

Title	Cut-and-pastes of incompressible surfaces in 3-manifolds
Author(s)	Kobayashi, Masako
Citation	Osaka Journal of Mathematics. 1992, 29(3), p. 617-634
Version Type	VoR
URL	https://doi.org/10.18910/11867
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

CUT-AND-PASTES OF INCOMPRESSIBLE SURFACES IN 3-MANIFOLDS

MASAKO KOBAYASHI¹

(Received August 26, 1991)

(Revised January 14, 1992)

1. Introduction

Let M be a compact orientable 3-manifold and F_1 and F_2 properly embedded surfaces in M . If F_1 and F_2 intersect transversely, then by cutting F_1 and F_2 along the intersection and regluing them in a different way, we obtain another embedded surface in M .

DEFINITION. Let F_1 and F_2 be orientable surfaces properly embedded in M intersecting transversely. A *cut-and-paste (CP) operation* on a component C of $F_1 \cap F_2$ is the following operation in a regular neighborhood of C , $N(C)$: Cut F_1 and F_2 on C and reglue them in a different way. See Figure 1.1.

Fig 1.1.

Note that there are two choices in regluing. When we apply a CP operation on each component of $F_1 \cap F_2$, we obtain an embedded surface F in M . We say that F is obtained from F_1 and F_2 by a (way of) CP operation.

Suppose that both F_1 and F_2 are incompressible. In general, a surface which is obtained from F_1 and F_2 by a CP operation is possibly compressible. But we can prove that in certain cases there is a CP operation which yields an

¹ A fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists. Supported by Grant-in Aid for Scientific Research, The ministry of Education, Science and Culture.

incompressible surfaces.

Theorem 1. *Let F_1 and F_2 be incompressible surfaces of genus greater than zero properly embedded in M which intersect transversely. If F_1 or F_2 is a torus, then we can obtain an incompressible surface F from F_1 and F_2 by a CP operation.*

Then we show that the assumption of Theorem 1 cannot be omitted in general. In fact, we prove;

Theorem 2. *For any integers n_1 and n_2 which are greater than one, there exist a closed orientable 3-manifold M and connected incompressible surfaces F_1 and F_2 properly embedded in M such that they intersect transversely, $g(F_i) = n_i$ ($g(F)$ is the genus of F) and for any surface F obtained from F_1 and F_2 by CP operations, each component of F bounds a handlebody.*

By applying Theorem 1 a number of times, we have the following corollary.

Corollary 3. *Let T_1, T_2, \dots, T_n ($n \geq 2$) be properly embedded incompressible tori in M such that any two of them intersect transversely. Then there exists an incompressible surface F such that $F \subset \bigcup_{i=1}^n T_i \cup N(\bigcup_{1 \leq i \leq j \leq n} T_i \cap T_j)$.*

Let \mathcal{S} be the set of isotopy classes of orientable, incompressible, ∂ -incompressible surfaces in M . And let \mathcal{S}' be the set of isotopy classes of (not necessarily orientable) surfaces S properly embedded in M such that each component of the closure of $\partial N(S) - \partial M$ is incompressible and ∂ -incompressible. We call such a surface injective and ∂ -injective respectively. Then Oertel [5] defined a function $q: \mathcal{S} \times \mathcal{S} \rightarrow \{\text{finite subset of } \mathcal{S}'\}$ as follows: Given a pair of isotopy classes of incompressible surfaces, we choose representatives F_1 and F_2 with suitably simplified intersection. Then $q([F_1], [F_2])$ is defined to be the set of isotopy classes of injective surfaces obtained from F_1 and F_2 by CP operations. Oertel showed that the function q is well-defined. In general, for a given pair $[F_1], [F_2]$, $q([F_1], [F_2])$ is possibly an emptyset. But when F_1 or F_2 is a torus, Theorem 1 immediately implies the following:

Corollary 4. *Let $[F_1], [F_2]$ be a pair of isotopy classes of incompressible surfaces in M . If F_1 or F_2 is a torus, then $q([F_1], [F_2])$ is not an emptyset.*

REMARK. When F_1 and F_2 are oriented surfaces, we often use a cut-and-paste operation such that the way of regluing is compatible with orientations on F_1 and F_2 . We call this operation an *oriented cut-and-paste (OCP) operation*. We can consider the same problem as Theorem 1 for OCP operations. But there is an example such that we cannot obtain incompressible surfaces from incompressible tori by OCP operations. For example, let M be a Seifert fibered space

over S^2 with four singular fibers. Let p be a projection of M to S^2 . We consider two incompressible tori T_1 and T_2 such that T_i is a union of regular fibers and $p(T_i)$ ($i=1, 2$) are as indicated in Figure 1.2. Then we can check that for any orientations of T_1 and T_2 , we cannot obtain an incompressible surface from T_1 and T_2 by an OCP operation.

Fig 1.2.

Throughout this paper, we work in the piecewise linear category. For the definition of standard terms of 3-dimensional topology, see [2]. For a subcomplex K of a given H , $N_H(K)$ denotes a regular neighborhood of K in H . When H is well understood, we often abbreviate $N_H(K)$ to $N(K)$.

2. Proof of Theorem 1

Lemma 2.1. *Let F_1 and F_2 be incompressible surfaces in a 3-manifold M with transverse intersection. Then we can obtain incompressible surfaces \tilde{F}_1 and \tilde{F}_2 by some CP operations on closed curves of $F_1 \cap F_2$ which are inessential on F_1 , such that \tilde{F}_i is homeomorphic to F_i ($i=1, 2$) and each component of $\tilde{F}_1 \cap \tilde{F}_2$ is essential in \tilde{F}_1 .*

Proof. If each component of $F_1 \cap F_2$ is an essential curve of F_1 , we take $\tilde{F}_i = F_i$ ($i=1, 2$). In general, we apply an argument of the proof of [2, Lemma 4, 6].

Let n be the number of components of $F_1 \cap F_2$ which is inessential on F_1 . Assume $n \geq 1$. Let $S = F'_1 \cup F'_2$ be a 2-component 2-manifold such that $F'_i \cong F_i$ ($i=1, 2$) and $f_0: S \rightarrow M$ an immersion such that $f_0|_{F'_i}: F'_i \rightarrow F_i$ is a homeomorphism. Let $\Sigma_0 = \{x \in S \mid \exists x' \in S \text{ such that } f_0(x) = f_0(x')\}$. Then $f_0(\Sigma_0) = F_1 \cap F_2$ and Σ_0 consists of closed curves on S . Let Σ'_0 be a subset of Σ_0 which consists of inessential curves on S . Since F_1 and F_2 are incompressible, $C_i \subset \Sigma'_0$ if and

only if $C_2 \subset \Sigma'_0$ for $C_2 \subset \Sigma_0$ with $f_0^{-1}(f_0(C_1)) = C_1 \cup C_2$. Hence Σ'_0 consists of $2n$ closed curves.

We define an immersion $f_1: S \rightarrow M$ as follows; fix a closed curve $C_1^1 \subset \Sigma'_0$ and let $f_0^{-1}(f_0(C_1^1)) = C_1^1 \cup C_2^1$. Let D_i be a disk on S such that $\partial D_i = C_i^1$ and V a solid torus which is a regular neighborhood of $f_0(C_1^1)$. Then $f_0^{-1}(V)$ is a union of two disjoint annuli A_1 and A_2 with $C_i^1 \subset A_i$ ($i=1, 2$). Put $D'_i = D_i - \text{Int } A_i$, $D''_i = D_i \cup A_i$. There exists disjoint annuli B_1 and B_2 on ∂V with $\partial B_1 = f_0(\partial D''_1 \cup \partial D'_2)$ and $\partial B_2 = f_0(\partial D''_2 \cup \partial D'_1)$. We define f_1 by putting $f_1|_{S-(D'_1 \cup D'_2)} = f_0|_{S-(D''_1 \cup D''_2)}$, $f_1(A_i) = B_i$, $f_1(D'_i) \subset f_0(D'_2)$ and $f_1(D''_i) \subset f_0(D'_1)$ so that $\Sigma_1 = \Sigma_0 - \{C_1^1 \cup C_2^1\}$. Then Σ'_1 consists of $2(n-1)$ closed curves. Note that $f|_{F_i}$ ($i=1, 2$) may have self intersections.

For $2 \leq k \leq n$, we define an immersion $f_k: S \rightarrow M$ inductively. Assume f_{k-1} was defined, $\Sigma_{k-1} = \{x \in S \mid \exists x' \in S \text{ such that } f_{k-1}(x) = f_{k-1}(x')\}$ consists of closed curves, and for each component $C_1 \subset \Sigma'_{k-1} = \{C \subset \Sigma_{k-1} \mid C \text{ is an inessential curve on } S\}$, $f_{k-1}^{-1}(f_{k-1}(C_1)) = C_1 \cup C_2$ and $C_2 \subset \Sigma'_{k-1}$. Fix a component C_1^k of Σ'_{k-1} and let $f_{k-1}^{-1}(f_{k-1}(C_1^k)) = C_1^k \cup C_2^k$. For $i=1, 2$, let D_i a disk on S such that $\partial D_i = C_i^k$, V a regular neighborhood of $f_{k-1}(C_1^k)$, A_1 and A_2 disjoint annuli of $f^{-1}(V)$ with $C_i^k \subset A_i$, $D'_i = D_i - \text{Int } A_i$, $D''_i = D_i \cup A_i$, $B_1, B_2 \subset \partial V$ annuli with $\partial B_1 = f_{k-1}(\partial D''_1 \cup \partial D'_2)$ and $\partial B_2 = f_{k-1}(\partial D''_2 \cup \partial D'_1)$.

We divide into two cases a) $D_1 \cap D_2 = \emptyset$ and b) $D_2 \subset \text{Int } D_1$.

In case a), we define f_k by putting $f_k|_{S-(D''_1 \cup D''_2)} = f_{k-1}|_{S-(D''_1 \cup D''_2)}$, $f_k(A_i) = B_i$, $f_k(D'_1) \subset f_{k-1}(D'_2)$ and $f_k(D'_2) \subset f_{k-1}(D'_1)$ so that $\Sigma_k = \Sigma_{k-1} - \{C_1^k \cup C_2^k\}$. In case b), put $E = D'_1 - \text{Int } D'_2$. We define f_k by putting $f_k|_{S-D'_1} = f_{k-1}|_{S-D'_1}$, $f_k(D'_2) \subset f_{k-1}(D'_2)$, $f_k(A_i) = B_i$, and $f_k(E) \subset f_{k-1}(E)$ so that $\Sigma_k = \Sigma_{k-1} - \{C_1^k \cup C_2^k\}$.

In this way, we obtain a sequence of maps f_0, f_1, \dots, f_n from S to M such that $\Sigma_k = \Sigma_{k-1} - \{C_1^k \cup C_2^k\}$, where $C_1^k, C_2^k \subset \Sigma'_{k-1}$ with $f_{k-1}(C_1^k) = f_{k-1}(C_2^k)$ for $1 \leq k \leq n$.

Since Σ'_0 consists of $2n$ components, $\Sigma_n = \Sigma_0 - \Sigma'_0$ and $\Sigma'_n = \emptyset$. Put $f_n(F'_i) = \tilde{F}_i$ ($i=1, 2$). Since the definition of $f_k|_{A_1 \cup A_2}$ corresponds to a CP operation on $f_{k-1}(C_1^k)$ ($1 \leq k \leq n$), \tilde{F}_1 and \tilde{F}_2 is obtained from F_1 and F_2 by CP operations on $f_0(\Sigma'_0)$, which is equal to the set of inessential curves in $F_1 \cap F_2$. And $\tilde{F}_1 \cap \tilde{F}_2$ consists of essential curves. On the other hand, since $f_k|_{S-(D''_1 \cup D''_2)} = f_{k-1}|_{S-(D''_1 \cup D''_2)}$, for $i=1, 2$, $\tilde{F}_i - \tilde{E}_i = F_i - E_i$ for a union of certain disks E_i (\tilde{E}_i , resp.) on F_i (\tilde{F}_i , resp.). Hence \tilde{F}_i is incompressible.

This completes the proof of Lemma 2.1.

DEFINITION. Let F_1 and F_2 be properly embedded surfaces in M which intersect transversely. Let F'_i be a closure of a component of $F_i - (F_1 \cap F_2)$ ($i=1, 2$). We say that F_1 and F_2 have a *semi-product region* between F'_1 and F'_2 if there exists a map f of a manifold X to M satisfying the following (1)-(4):

- (1) $X = W \times [0, 1] - \cup_{i=1}^n \text{Int } B_i$, where W is homeomorphic to F'_1 and

B_1, B_2, \dots, B_n are mutual, y disjoint 3-balls in $\text{Int}(W \times [0, 1])$.

- (2) $f(\partial W \times [0, 1]) = \partial F'_1 = \partial F'_2$.
- (3) $f|_{W \times \{0\}}$ is a homeormophism of $W \times \{0\}$ to F'_1 and $f|_{W \times \{1\}}$ is a homeomorphism of $W \times \{1\}$ to F'_2 .
- (4) $f|_{X - (\partial W \times [0, 1])}$ is an embedding.

Lemma 2.2. *Let F_1 and F_2 be properly embedded incompressible surfaces in M which intersect transversely. Suppose that F_1 and F_2 have a semi-product region between F'_1 and F'_2 ($F'_i \subset F_i$, $i=1, 2$). Then $\hat{F}_i = (F_i - F'_i) \cup F'_{3-i}$ is also incompressible ($i=1, 2$).*

Proof. It is enough to prove that $\hat{F}_1 = (F_1 - F'_1) \cup F'_2$ is incompressible. Assume that there exists a compressing disk D of \hat{F}_1 . Since F_1 and F_2 are incompressible, we may assume that $D \cap F'_2$ consists of some arcs a_1, a_2, \dots, a_m . Using $X = W \times [0, 1] - \bigcup_{i=1}^m \text{Int } B_i$ and the map f , we can find a disk D_i in M such that $\partial D_i = a_i \cup b_i$ and $b_i \subset F'_1$ ($i=1, 2, \dots, m$). Let $D' = D \cup \bigcup_{i=1}^m D_i$. Then D' is an immersed disk in M with $\partial D' \subset F_1$. Clearly $\partial D'$ is essential on F_1 , contradicting the incompressibility of F_1 . Hence \hat{F}_1 is incompressible.

This completes the proof of Lemma 2.2.

Proof of Theorem 1. If $F_1 \cap F_2$ contains a component C which is inessential on F_1 , then we consider incompressible surfaces \tilde{F}_1 and \tilde{F}_2 in Lemma 2.1. Moreover if \tilde{F}_1 and \tilde{F}_2 have a semi-product region, we consider incompressible surfaces \hat{F}_1 and \hat{F}_2 in Lemma 2.2. If Theorem 1 holds for \hat{F}_1 and \hat{F}_2 , we may regard that the obtained surface F is also obtained from F_1 and F_2 by a CP operation by Lemmas 2.1 and 2.2. Hence, without loss of generality, we may assume the following (1)-(3):

- (1) F_1 is a torus and F_2 is a surface of genus greater than zero.
- (2) Each component of $F_1 \cap F_2$ is an essential curve on F_1 .
- (3) F_1 and F_2 do not have a semi-product region.

Let N_1 and N_2 be components of $N(F_1) - F_1$. Let F be a surface obtained from F_1 and F_2 by the following CP operation; for each component A of $F_1 - \text{Int } N(F_1 \cap F_2)$, a component of ∂A is reglued to $N_1 \cap \partial(F_2 - \text{Int } N(F_1 \cap F_2))$ and the other component of ∂A is reglued to $N_2 \cap \partial(F_2 - \text{Int } N(F_1 \cap F_2))$. See Figure 2.1.

We will prove that F is incompressible.

We may assume that F_1 and F intersect transversely and for each component A of $F_1 - \text{Int } N(F_1 \cap F_2)$, $A \cap F$ consists of an essential simple closed curve in A .

Suppose that there exists a compressing disk D of F . Since F_1 is incompressible, we may assume $D \cap F_1$ does not contain a circle component.

Fig 2.1.

Claim 2.3. $\partial D \cap (F_1 \cap F) \neq \emptyset$.

Proof. Suppose that $\partial D \cap (F_1 \cap F) = \emptyset$. Then we may assume $\partial D \subset F \cap F_2$. Since F_2 is incompressible, there exists a disk D' on F_2 such that $\partial D = \partial D'$. Since ∂D is an essential curve on F , D' contains a component C of $F_1 \cap F_2$. C bounds a disk $D''(\subset D')$ and by the condition (2), C is an essential curve on F_1 . It contradicts the incompressibility of F_1 . Therefore $\partial D \cap (F_1 \cap F) \neq \emptyset$, completing the proof of Claim 2.3.

By Claim 2.3, $D \cap F_1$ consists of some arcs. Let a be an outermost arc of $D \cap F_1$ on D , and $D' \subset D$ an outermost disk such that $\partial D' = a \cup b$ with $b \subset \partial D$. Then using D' , we can find a embedded disk E in M such that $\partial E = a' \cup b'$, $a' \subset F_1$, $b' \subset F_2$ with $a \cap a' \neq \emptyset$, $b \cap b' \neq \emptyset$ and $\text{Int } E \cap (F_1 \cup F_2) = \emptyset$. Let A be a closure of a component of $F_1 - (F_1 \cap F_2)$ which contains a' , and B a closure of a component of $F_2 - (F_1 \cap F_2)$ which contains b' . By the condition (2), A is an annulus. Consider $E \times [0, 1]$ with $E \times [0, 1] \cap (F_1 \cup F_2) = \partial E \times [0, 1]$. Then $E' = (E \times [0, 1] \cup A) - (E \times (0, 1))$ is an embedded disk in M such that $\partial E' \subset F_2$. Since F_2 is incompressible, $\partial E'$ is an inessential curve on F_2 . Let E'' be a disk on F_2 with $\partial E'' = \partial E'$. If $E'' \cap (E \times (0, 1)) \neq \emptyset$, then each component of $\partial A(\subset F_1 \cap F_2)$ also bounds a disk on F_2 . But it contradicts the condition (2). Hence $E'' \subset B$ and B is an annulus. Using $A \cup B \cup E \times [0, 1]$, we can see that F_1 and F_2 have a semi-product region between A and B . It contradicts the condition (3). Therefore F is incompressible.

This completes the proof of Theorem 1.

3. Boundary irreducibility of certain 3-manifolds

For the proof of Theorem 2, we construct certain 3-manifolds with incompressible surfaces. A closed orientable surface F properly embedded in a 3-

manifold M is incompressible if and only if $\partial N(F)$ is incompressible in each component of $M - \text{Int } N(F)$. In this section, we examine the incompressibility of boundaries of certain 3-manifolds. We say that an orientable 3-manifold M is ∂ -irreducible if M is irreducible and ∂M is incompressible in M .

Suppose that M does not contain a fake 3-ball. Then M is ∂ -irreducible iff $\pi_1(M)$ is not a free product or a cyclic group (cf. [2]). Lemma 3.1 shows that for certain one-relator groups, we can examine that the group is a free product or not.

DEFINITION. Let $\langle x_1, x_2, \dots, x_g \rangle$ be a free group of rank g ($g \geq 2$) with generators x_1, x_1, \dots, x_g and H_g a handlebody of genus g . We say that a simple closed curve C on ∂H_g is a *representation curve* of an element $r \in \langle x_1, x_2, \dots, x_g \rangle$ if $\pi_1(H_g) \cong \langle x_1, x_2, \dots, x_g \rangle \ni \text{Incl}_*(C) = r$. (Incl_* is a homomorphism which is induced by the inclusion map.)

Lemma 3.1. *Suppose that r has (at least one) representation curve. Then the following (1)-(3) are mutually equivalent:*

- (1) $\langle x_1, x_2, \dots, x_g : r \rangle$ is not a free product group or a cyclic group.
- (2) There exists a representation curve C of r on ∂H_g such that $\partial H_g - C$ is incompressible in H_g .
- (3) For any representation curve C of r , $\partial H_g - C$ is incompressible in H_g .

Proof. (3) \Rightarrow (2) is clear.

(2) \Rightarrow (1): Let $M = H_g \cup_c (D^2 \times I)$ be a 3-manifold obtained from H_g by attaching a 2-handle $D^2 \times I$ along C . By [1], [3] or [6], M is ∂ -irreducible. On the other hand, $\pi_1(M) \cong \langle x_1, x_2, \dots, x_g : r \rangle$. Hence (1) holds.

(1) \Rightarrow (3): Suppose that there exists a representation curve C of r such that $\partial H_g - C$ is compressible in H_g . Let B be a compressing disk of $\partial H_g - C$ in H_g . If B is a non-separating disk of H_g , then B is also a non-separating disk of $M = H_g \cup_c (D^2 \times I)$. If $H_g - B = V_1 \cup V_2$ and V_1 and V_2 are handlebodies, then M is a disk sum of V_1 and $V_2 \cup_c (D^2 \times I)$. In both cases, $\pi_1(M) \cong \langle x_1, x_2, \dots, x_g : r \rangle \cong Z * G$ for some group G .

This completes the proof of Lemma 3.1.

Next, we examine the ∂ -irreducibility of manifolds which are obtained from handlebodies by Dehn surgeries on links in them. Let V be a handlebody and k a simple closed curve on ∂V . We define a *surgery on pushed k with surgery coefficient p/q* ($\text{g.c.d}(p, q) = 1$) as follows: Consider an annulus A in V such that $\partial A = k \cup k'$ and $A \cap \partial V = k$ (We say k' is a *pushed k*). There is a neighborhood of k' , $N(k')$ such that $N(k') \cap A$ is an annulus. Put $l = \partial N(k') \cap A$ and let m be a meridian of k' on $\partial N(k')$. Remove $\text{Int} N(k')$ and attach a solid torus V' to it so that a meridian m' on $\partial V'$ is attached to a curve C on $\partial N(k')$ with $[C] = p[m] +$

$q[l] \in H_1(\partial N(k'); \mathbb{Z})$.

Lemma 3.2. *Let V be a handlebody of genus greater than one and C_1, C_2, \dots, C_n ($n \geq 1$) mutually disjoint simple closed curves on ∂V . If $\partial V - \bigcup_{i=1}^n C_i$ is incompressible in V and $|p_i| \geq 2$ ($i = 1, 2, \dots, n$), then the manifold M which obtained from V by surgeries on pushed C_1, C_2, \dots, C_n with surgery coefficient $p_1/q_1, p_2/q_2, \dots, p_n/q_n$ is ∂ -irreducible.*

Proof. Let V_1, V_2, \dots, V_n be solid tori and m_i and l_i meridian and longitude on ∂V_i . Consider a simple closed curve C_i'' on ∂V_i such that $[C_i''] = r_i[m_i] + p_i[l_i] \in H_1(\partial V_i; \mathbb{Z})$, for integers r_i and s_i with $p_i s_i - q_i r_i = 1$. Then we can regard M as the 3-manifold obtained from V and V_1, V_2, \dots, V_n by identifying $N_{\partial V_i}(C_i'')$ to $N_{\partial V}(C_i)$.

Since $|p_i| > 0$ and $\partial V - \bigcup_{i=1}^n C_i$ is incompressible in V , M is irreducible. We will prove that ∂M is incompressible in M . Note that since $|p_i| \geq 2$, for any compressing disk D of V_i , $\#(\partial D \cap N_{\partial V_i}(C_i'')) \geq 2$. Suppose that there exists a compressing disk D of ∂M in M . Since $\partial V - \bigcup_{i=1}^n C_i$ is incompressible in V , D must intersect with $\bigcup_{i=1}^n N_{\partial V}(C_i)$ in at least one arc. We may assume D has a minimal number of components in all such disks. By standard innermost circle and outermost arc arguments, we may assume $D \cap (\bigcup_{i=1}^n N_{\partial V}(C_i))$ consists of some essential arcs in $N_{\partial V}(C_i)$. Let a be an outermost arc of $D \cap (\bigcup_{i=1}^n N_{\partial V}(C_i))$ on D , D' an outermost disk on D with $\partial D' = a \cup b$, $b \subset \partial D$ and $a \subset N_{\partial V}(C_j)$ ($1 \leq j \leq n$). By the minimality of the number of intersections, $\partial D'$ is an essential curve on ∂V or ∂V_j . Since $\partial D'$ intersects with $N_{\partial V}(C_j)$ in an arc, D' is contained in V . But it contradicts the following Claim 3.3.

Claim 3.3. *If $\partial V - \bigcup_{i=1}^n C_i$ is incompressible in V , then for any compressing disks D of V , $\#(\partial D \cap (\bigcup_{i=1}^n C_i)) \geq 2$.*

Proof of Claim 3.3. Suppose that there exists a compressing disk D of ∂V such that ∂D intersects with $\bigcup_{i=1}^n C_i$ in a point $p \in C_j$ ($1 \leq j \leq n$). Consider a regular neighborhood of D , $D \times [0, 1] \subset V$ such that $D \times [0, 1] \cap \partial V = \partial D \times [0, 1]$ and $(\partial D \times [0, 1]) \cap (\bigcup_{i=1}^n C_i) = p \times [0, 1]$. Then $D' = \partial(N(C_j) \cup (D \times [0, 1])) - \text{Int}(\partial N(C_j) \cap \partial V) \cup (\partial D \times (0, 1))$ is a compressing disk of $\partial V - \bigcup_{i=1}^n C_i$, a contradiction.

Hence Claim 3.3 holds.

This completes the proof of Lemma 3.2

To know the incompressibility of $\partial V - \bigcup_{i=1}^n C_i$ in V , we use the following Lemma 3.4.

Let H_g be a handlebody of genus g ($g \geq 2$) and $\{D_1, D_2, \dots, D_{3g-3}\}$ a set of mutually disjoint non-parallel compressing disks in H_g . Then each component of $H_g - \bigcup_{i=1}^{3g-3} (D_i \times (0, 1))$ is a 3-ball B such that $\partial B - \text{Int}(\partial H_g \cap \partial B)$ consists of

three disks D'_1, D'_2, D'_3 and D'_i is parallel to D_j for some $1 \leq j \leq 3g-3$ in H_g ($i=1, 2, 3$). Let C_1, C_2, \dots, C_n be mutually disjoint simple closed curves on ∂H_g . We may assume each component of $(D_i \times [0, 1]) \cap C_j$ is an essential arc on $\partial D_i \times [0, 1]$. We say that $C = \cup_{i=1}^n C_i$ is *full with respect to $D_1, D_2, \dots, D_{3g-3}$* if for any component B of $H_g - \cup_{i=1}^{3g-3} (D_i \times (0, 1))$, C satisfies the following conditions (1), (2);

- (1) each component of $C \cap \partial B$ is an arc connecting D'_i and D'_j for $i, j \in \{1, 2, 3\}$ and $i \neq j$.
- (2) for any pair of D'_i and D'_j ($i \neq j$, and $i, j \in \{1, 2, 3\}$), there is a sub arc a of C on ∂B connecting D'_i and D'_j .

Lemma 3.4. ([3, Lemma 6.1]). *Let $\{C_1, C_2, \dots, C_n\}$ be a set of mutually disjoint simple closed curves on ∂H_g . If there exists a set of mutually disjoint non-parallel compressing disks $\{D_1, D_2, \dots, D_{3g-3}\}$ of H_g such that $C = \cup_{i=1}^n C_i$ is full with respect to $D_1, D_2, \dots, D_{3g-3}$, then $\partial H_g - C$ is incompressible in H_g .*

Let N be a ∂ -irreducible 3-manifold with boundary and $\{C_1, C_2, \dots, C_n\}$ a set of mutually disjoint non-parallel simple closed curves such that $\partial N - \cup_{i=1}^n C_i$ is incompressible in N . We consider a manifold M which is obtained from N by attaching 2-handles along C_1, C_2, \dots, C_n . In the case that $n=1$, M is ∂ -irreducible by [1], [3], or [6]. But in general cases, M may not be ∂ -irreducible. The following Lemma 3.5 gives a sufficient condition for M to be ∂ -irreducible.

Let C be a simple closed curve on a surface F and a an arc on F with $a \cap C = \partial a$. We say that a is *an inessential arc relative to C* if there exists a disk D on F such that $\partial D = a \cup b$ with $b \subset C$. If a is not an inessential arc relative to C , then we say that a is an essential arc relative to C .

Lemma 3.5. *Let $\{C_1, C_2, \dots, C_n\}$ ($n \geq 1$) be a set of mutually disjoint simple closed curves on ∂N . Suppose that there exists a set of mutually disjoint properly embedded disks $\{D_1, D_2, \dots, D_n\}$ which satisfies the following conditions (1)-(3);*

- (1) *each component of $N - \cup_{i=1}^n (D_i \times (0, 1))$ is ∂ -irreducible,*
- (2) *if $i \neq j$, then $D_i \cap C_j = \emptyset$,*
- (3) *if $i=j$, then $\#(D_i \cap C_i) = 2$, the algebraic intersection number of ∂D_i and C_i on ∂N is 0, and each component of $C_i - (C_i \cap \partial D_i)$ is an essential arc relative to ∂D_i .*

Then the manifold M which is obtained from N by attaching 2-handles along C_1, C_2, \dots, C_n is ∂ -irreducible.

Proof. Put $\bar{D} = \cup_{i=1}^n D_i$ and $\bar{C} = \cup_{i=1}^n C_i$. Let $\bar{D} \times [0, 1]$ be a regular neighborhood of \bar{D} . We may assume that each component of $(\partial \bar{D} \times [0, 1]) \cap \bar{C}$ is an essential arc on a component of $\partial \bar{D} \times [0, 1]$. Let N' be a component of $N - (\bar{D} \times (0, 1))$. We abbreviate $D_i \times \{0\}$ and $D_i \times \{1\}$ on $\partial N'$ to D_i for simplicity. Then $\partial N'$ is a union of some D_i 's and $N' \cap \partial N$.

Claim 3.6. *Let a be a component of $C_i - (C_i \cap (D_i \times (0, 1)))$ and N' the component of $N - (\bar{D} \times (0, 1))$ which contains a . Then a is an essential arc relative to ∂D_i on $\partial N'$.*

Proof. Note that since $\text{Int}_{\partial N}[\partial D_i, C_i] = 0$, ∂a is contained in one component of $\partial N' - \partial N$. Assume that a is an inessential arc relative to ∂D_i on $\partial N'$. Then $a \cup b (b \subset \partial D_i)$ bounds a disk D on $\partial N'$. We may assume $a \cup b$ is an “innermost” curve on $\partial N'$, i.e. D does not contain any other D_j . Hence D is contained in $\partial N' \cap \partial N$ and a is an inessential arc relative to ∂D_i on ∂N . It contradicts to the condition (3). Therefore a is an essential arc relative to ∂D_i on $\partial N'$.

This completes the proof of Claim 3.6.

We say that a closed curve J on ∂N is \bar{C} -inessential if J bounds a disk on ∂N or J and some components of \bar{C} bounds a planar surface on ∂N . If J is not \bar{C} -inessential, we say that J is C -essential.

Suppose that M is not ∂ -irreducible, i.e. there exists an essential sphere or a disk F in M . By standard innermost circle and outermost arc arguments, we may assume that F intersects the 2-handles in horizontal disks. Hence $S = F \cap N$ is a planar surface such that at most one component of ∂S is a \bar{C} -essential curve and other components are parallel to a component of \bar{C} . We will prove that there does not exist such a planar surface S .

The next claim gives a proof of this assertion in a very special case (the case of S a disk).

Claim 3.7. *There does not exist a disk S such that ∂S is \bar{C} -essential.*

Proof. Assume that there exists such a disk S . We suppose that $\#(S \cap \bar{D})$ is minimal over all such disks. Suppose that $\#(S \cap \bar{D}) \geq 1$. Then there is an outermost arc a on S and an outermost disk D on S such that $\partial D = a \cup b$, $b \subset \partial S$. Let D_i ($1 \leq i \leq n$) be the disk which contains a and N' the component of $N - (\bar{D} \times (0, 1))$ which contains D . By the ∂ -irreducibility of N' , there exists a 3-ball B in N' such that $\partial B = D \cup D' \cup D'_i$, where $D' \subset \partial N' \cap \partial N$ and $D'_i \subset D_i$. By Claim 3.6, D' does not intersect \bar{C} . Hence by using B , we can obtain a disk S' such that $\partial S'$ is \bar{C} -essential and $\#(S' \cap \bar{D}) < \#(S \cap \bar{D})$, a contradiction.

Hence $\#(S \cap \bar{D}) = 0$. Then S is contained in a component N' of $N - (\bar{D} \times (0, 1))$. Since N' is ∂ -irreducible, there is a disk E on $\partial N'$ such that $\partial E = \partial S$ and E contains some D_i 's. Then a component d of $C_i - (\partial D_i \times (0, 1))$ intersects E . By Claim 3.6, d is an essential arc relative to D_i on N' . Hence d intersects $\partial E = \partial S$. It contradicts the choice of S . Hence there does not exist a disk in N whose boundary is \bar{C} -essential.

This completes the proof of Claim 3.7.

By Claim 3.7, if there exists such a planar surface S , then $\#(\partial S) \geq 2$ and

$\partial S \cap \bar{D} \neq \emptyset$. Let S be a planar surface in N such that at most one component J of ∂S is \bar{C} -essential, and that each component J' of $\partial S - J$ is parallel to a component C_i of \bar{C} . We assume that $\#(S \cap \bar{D})$ is minimal over all such planar surfaces. Let J be a component of ∂S (if exists) which is \bar{C} -essential and D_i a component of \bar{D} intersecting $\partial S - J$. Let K_1, K_2, \dots, K_n be the components of $\partial S - J$ which are parallel to C_i and we suppose that K_1, K_2, \dots, K_n are contained in $N_{\partial N}(C_i)$ in this order. Since each component of $N - (\bar{D} \times (0, 1))$ is ∂ -irreducible, by using standard innermost circle and outermost arc arguments, we may assume $S \cap D_i$ consists of arcs. Let a be an outermost arc of $S \cap D_i$ on D_i and D an outermost disk on D_i with $D \cap S = a$. Put $\partial a = p_1 \cup p_2$. Then we have the following four possible cases.

- (a) Both p_1 and p_2 are on J .
- (b) $p_1 \in J$ and $p_2 \in \partial S - J$.
- (c) $p_1 \in K_j$ and $p_2 \in K_{j+1}$ ($1 \leq j \leq n-1$).
- (d) p_1 and p_2 are on the same component K ($= K_1$ or K_n) of $\partial S - J$.

Let $S' = (S \cup D \times [0, 1]) - D \times (0, 1)$. Then S' is a planar surface. In Case (a), S' has two components, at least one component S'' of S' has a \bar{C} -essential curve in $\partial S''$ and $\#(S'' \cap \bar{D}) < \#(S \cap \bar{D})$. It contradicts the choice of S . In Case (b), clearly a component of S' is \bar{C} -essential and $\#(S' \cap \bar{D}) < \#(S \cap \bar{D})$, a contradiction. In case (c), $\partial S'$ has a component $L = (K_j \cup K_{j+1} \cup b \times [0, 1]) - b \times (0, 1)$, where $b = \partial D - a$. L bounds a disk B on ∂N . By capping off S' by B and pushing B into N , we obtain a planar surface S'' such that $\#(S'' \cap \bar{D}) < \#(S \cap \bar{D})$, a contradiction. In Case (d), S' consists of two components. Let S'' be a component of S' which does not contain J . Let J' be a component of $\partial S''$ which consists of a subarc of K and a copy of $\partial D - a$.

Claim 3.8. J' is \bar{C} -essential.

Proof. Assume that J' is \bar{C} -inessential. If J' bounds a disk D on ∂N , then a subarc of K is an inessential arc relative to ∂D_i . It contradicts the condition (3). Hence J' bounds a planar surface P on ∂N with some C_j 's, say C_1, C_2, \dots, C_l . Note that $J' \cap (\cup_{i=1}^l \partial D_i) = \emptyset$. By conditions (2) and (3), for $j=1, 2, \dots, l$, a subarc of ∂D_j , d_j is contained in P and d_j is an essential arc relative to C_j . Hence $P - \cup_{j=1}^l d_j$ consists of l components P_1, P_2, \dots, P_l and for each $j=1, 2, \dots, l$, $\chi(P_j) \leq 0$. But $1 - l = \chi(P) = \sum_{j=1}^l \chi(P_j) - l \leq -l$, a contradiction.

This completes the proof of Claim 3.8.

By Claim 3.8 and the fact $\#(S'' \cap \bar{D}) < \#(S \cap \bar{D})$, we have a contradiction.

Hence in any cases it contradicts the choice of S . Therefore $M = N \cup_{\bar{C}} (D^2 \times I)$ is ∂ -irreducible.

This completes the proof of Lemma 3.5.

4. Proof of Theorem 2

Proof of Theorem 2. We consider the following two cases and construct a 3-manifold M and incompressible surfaces F_1 and F_2 in M which satisfy the conditions in Theorem 2:

$$(I) \quad n_1 = n_2 \geq 2.$$

$$(II) \quad n_1 > n_2 \geq 2.$$

Case (I) $n_1 = n_2 \geq 2$.

We put $n = n_1 = n_2$. Let H_1 and H_2 be handlebodies with $g(H_i) = n$ ($i = 1, 2$) and $C_{i,1}, C_{i,2}, \dots, C_{i,n+1}$ simple closed curves on ∂H_i as indicated in Figure 4.1 (a) (in Figure 4.1, $n = 4$). For each $C_{i,j}$, we consider a simple closed curve $C'_{i,j}$ in H_i such that there exists an embedded annulus A and $\partial A = C_{i,j} \cup C'_{i,j}$. $C'_{i,j}$ is a pushed $C_{i,j}$ in the sense of Section 3. Let $F_{i,2}$ be a properly embedded surface in H_i with $F_{i,2} \cap (\bigcup_{j=1}^n C_{i,j}) = \emptyset$ ($i = 1, 2$) as indicated in Figure 4.1 (b). $F_{1,2}, F_{2,2}$ (resp.) consists of $[(n+1)/2]$ ($[n/2]$, resp.) components, where $[x]$ is the greatest integer which is less than or equal to x .

Put $M = H'_1 \cup_f H'_2$, where H'_i is obtained from H_i by performing 2-surgery on $C'_{i,j}$ ($i = 1, 2, j = 1, 2, \dots, n+1$), and f is a homeomorphism of $\partial H'_2$ to $\partial H'_1$ such that $f(\partial F_{2,2}) = \partial F_{1,2}$ and $f^{-1}(C_{1,2k+1})$ and $f(C_{2,2k})$ ($k = 1, 2, \dots, [n/2]$) are as indicated in Figure 4.1 (c).

Fig 4.1. (a)

Fig 4.1. (b)

Fig 4.1. (c)

Then M is an orientable closed 3-manifold, $F_1 = \partial H'_1$ and $F_2 = F_{1,2} \cup F_{2,2}$ are embedded surfaces of genus n , and F_1 and F_2 intersect transversely.

For any orientation of F_1 and F_2 , an OCP operation produces two genus n surfaces or two genus two surfaces and $n-2$ genus three surfaces. In both cases, these surfaces bound handlebodies. Let L_i ($i=1, 2, \dots, n$) be a closure of a component of $H_j - F_{j,2}$ ($j \equiv i \pmod{2}$) which contains $C'_{j,i}$. And let L'_i be a manifold which is obtained from L_i by 2-surgery on $C'_{j,i}$. Then L'_1 (L'_n , resp.) has a compressing disk D_1 (D_n , resp.) and L'_i ($i=2, 3, \dots, n-1$) has compressing disks $D_{i,1}$ and $D_{i,2}$ which are indicated in Figure 4.2.

Fig 4.2.

Note that L'_i ($i=1, 2, \dots, n$) is a handlebody and $L'_i - D_i \times (0, 1)$ ($i=1, n$) and $L'_i - \cup_{i=1}^{2-h} (D_{i,i} \times (0, 1))$ ($i=2, 3, \dots, n-1$) are solid tori. Suppose that F is a surface which is obtained from F_1 and F_2 by a CP operation which cannot be realized by an OCP operation. Then each component of F bounds a handlebody L'_i or a manifold which is homeomorphic to $\tilde{L} = \cup_{i=1}^h L'_i \cup (\cup_{j=h}^{k-1} N(L'_j \cap L'_{j+1}))$ ($1 \leq h < k \leq n$, if $h=1$ ($k=n$, resp.) then $k < n$ ($1 < h$, resp.)). If $1 < h < k <$

n , then for $l=1, 2$, $\tilde{D}_l = (\cup_{i=h}^k D_{i,l}) \cup (\cup_{j=h}^{k-1} E_{i,l})$, where $E_{i,l}$ is a meridional disk of $N(L'_i \cap L'_{i+1})$ such that $N(L'_i \cap L'_{i+1}) \cap (D_{i,l} \cup D_{i+1,l}) \subset E_{i,l}$, is a compressing disk of \tilde{L} . And we can see that $\tilde{L} - (\cup_{l=1}^2 \tilde{D}_l \times (0, 1))$ is obtained from solid tori $L'_j - \cup_{i=1}^2 (D_{j,i} \times (0, 1))$ ($j=h, h+1, \dots, k$) by identifying disks on boundaries of these solid tori. Hence \tilde{L} is a handlebody. If $h=1$ ($k=n$, resp.), $\tilde{D} = D_1 \cup \cup_{l=1}^2 ((\cup_{j=2}^k D_{j,l}) \cup (\cup_{i=1}^{k-1} E_{i,l}))$ ($= \cup_{l=1}^2 ((\cup_{j=h}^{k-1} D_{j,l}) \cup E_{j,l}) \cup D_n$, resp.) ($D_{i,1} = D_{i,2} = D_i$ for $i=1, 2$) is a compressing disk of \tilde{L} . And $\tilde{L} - \tilde{D} \times (0, 1)$ is obtained from solid tori $L'_1 - D_1 \times (0, 1)$ ($L'_n - D_n \times (0, 1)$, resp.) and $L'_j - \cup_{l=1}^2 D_{i,l} \times (0, 1)$ ($j=2, 3, \dots, k, j=h, h+1, \dots, n-1$, resp.) by identifying disks on boundaries of these solid tori. Hence \tilde{L} is a handlebody.

Therefore any surface obtained from F_1 and F_2 by a CP operation bounds handlebodies.

We will prove the incompressibility of F_1 and F_2 . For the incompressibility of F_1 , note that $\cup_{j=1}^{n+1} C_{i,j}$ is full with respect to a set of compressing disks of H'_i which are indicated in Figure 4.1 (a). Hence by Lemmas 3.2 and 3.4, $\partial H'_i$ is incompressible in H'_i ($i=1, 2$), and F_1 is incompressible in M .

Note that we can regard L_i as $F' \times [0, 1] / \{(x, t) \sim (x, t') \mid x \in \partial F', t, t' \in [0, 1]\}$, where $F' = F_1 \cap L_i$, and $F' \times 1 = F_{j,2} \cap L_i$ ($j \equiv i \pmod{2}$). Let M_1 be the closure of the component of $M - F_2$ which contains $C_{1,2}$. Then by the above fact, M_1 is obtained from a handlebody $V = (H_1 - \cup_{k=1}^{\lceil \frac{n+1}{2} \rceil} L_{2k-1}) \cup (\cup_{k=1}^{\lfloor \frac{n}{2} \rfloor} L_{2k})$ by 2-surgeries on $C'_{1,2k}$, pushed $C''_{2,2k}$ (i.e. $C'_{2,2k}$) ($1 \leq k \leq \lceil \frac{n}{2} \rceil$) and $C'_{1,n+1}$ as indicated in Figure 4.3.

Fig 4.3.

By the same way as the above, the closure M_2 of the other component of $M - F_2$ is also obtained from a handlebody of genus n by 2-surgeries on such closed curves. We consider the following two cases:

(a) $n=2$.

(b) $n \geq 3$.

(a) $n=2$. Since M_2 is homeomorphic to M_1 , it is enough to prove the incompressibility of F_2 in M_1 .

We use Lemma 3.1. We have

$$\begin{aligned}\pi_1(M_1) &= \langle a, b, c, d, e, f \mid c^2 ab = 1, d^2 b = 1, e^2 bcdb(cd)^2 = 1, f = d^{-2} cd \rangle, \\ &= \langle d, e, f \mid e^2 f^2 d^2 f = 1 \rangle,\end{aligned}$$

where a, b, c, d, e are represented by curves which are indicated in Figure 4.4.

Fig 4.4.

Let $r = e^2 f^2 d^2 f$. We have a representation curve C of r on a handlebody V as indicated in Figure 4.5.

Fig 4.5.

C is full with respect to a set of compressing disks whose boundaries are indicated in Figure 4.5. Hence by Lemma 3.4, $\partial H - C$ is incompressible in H and by Lemma 3.1, $\pi_1(M_1)$ is not a free product group or a cyclic group. Therefore F_2 is incompressible in M_1 .

(b) $n \geq 3$. We prove the incompressibility of F_2 in M_1 .

We use Lemma 3.2. Recall that M_1 is obtained from a handlebody V by 2-surgeries on $C'_{1,2k}$, pushed $C''_{2,2k}$ ($1 \leq k \leq [n/2]$) and $C'_{1,n+1}$. Note that a manifold V' which is obtained from V by 2-surgeries on $C'_{1,2k}$ ($1 \leq k \leq [n/2]$) and $C'_{1,n+1}$ is a handlebody. Hence we may regard that M_1 is obtained from the handlebody V' by 2-surgeries on pushed $C''_{2,2k}$ ($1 \leq k \leq [n/2]$). We consider a set of compressing disks $D_1, D_2, \dots, D_{3n-3}$ of V' such that D_1, D_2, \dots, D_{n-1} separates H' into $[n/2+1]$ solid tori and each of which contains $C'_{1,j}$. See Figure 4.6.

Fig 4.6.

Then we can check that $\cup_{k=1}^{[n/2]} C''_{2,2k}$ is full with respect to $D_1, D_2, \dots, D_{3n-3}$. Hence by Lemmas 3.2 and 3.4, F_2 is incompressible in M_1 .

We can prove the incompressibility of F_2 in M_2 in the same way as the above. This completes the proof of Case (I).

Case (II) $n_1 > n_2 \geq 2$.

Let H_1 and H_2 be handlebodies of genus n_1 . We consider $n+1$ surgery

Fig 4.7. (a)

curves as in the proof of Case (I) and properly embedded surfaces $F_{i,2}$ in H_1 and H_2 as indicated in Figure 4.7 (a). Put $M=H'_1 \cup_f H'_2$. Here H'_i is obtained from H_i ($i=1, 2$) by performing 2-surgeries on those curves and f is a homeomorphism of $\partial H'_2$ to $\partial H'_1$ such that

- (1) $f(\partial F_{2,2})=\partial F_{1,2}$,
- (2) $f^{-1}(C_{1,j})$ ($j \equiv 1 \pmod{2}$, $1 \leq j \leq n_2-1$ or $j=n_1$) and $f(C_{2,k})$ ($k \equiv 2 \pmod{2}$, $2 \leq k \leq n_2-1$ or $k=n_1$) are as indicated in Figure 4.7 (b),
- (3) $f(C_{2,i})$ ($i=n_2, n_2+1, \dots, n_1-1$) is parallel to $C_{1,i}$.

(In Figure 4.7. $n_1=6$ and $n_2=4$.)

Fig 4.7. (b)

Then M is an orientable closed 3-manifold, and $F_1=\partial H'_1$ and $F_2=F_{1,2} \cup F_{2,2}$ are properly embedded surfaces such that $g(F_1)=n_1$ and $g(F_2)=n_2$.

In the same way as in the proof of Case (I), we can prove that for any surface F obtained from F_1 and F_2 by CP operations, each component of F bounds a handlebody, and F_1 is incompressible in M .

We will prove the incompressibility of F_2 in M . Let M_1 be a closure of a component of $M-F_2$ which does not contain C_{1,n_2} . Then M_1 is the same manifold as obtained in the proof of Case (I). Hence F_2 is incompressible in M_1 .

Let L be the closure of a component of $H_i-F_{i,2}$ ($i \equiv n_2 \pmod{2}$) which contains C'_{i,n_2} . We consider properly embedded arcs a_1, a_2, \dots, a_m ($m=n_1-n_2$) in L as indicated in Figure 4.7 (a). Let $N_L(a_i)=a_i \times D^2$. Then $L-\cup_{i=1}^m a_i \times \text{Int } D^2$ has a form $F' \times [0, 1]/\{(x, t) \sim (x, t') | x \in \partial F', t, t' \in [0, 1]\}$, where $F'=F_1 \cap L$. Using this fact, we can see that M_2 is obtained from handlebody V of genus n_2 by performing 2-surgeries on closed curves indicated in Figure 4.8, and by attaching 2-handles $N_L(a_i)=a_i \times D^2$ ($i=1, 2, \dots, m$) so that $a'_i=p_i \times \partial D^2$ ($p_i \in a_i$) is identified with such curves as that indicated in Figure 4.8.

Consider properly embedded disks D_1, D_2, \dots, D_m as indicated in Figure 4.8. Then the closure of each component of $M_2-\cup_{i=1}^m D_i$ is a manifold which is obtained from solid torus by performing 2-surgeries on two parallel curves which

Fig 4.8.

are parallel to a core of solid torus, or the same manifold as that was obtained in the proof of Case (I). In both cases the manifolds are ∂ -irreducible. Hence a'_1, a'_2, \dots, a'_m and D_1, D_2, \dots, D_m satisfy the assumption of Lemma 3.5. Therefore M_2 is ∂ -irreducible and F_2 is incompressible in M_2 .

Hence F_2 is incompressible in M , completing the proof of Case (II). This completes the proof of Theorem 2.

References

- [1] A.J. Casson and C. McA. Gordon: *Reducing Heegaard splittings*, Topology and its Applications **27**(1987), 275–283.
- [2] J. Hempel: “3-manifolds,” Ann. Math. Studies **86**, Princeton University Press, 1976.
- [3] W. Jaco: *Adding a 2-handle to a 3-manifold: An application to property R*, Proc. Amer. Math. Soc. **92**(1984), 288–292.
- [4] T. Kobayashi: *Casson-Gordon’s rectangle condition of Heegaard diagrams and incompressible tori in 3-manifolds*, Osaka J. Math. **25**(1988), 553–573.
- [5] U. Oertel: *Sums of incompressible surfaces*, Proc. Amer. Math. Soc. **102**(1988), 711–719.
- [6] M. Scharlemann: *Outermost forks and a theorem of Jaco*, Contemp. Math. **44** (1985), 189–193.

Department of Mathematics
 Osaka City University
 Sugimoto, sumiyoshi-ku
 Osaka, 558, Japan