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1. Introduction

Let M be a compact orientable 3-manifold and F, and F, properly embed-
ded surfaces in M. If F, and F, intersect transversely, then by cutting F, and
F, along the intersection and regluing them in a different way, we obtain another
embedded surface in M.

DerINITION. Let F, and F, be orientable surfaces properly embedded in
M intersecting transversely. A cut-and-paste (CP) operation on a component C
of Fy N F, is the following operation in a regular neighborhood of C, N(C): Cut
F, and F, on C and reglue them in a different way. See Figure 1.1.

or

Fig 1.1.

Note that there are two choices in regluing. When we apply a CP operation
on each component of F;NF, we obtain an embedded surface F in M. We
say that F is obtained from F, and F, by a (way of) CP operation.

Suppose that both F, and F, are incompressible. In general, a surface
which is obtained from F, and F, by a CP operation is possibly compressible.
But we can prove that in certain cases there is a CP operation which yields an
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incompressible surfaces.

Theorem 1. Let F, and F, be incompressible surfaces of genus greater
than zero properly embedded in M which intersect transversely. If F, or F,is a
torus, then we can obtain an incompressible surface F from F, and F, by a CP ope-
ration.

Then we show that the assumption of Theorem 1 cannot be omitted in
general. In fact, we prove;

Theorem 2. For any inetgers n, and n, which are greater than one, there
exist a closed orientable 3-manifold M and connected incompressible surfaces F,
and F, properly embedded in M such that they intersect transversely, g(F,)=n, (g(F)
is the genus of F) and for any surface F obtained from F, and F, by CP operations,
each component of F bounds a handlebody.

By applying Theorem 1 a number of times, we have the following corol-
larly.

Corollary 3. Let T, T,, -+, T, (n=2) be properly embedded incompres-
sible tori in M such that any two of them intersect transversely. Then there exists
an incompressible surface F such that FC U1 T;UN(U <i<;<0 T:N T).

Let & be the set of isotopy classes of orientable, incompressible, 8-
incompressible suifaces in M. And let &’ be the set of isotopy classes of (not
necessarily orientable) surfaces S properly embedded in M such that each
component of the closure of dN(S)—0M is incompressible and 8-incompressible.
We call such a surface injective and 9-injective respectively. Then Oertel [5]
defined a function ¢: & X S— {finite subset of S’} as follows: Given a pair of
isotopy classes of incompressible surfaces, we choose representatives F, and F,
with suitably simplified intersection. Then ¢([F}], [F,]) is defined to be the set
of isotopy classes of injective surfaces obtained from F, and F, by CP operations.
Oertel showed that the function g is well-defined. In general, for a given pair
[F], [F), ([F], [F]) is possibly an emptyset. But when F; or F, is a torus,
Theorem 1 immediately implies the following:

Corollary 4. Let [F)], [F;] be a pair of isotopy classes of incompressible
surfaces in M. If F, or F, is a torus, then q([F,],[F,)) is not an emptyset.

RemaArRk. When F, and F, are oriented surfaces, we often use a cut-and-
paste operation such that the way of regluing is compatible with orientations on
F, and F,. We call this operation an oriented cut-and-paste (OCP) operation.
We can consider the same problem as Theorem 1 for OCP operations. But there
is an example such that we cannot obtain incompressible surfaces from incom-
pressible tori by OCP operations. For example, let M be a Seifert fibered space
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over S? with four singular fibers. Let p be a projection of M to S2.. We consi-
der two incompressible tori T and T, such that T} is a union of regular fibers and
p(T;) (=1, 2) are as indicated in Figure 1.2. Then we can check that for any
orientations of 7, and T),, we cannot obtain an incompressible surface from 7T
and T, by an OCP operation.

Fig 1.2.

Throughout this paper, we work in the piecewise linear category. For the
definition of standard terms of 3-dimensional topology, see [2]. For a sukt-
complex K of a given H, Ny(K) denotes a reglar neighborhood of K in H.
When H is well understood, we often abbreviate Ny(K) to N(K).

2. Proof of Theorem 1

Lemma 2.1. Let F, and F, be incompressible surfaces in a 3-manifold M
with transverse intersection. Then we can obtain incompressible surfaces F, and
F', by some CP operations on closed curves of F,(\ F, which are inessential on F,,
such that F'; is homeomorphic to F(i=1, 2) and each component of F N F, is es-
sential in F,.

Proof. If each component of F;NF, is an essential curve of F;, we take
F,=F, (i=1,2). In general, we apply an argument of the proof of [2, Lemma
4, 6].

Let n be the number of components of F, N F, which is inessential on F;.
Assume n=1. Let S=F{UPF} be a 2-component 2-manifold such that F/=F,
(i=1,2) and f,: S—M an immersion such that f,|: F{—F; is a homeomor-
phism. Let S,={x&S|3x' €S such that f(x)=f(x')}. Then f(Z)=F,NF,
and 3, consists of closed curves on S. Let 3§ be a subset of 3, which consists
of inessential curves on S. Since F, and F, are incompressible, C;C 3§ if and
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only if C,C = for C,C =, with f5'(fy(C,))=C,UC, Hence % consists of 2n
closed curves.

We deffne an immersion f;| S— M as follows; fix a closed curve CiC %§ and
let f7(fo(C1))=C1UC;. Let D; be a disk on S such that 0D;=C; and V a
solid torus which is a regular neighborhood of f,(Ci). Then fg*(V) is a union
of two disjoint annuli 4, and 4, with C}c4,(i=1,2). Put D/=D,—Int 4,
D?=D;UA;. There exists disjoint annuli B, and B, on 98V with 0B,=f,
(0D’ UdDj) and 0B,=fo(0D3;’ UdD1). We define f; by putting f,|s_ 7=
Jols-wfr o, fi(A:)=B;, (D) < fo(Dz) and f,(D2) C fo(D1) so that Z==,—{C1U
C3}. Then ={ consists of 2(n—1) closed curves. Note that f|, (i=1, 2) may
have self intersections.

For 2<k<n, we define an immersion f,: S—M inductively. Assume f,_,
was defined, 3Z,.,={x€S|3x'E.S such that f,_,(x)=f;-,(x")} consists of closed
curves, and for each component C,C3;_={CCZ%,_,|C is an inessential curve
on S}, fiti(fe-1(C1))=C,UC, and C,C=j_;. Fix a component C} of 3}_, and
let fiy(fi-1(C¥)=CtUC4. Fori=1,2, let D, a disk on S such that 8D,=C*,
V a regular neighborhood of f,_,(C?%), 4, and A, disjoint annuli of f~(¥) with
CtcA;,, D/=D,—Int 4;, D{’=D;U A;, B,, B,C 0V annuli with dB,=f,_,(8D{’ U
0D3%) and 8B,=f,_,(0D3’ UaDy).

We divide into two cases a) D, D,=@ and b) D,CInt D,.

In case a), we define f, by putting fi|s-o!"y 05)=fe=1ls-oy v og) fe(A:)=B;,
(DY) C fi-y(D3) and fi(D3) C fo—y(D1) so that 3,=3,_,—{CiUC%}. In caseb),
put E=D{—Int D;’. We define f, by putting f;|s—p/=fs-1ls5-0¢, f(D}) C fo-1
(D3), f(A4;)=B,, and fi(E) C fy-(E) so that 5, = %, —{C1U C}}.

In this way, we obtain a sequence of maps f, fy, *-*, f, from S to M such
that 3,=3,.,—{CiUC}}, where C%, CicC=i_1 with f_,(CY)=f,_,(C%) for
1<k<Zn.

Since X consists of 2z components, X,=2,—3 and Z;=0. Put f(Fi)=
F;(1=1,2). Since the definition of f,| 4 4, corresponds to a CP operation on
fi-i(Ch) (1<k<n), F, and F, is obtained from F, and F, by CP operations on
fo(=4), which is equal to the set of inessential curves in F;NF,. And F,nF,
consists of essential curves. On the other hand, since f; |57y o =Fe-1ls-wf v,
for i=1,2, F;—E,=F,—E, for a union of certain disks E; (E,, resp.) on F;,
(F',, resp.). Hence F'; is incompressible.

This completes the proof of Lemma 2.1.

DerINITION. Let F, and F, be properly embedded surfaces in M which
intersect transversely. Let F' be a closure of a component of F;—(F,NF,) (i=
1,2). We say that F; and F, have a semi-product region between F{ and F} if
there exists a map f of a manifold X to M satisfying the following (1)-(4):

(1) X=Wx[0,1]—U%.1 Int B;,, where W is homeomorphic to F{ and



CUT-AND-PASTES OF INCOMPRESSIBLE SURFACES 621

B, B,, ---, B, are mutual,y disjoint 3-balls in Int (WX [0, 1]).

(2) f(@Wx][O0,1])=0F{=0F;.

(3) flwxi is a homeormophism of Wx {0} to F{ and f|px is a homeo-
morphism of Wx {1} to Fj.

(4) flx-ewxo,m is an embedding.

Lemma 2.2. Let F, and F, be properly embedded incompressible surfaces
in M which intersect transversely. Suppose that F, and F, have a semi-product
region between F{ and F} (F{CF;,i=1,2). Then F}:(F,.-—F,‘)UFQ_.- is also
incompressible (i=1, 2).

Proof. It is enough to prove that F,—=(F,—F{)UF} is incompressible.
Assume that there exists a compressing disk D of F,. Since F, and F, are in-
compressible, we may asume that DN F; consists of some arcs ay, a,, **+, d,,.
Using X=Wx [0, 1]— U%., Int B; and the map f, we can find a disk D, in M
such that 8D;=a;Ub; and §,CF{(i=1,2,---m). Let D'’=DU7.,D;. Then
D’ is an immersed disk in M with dD'CF,. Clearly 8D’ is essential on F;,
contradicting the incompressibility of F,. Hence £, is incompressible.

This completes the proof of Lemma 2.2.

Proof of Theorem 1. If FyNF, contains a component C which is ines-
sential on F}, then we consider incompressible surfaces ¥, and F, in Lemma 2.1.
Moreover if F, and ¥, have a smi-product region, we consider incompressible
surfaces F, and ¥, in Lemma 2.2. If Theorem 1 holds for ¥, and F,, we may re-
gard that the obtained surface F is also obtained from F, and F, by a CP ope-
ration by Lemmas 2.1 and 2.2. Hence, without loss of generality, we may assume
the following (1)-(3):

(1) F,isa torus and F, is a surface of genus greater than zero.
(2) Each component of F; N F, is an essential curve on F.
(3) F, and F, do not have a semi-product region.

Let N, and N, be components of N(F,)—F,. Let F be a surface obtained
from F, and F, by the following CP operation; for each component 4 of F,—Int
N(FyNF,), a component of 4 is regluded to N, N9(F,—Int N(F;NF,)) and
the other component of 94 is reglued to N, N d(F,—Int N(F,NF,)). See Figure
2.1.

We will prove that F is incompressible.

We may assume that F, and F intersect transversely and for each compo-
nent 4 of F,—Int N(F,NF,), ANF consists of an essential simple closed curve
in 4.

Suppose that there exists a compressing disk D of F. Since F, is incom-
pressible, we may assume DN F; does not contain a circle component.
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Fig 2.1.
Claim 2.3. 8DN(F,NF)=*g.

Proof. Suppose that 3D N (F;NF)=@. Then we may assume dDCF N F,.
Since F, is incompressible, there exists a disk D’ on F, such that dD=0D’.
Since 0D is an essential curve on F, D’ contain a component C of F;NF, C
bounds a disk D’/(C D’) and by the condition (2), C is an essential curve on Fj.
It contradicts the incompressibility of F,. Therefore 0D N(F,NF)=*@, com-
pleting the proof of Claim 2.3.

By Claim 2.3, DN F, consists of some arcs. Let a be an outermost arc of
DNF, on D, and D'CD an outermost disk such that 8D'=aU b with bC8D.
Then using D’, we can find a embedded disk E in M such that 8E=a’Ub’,
a'CF, b'CF, with aNa’#+0,bNbd'+0 and Int EN(F,UF,)=@. Let 4 be a
closure of a component of F,—(F; N F,) which contains a’, and B a closure of a
component of F,—(F,NF,) which contains 4’. By the condition (2), 4 is an
annulus. Consider EX [0, 1] with EX [0, 1] N (F,U F,)=0Ex [0, 1]. Then E'=
(Ex[0,1JU A)—(E % (0, 1)) is an embedded disk in M such that dE’'C F,. Since
F, is incompressible, dE’ is an inessential curve on F,. Let E” be a disk on F,
with 0E”=0FE’'. If E” N(Ex(0, 1))=0@, then each component of 04(C F,NF,)
also bounds a disk on F,. But it contradicts the condition (2). Hence E”CB
and B is an annulus. Using 4U BU EX [0, 1], we can see that F, and F, have a
semi-product region between 4 and B. It contradicts the condition (3). There-
fore F is incompressible.

This completes the proof of Theorem 1.

3. Boundary irreducibility of certain 3-manifolds

For the proof of Theorem 2, we construct certain 3-manifolds with incom-
pressible surfaces. A closed orientable surface F' properly embedded in a 3-
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manifold M is incompressible if and only if dN(F) is incompressible in each com-
ponent of M—Int N(F). In this section, we examine the incompressibility
of boundaries of certain 3-manifolds. We say that an orientable 3-manifold M
is @-irreducible if M is irreducible and 0/ is incompressible in M.

Suppose that M does not contain a fake 3-ball. Then M is 3-irreducible
iff z,(M) is not a free product or a cyclic group (cf. [2]). Lemma 3.1 shows
that for certain one-relator groups, we can examine that the group is a free product
or not.

DeFINITION. Let {x,, x5, -+, #,> be a free group of rank g(g>2) with gen-
erators ¥, %, -**, ¥, and H, a handlebody of genus g. We say that a simple
closed curve C on 0H, is a representation curve of an element r E{xy, Xy, *+, x>
if 7y (H )=y, %y, -+, 2,0 D Incly(C)=r. (Incly is a homomorphism which is in-
duced by the inclusion map.)

Lemma 3.1. Suppose that r has (at least one) representation curve. Then
the following (1)-(3) are mutually equivalent:
(1) <xy, 2y, =+, 2,2 7> is mot a free product group or a cyclic group.
(2) There exists a representation curve C of r on dH, such that dH,—C is
incompressible in H,.
(3) For any representation curve C of v, 0H,—C is incompressible in H,.

Proof. (3)=>(2) is clear.

(2)=(1): Let M=H_,U ¢(D*xI) be a 3-manifold obtained from H, by at-
taching a 2-handle D?*x I along C. By [1], [3] or [6], M is 8-irreducible. On
the other hand, z;(M)=={x,, x,, -*+, x,: 7). Hence (1) holds.

(1)=(3): Suppose that there exists a representation curve C of » such that
0H,—C is compressible in H,. Let B be a compressing disk of dH,—C in H,.
If B is a non-separating disk of H,, then B is also a non-separating disk of M=
H,U(D*xI). If H—B=V,UV,and V, and V, are handlebodies, then M is
a disk sum of V, and V,U(D*xI). In both cases, z,(M)={x,, x5, -+, x,: >
ZxG for some group G.

This completes the proof of Lemma 3.1.

Next, we examine the 9-irreducibility of manifolds which are obtained from
handlebodies by Dehn surgeries on links in them. Let V' be a handlebody and
k a simple closed curve on V. We define a surgery on pushed k with surgery
coefficient p/q (g.c.d(p, g)=1) as follows: Consider an annulus 4 in V" such that
0A=kUFk and AN0V=Fk (We say k' is a pushed k). 'There is a neighborhood
of k', N(k') such that N(k')N 4 is an annulus. Put [=8N(k')N A4 and let m be
a meridian of & on dN(k’). Remove Int/N(k') and attach a solid torus V' to it so
that a meridian 7’ on 87" is attached to a curve C on N (k) with [Cl=p[m]+
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q[[1€H,(0N(k’); Z).

Lemma 3.2. Let V be a handlebody of genus greater than one and C,, C,,
e, C, (n2>1) mutually disjoint simple closed curves on 9V. If oV—U%..1C; is
incompressible in V and | p;| =2 (i=1, 2, -+, n), then the manifold M which 0b-
tained from V by surgeries on pushed C,, C,, «--, C, with surgery coefficient p,/q,,
D2/92, +** s Dulqn ts 0-irreducible.

Proof. Let V', V,, +++, V, be solid tori and m; and /; meridian and longi-
tude on 9V;. Consider a simple closed curve C%’ on 8V, such that [C{']=
r.[m]+p, [l JEH,(0V;; Z), for integers 7; and s; with p; s,—¢;7;=1. Then we
can regard M as the 3-manifold obtained form V" and Vy, V,, -+, V, by identify-
ing Ny (C?") to Nayy(C;).

Since | p;|>0 and 0V — U 7. C; is incompressible in V, M is irreducible.
We will prove that dM is incompressible in M. Note that since | p;| >2, for
any compressing disk D of V;, #(8D N Nyy(Ci’))>2. Suppose that there exists
a compressing disk D of M in M. Since 8V — U .. C; is incompressible in V,
D must intersect with U 7.1 Noy(C;) in at least one arc. We may assume D has
a minimal number of components in all such disks. By standard innermost
circle and outermost arc arguments, we may assume D N (U %.1 Nyy(C;)) con-
sists of some essential arcs in Nyy(C;). Let a be an outermost arc of DN
(U%-1 Noy(Cy)) on D, D’ an outermost disk on D with dD'=aU b, bCdD and
aC Nyy(C;) (1<j<n). By the minimality of the number of intersections, 8D’
is an essential curve on 8V or 8V;. Since 8D’ intersects with Nyy(C}) in an arc,
D’ is contained in V. But it contradicts the following Claim 3..3.

Claim 3.3. If 0V—U%..: C; is incompressible in V, then for any compres-
sing disks D of V, $(0DN(U .1 C;))=>2.

Proof of Claim 3.3. Suppose that there exists a compressing disk D of 9V
such that 9D intersects with U}.. C; in a point pEC,(1<j<n). Consider a
regular neighborhood of D, DX [0, 1]C ¥V such that Dx [0, 1]NdV=0Dx [0, 1]
and (0D X0, 1) N(U 7.1 C;))=pXx[0, 1]. Then D'=3(N(C,)U(Dx]O0, 1]))—
Int(AN(C,)NaV)U (@D x (0, 1)) is a compressing disk of 37— U?%.: C,, a con-
tradiction.

Hence Claim 3.3 holds.

This completes the proof of Lemma 3.2

To know the incompressibility of 91— U {.: C; in V, we use the following
Lemma 3.4.

Let H, be a handlebody of genus g(g>2) and {D,, D,, -:+, D;,_3} a set of
mutually disjoint non-parallel compressing disks in H,. Then each component
of H,— U #¥:%(D; (0, 1)) is a 3-ball B such that 8B—Int (8H, N 0B) consists of
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three disks D{, Df, D} and D] is parallel to D, for some 1<j<3g—3 in H,
(#=1,2,3). Let G, C,, -+, C, be mutually disjoint simple closed curves on
0H,. We may assume each component of (D; X [0, 1]) N C, is an essential arc on
0D, x[0,1]. We say that C=U"%.: C; is full with respect to D,, D, +++, Dy, _; if
for any component B of H,— U ¥7%(D; x (0, 1)), C satisfies the following condi-
tions (1), (2);
(1) each component of C NdB is an arc connecting D! and Dj for i,j &€
{1, 2,3} and i =%j.
(2) for any pair of D! and D}(¢=j, and i, jE€ {1, 2, 3}), there is a sub arc
a of C on 0B connecting D} and D/.

Lemma 3.4. ([3, Lemma 6.1]). Let {C,, C,, -+, C,} be a set of mutually
disjoint simple closed curves on 90H,. If there exists a set of mutually disjoint non-
parallel compressing disks {D,, D,, -+, D3, g} of H, such that C=U'%., C; is full
with respect to D,, Dy, -+, Dy, _s, then 9H,—C is incompressible in H,.

Let N be a 9-irreducible 3-manifold with boundary and {C,, C,, -+, C,} a
set of mutually disjoint non-parallel simple closed curves such that 9N— U .1 C;
is incompressible in N. We consider a manifold M which is obtained from N
by attaching 2-handles along C,, C,, -+, C,. In the case that n=1, M is 0-
irreducible by [1], [3], or [6]. But in general cases, M may not be 9-irreducible.
The following Lemma 3.5 gives a sufficient condition for M to be 8-irreducible.

Let C be a simple closed curve on a surface F and @ an arc on F with
aNC=0a. We say that a is an inessential arc relative to C if there exists a disk
D on F such that 0D=aUb with bCC. If a is not an inessential arc relative
to C, then we say that a is an essential arc relative to C.

Lemma 3.5. Let {C,, C,, -, C,} (n>1) be a set of mutually disjoint simple
closed curves on ON. Suppose that there exists a set of mutually disjoint properly
embedded disks {D,, D,, ---, D,} which satisfies the following conditions (1)-(3);

(1) each component of N— U %.1(D; X (0, 1)) zs 0-irreducible,

(2) ifi=j, then D,NC;=0,

(3) if i=j, then $(D; N C,)=2, the algebraic intersection number of 0D; and

C; on 3N is 0, and each component of C;—(C;N0D;) is an essential arc
relative to 0D,.
Then the manifold M which is obtained from N by attaching 2-handles along C,, C,,
«eo, C, s 0-trreducible.

Proof. Put D=U"., D; and C=uU"., C;. Let Dx [0,1] be a regular
neighborhood of D. We may assume that each component of (8D x [0, 1])NC
is an essential arc on a component of 8D x [0, 1]. Let N’ be a component of
N—(Dx(0,1)). We abbreviate D, x {0} and D, x {1} on 8N’ to D, for sim-
plicity. 'Then 0N’ is a union of some D,’s and N'N0N.
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Claim 3.6. Let a be a component of C;—(C; N (D;x(0, 1)) and N’ the com-
ponent of N—(D X (0, 1)) which contains a. Then a is an essential arc relative to
0D; on dN'.

Proof. Note that since Intyy[8D;, C;]=0, 8a is contained in one compo-
nent of ON'—9N. Assume that a is an inessential arc relative to 8D; on dN'.
Then aUb (bC8D;) bounds a disk D on ON’. We may assume aUb is an
“innermost” curve on 9NN’, i.e. D does not contain any other D,. Hence D is
contained in N’ NN and « is an inessential arc relative to 8D, on 8N. It con-
tradicts to the condition (3). Therefore a is an essential arc relative to 8D, on
oON’.

This completes the proof of Claim 3.6.

We say that a closed curve J on 8N is C-inessential if J bounds a disk on
0N or J and some components of C bounds a planar surface on N. If J is not
C-inessential, we say that J is C-essential.

Suppose that M is not 9-irreducible, i.e. there exists an essential sphere or
a disk F'in M. By standard innermost circle and outermost arc arguments,
we may assume that F intersects the 2-handles in horizontal disks. Hence
S=F NN is a planar surface such that at most one component of 85 is a C-
essential curve and other components are parallel to a component of C. We
will prove that there does not exist such a planar surface S.

The next claim gives a proof of this assertion in a very special case (the
case of S a disk).

Claim 3.7. There does not exist a disk S such that 0.8 is C-essential.

Proof. Assume that there exists such a disk S. We suppose that #(S N D)
is minimal over all such disks. Suppose that #(SND)>1. Then there is an
outermost arc @ on S and an outermost disk D on S such that 8D=aU b, bCdS.
Let D; (1<i{<mn) be the disk which contains @ and N’ the component of N—
(D% (0, 1)) which contains D. By the 8-irreducibility of N’, there exists a 3-ball
B in N’ such that 8B=DU D’'U D!, where D'CON'NON and D/CD,. By
Claim 3.6, D’ does not intersect C. Hence by using B, we can obtain a disk S’
such that 8S” is C-essential and #(S’ N D)<#(S N D), a contradiction.

Hence #(SND)=0. Then S is contained in a component N’ of N—(D x
(0,1)). Since N’ is 9-irreducible, there is a disk E on 9N’ such that 9E=23S
and E contains some D;’s. Then a component d of C;—(3D; X (0, 1)) intersects
E. By Claim 3.6, d is an essential arc relative to D; on N’. Hence d intersects
0E=dS. It contradicts the choice of S. Hence there does not exist a disk in
N whose boundary is C-essential.

This completes the proof of Claim 3.7.

By Claim 3,7, if there exists such a planar surface S, then #(8S5)>2 and
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0SND=*@. Let S be a planar surface in N such that at most one component |
of 8 is C-essential, and that each component J' of 8S—] is parallel to a com-
ponent C; of C. We assume that #(S N D) is minimal over all such planar sur-
faces. Let J be a component of 8S (if exists) which is C-essential and D; a
component of D intersecting 8S—]. Let K,, K, -+, K, be the components of
8S—J which are parallel to C; and we suppose that K,, K, ---, K, are contained
in Nyy(C;) in this order. Since each component of N—(D x (0, 1)) is 8-irreduci-
ble, by using standard innermost circle and outermost arc arguments, we may
assume S N D; consists of arcs. Let a be an outermost arc of S N D; on D; and
D an outermost disk on D; with DN S=a. Put da=p,U p,. Then we have the
following four possible cases.

(a) Both p, and p, are on J.

(b) p€J and p,€0S—].

(c) mEK,and p,EK,, (1<j<n—1).

(d) p, and p, are on the same component K (=K, or K,) of 8S—].
Let S'=(SUDx[0, 1])—Dx(0,1). Then S’ is a planar surface. In Case (a),
S’ has two components, at least one component S” of S’ has a C-essential curve
in 8S” and #(S” ND)<#(SND). It contradicts the choice of S. In Case (b),
clearly a component of S’ is C-essential and #(S’ N D)<#(S N D), a contradic-
tion. In case (c), 8S" has a component L=(K;U K, UbX[0, 1])—&x (0, 1),
where b=0D—a. L bounds a disk B on dN. By capping off S” by B and push-
ing B into N, we obtain a planar surface S” such that #(S” ND)<#(SND), a
contradiction. In Case (d), S’ consists of two components. Let S” be a com-
ponent of S” which does not contain /. Let J’ be a component of 3S” which
consists of a subarc of K and a copy of 9D—a.

Claim 3.8. ]’ is C-essential.

Proof. Assume that ' is C-inessential. If J' bounds a disk D on 8N, then
a subarc of K is an inessential arc relative to 8D,. It contradicts the condition
(3). Hence J’ bounds a planar surface P on 9N with some C,’s, say C;, C,, **-,
C,. Note that J'N(U%.18D;)=@. By conditions (2) and (3), for j=1, 2, -++, [,
a subarc of 9D, d; is contained in P and d ; 1s an essential arc relative to C,.
Hence P— U .: d; consists of I components P, P,, -++, P; and for each j=1, 2,
o, LX(P;)<0. But 1—-I=X(P)=X=}_, X(P;)—I<—I, a contradiction.

This completes the proof of Claim 3.8.

By Claim 3.8 and the fact #(S”” N D)<<#(S N D), we have a contradiction.

Hence in any cases it contradicts the choice of S. Therefore M=NUg
(D?x 1) is 8-irreducible.

This completes the proof of Lemma 3.5.
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4. Proof of Theorem 2

Proof of Theorem 2. We consider the following two cases and construct
a 3-manifold M and incompressible surfaces F; and F, in M which satisfy the
conditions in Theorem 2:

) n=n,>2.

(II) m>n,>2.

Case (I) n,=n,>2.

We put n=m,=n,. Let H, and H, be handlebodies with g(H;)=n (i=1, 2)
and C; ,, C; 5, **+, C; ,4, simple closed curves on 8H; as indicated in Figure 4.1
() (in Figure 4.1, n=4). For each C; ;, we consider a simple closed curve C} ;
in H; such that there exists an embedded annulus 4 and 84=C; ;UC},;. C { ]
is a pushed C; ; in the sense of Section 3. Let F;, be a properly embedded
surface in H; Wlth F;,N(U%-1C; ;)=0 (=1, 2) as indicated in Fugure 4.1 (b).
F, ;(F;,, resp.) consists of [(n+1)/2] ([#/2], resp.) components, where [x] is the
greatest integer which is less than or equal to x.

Put M=H{U ; Hj, where H/! is obtained from H; by performing 2-surgery
on Ci; (; pushed C; ), (i=1, 2, j=1,2, ---,n+1), and f is a homeomorphism
of 8H} to dH{ such that f(8F,,)=0F, , and f(C, 34,) and f(Cy ) (k=1,2, -,
[n/2]) are as indicated in Figure 4.1 (c).

P g )
< \\5/1@——!(1)' \y—u

Fig 4.1. (b)
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o,

OH,

Fig 4.1. (c)

Then M is an orientable closed 3-manifold, F;=8H{ and F,=F,,UF,, are
embedded surfaces of genus n, and F, and F, intersect transversely.

For any orientation of F; and F,, an OCP operation produces two genus »
surfaces or two genus two surfaces and #—2 genus three surfaces. In both cases,
these surfaces bound handlebodies. Let L,(i=1, 2, --+, ) be a closure of a com-
ponent of H,—F , (=1 mod 2) which contains C};. And let L] be a manifold
which is obtained form L; by 2-surgery on C ;. Then L (L;, resp.) has a com-
pressing disk D, (D,, resp.) and L} (=2, 3, ---, —1) has compressing disks D, ,
and D, , which are indicated in Figure 4.2.

Fig 4.2.

Note that Lf(i=1,2, ---,n) is a handlebody and L{—D,;x(0, 1) (/=1,n) and
Li—Uj(D;,1%(0, 1) (7=2,3, ---,n—1) are solid tori. Suppose that F is a
surface which is obtained from F, and F, by a CP operation which cannot be re-
alized by an OCP operation. Then each component of F bounds a handle-
body L} or a manifold which is homeomrophic to L= U*., LiU (U N(LiN
L’)) (1<h<k<n, if h=1 (k=n, resp.) then k<<nm (1<h, resp.)). If 1<h<k<
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n, then for I=1,2, D,=(U}., D, ;) U(U %z} E, ), where E, , is a meridional disk
of N(LiNLi,:) such that N(L!NLf )N (D; ;U D,y ,)CE;,, is a compressing
disk of L. And we can see that L—(U %, D, x (0, 1)) is obtained from solid tori
Li—Ui.(D,,%x(0, 1)) (j=h, k+1, ---, k) by identifying disks on boundaries of
these solid tori. Hence L is a handlebody. If A=1 (k=n, resp.), D=D,U U ..
((Uj-2D;)U(UIZIE, ) (= Uias((U i D; ) UE, ) UD,, resp.) (Diy=D; =D,
for i=1, 2) is a compressing disk of L. And L—DX (0, 1) is obtained from solid
tori Li—D,x (0, 1) (L;—D,x(0, 1), resp.) and Li—U%.1D,,;x(0,1) (j=2, 3,
-ty R, j=h, h+1, ---,n—1, resp.) by identifying disks on boundaries of these
solid tori. Hence L is a handlebody.

Therefore any surface obtained from F, and F, by a CP operation bounds
handlebodies.

We will prove the incompressibility of F, and F,. For the incompressibi-
lity of F, note that U%Zi C; ; is full with respect to a set of compressing disks
of H; which are indicated in Figure 4.1 (a). Hence by Lemmas 3.2 and 3.4,
0H is incompressible in H (i=1, 2), and F, is incompressible in M.

Note that we can regard L, as F’'x[0, 1]/{(», t)~(x,t")|xE0F’, t, t'E
[0, 11}, where F'=F,NL,, and F'X 1=F,;,NL,(j=7 mod 2). Let M, be the
closure of the component of M—F, which contains C,,. Then by the above
fact, M, is obtained from a handlebody V=(H,— U2 L, _,)U (U ¥ L,,) by
2-surgeries on C{ 5, pushed C$/x(i.e. C?.24) (1<k<[n/2])and C1{ . as indicated
in Fugure 4.3.

/

N

By the same way as the above, the closure M, of the other component of M—F,
is also obtained from a handlebody of genus # by 2-surgeries on such closed
curves. We consider the following two cases:

(a) n=2.

Fig 4.3.
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(b) n=>3.
(a) »=2. Since M, is homeomorphic to M,, it is enough to prove the in-
compressibility of F; in M,.
We use Lemma 3.1. We have
m(M,) =<a,b,c,d,e,f|Fab=1,db= 1, bcdb(cd)}? = 1,f =d%cd),
=Ld,e,flEf2d%f= 1),

where a, b, ¢, d, e are represented by curves which are indicated in Figure 4.4.

Fig 4.4.

Let r=e2f2d?f. We have a representation curve C of r on a handlebody V'
as indicated in Figure 4.5.

Fig 4.5.

C is full with respect to a set of compressing disks whose boundaries are indicat-
ed in Figure 4.5. Hence by Lemma 3.4, 9H—C is incompressible in H and by
Lemma 3.1, 7,(MM,) is not a free product group or a cyclic group. Therefore
F, is incompressible in M,.

(b) »>3. We prove the incompressibility of F, in M,.
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We use Lemma 3.2. Recall that M, is obtained from a handlebody V by
2-surgeries on C1{ 3, pushed C3%(1<k<[n/2]) and C{,,.. Note that a mani-
fold V" which is obtained from V" by 2-surgeries on C{ »(1<k<[n/2]) and C1 ...
is a handlebody. Hence we may regard that M, is obtained from the handle-
body V' by 2-surgeries on pushed C3%:(1<k<[n/2]). We consider a set of
compressing disks Dy, D,, -+, Dy, _; of V' such that D,, D,, -+, D,_, separates H'
into [#/24-1] solid tori and each of which contains C{ ;. See Figure 4.6.

1
!
!
|
!
I
|
|
|
|

|
|
|
1

/
_-
‘A / ——————
AN ! 7\ N
NN ]t / 1!
N T T T T T T T T T T / li Iy
TTTTT T T oo EmT T ET ,"// ,/I/
A .

Fig 4.6.

Then we can check that U} C3/ is full with respect to D,, D,, -++, Dj,_;.
Hence by Lemmas 3.2 and 3.4, F, is incompressible in M.
We can prove the incompressibility of F, in M, in the same way as the above.
This completes the proof of Case (I).
Case (II) n,>n,>2.
Let H, and H, be handlebodies of genus n,. We consider n-+1 surgery

® ® @>>

= ]

Fig 4.7. (a)
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curves as in the proof of Case (I) and properly embedded surfaces F;, in H,
and H, as indicated in Figure 4.7 (a). Put M=H{U H;. Here H{ is ob-
tained from H; (i=1, 2) by performing 2-surgeries on those curves and f is a
homeomorphism of 0H to 0H{ such that

(1) f(8F,)=0F;y,

(2) fN(C,))(j=1mod2, 1<j<n,—1 or j=n,) and f(C, ;) (k=2 mod 2,

2<k<mn,—1 or k=n,) are as indicated in Figure 4.7 (b),

(3) f(Cy;) (f=ny ny+1, -+, m;—1) is parallel to C, .

(In Figure 4.7. n,=6 and n,=4.)

\ 7

! // i i | f
I‘ / f((fz.‘i) " ACs.4) l( ACy5) I‘
s
& AT ® & e
\ I \ \ \ |
\ \ \ \ \
\ \

; \
’ !
)

L

oI,

Fig 4.7. (b)

Then M is an orientable closed 3-manifold, and F,=0H{ and F,=F,,UF,,
are properly embedded surfaces such that g(F,)=n, and g(F,)=n,.

In the same way as in the proof of Case (I), we can prove that for any sur-
face F obtained from F, and F, by CP operations, each component of F bounds
a handlebody, and F, is incompressible in M.

We will prove the incompressibility of F, in M. Let M, be a clsoure of a
component of M—F, which does not contain C,,,. Then M, is the same
manifold as obtained in the proof of Case (I). Hence F, is incompressible in M.

Let L be the closure of a component of H;,—F; , ({=n, mod 2) which con-
tains C{,,. We consider properly embedded arcs a,, a,, ***, au(m=n,—n,) in L
as indicated in Figure 4.7 (a). Let N (a;)=a;xXD? Then L— U7.:a; X Int D?
has a form F’x[0, 1]/{(x, t)~(x, t')|x€0F’, t, t'€[0, 1]}, where F'=F,NL.
Using this fact, we can see that ), is obtained from handlebody V' of genus 7,
by performing 2-surgeries on closed curves indicated in Figure 4.8, and by attach-
ing 2-handles N(¢;)=a;xD?(i=1,2, -+, m) so that al=p,x0D*(p,Ea;) is
identified with such curves as that indicated in Figure 4.8.

Consider properly embedded disks D,, D,, -+, D,, as indicated in Figure 4.8.
Then the closure of each component of M,— U 7., D; is a manifold which is
obtained from solid torus by performing 2-surgeries on two parallel curves which
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[

are parallel to a core of solid torus, or the same manifold as that was obtained in
the proof of Case (I). In both cases the manifolds are 9-irreducible. Hence
ai, aj, +++,am and Dy, D,, -+, D, satisfy the assumption of Lemma 3.5. There-
fore M, is 9-irreducible and F, is incompressible in ,.

Hence F, is incompressible in M, completing the proof of Case (II).

This completes the proof of Theorem 2.

Fig 4.8.
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