On ∇-polynomials of links

Hosokawa, Fujitsugu

Osaka Mathematical Journal. 10(2) P.273–P.282

1958

publisher

https://doi.org/10.18910/11864

10.18910/11864

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
On ∇-Polynomials of Links

By Fujitsugu Hosokawa

In 1934 H. Seifert [3] proved that the Alexander polynomial $\Delta(t)$ of a knot is a symmetric polynomial of even degree and $|\Delta(1)|=1$. And moreover he proved that for a given symmetric polynomial $f(t)$ of even degree, if $|f(1)|=1$, then there exists a knot which has $f(t)$ as its Alexander polynomial.

In 1953 G. Torres [1, 2] proved that for the Alexander polynomial of a link of multiplicity μ, whose components are X_1, X_2, \ldots, X_μ, it holds

$$\Delta(t_1, t_2, \ldots, t_\mu) = (-1)^\mu t_1^n t_2^n \cdots t_\mu^n \Delta(t^{-1}_1, t^{-1}_2, \ldots, t^{-1}_\mu)$$

for suitably chosen integers $\nu_1, \nu_2, \ldots, \nu_\mu$. Further he proved that it holds

$$\Delta(t_1, t_2, \ldots, t_{\mu-1}, 1) = (t_1^{\nu_1}, t_2^{\nu_2}, \ldots, t_{\mu-1}^{\nu_{\mu-1}} - 1) \Delta(t_1, t_2, \ldots, t_{\mu-1}) \text{ for } \mu > 2$$

and

$$\Delta(t_1, 1) = (t_1^{\nu_1} - 1) \Delta(t_1)/(t_1 - 1) \text{ for } \mu = 2$$

where l_i is the linking number of X_i and X_μ for $i = 1, 2, \ldots, \mu - 1$, and that it holds

$$\Delta(1, 1, \ldots, 1, 1) = 0 \text{ for } \mu > 2 \text{ and } \Delta(1, 1) = l_1 \text{ for } \mu = 2.$$

In this paper we shall introduce a polynomial, the ∇-polynomial of a link, deduced simply from the Alexander polynomial. For this ∇-polynomial $\nabla(t)$ we shall prove the following properties:

1) $\nabla(t)$ is a symmetric polynomial of even degree.
2) $|\nabla(t)|$ is determined uniquely by the linking numbers between all pairs of μ components of the link of multiplicity μ.
3) If a polynomial $f(t)$ is a symmetric polynomial of even degree, then there exists a link of any given multiplicity μ such that its ∇-polynomial coincides with the polynomial $f(t)$.

1. We shall call a polynomial $f(t)$ symmetric (skew symmetric) if $f(t) = t^n f(t^{-1})$ (or $f(t) = -t^n f(t^{-1})$) for a suitably chosen integer ν. Then integer $n-m$ will be called the reduced degree of a polynomial

$$f(t) = a_0 t^n + a_1 t^{n-1} + \cdots + a_m t^m + \cdots + a_{m-1} t + a_0$$
Lemma. Let $f(t)$ and $F(t)$ be symmetric polynomials of even reduced degree and let $g(t)$ and $G(t)$ be skew symmetric polynomials such that

$$F(t) = tf(t) + (t-1)g(t),$$
$$G(t) = (1-t)f(t) + g(t).$$

Then the difference of reduced degrees of $f(t)$ and $g(t)$ is an odd integer.

2. Let κ be a link of multiplicity μ in a 3-dimensional euclidean space E^3 and let X_1, X_2, \ldots, X_μ be the components of κ. The Alexander polynomial $\Delta(t_1, t_2, \ldots, t_\mu)$ of κ may be defined as usual [1].

Now we shall define the ∇-polynomial $\nabla(t)$ of a link of multiplicity μ as follows:

$$\nabla(t) = \Delta(t_1, \ldots, t_\mu)/(1-t)^{\mu-2}$$

for $\mu \geq 2$,

$$\nabla(t) = \Delta(t)$$

for $\mu = 1$,

where $\Delta(t_1, \ldots, t_\mu)$ is the reduced polynomial obtained by putting $t_1 = t_2 = \ldots = t_\mu = t$ in the Alexander polynomial $\Delta(t_1, t_2, \ldots, t_\mu)$ of κ.

G. Torres showed that

$$\Delta(t_1, t_2, \ldots, t_\mu) = (-1)^\mu t_1^{\nu_1} t_2^{\nu_2} \cdots t_\mu^{\nu_\mu} \Delta(t_1^{-1}, t_2^{-1}, \ldots, t_\mu^{-1})$$

for suitably chosen integers $\nu_1, \nu_2, \ldots, \nu_\mu$ [1].

From this it is easy to see that the ∇-polynomial is symmetric. Then we have the following

Theorem 1. The ∇-polynomial of a link κ is a symmetric polynomial of even degree.

Proof. We have only to prove that the degree of the ∇-polynomial is even. To prove this we shall use a mathematical induction on the multiplicity of κ. In the case of multiplicity 1, i.e. in the case of a knot, our theorem is evidently true [3].

Now suppose that our theorem is true for the case of multiplicity $\mu-1$.

Let κ be a regular projection of a link κ of multiplicity μ on a plane E^2 in E^3 and let X_1, X_2, \ldots, X_μ be the projections of X_1, X_2, \ldots, X_μ respectively on E^2. We may confine κ in a cube Q in E^2. We choose

1) See [4].
2) A reduced polynomial is by definition a polynomial with non vanishing constant term.
3) See p. 60 of [1].
arbitrarily two components X_i and X_j of \bar{X} and take out parts of arcs of X_i and X_j from the cube Q, running parallel to each other in the same direction as shown in Fig. 1.

From this \bar{X} we introduce new links $\overline{\kappa}_1$, $\overline{\kappa}_2$ and $\overline{\kappa}_3$ as defined in Fig. 2, Fig. 3 and Fig. 4 respectively [4]. Let κ_1, κ_2 and κ_3 be links in E^3 such that they have $\overline{\kappa}_1$, $\overline{\kappa}_2$ and $\overline{\kappa}_3$ as their regular projections. Then it is clear that κ_1 and κ_3 are links of multiplicity $\mu - 1$ and κ_2 is a link of multiplicity μ. Let $\nabla(t)$, $\nabla_1(t)$, $\nabla_2(t)$ and $\nabla_3(t)$ be the ∇-polynomials of κ, κ_1, κ_2 and κ_3 respectively.

Here we shall define $f(t)$, $g(t)$, $F(t)$ and $G(t)$ as follows:

$$f(t) = \pm t^p \nabla(t),$$
$$g(t) = \pm t^p (1-t) \nabla(t),$$
$$F(t) = \pm t^{p_1} \nabla_1(t),$$
$$G(t) = \pm t^{p_2} (1-t) \nabla_2(t)$$

for suitably chosen integers p, p_1, p_2 and p_3.

From the assumption of induction $f(t)$ and $F(t)$ are symmetric polynomials of even reduced degree and $g(t)$ and $G(t)$ are skew symmetric polynomials and from the constructions of κ_1, κ_2 and κ_3 we have [4]

$$F(t) = tf(t) + (t-1)g(t),$$
$$G(t) = (1-t)f(t) + g(t).$$

Hence, $f(t)$, $g(t)$, $F(t)$ and $G(t)$ satisfy the conditions of Lemma. Therefore, the difference of the reduced degrees of $f(t)$ and $g(t)$ is an odd integer. Since the reduced degree of $f(t)$ is even, the reduced degree of $g(t)$ is odd. By the definition of $g(t)$ the degree of $\nabla(t)$ is even. Thus, the proof of our theorem is complete.

4) A knot is considered as a link of multiplicity 1.
3. Given a link \(\kappa \) of multiplicity \(\mu \), \(\kappa \) can be spanned by an orientable surface \(F \) of genus \(h \), represented by a disk to which is attached \(2h+\mu-1 \) bands \(B_1, B_2, \ldots, B_{2h+\mu-1} \), whose corresponding projection is named by Torres the Seifert projection.

Let \(B_1, B_2, \ldots, B_{2h} \) be canonical bands and let \(B_{2h+1}, \ldots, B_{2h+\mu-1} \) be extra bands\(^5\). Let \(a_1, a_2, \ldots, a_{2h+\mu-1} \) be simple closed curves which are drawn along each \(B_1, B_2, \ldots, B_{2h+\mu-1} \). The curves \(a_1, a_2, \ldots, a_{2h} \) are oriented such that \(a_{2i-1} \) crosses \(a_{2i} \) from left to right \((i=1, 2, \ldots, h)\). The curves \(a_{2h+1}, \ldots, a_{2h+\mu-1} \) have the same orientation as the orientation of \(X_i \) as shown in Fig. 5.

Then it is clear that \(a_i \) intersects \(a_j \) if and only if \(i=2k-1 \) and \(j=2k \)(\(1 \leq k \leq h \)). If \(a_{2k-1} \) intersects \(a_{2k} \), we can life \(a_{2k-1} \) in a neighborhood of the intersection and let the new curve be denoted by \(a'_{2k-1} \). Let \(v_{i, j} (i, j=1, 2, \ldots, 2h+\mu-1) \) be equal to the number of times that \(a_i \) crosses over \(a_j \) from left to right minus the number of times that \(a_i \) crosses over \(a_j \) from right to left. Then we have easily the following relations:

\[
\begin{align*}
v_{i, j} & = v_{j, i} = \text{link} (a_i, a_j) \quad \text{if} \quad a_i \cap a_j = \emptyset \\
v_{2k-1, 2k} & = v_{2h, 2h-1} + 1 = \text{link} (a'_{2k-1}, a_{2k}) \quad \text{if} \quad 1 \leq k \leq h,
\end{align*}
\]

where \(\text{link} (a_i, a_j) \) denotes the linking number of \(a_i \) and \(a_j \).

Then the \(\nabla \)-polynomial \(\nabla (t) \) of \(\kappa \) can be written as follows \([1]\):
\[\pm t^n \nabla(t) = M_{h,u}(t) \]

\[
\begin{align*}
&= \begin{pmatrix}
\begin{array}{cccc}
v_{1,1}(1-t) & v_{1,2}(1-t) + t & \cdots & v_{1,2h-1}(1-t) \\
v_{1,2}(1-t) - 1 & v_{2,2}(1-t) & \cdots & v_{2,2h-1}(1-t) \\
\vdots & \vdots & \ddots & \vdots \\
v_{2h-1,1}(1-t) & v_{2h-1,2}(1-t) & \cdots & v_{2h-1,2h-1}(1-t) \\
v_{2h,1}(1-t) & v_{2h,2}(1-t) & \cdots & v_{2h,2h-1}(1-t) - 1 \\
v_{2h+1,1} & v_{2h+1,2} & \cdots & v_{2h+1,2h-1} \\
\vdots & \vdots & \ddots & \vdots \\
v_{2h+u-1,1} & v_{2h+u-1,2} & \cdots & v_{2h+u-1,2h-1} \\
\end{array}
\end{pmatrix} \\
&= \begin{pmatrix}
\begin{array}{cccc}
v_{1,2h+1}(1-t) & \cdots & v_{1,2h+u-1}(1-t) \\
v_{2,2h+1}(1-t) & \cdots & v_{2,2h+u-1}(1-t) \\
\vdots & \ddots & \vdots \\
v_{2h-1,2h+1}(1-t) & \cdots & v_{2h-1,2h+u-1}(1-t) \\
v_{2h,2h+1}(1-t) & \cdots & v_{2h,2h+u-1}(1-t) \\
v_{2h+1,2h+1} & \cdots & v_{2h+1,2h+u-1} \\
\vdots & \ddots & \vdots \\
v_{2h+u-1,2h+1} & \cdots & v_{2h+u-1,2h+u-1}
\end{array}
\end{pmatrix}
\end{align*}
\]
Conversely if \(v_{i,j} \) \((i, j = 1, 2, \ldots, 2h + \mu - 1) \) are given, then the \(\nabla \)-polynomial, \(\nabla(t) \), and a link of multiplicity \(\mu \), which has \(\nabla(t) \) as the \(\nabla \)-polynomial, can evidently be determined.

Now we have

Theorem 2. Let \(\kappa \) be a link of multiplicity \(\mu \) and let \(X_1, X_2, \ldots, X_u \) be the components of \(\kappa \). Let \(l_{i,j} \) be the linking number of \(X_i \) and \(X_j \), i.e.

\[
l_{i,j} = \text{link}(X_i, X_j) \quad (i \neq j, \ i, j = 1, 2, \ldots, \mu).
\]

Let \(\nabla(t) \) be the \(\nabla \)-polynomial of \(\kappa \). Then \(\pm \nabla(1) \) is equal to the \((\mu - 1)\)-minor determinant of the following matrix \(A \):

\[
A = \begin{bmatrix}
- \sum_{k=2}^{\mu} l_{1,k} & l_{1,2} & \cdots & l_{1,j} & \cdots & l_{1,\mu} \\
l_{2,1} & - \sum_{k=2}^{\mu} l_{2,k} & \cdots & l_{2,j} & \cdots & l_{2,\mu} \\
\vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\
l_{j,1} & l_{j,2} & \cdots & - \sum_{k=2}^{\mu} l_{j,k} & \cdots & l_{j,\mu} \\
\vdots & \vdots & \ddots & \vdots & \cdots & \vdots \\
l_{\mu,1} & l_{\mu,2} & \cdots & l_{\mu,j} & \cdots & - \sum_{k=2}^{\mu} l_{\mu,k}
\end{bmatrix}
\]

Proof. From the definition of \(v_{i,j} \) it is easy to see that

\[
l_{i,j} = v_{2h+i-1,2h+j-1} = v_{2h+j-1,2h+i-1} = l_{j,i} \quad \text{if} \ i, j > 1 \ i \neq j
\]

\[
l_{1,i} = -(v_{2h+i-1,2h+1} + \cdots + v_{2h+i-1,2h+i-1} + \cdots + v_{2h+i-1,2h+\mu-1}) \quad \text{if} \ i > 1.
\]

Hence, we have

\[
v_{2h+i-1,2h+i-1} = -(l_{1,i} + l_{2,i} + \cdots + l_{i-1,i} + l_{i+1,i} + \cdots + l_{\mu,i}).
\]

If we set \(t = 1 \) in (*) , we have

\[
\pm \nabla(1) = \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}
\]

\[
\begin{array}{c|c}
0 & 1 \\
-1 & 0
\end{array}
\]

\[
\begin{array}{c|c}
0 & 1 \\
-1 & 0
\end{array}
\]

\[
\begin{array}{c|c}
0 & 1 \\
-1 & 0
\end{array}
\]

\[
\begin{array}{c|c}
0 & 1 \\
-1 & 0
\end{array}
\]

**\(v_{2h+1,2h+1} \) \cdots \(v_{2h+1,2h+\mu-1} \)
\]

\[
\begin{array}{c|c}
\vdots
\end{array}
\]

\[
\begin{array}{c|c}
\vdots
\end{array}
\]

\[
\begin{array}{c|c}
\vdots
\end{array}
\]

\(v_{2h+\mu-1,2h+1} \) \cdots \(v_{2h+\mu-1,2h+\mu-1} \)
Since it is clear that the rank of matrix A is $\mu - 1$, the $(\mu - 1)$-minor determinants of A coincide with $\pm \nabla(1)$. Thus the proof is complete.

Finally, we shall prove the following theorem.

Theorem 3. Let $f(x)$ be a symmetric polynomial of even degree whose constant term is different from zero. Then there exists a link of any given multiplicity μ whose ∇-polynomial is $f(x)$.

Proof. In order to construct a link κ of multiplicity μ whose ∇-polynomial is $f(x)$, we shall determine $v_{i,j}$ ($i, j = 1, 2, \ldots, 2h + \mu - 1$) in (*).

To begin with, let $v_{1,4}, v_{3,6}, \ldots, v_{2h-3,2h}$ and $v_{2h+2,2h+2}, \ldots, v_{2h+\mu-1,2h+\mu-1}$ and $v_{2,2h+1}$ be equal to 1, let $v_{1,3}, v_{3,5}, \ldots, v_{2h-3,2h-1}$ and $v_{1,1}$ be undetermined, let $v_{2h+1,2h+1}$ be equal to $-f(1)$, and let the others be equal to zero.

Then we have
$M_{h,\mu}(t) =$

$$
\begin{array}{cccccc}
 v_{1,1}(1-t) & t & \cdots & 0 & 0 & 0 \\
-1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & t & v_{2h-3,2h-1}(1-t) (1-t) \\
0 & 0 & \cdots & -1 & 0 & 0 \\
0 & 0 & \cdots & v_{2h-3,2h-1}(1-t) & 0 & 0 \\
0 & 0 & \cdots & (1-t) & 0 & -1 \\
\end{array}
\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
\end{array}
\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
\end{array} = (1-t) 0 \cdots 0 \\
(1-t) 0 \cdots 0 \\
\vdots \\
0 0 \cdots 0 \\
\end{array}
$$

Interchange the second column with the $(2h+1)$-th column and add the $(2h+1)$-th row multiplied by $-t$ to the first row. Then, we have

$-M_{h,\mu}(t) = \overline{M}_{h,\mu}(t) =$

$$
\begin{array}{cccccc}
 v_{1,1}(1-t) & f(1)t & \cdots & 0 & 0 & 0 \\
-1 & 1-t & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & t & v_{2h-3,2h-1}(1-t) (1-t) \\
0 & 0 & \cdots & -1 & 0 & 0 \\
0 & 0 & \cdots & v_{2h-3,2h-1}(1-t) & 0 & 0 \\
0 & 0 & \cdots & (1-t) & 0 & -1 \\
\end{array}
\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
\end{array}
\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
\end{array} = -f(1) 0 \cdots 0 \\
-1 0 \cdots 0 \\
\vdots \\
0 1 \cdots 0 \\
0 0 \cdots 0 \\
0 \cdots \cdots \\
0 \cdots \cdots \\
\end{array}
$$

Now we shall prove our theorem by a mathematical induction on the degree of $f(t)$.

If the degree of $f(x)$ is 2, i.e. if

$$f(t) = c_0 t^2 + c_1 t + c_0,$$

then we set $h = 1$.

Since

$$\overline{M}_{1,\mu}(t) = \begin{vmatrix} v_{1,1}(1-t) & f(1)t \\ -1 & (1-t) \end{vmatrix} = v_{1,1} t^2 - (2v_{1,1} - f(1)) t + v_{1,1},$$

if we set $v_{1,1} = c_0$, then $|\nabla(t)| = |\overline{M}_{1,\mu}(t)| = |f(t)|$.

Suppose that our theorem is proved for the case where the degree of $f(t)$ is $2(n-1)$.

Then let
\[f(t) = c_0 t^{2n} + c_1 t^{2n-1} + \cdots + c_{n-1} t^{n+1} + c_n t^n + c_{n-1} t^{n-1} + \cdots + c_1 t + c_0. \]

We set \(h = n \).

Let \(M'_{n,\mu}(t) \) be the \((2n-1)\)-minor determinant which is deduced from \(M_{n,\mu}(t) \) by striking out \((2n-1)\)-th row and \((2n-1)\)-th column. By a simple calculation we have
\[\tilde{M}'_{n,\mu}(t) = -(1-t)^n \tilde{M}'_{n-1,\mu}(t) \]
and since \(\tilde{M}'_{1,\mu}(t) = (1-t) \), we have further
\[\tilde{M}'_{n,\mu}(t) = (-1)^{n-1}(1-t)^{2n-1}. \]

Developing \(\tilde{M}_{n,\mu}(t) \) at the \((2n-1)\)-th column, we have
\[\tilde{M}_{n,\mu}(t) = v_{n-3,2n-1} t (1-t)^2 \tilde{M}'_{n-1,\mu}(t) + \{ t \tilde{M}_{n-1,\mu}(t) - (1-t)^2 v_{2n-3,2n-1} \tilde{M}'_{n-1,\mu}(t) \} \]
\[= t \tilde{M}_{n-1,\mu}(t) - (1-t)^2 v_{2n-3,2n-1} \tilde{M}'_{n-1,\mu}(t) \]
\[= t \tilde{M}_{n-1,\mu}(t) + (-1)^{n-1} v_{2n-3,2n-1} (1-t)^{2n}. \]

In order that
\[\tilde{M}_{n,\mu}(t) = f(t) = c_0 t^{2n} + c_1 t^{2n-1} + \cdots + c_1 t + c_0, \]
it is sufficient that it holds
\[(***) \quad \tilde{M}_{n-1,\mu}(t) = \frac{c_0 t^{2n} + c_1 t^{2n-1} + \cdots + c_1 t + c_0 + (-1)^n v_{2n-3,2n-1} (1-t)^{2n}}{t}. \]

If we set \(v_{2n-3,2n-1} = (-1)^{n+1} c_0 \), then the degree of the right hand side of (***) is \(2(n-1)\). Hence, by the assumption of induction we can determine \(v_{1,1}, v_{1,3}, \ldots, v_{2n-5,2n-3} \) satisfying (**). Therefore, \(v_{1,1}, v_{1,3}, \ldots, v_{2n-5,2n-3} \) can be determined such that \(|\nabla(t)| = |\tilde{M}_{n,\mu}(t)| = |f(t)| \).

Hence, we have a link of multiplicity \(\mu \) whose \(\nabla \)-polynomial is \(f(t) \), and the proof is complete.

Kobe University.

(Received September 29, 1958)

References
