , and  $b_i \in C(2^2)$  (i=1, 2, 3, 4),  $a_1b_i \in C(2^2)$ ,  $a_2b_i \in C(3)$  and  $b_i \neq b_j$   $(i \neq j)$ , then

- (1)  $b_i b_j \in C(3), (i \neq j).$
- (2)  $a_2b_ib_jb_i \in C(2^2), (i \neq j).$
- (3)  $b_i \cdot b_j b_k b_j \in C(2^2)$ , for distinct *i*, *j* and *k*.
- (4)  $b_i b_j b_i \cdot b_k b_l b_k \in C(2^2)$ , for distinct i, j, k and l.

Proof. (1)  $b_i b_j = b_i a_2 \cdot a_2 b_j \in C(3) \cdot C(3) = C(1) \cup C(3) \cup C(2^2) \cup C(3^2) \cup C(5).$ Since  $b_i \neq b_j$ ,  $b_i b_j \notin C(1)$ . Since  $b_i b_j = b_i a_1 \cdot a_1^{-1} b_j$ ,  $b_i a_1 \in C(2^2)$ ,  $a_1^{-1} b_j \in C(2^2)$ , and  $a_1 \in C(3)$ , by Lemma 10  $b_i b_j \notin C(5)$ . If  $b_i b_j \in C(3^2)$ , then  $b_i b_j = b_i a_2 \cdot a_2 b_j$ and by Lemma 6  $b_i b_j = a_2 b_j \cdot b_i a_2$  and so  $a_2 b_i \cdot b_j = b_j b_i a_2$ . Therefore  $(a_1 a_2 b_i b_j)^3$  $=a_1a_2b_ib_ja_1a_2b_ib_ja_1a_2b_ib_j=a_1a_2a_1a_2b_jb_ib_jb_ja_1a_2b_ib_j=b_ib_j\in C(3^2).$  On the other hand,  $a_1a_2b_ib_i = a_1b_i \cdot b_ia_2 \in C(2^2) \cdot C(3)$  and from the multiplication table (M<sub>3</sub>), there is no element of  $C(2^2) \cdot C(3)$  such that it's third power belongs to  $C(3^2)$ . Therefore  $b_i b_j \notin C(3^2)$ . If  $b_i b_j \in C(2^2)$ , then  $b_i$  and  $b_j$  are commutative with each other. Now  $b_i b_j a_2 b_j b_i \in C(2^2)$ ,  $a_2 \cdot b_i b_j a_2 b_j b_i = a_2 b_i a_2 b_j a_2 b_j$  $=b_ia_2b_ib_ja_2b_i \sim b_ib_j \in C(2^2)$ , and  $a_1 \cdot b_ib_ja_2b_jb_i = b_ib_ja_1a_2b_jb_i \sim a_1a_2 \in C(3)$ , hence by Lemma 12,  $b_i b_j a_2 b_j b_i$  must be equal to  $a_1^{-1} a_2 a_1$  or  $a_1 a_2 a_1^{-1}$ . If  $b_i b_j a_2 b_j b_i$  $=a_1^{-1}a_2a_1$ , then  $a_1b_ib_j=a_2a_1b_ib_ja_2=(a_2a_1a_2)(a_2b_ib_ja_2)$ , but  $a_1(b_ib_j)\in C(3)\cdot C(2^2)$ and by the commutativity of  $a_1$  and  $b_i b_j$ , the order of  $a_1 b_i b_j$  is 6, and so  $a_1(b_ib_j) \in C(2^2, 3)$ . Hence by Lemma 7  $b_ib_j = a_2b_ib_ja_2$  i.e.  $(a_2b_ib_j)^2 = 1$ , which is a contradiction. In the same way  $b_i b_j a_2 b_j b_i \neq a_1 a_2 a_1^{-1}$ . Therefore  $b_i b_j \notin C(2^2)$ . Thus  $b_i b_j \in C(3)$ .

(2)  $a_2b_i \cdot b_jb_i \in C(3) \cdot C(3)$  and  $a_2b_ib_jb_i = (a_2a_1)(a_1^{-1}b_ib_jb_i) = (a_2a_1)(b_ia_1b_jb_i)$  $\in C(2^2) \cdot C(3)$ , hence from the multiplication tables  $(M_2)$  and  $(M_3)$   $a_2b_ib_jb_i$  $\in C(3) \cup C(5) \cup C(2^2)$ . If  $a_2b_ib_jb_i \in C(5)$ , then from  $C(3) \cdot C(3) = 5C(5) + \cdots$ ,  $a_2b_ib_jb_i$  is expressed in exactly five ways as a product of two elements

#### Т. Оуама

of C(3). But by (1)  $b_i b_j b_i = b_j b_i b_j$ , hence  $(a_2 b_i)(b_j b_i) = (b_j b_i)(b_i b_j a_2 b_i b_j b_i)$  $= (b_i b_j a_2 b_i b_j b_i)(b_i b_j b_i a_2 b_j b_i a_2 b_i b_j b_i) = (a_2 b_j)(b_i b_j) = (b_i b_j)(b_j b_i a_2 b_j b_i b_j) = (b_j b_i a_2 b_j b_i b_j)$  $(b_j b_i b_j a_2 b_i b_j a_2 b_j b_i b_j)$ , and these six expressions are all distinct. For if  $a_2 b_i$  $= b_i b_j a_2 b_i b_j b_i$  then  $(b_j b_i)(a_2 b_i) = (a_2 b_i)(b_j b_i)$ , therefore  $(a_2 b_i b_j b_i)^3 = 1$ , which is a contradiction. If  $a_2 b_i = b_j b_i a_2 b_j b_i b_j$  then  $b_i b_j a_2 b_i = a_2 b_j b_i b_j$  and the left belongs to C(3), and the right belongs to C(5), which is a contradiction. In the other cases, the proofs are similar. Thus  $a_2 b_i b_j b_i \notin C(5)$ .

If  $a_2b_ib_jb_i \in C(3)$ , then  $a_2b_ib_jb_ia_2b_ib_jb_ia_2b_ib_jb_i=1$ , hence  $a_2b_ib_ja_2b_ia_2$   $\cdot b_jb_ia_2b_jb_ib_j=1$ , and so  $b_ib_ja_2b_ib_ja_2b_ib_ja_2b_ja_2b_ia_2b_ja_2b_ia_2b_j=1$ , therefore  $(a_2b_ib_j)^3 \cdot a_2b_ja_2b_ia_2b_ja_2=1$ . But  $a_2b_ja_2b_ia_2b_ja_2 \sim b_i \in C(2^2)$ , therefore  $(a_2b_ib_j)^3 \in C(2^2)$ , and from the multiplication table  $(M_3)$ ,  $a_2b_ib_j \in C(2^2) \cup C(2^2, 3)$ . If  $a_2b_ib_j \in C(2^2)$ , then  $a_1b_ib_jb_i=b_ia_1^{-1}b_jb_i \in C(2^2)$  and by the proof of (3) in Lemma 13,  $a_2a_1b_ib_jb_i \in C(5)$ . Since  $a_2a_1b_ib_jb_i=a_2(b_ia_1^{-1}b_jb_i)=(a_2b_ib_j)(b_jb_ib_ia_1^{-1}b_jb_i)=(a_2b_ib_j)(a_1b_i)$ , this contradicts (2) in Lemma 10. Thus  $a_2b_ib_jb_i \notin C(3)$ .

(3)  $(b_ib_j)(b_kb_j) = (b_ia_2)(a_2b_jb_kb_j) \in (C(3) \cdot C(3)) \cap (C(3) \cdot C(2^2)) = C(3) \cup C(2^2)$   $\cup C(5)$ . Assume that  $b_i = b_jb_kb_jb_ib_jb_kb_j$ , in which both sides belong to  $C(2^2)$ . By (2)  $a_2 \cdot b_jb_kb_jb_jb_kb_j = b_jb_kb_ja_2b_ib_jb_kb_j \in C(3)$ ,  $a_1 \cdot b_jb_kb_jb_ib_jb_kb_j$  $= b_jb_kb_ja_1^{-1}b_ib_jb_kb_j \in C(2^2)$ . From (2)  $a_2 \cdot b_i \cdot b_jb_kb_jb_ib_jb_kb_j \cdot b_i = b_i \cdot b_jb_kb_jb_ib_jb_kb_j$  $\cdot b_i \cdot a_2$ , thus the left side  $= a_2 \cdot b_ib_jb_i \cdot b_ib_kb_i \cdot b_ib_jb_i \cdot b_ib_kb_i \cdot b_ib_jb_i - b_ib_jb_i \cdot b_ib_kb_i$ , and transforming the right side in the same way, we have  $a_2b_jb_i = b_jb_ia_2$ . Hence  $a_2b_jb_ib_j = b_jb_ia_2b_j$ , but  $a_2b_jb_ib_jb_kb_j \in C(2^2)$ and  $b_jb_ia_2b_j \in C(3)$ , which is a contradiction. Thus  $b_i = b_jb_kb_jb_ib_jb_kb_j$  i.e.  $(b_ib_jb_kb_j)^2 = 1$ . Consequently,  $b_ib_jb_kb_j \in C(2^2)$ .

(4)  $b_i b_j b_i \cdot b_k b_l b_k = (b_i b_j) (b_i b_k b_l b_k) \in C(3) \cdot C(2^2)$ . From (3)  $(b_i b_j b_i b_k b_l b_k)^2 = b_i b_j b_i \cdot b_k b_l b_k b_l b_k b_l b_k = b_k b_l b_k \cdot b_i b_j b_i \cdot b_k b_l b_k = 1$ . Therefore by the multiplication table (M<sub>3</sub>),  $b_i b_j b_i \cdot b_k b_l b_k \in C(2^2)$ .

Lemma 15. There are n-2 elements  $a_i$  (i=1, 2, ..., n-2) such that  $a_1 \in C(3), a_2, ..., a_{n-2} \in C(2^2)$  and  $a_i a_{i+1} \in C(3)$   $(i = 1, 2, ..., n-3), a_i a_j \in C(2^2)$  (i=1, 2, ..., n-4, j > i+1).

Proof. By Lemma 13, for  $a_1 \in C(3)$ ,  $a_2 \in C(2^2)$ , and  $a_1a_2 \in C(3)$ , there are n-4 elements  $b_1, b_2, \dots, b_{n-4}$  such that  $b_i \in C(2^2)$ ,  $a_1b_i \in C(2^2)$  and  $a_2b_i \in C(3)$ ,  $(i=1, 2, \dots, n-4)$ . Put  $a_3=b_1$ ,  $a_4=b_1b_2b_1, \dots, a_i=b_{i-3}b_{i-2}b_{i-3}, \dots, a_{n-2}=b_{n-5}b_{n-4}b_{n-5}$ , then  $a_3, a_4, \dots, a_{n-2} \in C(2^2)$ .

For  $i \ge 4$ ,  $a_1a_i = a_1b_{i-3}b_{i-2}b_{i-3} = b_{i-3}a_1^{-1}b_{i-2}b_{i-3} \in C(2^2)$ , and by (2) of Lemma 14  $a_2a_i = a_2b_{i-3}b_{i-2}b_{i-3} \in C(2^2)$ . By (1) of Lemma 14  $a_3a_4 = b_1 \cdot b_1b_2b_1 = b_2b_1 \in C(3)$ . For  $i \ge 5$ , by (3) of Lemma 14  $a_3a_i = b_1 \cdot b_{i-3}b_{i-2}b_{i-3} \in C(2^2)$ . For  $i \ge 4$ ,  $a_ia_{i+1} = b_{i-3}b_{i-2}b_{i-3} \cdot b_{i-2}b_{i-1}b_{i-2} = b_{i-2}b_{i-3}b_{i-1}b_{i-2} \in C(3)$ . For  $i \ge 4$ and j > i+1, by (4) of Lemma 14  $a_ia_j = b_{i-3}b_{i-2}b_{i-3} \cdot b_{j-3}b_{j-2}b_{j-3} \in C(2^2)$ .

100

GROUPS WITH THE SAME TABLE OF CHARACTERS AS ALTERNATING GROUPS 101

Proof of Theorem:

By Lemma 15, there is a homomorphism from  $A_n$  to a subgroup H of G generated by  $a_1, a_2, \dots, a_{n-2}$ . But since  $A_n$  is a simple group,  $A_n$  is isomorphic to H, and comparing the orders we have H=G and  $A_n \simeq G$ .

Sumiyoshi High School

## References

- [1] W. Burnside: Theory of groups of finite order. Second edition, Cambridge Univ. Press, 1911.
- [2] H. Nagao: On the groups with the same table of characters as symmetric groups, J. Polyt. Osaka City Univ. 8 (1957), 1-8.