

Title	Cut-and-pastes of incompressible surfaces in 3- manifolds
Author(s)	Kobayashi, Masako
Citation	Osaka Journal of Mathematics. 1992, 29(3), p. 617–634
Version Type	VoR
URL	https://doi.org/10.18910/11867
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Kobayashi, M. Osaka J. Math. 29 (1992), 617-634

CUT-AND-PASTES OF INCOMPRESSIBLE SURFACES IN 3-MANIFOLDS

MASAKO KOBAYASHI¹

(Received August 26, 1991) (Revised January 14, 1992)

1. Introduction

Let M be a compact orientable 3-manifold and F_1 and F_2 properly embedded surfaces in M. If F_1 and F_2 intersect transversely, then by cutting F_1 and F_2 along the intersection and regluing them in a different way, we obtain another embedded surface in M.

DEFINITION. Let F_1 and F_2 be orientable surfaces properly embedded in M intersecting transversely. A *cut-and-paste* (CP) operation on a component C of $F_1 \cap F_2$ is the following operation in a regular neighborhood of C, N(C): Cut F_1 and F_2 on C and reglue them in a different way. See Figure 1.1.

Fig 1.1.

Note that there are two choices in regluing. When we apply a CP operation on each component of $F_1 \cap F_2$, we obtain an embedded surface F in M. We say that F is obtained from F_1 and F_2 by a (way of) CP operation.

Suppose that both F_1 and F_2 are incompressible. In general, a surface which is obtained from F_1 and F_2 by a CP operation is possibly compressible. But we can prove that in certain cases there is a CP operation which yields an

¹ A fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists. Supported by Grant-in Aid for Scientific Research, The ministry of Education, Science and Culture.

incompressible surfaces.

Theorem 1. Let F_1 and F_2 be incompressible surfaces of genus greater than zero properly embedded in M which intersect transversely. If F_1 or F_2 is a torus, then we can obtain an incompressible surface F from F_1 and F_2 by a CP operation.

Then we show that the assumption of Theorem 1 cannot be omitted in general. In fact, we prove;

Theorem 2. For any inetgers n_1 and n_2 which are greater than one, there exist a closed orientable 3-manifold M and connected incompressible surfaces F_1 and F_2 properly embedded in M such that they intersect transversely, $g(F_i)=n_i$ (g(F) is the genus of F) and for any surface F obtained from F_1 and F_2 by CP operations, each component of F bounds a handlebody.

By applying Theorem 1 a number of times, we have the following corollarly.

Corollary 3. Let T_1, T_2, \dots, T_n $(n \ge 2)$ be properly embedded incompressible tori in M such that any two of them intersect transversely. Then there exists an incompressible surface F such that $F \subset \bigcup_{i=1}^{n} T_i \cup N(\bigcup_{1 \le i \le j \le n} T_i \cap T_j)$.

Let S be the set of isotopy classes of orientable, incompressible, ∂ incompressible surfaces in M. And let S' be the set of isotopy classes of (not necessarily orientable) surfaces S properly embedded in M such that each component of the closure of $\partial N(S) - \partial M$ is incompressible and ∂ -incompressible. We call such a surface injective and ∂ -injective respectively. Then Oertel [5] defined a function $q: S \times S \rightarrow$ {finite subset of S'} as follows: Given a pair of isotopy classes of incompressible surfaces, we choose representatives F_1 and F_2 with suitably simplified intersection. Then $q([F_1], [F_2])$ is defined to be the set of isotopy classes of injective surfaces obtained from F_1 and F_2 by CP operations. Oertel showed that the function q is well-defined. In general, for a given pair $[F_1], [F_2], q([F_1], [F_2])$ is possibly an emptyset. But when F_1 or F_2 is a torus, Theorem 1 immediately implies the following:

Corollary 4. Let $[F_1]$, $[F_2]$ be a pair of isotopy classes of incompressible surfaces in M. If F_1 or F_2 is a torus, then $q([F_1], [F_2])$ is not an emptyset.

REMARK. When F_1 and F_2 are oriented surfaces, we often use a cut-andpaste operation such that the way of regluing is compatible with orientations on F_1 and F_2 . We call this operation an *oriented cut-and-paste (OCP) operation*. We can consider the same problem as Theorem 1 for OCP operations. But there is an example such that we cannot obtain incompressible surfaces from incompressible tori by OCP operations. For example, let M be a Seifert fibered space

over S^2 with four singular fibers. Let p be a projection of M to S^2 . We consider two incompressible tori T_1 and T_2 such that T_i is a union of regular fibers and $p(T_i)$ (i=1, 2) are as indicated in Figure 1.2. Then we can check that for any orientations of T_1 and T_2 , we cannot obtain an incompressible surface from T_1 and T_2 by an OCP operation.

Throughout this paper, we work in the piecewise linear category. For the definition of standard terms of 3-dimensional topology, see [2]. For a subcomplex K of a given $H, N_H(K)$ denotes a reglar neighborhood of K in H. When H is well understood, we often abbreviate $N_H(K)$ to N(K).

2. Proof of Theorem 1

Lemma 2.1. Let F_1 and F_2 be incompressible surfaces in a 3-manifold M with transverse intersection. Then we can obtain incompressible surfaces \tilde{F}_1 and \tilde{F}_2 by some CP operations on closed curves of $F_1 \cap F_2$ which are inessential on F_1 , such that \tilde{F}_i is homeomorphic to $F_i(i=1,2)$ and each component of $\tilde{F}_1 \cap \tilde{F}_2$ is essential in \tilde{F}_1 .

Proof. If each component of $F_1 \cap F_2$ is an essential curve of F_1 , we take $\tilde{F}_i = F_i$ (i=1, 2). In general, we apply an argument of the proof of [2, Lemma 4, 6].

Let *n* be the number of components of $F_1 \cap F_2$ which is inessential on F_1 . Assume $n \ge 1$. Let $S = F'_1 \cup F'_2$ be a 2-component 2-manifold such that $F'_i \cong F_i$ (i=1, 2) and $f_0: S \to M$ an immersion such that $f_0|_{F'_i}: F'_i \to F_i$ is a homeomorphism. Let $\Sigma_0 = \{x \in S \mid \exists x' \in S \text{ such that } f_0(x) = f_0(x')\}$. Then $f_0(\Sigma_0) = F_1 \cap F_2$ and Σ_0 consists of closed curves on S. Let Σ'_0 be a subset of Σ_0 which consists of inessential curves on S. Since F_1 and F_2 are incompressible, $C_1 \subset \Sigma'_0$ if and only if $C_2 \subset \Sigma'_0$ for $C_2 \subset \Sigma_0$ with $f_0^{-1}(f_0(C_1)) = C_1 \cup C_2$. Hence Σ'_0 consists of 2n closed curves.

We define an immersion $f_1 | S \to M$ as follows; fix a closed curve $C_1^1 \subset \Sigma_0'$ and let $f_0^{-1}(f_0(C_1^1)) = C_1^1 \cup C_2^1$. Let D_i be a disk on S such that $\partial D_i = C_i^1$ and V a solid torus which is a regular neighborhood of $f_0(C_1^1)$. Then $f_0^{-1}(V)$ is a union of two disjoint annuli A_1 and A_2 with $C_i^1 \subset A_i(i=1,2)$. Put $D'_i = D_i - \text{Int } A_i$, $D'_i' = D_i \cup A_i$. There exists disjoint annuli B_1 and B_2 on ∂V with $\partial B_1 = f_0$ $(\partial D'_1 \cup \partial D'_2)$ and $\partial B_2 = f_0(\partial D'_2 \cup \partial D'_1)$. We define f_1 by putting $f_1|_{S-(D'_1 \cup D'_2)} =$ $f_0|_{S-(D'_1 \cup D'_2)}, f_1(A_i) = B_i, f_1(D'_1) \subset f_0(D'_2)$ and $f_1(D'_2) \subset f_0(D'_1)$ so that $\Sigma_1 = \Sigma_0 - \{C_1^1 \cup C_2^1\}$. Then Σ'_1 consists of 2(n-1) closed curves. Note that $f|_{F_i}(i=1, 2)$ may have self intersections.

For $2 \le k \le n$, we define an immersion $f_k: S \to M$ inductively. Assume f_{k-1} was defined, $\sum_{k-1} = \{x \in S \mid \exists x' \in S \text{ such that } f_{k-1}(x) = f_{k-1}(x')\}$ consists of closed curves, and for each component $C_1 \subset \sum_{k-1}' = \{C \subset \sum_{k-1} \mid C \text{ is an inessential curve}$ on $S\}$, $f_{k-1}^{-1}(f_{k-1}(C_1)) = C_1 \cup C_2$ and $C_2 \subset \sum_{k-1}'$. Fix a component C_1^k of \sum_{k-1}' and let $f_{k-1}^{-1}(f_{k-1}(C_1^k)) = C_1^k \cup C_2^k$. For i=1, 2, let D_i a disk on S such that $\partial D_i = C_i^k$, V a regular neighborhood of $f_{k-1}(C_1^k)$, A_1 and A_2 disjoint annuli of $f^{-1}(V)$ with $C_i^k \subset A_i, D_i' = D_i - \text{Int } A_i, D_i' = D_i \cup A_i, B_1, B_2 \subset \partial V$ annuli with $\partial B_1 = f_{k-1}(\partial D_1' \cup \partial D_2')$ and $\partial B_2 = f_{k-1}(\partial D_2' \cup \partial D_1')$.

We divide into two cases a) $D_1 \cap D_2 = \emptyset$ and b) $D_2 \subset \text{Int } D_1$.

In case a), we define f_k by putting $f_k|_{s-(D'_1 \cup D'_2)} = f_{k-1}|_{s-(D'_2 \cup D'_2)}, f_k(A_i) = B_i$, $f_k(D'_1) \subset f_{k-1}(D'_2)$ and $f_k(D'_2) \subset f_{k-1}(D'_1)$ so that $\Sigma_k = \Sigma_{k-1} - \{C_1^k \cup C_2^k\}$. In case b), put $E = D'_1 - \text{Int } D'_2$. We define f_k by putting $f_k|_{s-D'_1} = f_{k-1}|_{s-D''_1}, f_k(D'_2) \subset f_{k-1}$ $(D'_2), f_k(A_i) = B_i$, and $f_k(E) \subset f_{k-1}(E)$ so that $\Sigma_k = \Sigma_{k-1} - \{C_1^k \cup C_2^k\}$.

In this way, we obtain a sequence of maps f_0, f_1, \dots, f_n from S to M such that $\Sigma_k = \Sigma_{k-1} - \{C_1^k \cup C_2^k\}$, where $C_1^k, C_2^k \subset \Sigma_{k-1}'$ with $f_{k-1}(C_1^k) = f_{k-1}(C_2^k)$ for $1 \leq k \leq n$.

Since Σ'_0 consists of 2n components, $\Sigma_n = \Sigma_0 - \Sigma'_0$ and $\Sigma'_n = \emptyset$. Put $f_n(F'_i) = \widetilde{F}_i$ (i=1,2). Since the definition of $f_k|_{A_1 \cup A_2}$ corresponds to a CP operation on $f_{k-1}(C_1^k)$ $(1 \le k \le n)$, \widetilde{F}_1 and \widetilde{F}_2 is obtained from F_1 and F_2 by CP operations on $f_0(\Sigma'_0)$, which is equal to the set of inessential curves in $F_1 \cap F_2$. And $\widetilde{F}_1 \cap \widetilde{F}_2$ consists of essential curves. On the other hand, since $f_k|_{S-(D_1''\cup D_2'')}=f_{k-1}|_{S-(D_1''\cup D_2'')}$, for $i=1, 2, \ \widetilde{F}_i - \widetilde{E}_i = F_i - E_i$ for a union of certain disks E_i $(\widetilde{E}_i, \text{ resp.})$ on F_i $(\widetilde{F}_i, \text{ resp.})$. Hence \widetilde{F}_i is incompressible.

This completes the proof of Lemma 2.1.

DEFINITION. Let F_1 and F_2 be properly embedded surfaces in M which intersect transversely. Let F'_i be a closure of a component of $F_i - (F_1 \cap F_2)$ (i = 1, 2). We say that F_1 and F_2 have a *semi-product region* between F'_1 and F'_2 if there exists a map f of a manifold X to M satisfying the following (1)-(4):

(1) $X = W \times [0, 1] - \bigcup_{i=1}^{n} \text{Int } B_i$, where W is homeomorphic to F'_1 and

 B_1, B_2, \dots, B_n are mutual, y disjoint 3-balls in Int ($W \times [0, 1]$).

- (2) $f(\partial W \times [0, 1]) = \partial F'_1 = \partial F'_2$.
- (3) f |_{W×(0)} is a homeormophism of W× {0} to F'₁ and f |_{W×(1)} is a homeomorphism of W× {1} to F'₂.
- (4) $f|_{x-(\partial W \times [0,1])}$ is an embedding.

Lemma 2.2. Let F_1 and F_2 be properly embedded incompressible surfaces in M which intersect transversely. Suppose that F_1 and F_2 have a semi-product region between F'_1 and $F'_2(F'_i \subset F_i, i=1, 2)$. Then $\hat{F}_i = (F_i - F'_i) \cup F'_{3-i}$ is also incompressible (i=1, 2).

Proof. It is enough to prove that $\hat{F}_1 = (F_1 - F'_1) \cup F'_2$ is incompressible. Assume that there exists a compressing disk D of \hat{F}_1 . Since F_1 and F_2 are incompressible, we may asume that $D \cap F'_2$ consists of some arcs a_1, a_2, \dots, a_m . Using $X = W \times [0, 1] - \bigcup_{i=1}^n \operatorname{Int} B_i$ and the map f, we can find a disk D_i in M such that $\partial D_i = a_i \cup b_i$ and $b_i \subset F'_1$ $(i=1, 2, \dots m)$. Let $D' = D \cup_{i=1}^m D_i$. Then D' is an immersed disk in M with $\partial D' \subset F_1$. Clearly $\partial D'$ is essential on F_1 , contradicting the incompressibility of F_1 . Hence \hat{F}_1 is incompressible.

This completes the proof of Lemma 2.2.

Proof of Theorem 1. If $F_1 \cap F_2$ contains a component C which is inessential on F_1 , then we consider incompressible surfaces \tilde{F}_1 and \tilde{F}_2 in Lemma 2.1. Moreover if \tilde{F}_1 and \tilde{F}_2 have a smi-product region, we consider incompressible surfaces \hat{F}_1 and \hat{F}_2 in Lemma 2.2. If Theorem 1 holds for \hat{F}_1 and \hat{F}_2 , we may regard that the obtained surface F is also obtained from F_1 and F_2 by a CP operation by Lemmas 2.1 and 2.2. Hence, without loss of generality, we may assume the following (1)-(3):

- (1) F_1 is a torus and F_2 is a surface of genus greater than zero.
- (2) Each component of $F_1 \cap F_2$ is an essential curve on F_1 .
- (3) F_1 and F_2 do not have a semi-product region.

Let N_1 and N_2 be components of $N(F_1)-F_1$. Let F be a surface obtained from F_1 and F_2 by the following CP operation; for each component A of F_1 -Int $N(F_1 \cap F_2)$, a component of ∂A is regluded to $N_1 \cap \partial(F_2 - \operatorname{Int} N(F_1 \cap F_2))$ and the other component of ∂A is regluded to $N_2 \cap \partial(F_2 - \operatorname{Int} N(F_1 \cap F_2))$. See Figure 2.1.

We will prove that F is incompressible.

We may assume that F_1 and F intersect transversely and for each component A of F_1 —Int $N(F_1 \cap F_2)$, $A \cap F$ consists of an essential simple closed curve in A.

Suppose that there exists a compressing disk D of F. Since F_1 is incompressible, we may assume $D \cap F_1$ does not contain a circle component.

M. Kobayashi

Claim 2.3. $\partial D \cap (F_1 \cap F) \neq \emptyset$.

Proof. Suppose that $\partial D \cap (F_1 \cap F) = \emptyset$. Then we may assume $\partial D \subset F \cap F_2$. Since F_2 is incompressible, there exists a disk D' on F_2 such that $\partial D = \partial D'$. Since ∂D is an essential curve on F, D' contain a component C of $F_1 \cap F_2$. C bounds a disk $D''(\subset D')$ and by the condition (2), C is an essential curve on F_1 . It contradicts the incompressibility of F_1 . Therefore $\partial D \cap (F_1 \cap F) \neq \emptyset$, completing the proof of Claim 2.3.

By Claim 2.3, $D \cap F_1$ consists of some arcs. Let a be an outermost arc of $D \cap F_1$ on D, and $D' \subset D$ an outermost disk such that $\partial D' = a \cup b$ with $b \subset \partial D$. Then using D', we can find a embedded disk E in M such that $\partial E = a' \cup b'$, $a' \subset F_1$, $b' \subset F_2$ with $a \cap a' \neq \emptyset$, $b \cap b' \neq \emptyset$ and Int $E \cap (F_1 \cup F_2) = \emptyset$. Let A be a closure of a component of $F_1 - (F_1 \cap F_2)$ which contains a', and B a closure of a component of $F_2 - (F_1 \cap F_2)$ which contains b'. By the condition (2), A is an annulus. Consider $E \times [0, 1]$ with $E \times [0, 1] \cap (F_1 \cup F_2) = \partial E \times [0, 1]$. Then $E' = (E \times [0, 1] \cup A) - (E \times (0, 1))$ is an embedded disk in M such that $\partial E' \subset F_2$. Since F_2 is incompressible, $\partial E'$ is an inessential curve on F_2 . Let E'' be a disk on F_2 with $\partial E'' = \partial E'$. If $E'' \cap (E \times (0, 1)) \neq \emptyset$, then each component of $\partial A (\subset F_1 \cap F_2)$ also bounds a disk on F_2 . But it contradicts the condition (2). Hence $E'' \subset B$ and B is an annulus. Using $A \cup B \cup E \times [0, 1]$, we can see that F_1 and F_2 have a semi-product region between A and B. It contradicts the condition (3). Therefore F is incompressible.

This completes the proof of Theorem 1.

3. Boundary irreducibility of certain 3-manifolds

For the proof of Theorem 2, we construct certain 3-manifolds with incompressible surfaces. A closed orientable surface F properly embedded in a 3-

manifold M is incompressible if and only if $\partial N(F)$ is incompressible in each component of M—Int N(F). In this section, we examine the incompressibility of boundaries of certain 3-manifolds. We say that an orientable 3-manifold Mis ∂ -*irreducible* if M is irreducible and ∂M is incompressible in M.

Suppose that M does not contain a fake 3-ball. Then M is ∂ -irreducible iff $\pi_1(M)$ is not a free product or a cyclic group (cf. [2]). Lemma 3.1 shows that for certain one-relator groups, we can examine that the group is a free product or not.

DEFINITION. Let $\langle x_1, x_2, \dots, x_g \rangle$ be a free group of rank $g(g \ge 2)$ with generators x_1, x_1, \dots, x_g and H_g a handlebody of genus g. We say that a simple closed curve C on ∂H_g is a *representation curve* of an element $r \in \langle x_1, x_2, \dots, x_g \rangle$ if $\pi_1(H_g) \cong \langle x_1, x_2, \dots, x_g \rangle \supseteq \operatorname{Incl}_*(C) = r$. (Incl_{*} is a homomorphism which is induced by the inclusion map.)

Lemma 3.1. Suppose that r has (at least one) representation curve. Then the following (1)-(3) are mutually equivalent:

- (1) $\langle x_1, x_2, \dots, x_g : r \rangle$ is not a free product group or a cyclic group.
- (2) There exists a representation curve C of r on ∂H_g such that $\partial H_g C$ is incompressible in H_g .
- (3) For any representation curve C of r, $\partial H_g C$ is incompressible in H_g .

Proof. $(3) \Rightarrow (2)$ is clear.

(2) \Rightarrow (1): Let $M=H_g \cup_c (D^2 \times I)$ be a 3-manifold obtained from H_g by attaching a 2-handle $D^2 \times I$ along C. By [1], [3] or [6], M is ∂ -irreducible. On the other hand, $\pi_1(M) \cong \langle x_1, x_2, \dots, x_g; r \rangle$. Hence (1) holds.

(1) \Rightarrow (3): Suppose that there exists a representation curve C of r such that $\partial H_g - C$ is compressible in H_g . Let B be a compressing disk of $\partial H_g - C$ in H_g . If B is a non-separating disk of H_g , then B is also a non-separating disk of $M = H_g \cup_C (D^2 \times I)$. If $H_g - B = V_1 \cup V_2$ and V_1 and V_2 are handlebodies, then M is a disk sum of V_1 and $V_2 \cup_C (D^2 \times I)$. In both cases, $\pi_1(M) \cong \langle x_1, x_2, \cdots, x_g : r \rangle \cong Z * G$ for some group G.

This completes the proof of Lemma 3.1.

Next, we examine the ∂ -irreducibility of manifolds which are obtained from handlebodies by Dehn surgeries on links in them. Let V be a handlebody and k a simple closed curve on ∂V . We define a surgery on pushed k with surgery coefficient p/q (g.c.d(p, q)=1) as follows: Consider an annulus A in V such that $\partial A = k \cup k'$ and $A \cap \partial V = k$ (We say k' is a pushed k). There is a neighborhood of k', N(k') such that $N(k') \cap A$ is an annulus. Put $l = \partial N(k') \cap A$ and let m be a meridian of k' on $\partial N(k')$. Remove IntN(k') and attach a solid torus V' to it so that a meridian m' on $\partial V'$ is attached to a curve C on $\partial N(k')$ with [C] = p[m] + M. Kobayashi

 $q[l] \in H_1(\partial N(k'); Z).$

Lemma 3.2. Let V be a handlebody of genus greater than one and C_1, C_2, \dots, C_n $(n \ge 1)$ mutually disjoint simple closed curves on ∂V . If $\partial V - \bigcup_{i=1}^{n} C_i$ is incompressible in V and $|p_i| \ge 2$ $(i=1, 2, \dots, n)$, then the manifold M which obtained from V by surgeries on pushed C_1, C_2, \dots, C_n with surgery coefficient $p_1/q_1, p_2/q_2, \dots, p_n/q_n$ is ∂ -irreducible.

Proof. Let V_1, V_2, \dots, V_n be solid tori and m_i and l_i meridian and longitude on ∂V_i . Consider a simple closed curve C'_i on ∂V_i such that $[C'_i] = r_i[m_i] + p_i[l_i] \in H_1(\partial V_i; Z)$, for integers r_i and s_i with $p_i s_i - q_i r_i = 1$. Then we can regard M as the 3-manifold obtained form V and V_1, V_2, \dots, V_n by identifying $N_{\partial V_i}(C'_i)$ to $N_{\partial V}(C_i)$.

Since $|p_i| > 0$ and $\partial V - \bigcup_{i=1}^{m} C_i$ is incompressible in V, M is irreducible. We will prove that ∂M is incompressible in M. Note that since $|p_i| \ge 2$, for any compressing disk D of V_i , $\sharp(\partial D \cap N_{\partial V_i}(C'_i)) \ge 2$. Suppose that there exists a compressing disk D of ∂M in M. Since $\partial V - \bigcup_{i=1}^{n} C_i$ is incompressible in V, D must intersect with $\bigcup_{i=1}^{n} N_{\partial V}(C_i)$ in at least one arc. We may assume D has a minimal number of components in all such disks. By standard innermost circle and outermost arc arguments, we may assume $D \cap (\bigcup_{i=1}^{n} N_{\partial V}(C_i))$ consists of some essential arcs in $N_{\partial V}(C_i)$. Let a be an outermost arc of $D \cap$ $(\bigcup_{i=1}^{n} N_{\partial V}(C_i))$ on D, D' an outermost disk on D with $\partial D' = a \cup b$, $b \subset \partial D$ and $a \subset N_{\partial V}(C_i)$ ($1 \le j \le n$). By the minimality of the number of intersections, $\partial D'$ is an essential curve on ∂V or ∂V_j . Since $\partial D'$ intersects with $N_{\partial V}(C_j)$ in an arc, D' is contained in V. But it contradicts the following Claim 3..3.

Claim 3.3. If $\partial V - \bigcup_{i=1}^{n} C_i$ is incompressible in V, then for any compressing disks D of V, $\#(\partial D \cap (\bigcup_{i=1}^{n} C_i)) \ge 2$.

Proof of Claim 3.3. Suppose that there exists a compressing disk D of ∂V such that ∂D intersects with $\bigcup_{i=1}^{n} C_i$ in a point $p \in C_j (1 \le j \le n)$. Consider a regular neighborhood of D, $D \times [0, 1] \subset V$ such that $D \times [0, 1] \cap \partial V = \partial D \times [0, 1]$ and $(\partial D \times [0, 1]) \cap (\bigcup_{i=1}^{n} C_i) = p \times [0, 1]$. Then $D' = \partial (N(C_j) \cup (D \times [0, 1])) -$ Int $(\partial N(C_j) \cap \partial V) \cup (\partial D \times (0, 1))$ is a compressing disk of $\partial V - \bigcup_{i=1}^{n} C_i$, a contradiction.

Hence Claim 3.3 holds.

This completes the proof of Lemma 3.2

To know the incompressibility of $\partial V - \bigcup_{i=1}^{n} C_i$ in V, we use the following Lemma 3.4.

Let H_g be a handlebody of genus $g(g \ge 2)$ and $\{D_1, D_2, \dots, D_{3g-3}\}$ a set of mutually disjoint non-parallel compressing disks in H_g . Then each component of $H_g - \bigcup_{i=1}^{3g-3} (D_i \times (0, 1))$ is a 3-ball B such that $\partial B - \text{Int} (\partial H_g \cap \partial B)$ consists of

three disks D'_1, D'_2, D'_3 and D'_i is parallel to D_j for some $1 \le j \le 3g-3$ in H_g (*i*=1, 2, 3). Let C_1, C_2, \dots, C_n be mutually disjoint simple closed curves on ∂H_g . We may assume each component of $(D_i \times [0, 1]) \cap C_j$ is an essential arc on $\partial D_i \times [0, 1]$. We say that $C = \bigcup_{i=1}^n C_i$ is full with respect to $D_1, D_2, \dots, D_{3g-3}$ if for any component B of $H_g - \bigcup_{i=1}^{3g-3} (D_i \times (0, 1))$, C satisfies the following conditions (1), (2);

- (1) each component of $C \cap \partial B$ is an arc connecting D'_i and D'_j for $i, j \in \{1, 2, 3\}$ and $i \neq j$.
- (2) for any pair of D'_i and $D'_j(i \neq j$, and $i, j \in \{1, 2, 3\}$), there is a sub arc a of C on ∂B connecting D'_i and D'_j .

Lemma 3.4. ([3, Lemma 6.1]). Let $\{C_1, C_2, \dots, C_n\}$ be a set of mutually disjoint simple closed curves on ∂H_g . If there exists a set of mutually disjoint non-parallel compressing disks $\{D_1, D_2, \dots, D_{3g-3}\}$ of H_g such that $C = \bigcup_{i=1}^n C_i$ is full with respect to $D_1, D_2, \dots, D_{3g-3}$, then $\partial H_g - C$ is incompressible in H_g .

Let N be a ∂ -irreducible 3-manifold with boundary and $\{C_1, C_2, \dots, C_n\}$ a set of mutually disjoint non-parallel simple closed curves such that $\partial N - \bigcup_{i=1}^{n} C_i$ is incompressible in N. We consider a manifold M which is obtained from N by attaching 2-handles along C_1, C_2, \dots, C_n . In the case that n=1, M is ∂ irreducible by [1], [3], or [6]. But in general cases, M may not be ∂ -irreducible. The following Lemma 3.5 gives a sufficient condition for M to be ∂ -irreducible.

Let C be a simple closed curve on a surface F and a an arc on F with $a \cap C = \partial a$. We say that a is an inessential arc relative to C if there exists a disk D on F such that $\partial D = a \cup b$ with $b \subset C$. If a is not an inessential arc relative to C, then we say that a is an essential arc relative to C.

Lemma 3.5. Let $\{C_1, C_2, \dots, C_n\}$ $(n \ge 1)$ be a set of mutually disjoint simple closed curves on ∂N . Suppose that there exists a set of mutually disjoint properly embedded disks $\{D_1, D_2, \dots, D_n\}$ which satisfies the following conditions (1)-(3);

- (1) each component of $N \bigcup_{i=1}^{n} (D_i \times (0, 1))$ is ∂ -irreducible,
- (2) if $i \neq j$, then $D_i \cap C_j = \emptyset$,
- (3) if i=j, then #(D_i ∩ C_j)=2, the algebraic intersection number of ∂D_i and C_j on ∂N is 0, and each component of C_i−(C_i ∩ ∂D_i) is an essential arc relative to ∂D_i.

Then the manifold M which is obtained from N by attaching 2-handles along C_1, C_2, \dots, C_n is ∂ -irreducible.

Proof. Put $\overline{D} = \bigcup_{i=1}^{n} D_i$ and $\overline{C} = \bigcup_{i=1}^{n} C_i$. Let $\overline{D} \times [0, 1]$ be a regular neighborhood of \overline{D} . We may assume that each component of $(\partial \overline{D} \times [0, 1]) \cap \overline{C}$ is an essential arc on a component of $\partial \overline{D} \times [0, 1]$. Let N' be a component of $N - (\overline{D} \times (0, 1))$. We abbreviate $D_i \times \{0\}$ and $D_i \times \{1\}$ on $\partial N'$ to D_i for simplicity. Then $\partial N'$ is a union of some D_i 's and $N' \cap \partial N$. **Claim 3.6.** Let a be a component of $C_i - (C_i \cap (D_i \times (0, 1)))$ and N' the component of $N - (\overline{D} \times (0, 1))$ which contains a. Then a is an essential arc relative to ∂D_i on $\partial N'$.

Proof. Note that since $\operatorname{Int}_{\partial N}[\partial D_i, C_i]=0$, ∂a is contained in one component of $\partial N' - \partial N$. Assume that a is an inessential arc relative to ∂D_i on $\partial N'$. Then $a \cup b$ ($b \subset \partial D_i$) bounds a disk D on $\partial N'$. We may assume $a \cup b$ is an "innermost" curve on $\partial N'$, i.e. D does not contain any other D_j . Hence D is contained in $\partial N' \cap \partial N$ and a is an inessential arc relative to ∂D_i on ∂N . It contradicts to the condition (3). Therefore a is an essential arc relative to ∂D_i on $\partial N'$.

This completes the proof of Claim 3.6.

We say that a closed curve J on ∂N is \overline{C} -inessential if J bounds a disk on ∂N or J and some components of \overline{C} bounds a planar surface on ∂N . If J is not \overline{C} -inessential, we say that J is C-essential.

Suppose that M is not ∂ -irreducible, i.e. there exists an essential sphere or a disk F in M. By standard innermost circle and outermost arc arguments, we may assume that F intersects the 2-handles in horizontal disks. Hence $S=F\cap N$ is a planar surface such that at most one component of ∂S is a \overline{C} essential curve and other components are parallel to a component of \overline{C} . We will prove that there does not exist such a planar surface S.

The next claim gives a proof of this assertion in a very special case (the case of S a disk).

Claim 3.7. There does not exist a disk S such that ∂S is \overline{C} -essential.

Proof. Assume that there exists such a disk S. We suppose that $\sharp(S \cap \overline{D})$ is minimal over all such disks. Suppose that $\sharp(S \cap \overline{D}) \ge 1$. Then there is an outermost arc a on S and an outermost disk D on S such that $\partial D = a \cup b, b \subset \partial S$. Let $D_i (1 \le i \le n)$ be the disk which contains a and N' the component of $N - (\overline{D} \times (0, 1))$ which contains D. By the ∂ -irreducibility of N', there exists a 3-ball B in N' such that $\partial B = D \cup D' \cup D'_i$, where $D' \subset \partial N' \cap \partial N$ and $D'_i \subset D_i$. By Claim 3.6, D' does not intersect \overline{C} . Hence by using B, we can obtain a disk S' such that $\partial S'$ is \overline{C} -essential and $\sharp(S' \cap \overline{D}) < \sharp(S \cap \overline{D})$, a contradiction.

Hence $\sharp(S \cap \overline{D}) = 0$. Then S is contained in a component N' of $N - (\overline{D} \times (0, 1))$. Since N' is ∂ -irreducible, there is a disk E on $\partial N'$ such that $\partial E = \partial S$ and E contains some D_i 's. Then a component d of $C_i - (\partial D_i \times (0, 1))$ intersects E. By Claim 3.6, d is an essential arc relative to D_i on N'. Hence d intersects $\partial E = \partial S$. It contradicts the choice of S. Hence there does not exist a disk in N whose boundary is \overline{C} -essential.

This completes the proof of Claim 3.7.

By Claim 3,7, if there exists such a planar surface S, then $\#(\partial S) \ge 2$ and

 $\partial S \cap \overline{D} \neq \emptyset$. Let S be a planar surface in N such that at most one component J of ∂S is \overline{C} -essential, and that each component J' of $\partial S - J$ is parallel to a component C_i of \overline{C} . We assume that $\#(S \cap \overline{D})$ is minimal over all such planar surfaces. Let J be a component of ∂S (if exists) which is \overline{C} -essential and D_i a component of \overline{D} intersecting $\partial S - J$. Let K_1, K_2, \dots, K_n be the components of $\partial S - J$ which are parallel to C_i and we suppose that K_1, K_2, \dots, K_n are contained in $N_{\partial N}(C_i)$ in this order. Since each component of $N - (\overline{D} \times (0, 1))$ is ∂ -irreducible, by using standard innermost circle and outermost arc arguments, we may assume $S \cap D_i$ consists of arcs. Let a be an outermost arc of $S \cap D_i$ on D_i and D an outermost disk on D_i with $D \cap S = a$. Put $\partial a = p_1 \cup p_2$. Then we have the following four possible cases.

- (a) Both p_1 and p_2 are on J.
- (b) $p_1 \in J$ and $p_2 \in \partial S J$.
- (c) $p_1 \in K_j$ and $p_2 \in K_{j+1} (1 \le j \le n-1)$.
- (d) p_1 and p_2 are on the same component $K (=K_1 \text{ or } K_n)$ of $\partial S J$.

Let $S' = (S \cup D \times [0, 1]) - D \times (0, 1)$. Then S' is a planar surface. In Case (a), S' has two components, at least one component S'' of S' has a \overline{C} -essential curve in $\partial S''$ and $\#(S'' \cap \overline{D}) < \#(S \cap \overline{D})$. It contradicts the choice of S. In Case (b), clearly a component of S' is \overline{C} -essential and $\#(S' \cap \overline{D}) < \#(S \cap \overline{D})$, a contradiction. In case (c), $\partial S'$ has a component $L = (K_j \cup K_{j+1} \cup b \times [0, 1]) - b \times (0, 1)$, where $b = \partial D - a$. L bounds a disk B on ∂N . By capping off S' by B and pushing B into N, we obtain a planar surface S'' such that $\#(S'' \cap \overline{D}) < \#(S \cap \overline{D})$, a contradiction. In Case (d), S' consists of two components. Let S'' be a component of S' which does not contain J. Let J' be a component of $\partial S''$ which consists of a subarc of K and a copy of $\partial D - a$.

Claim 3.8. J' is \overline{C} -essential.

Proof. Assume that J' is \overline{C} -inessential. If J' bounds a disk D on ∂N , then a subarc of K is an inessential arc relative to ∂D_i . It contradicts the condition (3). Hence J' bounds a planar surface P on ∂N with some C_j 's, say C_1, C_2, \dots, C_l . Note that $J' \cap (\bigcup_{i=1}^n \partial D_i) = \emptyset$. By conditions (2) and (3), for $j=1, 2, \dots, l$, a subarc of ∂D_j , d_j is contained in P and d_j is an essential arc relative to C_j . Hence $P - \bigcup_{i=1}^l d_j$ consists of l components P_1, P_2, \dots, P_l and for each $j=1, 2, \dots, l, \dots, l, \chi(P_j) \leq 0$. But $1 - l = \chi(P) = \sum_{j=1}^l \chi(P_j) - l \leq -l$, a contradiction.

This completes the proof of Claim 3.8.

By Claim 3.8 and the fact $\#(S'' \cap \overline{D}) < \#(S \cap \overline{D})$, we have a contradiction.

Hence in any cases it contradicts the choice of S. Therefore $M=N\cup_{\overline{c}}$ $(D^2\times I)$ is ∂ -irreducible.

This completes the proof of Lemma 3.5.

4. Proof of Theorem 2

Proof of Theorem 2. We consider the following two cases and construct a 3-manifold M and incompressible surfaces F_1 and F_2 in M which satisfy the conditions in Theorem 2:

- (I) $n_1 = n_2 \geq 2$.
- (II) $n_1 > n_2 \ge 2$.

Case (I) $n_1 = n_2 \ge 2$.

We put $n=n_1=n_2$. Let H_1 and H_2 be handlebodies with $g(H_i)=n$ (i=1,2)and $C_{i,1}, C_{i,2}, \dots, C_{i,n+1}$ simple closed curves on ∂H_i as indicated in Figure 4.1 (a) (in Figure 4.1, n=4). For each $C_{i,j}$, we consider a simple closed curve $C'_{i,j}$ in H_i such that there exists an embedded annulus A and $\partial A = C_{i,j} \cup C'_{i,j}$. $C'_{i,j}$ is a pushed $C_{i,j}$ in the sense of Section 3. Let $F_{i,2}$ be a properly embedded surface in H_i with $F_{i,2} \cap (\bigcup_{j=1}^{n} C_{i,j}) = \emptyset$ (i=1,2) as indicated in Fugure 4.1 (b). $F_{1,2}(F_{2,2}, \text{ resp.})$ consists of [(n+1)/2] ([n/2], resp.) components, where [x] is the greatest integer which is less than or equal to x.

Put $M=H'_1 \cup_f H'_2$, where H'_i is obtained from H_i by performing 2-surgery on $C'_{i,j}$ (; pushed $C_{i,j}$), $(i=1, 2, j=1, 2, \dots, n+1)$, and f is a homeomorphism of $\partial H'_2$ to $\partial H'_1$ such that $f(\partial F_{2,2})=\partial F_{1,2}$ and $f^{-1}(C_{1,2k+1})$ and $f(C_{2,2k})$ $(k=1, 2, \dots, [n/2])$ are as indicated in Figure 4.1 (c).

Fig 4.1. (b)

CUT-AND-PASTES OF INCOMPRESSIBLE SURFACES

Then M is an orientable closed 3-manifold, $F_1 = \partial H'_1$ and $F_2 = F_{1,2} \cup F_{2,2}$ are embedded surfaces of genus n, and F_1 and F_2 intersect transversely.

For any orientation of F_1 and F_2 , an OCP operation produces two genus n surfaces or two genus two surfaces and n-2 genus three surfaces. In both cases, these surfaces bound handlebodies. Let $L_i(i=1, 2, \dots, n)$ be a closure of a component of $H_j - F_{j,2}$ ($j \equiv i \mod 2$) which contains $C'_{j,i}$. And let L'_i be a manifold which is obtained form L_i by 2-surgery on $C'_{j,i}$. Then $L'_1(L'_n, \operatorname{resp.})$ has a compressing disk $D_1(D_n, \operatorname{resp.})$ and L'_i ($i=2, 3, \dots, n-1$) has compressing disks $D_{i,1}$ and $D_{i,2}$ which are indicated in Figure 4.2.

Note that L'_i (i=1, 2, ..., n) is a handlebody and $L'_i - D_i \times (0, 1)$ (i=1, n) and $L'_i - \bigcup_{i=1}^2 (D_{i,i} \times (0, 1))$ (i=2, 3, ..., n-1) are solid tori. Suppose that F is a surface which is obtained from F_1 and F_2 by a CP operation which cannot be realized by an OCP operation. Then each component of F bounds a handlebody L'_i or a manifold which is homeomrophic to $\tilde{L} = \bigcup_{i=n}^k L'_i \cup (\bigcup_{j=n}^{k-1} N(L'_j \cap L'_{j+1}))$ $(1 \le h < k \le n, \text{ if } h=1 \ (k=n, \text{ resp.})$ then $k < n \ (1 < h, \text{ resp.})$. If $1 < h < k < n \ (1 < h, \text{ resp.})$.

M. Kobayashi

n, then for $l=1, 2, \tilde{D}_i = (\bigcup_{i=k}^{k} D_{i,l}) \cup (\bigcup_{j=k}^{k-1} E_{i,l})$, where $E_{i,l}$ is a meridional disk of $N(L'_i \cap L'_{i+1})$ such that $N(L'_i \cap L'_{i+1}) \cap (D_{i,l} \cup D_{i+1,l}) \subset E_{i,l}$, is a compressing disk of \tilde{L} . And we can see that $\tilde{L} - (\bigcup_{i=1}^{2} \tilde{D}_i \times (0, 1))$ is obtained from solid tori $L'_j - \bigcup_{i=1}^{2} (D_{j,l} \times (0, 1)) (j=h, h+1, \cdots, k)$ by identifying disks on boundaries of these solid tori. Hence \tilde{L} is a handlebody. If h=1 (k=n, resp.), $\tilde{D}=D_1 \cup \bigcup_{i=1}^{2} ((\bigcup_{i=1}^{k} D_{j,l}) \cup U_{i,1}) \cup (D_{i,1}) \cup (\bigcup_{i=1}^{k-1} E_{i,l})) (= \bigcup_{i=1}^{2} ((\bigcup_{i=1}^{n-1} D_{j,l}) \cup E_{j,l}) \cup D_n$, resp.) $(D_{i,1}=D_{i,2}=D_i)$ for i=1, 2 is a compressing disk of \tilde{L} . And $\tilde{L}-\tilde{D} \times (0, 1)$ is obtained from solid tori $L'_1 - D_1 \times (0, 1) (L'_n - D_n \times (0, 1), \text{ resp.})$ and $L'_j - \bigcup_{i=1}^{2} D_{i,l} \times (0, 1) (j=2, 3, \dots, k, j=h, h+1, \dots, n-1, \text{ resp.})$ by identifying disks on boundaries of these solid tori. Hence \tilde{L} is a handlebody.

Therefore any surface obtained from F_1 and F_2 by a CP operation bounds handlebodies.

We will prove the incompressibility of F_1 and F_2 . For the incompressibility of F_1 , note that $\bigcup_{j=1}^{n+1} C_{i,j}$ is full with respect to a set of compressing disks of H_i which are indicated in Figure 4.1 (a). Hence by Lemmas 3.2 and 3.4, $\partial H'_i$ is incompressible in H'_i (i=1, 2), and F_1 is incompressible in M.

Note that we can regard L_i as $F' \times [0, 1]/\{(x, t) \sim (x, t') | x \in \partial F', t, t' \in [0, 1]\}$, where $F' = F_1 \cap L_i$, and $F' \times 1 = F_{j,2} \cap L_i$ $(j \equiv i \mod 2)$. Let M_1 be the closure of the component of $M - F_2$ which contains $C_{1,2}$. Then by the above fact, M_1 is obtained from a handlebody $V = (H_1 - \bigcup_{k=1}^{[n+1/2]} L_{2k-1}) \cup (\bigcup_{k=1}^{[2/n]} L_{2k})$ by 2-surgeries on $C'_{1,2k}$, pushed $C''_{2,2k}$ (i.e. $C'_{2,2k}$) $(1 \le k \le [n/2])$ and $C'_{1,n+1}$ as indicated in Fugure 4.3.

Fig 4.3.

By the same way as the above, the closure M_2 of the other component of $M-F_2$ is also obtained from a handlebody of genus n by 2-surgeries on such closed curves. We consider the following two cases:

(a) n=2.

(b) $n \ge 3$.

(a) n=2. Since M_2 is homeomorphic to M_1 , it is enough to prove the incompressibility of F_2 in M_1 .

We use Lemma 3.1. We have

$$\begin{aligned} \pi_1(M_1) &= \langle a, b, c, d, e, f | c^2 a b = 1, d^2 b = 1, e^2 b c d b (cd)^2 = 1, f = d^{-2} c d \rangle, \\ &= \langle d, e, f | e^2 f^2 d^2 f = 1 \rangle, \end{aligned}$$

where a, b, c, d, e are represented by curves which are indicated in Figure 4.4.

Fig 4.4.

Let $r=e^2f^2d^2f$. We have a representation curve C of r on a handlebody V as indicated in Figure 4.5.

C is full with respect to a set of compressing disks whose boundaries are indicated in Figure 4.5. Hence by Lemma 3.4, $\partial H - C$ is incompressible in H and by Lemma 3.1, $\pi_1(M_1)$ is not a free product group or a cyclic group. Therefore F_2 is incompressible in M_1 .

(b) $n \ge 3$. We prove the incompressibility of F_2 in M_1 .

M. Kobayashi

We use Lemma 3.2. Recall that M_1 is obtained from a handlebody V by 2-surgeries on $C'_{1,2k}$, pushed $C'_{2,2k}(1 \le k \le \lfloor n/2 \rfloor)$ and $C'_{1,n+1}$. Note that a manifold V' which is obtained from V by 2-surgeries on $C'_{1,2k}(1 \le k \le \lfloor n/2 \rfloor)$ and $C'_{1,n+1}$ is a handlebody. Hence we may regard that M_1 is obtained from the handlebody V' by 2-surgeries on pushed $C'_{2,2k}(1 \le k \le \lfloor n/2 \rfloor)$. We consider a set of compressing disks $D_1, D_2, \dots, D_{3n-3}$ of V' such that D_1, D_2, \dots, D_{n-1} separates H' into $\lfloor n/2+1 \rfloor$ solid tori and each of which contains $C'_{1,j}$. See Figure 4.6.

Fig 4.6.

Then we can check that $\bigcup_{k=1}^{[n/2]} C'_{2,2k}$ is full with respect to $D_1, D_2, \dots, D_{3n-3}$. Hence by Lemmas 3.2 and 3.4, F_2 is incompressible in M_1 .

We can prove the incompressibility of F_2 in M_2 in the same way as the above. This completes the proof of Case (I).

Case (II) $n_1 > n_2 \ge 2$.

Let H_1 and H_2 be handlebodies of genus n_1 . We consider n+1 surgery

Fig 4.7. (a)

curves as in the proof of Case (I) and properly embedded surfaces $F_{i,2}$ in H_1 and H_2 as indicated in Figure 4.7 (a). Put $M=H'_1 \cup_f H'_2$. Here H'_i is obtained from H_i (i=1, 2) by performing 2-surgeries on those curves and f is a homeomorphism of $\partial H'_2$ to $\partial H'_1$ such that

- (1) $f(\partial F_{2,2}) = \partial F_{1,2}$,
- (2) $f^{-1}(C_{1,j})$ $(j \equiv 1 \mod 2, 1 \le j \le n_2 1 \text{ or } j = n_1)$ and $f(C_{2,k})$ $(k \equiv 2 \mod 2, 2 \le k \le n_2 1 \text{ or } k = n_1)$ are as indicated in Figure 4.7 (b),
- (3) $f(C_{2,i})$ $(i=n_2, n_2+1, \dots, n_1-1)$ is parallel to $C_{1,i}$.

(In Figure 4.7. $n_1 = 6$ and $n_2 = 4$.)

Fig 4.7. (b)

Then M is an orientable closed 3-manifold, and $F_1 = \partial H'_1$ and $F_2 = F_{1,2} \cup F_{2,2}$ are properly embedded surfaces such that $g(F_1) = n_1$ and $g(F_2) = n_2$.

In the same way as in the proof of Case (I), we can prove that for any surface F obtained from F_1 and F_2 by CP operations, each component of F bounds a handlebody, and F_1 is incompressible in M.

We will prove the incompressibility of F_2 in M. Let M_1 be a closure of a component of $M-F_2$ which does not contain C_{1,n_2} . Then M_1 is the same manifold as obtained in the proof of Case (I). Hence F_2 is incompressible in M_1 .

Let L be the closure of a component of $H_i - F_{i,2}$ $(i \equiv n_2 \mod 2)$ which contains C'_{i,n_2} . We consider properly embedded arcs $a_1, a_2, \dots, a_m(m=n_1-n_2)$ in L as indicated in Figure 4.7 (a). Let $N_L(a_i)=a_i \times D^2$. Then $L - \bigcup_{i=1}^m a_i \times \operatorname{Int} D^2$ has a form $F' \times [0, 1]/\{(x, t) \sim (x, t') | x \in \partial F', t, t' \in [0, 1]\}$, where $F' = F_1 \cap L$. Using this fact, we can see that M_2 is obtained from handlebody V of genus n_2 by performing 2-surgeries on closed curves indicated in Figure 4.8, and by attaching 2-handles $N_L(a_i)=a_i \times D^2$ $(i=1, 2, \dots, m)$ so that $a'_i=p_i \times \partial D^2$ $(p_i \in a_i)$ is identified with such curves as that indicated in Figure 4.8.

Consider properly embedded disks D_1, D_2, \dots, D_m as indicated in Figure 4.8. Then the closure of each component of $M_2 - \bigcup_{i=1}^m D_i$ is a manifold which is obtained from solid torus by performing 2-surgeries on two parallel curves which

Fig 4.8.

are parallel to a core of solid torus, or the same manifold as that was obtained in the proof of Case (I). In both cases the manifolds are ∂ -irreducible. Hence a'_1, a'_2, \dots, a'_m and D_1, D_2, \dots, D_m satisfy the assumption of Lemma 3.5. Therefore M_2 is ∂ -irreducible and F_2 is incompressible in M_2 .

Hence F_2 is incompressible in M, completing the proof of Case (II). This completes the proof of Theorem 2.

References

- [1] A.J. Casson and C. McA. Gordon: *Reducing Heegaard splittings*, Topology and its Applications 27(1987), 275-283.
- [2] J. Hempel: "3-manifolds," Ann. Math. Studies 86, Princeton University Press, 1976.
- [3] W. Jaco: Adding a 2-handle to a 3-manifold: An application to property R, Proc. Amer. Math. Soc. 92(1984), 288-292.
- [4] T. Kobayashi: Casson-Gordon's rectangle condition of Heegaard diagrams and incompressible tori in 3-manifolds, Osaka J. Math. 25(1988), 553-573.
- [5] U. Oertel: Sums of incompressible surfaces, Proc. Amer. Math. Soc. 102(1988), 711-719.
- [6] M. Scharlemann: Outermost forks and a theorem of Jaco, Contemp. Math. 44 (1985), 189–193.

Department of Mathematics Osaka City University Sugimoto, sumiyoshi-ku Osaka, 558, Japan