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The theory of deformations of structure was begun some years ago
by Kodaira and Spencer [6], who laid the foundations for the theory of
variation of complex structure. Later, together with Nirenberg, they
established the fundamental existence theorem. On the other hand, it was
soon realized that the deformations of complex structure was (at least
conceptually) a special case of the theory of variation of the structure
defined by a transitive, continuous pseudo-group I' acting on a manifold
X (briefly, we say a I'-structure on X). In the complex analytic case,
I'=T¢r,¢ is the pseudo-group of all local bi-holomorphic transformations
in C". The theory of deformations of other special I'-structures has been
discussed in [4] and [6]. Following this, Spencer succeeded in [7] in
establishing the basic mechanism for deformations of what might be
called flat I'-structures; i.e. I'-structures for which a certain jet bundle
has coordinate cross-sections of a suitable type. Furthermore, he proved
the existence theorems in case I'I'¢z(n,¢y. On the other hand, in [1]
(see also [9]), the deformation theory of certain non-flat I'-structures
has found important applications, and, in [3], the general theory of a
(perhaps non-transitive) I'-structure has been developed. The existence
theorems for certain special cases have also been given in [3].

The purpose of the present paper is to discuss the deformations of
a general I'-structure. That this is possible is not surprising, and it may
even be possible to extend [7] to the general case. However, we have
chosen a somewhat different approach based on the following heurestic
consideration: Let X have a I'-structure and suppose that this structure
is given by a certain “Maurer-Cartain form” & defined on a suitable
principal bundle @ - X. Thus, ® is a Lie algebra valued one form on
@ which satisfies the Maurer-Cartan equation.

1) dcb—%[q), ®]=0.
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In order to vary the I'-structure on X, we add to ® a small tensor yr
of the same type and consider ¥=®+v as an ‘“almost-I'-structure”.
The integrability equation for v is the Maurer-Cartan equation (1),
which is then written as

@) ny—%[qf, ¥]=0  where

3) DY =dv—[o, ¥].
With (2) and (3) in mind, an examination of some simple I'-structures
(e.g., local Lie groups—see §6 below) easily reveals the following :
There exists over X a bundle of Lie algebras L, associated to @—X,
and which has the following properties: (i) If > is the sheaf of
germs of C” L-valued g-forms on X, then the operator

(4) Do = do—[®, o]
is defined on germs in the sheaf of graded Lie algebras

3= @3 () D), D=0 (by (1),

and D satisfies the obvious derivation rule; (iii) if 47=HX, 2%,
the tensors ®-+(yr€ A') give the nearly almost-I'-structures, and
the integrability equation is just (2); and (iv) if ® is the sheaf of
germs of infinitesimal I'-transformations, there is a natural injection

D
®— > such that 0-0®—>>Y—>" is exact.

In comparing our approach with [5] or [7], it is perhaps helpful to
keep in mind the following picture: In the traditional theory of defor-
mations, one fixes a manifold X and deforms a structure by peturbing a
structure tensor on X-—this has the effect of fixing the manifold and
deforming the principal bundle which gives the almost I'-structure. Our
method is to fix the bundle and deform the fibering—this happens simply
because the Maurer-Cartan form determines the fibering.

Now the above mechanism shows how to take a Maurer-Cartan
form and peturb it—this gives a method of deforming an integrable
I-structure, where by “integrable”, we mean that the Maurer-Cartan
equation is satisfied. One actually wants that the resulting structures
be locally equivalent to the original by diffeomorphisms. The equations
for doing this are very simply derived using the following remark:
Suppose, on U= R”, we have a family of 1-forms #(¢), 7(0)=%, and we
wish to find a family of vector fields &), £&0)=0, such that f(#)*np=17(¢)
where f(t)=exp &¢). Then the system of partial differential equations
is just
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B) Lion(t) = a—gf—)

In our case, we have locally a family o(#) of Lie algebra valued
Maurer-Cartan forms which satisfy

(6) do(t)—-Lelt), olt)] = 0.
We want then to find vector fields A(¢) (=sections of >V) such that
Lypo(t) = p(t) where @(t)= g—:’(t% But Ly, o(t) = D(#)0(t) = dd(t)—

[«(2), 6(2)] (by (4)); also D(¢)@(t)=0 by differentiating (6). Thus, in
our case, (5) becomes the system
(7) D®)&#) = #(2)
with the integrability condition
®) D@)pt)=0.
The point we should like to make then is that the theory of defor-

mations of transitive structure can be based on the four equations (4),
(2), (7), and (8).

The trouble with all of this is that, at the present time, the existence
theorems are missing. Namely, in §11 we give a brief discussion of
elliptic pseudo-groups (those I'-structures for which the system D: >"—
> is elliptic) and show that, in this case, one might expect that the
D-Poincaré lemma (and even the D(¢)-Poincaré lemma) is true. In fact,

for elliptic pseudo-groups, the symbol sequences of Z”‘lgzq—D)E‘”‘
are shown to be exact.

In §12 we discuss some of the ins and outs of the existence theory
and give a few relavent examples.

We should like to close this introduction by commenting that most
of the material developed below is not new but is meant to provide a
modification and amplification of the theory developed by Spencer [7].
Also, the approach to deformation theory and much of the discussion
below is taken from a seminar given by the author during the spring
1963.

1. Transitive continuous pseudo-groups. Let M be a connected
n-dimensional manifold. A pseudo-group I' of transformations of M is,
to begin with, a family of local diffeomorphisms of M which is closed
under composition of mappings (where defined) and taking inverses. We
say that I' is transitive if, given two sufficiently close points » and m’

* The notation “.Ly({)” stands for “the Lie derivative of { along 7”.
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in M, there exists f€I' such that f(m)=m'. In order to make I' a
transitive comtinuous pseudo-group, we may assume that the transforma-
tions in I' are locally difined by a regular* system of partial differential
equations.

Suppose now that I' is a transitive continuous pseudo-group, and let
¢, be a frame at a fixed point m,€ M. Then the orbit of ¢, under the
transformations e,— f,(¢,) (f€T) is a principal sub-bundle P,cP(M)**
with structure group G,c—GL(n, R). Obviously I' induces a transitive
continuous pseudo-group I', of transformations on P,, and we may then
take the I'-orbit of a fixed frame e, at ¢,€ P, to find a principal sub-
bundle P,—P(P,) with group G,. In this way, we find associated to I
a (in general, infinite) sequence of principal fiberings G,—P.—>P._,, P,
being a principal sub-bundle of P(P._,). On the other hand, each P, is
a principal bundle over M with group G* and the fibering G*—P,—M
may be thought of as describing the jets up to order x+1 of the trans-
formations in I. Clearly G, is a closed invariant subgroup of G* and
G"|G,.~=G".

Let ® be the sheaf of germs of infinitessimal transformations of I';
® consists of the germs of C~ vector fields on M whose local one-
parameter groups lie in I'. The stalk ®,, is a Lie algebra, which is
independent of the point m,, and which we thus denote by §,. Let
®,,,=0,, consist of the germs which vanish to order x at m,. Then
0,,=0,, and

(L.1) re:,, @, ] @5 .

Furthermore, since I' is transitive, ®,, /@, =T, (M). We set g5=0,,/
@' and g,=lim g’ (a4 is the formal Lie algebra of I'). Also we define
poeyo0

¢"=0.,, /0, and g=lim g". Clearly g'=g, is the linear Lie algebra of
Broo

G'=G, and g* is the Lie algebra of G*. There are projections gix—g% '
and g"*—g""', each with kernel g.=Lie algebra of G..

The vector space g% is not (with the bracket inherited from g,) a
Lie algebra, but, given & and # in g%, the projection of [£, ] in g% ' is
(by (1.1)) well-defined. Thus we have a pairing

(1.2) L, I i@k —gi

(In general, given £€g%, we denote by & the projection of £ in g} for
v= )

* This is a precise concept; see [8].
** For a manifold X, P(X) is the principal frame bundle.
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We close this paragraph with a simple but suggestive example. Let
A be a connected Lie group which acts transitively on M—in the obvious
way, A induces a transitive continuous pseudo-group of transformations
on M. Let B be the stability group of m,€ M; we may identify T,, (M)
with a/b and G, is the linear group of all transformations Ad b: a/b—
a/b(beb). Let B,—B be the connected kernel of this representation;
in the obvious way, P,=A/B, and I', consists of the transformations
induced by A acting on A/B,. We may continue this process, getting a
sequence of groups BDOB,~>--+O>B,D--- and where P,=A/B,, G*=B/B,,
etc. Obviously, this process terminates at some g, where b,,=0, and
then P, =A and G*%=B. In our notation, g,=a, g=b, and g,=b,/b,,.

Now a pseudo-group I' such that P, =P, ,,=-- for some u, is said
to be of finite type. It is almost obvious that the most general transitive
continuous pseudo-group of finite type is locally equivalent to the ex-
ample just given (for suitable A and B).

2. The Structure equations. Let 1' be a transitive continuous
pseudo-group acting on M. The Maurer-Cartan form associated to this
structure is given by a sequence {Q"} of forms where Q" is a gi-valued
form globally defined on P,,,, and which satisfies the following Maurer-
Cartan equation on P,.,:

@.1) dm—%[m“, QT =0,

(The bracket here is that given by (1.2)).

We shall discuss briefly the forms Q" and the equation (2.1). On
P(M), there is the canonically defined R"-valued form o=(«}, -, ®*), and
o|P, is the first piece Q° of the Maurer-Cartan form. If we have local
coordinates z on M and (z, g) (g€G,) in P,, then o(z, g)=0(z)-g where
0(2)=(0"2), ---, 0"(2)) is a local co-frame on M. We have

(2.2) do = —oAgldg+do-g.

Let ¢,, :--, ¢, be a basis for the linear Lie algebra g, g/(n, R), and
write ¢, as the matrix (a};). Then, if {=,} are the forms on G, dual to
{e,}, (2.2) becomes (c.f. [2]):

.1
2.3 dot = —
2.3) -
The ¢}, may be globally defined on P,, and, as they are invariant under

I',, the ¢}, are constant and are in fact the first part of the structure
constants of the Lie algebra g,.

Nehoinek+3al, 7" Aol
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The forms =° are not invariantly defined on P,, but they are global
on P, and there Q'=(@}, --+,®"; 7', ---, z") is the gi-valued Maurer-Cartan
form. In addition to (2.3) (which is now global on P,), we have again
a local equation

2. 4) dn’ = —;—Za;Tn—”A7r7+%Zc§jm"/\wf—|—2a;ic’6“/\a)i

where the {a;.} are the structure constant of g,, the ¢?; are (because of
the transitivity of I', on P,) again constants, and the &® are locally the
Maurer-Cartan forms on G,. The forms {&°} are globally defined on P,,
Q’=(@!, -+, 0"; 7', -+, 77 ; &, -++, &), and (2. 3)~(2.4) may be combined and

written on P, as dQl—-%[QZ, 0%]'=0. Clearly we may continue this

process and inductively arrive at the gi-valued form OQ* on P,,, and the
equation (2.1) on P,.,.

If T' is of finite type, then, for large w, P,=P,,,= --- =P and
OQF=0M"'= ... =0 is globally defined on P. In fact, P is locally a Lie
group and Q is the usual left-invariant Maurer-Cartan form.

3. Almost I'-structures. Let I' be a transitive continuous pseudo-
group acting on M. Then I' defines a sequence of principal fiberings
G.,—»P,—~P, , where P,—P(P,._,) and P,=M. If now X is a general
n-manifold, an almost I'-structure on X will be given just such a sequence
of principal fiberings G,—Q.—®Q,.., where Q,—P(Q.-,) is a principal
sub-bundle and €,=X.

We now observe that the construction of the Maurer-Cartan forms
0, on P,,, did not depend on I' but only on the fact that we had the
sequence of fiberings {G,.—P,—P,_,}. Thus, given an almost I'-structure
on X, we may find a sequence of gi-valued forms ®" on Q,,,. We also
get equations like (2. 3), (2.4), etc., but now the c¢},, ci;, ¢7;, -+ are generally
no longer constants, but are functions on the appropriate bundles, called
the structure-functions of the almost I'-structure. We say that structure
is integrable to order p if the first p sets of structure functions are
constants. This is equivalent to the equation

(3. 1y 4=~ [0, @] = 0

on Q..
We introduce the following definitions for an almost I'-structure :

(A) The structure is integrable if (3.1)*~" holds for all x (by abuse of
language, we call this an integrable I'-structure); (B) The structure is
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transitive if the transformations preserving the almost I'-structure on X
induce a transitive pseudo-group on @, for each x; and (C) Finally, we
say that we have on X a I'-structure if, for each x € X, there exists a
neighborhood U of x, a neighborhood V, of m,€ M, and a diffeomorphism
f:U—-V, which preserves the induced almost I'-structures*. Clearly
©OC)=B)=(A).

Suppose now that we have on X an almost I'-structure which is
integrable to order w, and let x € X be an arbitrary point. Then there
exists neighborhoods U of x, V of m,€ M, and a diffeomorphism f: U—V
such that f(x)=m, and such that f is, to order w+1 at x, a structure
preserving transformation. More precisely, there exist local cross-sections
Y:V—>Pup, »: U—>Qu, such that f*y*(Q")(x)=@N(®")(x) and
FEPHdQ* ) (%)= p(dD*")(x).

4. Some remarks on the finitude conditions for pseudo-groups.
Suppose that we have on X an almost I'-structure and assume that the
Maurer-Cartan form ®" on @,,, satisfies

©.1) drt— [0, & = 0.

Let ¢: X—Q.., be a local cross-section, and set o*(®*)=w". Then we
may Jocally define the gi-valued 2-form

(9 2) A = dmﬂ__%[w#, ml‘-]u ; Kok

we assert that [o, AJ*'=0 (0=o°). Indeed,
[@, A]o'=[o", dco"—%[co’“, o"]¥]** (since A*~'=0)
=d[o", &*]*'=0 (by (9.1)).

On the other hand, suppose that we can find a g,,,-valued one-form
n such that —[e, ]*=A. Then o**'=0"1 9 satisfies dw"—%[m"“, R
_A—[w,4]*=0, and this implies immediately that dcp"—%[cb"“, e )

on Quiz.
The above construction suggests that we set y*7=g, ® (AR")* and

define §: ,yM.q_)vM—l,qH by 8(,'7):[@, 77]"-1- Then 82,7:[0), [a), 7]]#—1114—2
= :t_%_[[m, o], n]**=0, and the resulting cohomology groups are purely

algebraic and depend only on g, ; we set {Ker 0: y"?—y" 17"} [§(yt+17-1)

* This corresponds to “introducing local I"-coordinates” in [7].
** The bracket [, w*]* is defined by an arbitrary splitting of the sequence g*—g4*—0.
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=H"%g,). These groups have been introduced by Spencer [77], who
proved that H"*(g,)=0 for p=u,.*

We have thus shown above that, if an almost I'-structure is integrable
to order u, then the obstruction to integrating the structure to order
p+1 is a tensor of type H"*g,). We consequently see that an almost
I'-structure which is integrable to order w=g, is integrable. (This is,
of course, well known and seems to have been done in several places
simultaneously and independently.)

As another example of Spencer’s finitude theorem, we shall show
that there exists an integer p, such that the bundles {G*—Q,—@Q,_,} for
p<p, determine an almost I'-structure (in the sense that the bundle
Qu,+v is the “natural” prolongation of Qu,+v-, for v=1). Denote by b,
the formal Lie algebra of the pseudo-group of all local diffeomorphisms.
Letting S*(R™) be the vp-fold symmetric product of R” there is a natural
contraction <, > : HhiT" RS (R")—bh% such that <{gi*’, SUR")>gk. Let
(i) ={pebi™ <o, SYR")>Tgk; we assert that there exists a w, such
that (gi)’'=gi* for all »=0. For this, it will suffice to prove that
(gk)'=gi** for some p,. But it is immediate that H"'(g,)=(gk)'/ak™".
This algebraic result gives our assertion about the prolongations.

5. Construction of integrable almost I'-structures. Let X be an
n-manifold on which we have an integrable I'-structure. For x sufficiently
large, we consider the principal fibering G*"*'—>@Q,.,,—~X. Set Y=Q,.,.
Then there is defined on Y the gi-valued form ®* which satisfies the
Maurer-Cartan equation. Our purpose now is to prove the converse:

Theorem. Let V" be a gl-valued form on Y which is close to ®* and
which satisfies the Maurer-Cartan relation

(5.1) dyi = [, W = 0.

Then there exist manifolds R, and Z, a diagram of fiberings

Y
4
R. — Z, and a g4 '-valued form A*~' on R, with =*(A*)=¥*"". Further-
more, there is on Z an integrable U-structure whose w* prolonged bundle
is R. and such that A" ' is the Maurer-Cartan form on R,.

Proof. Write ¥*=(¥,, ¥,, ---, ¥,,) and set ¥,=(@', ---, ®"); ¥, =(=", -+,
="). Then equations (2.3) and (2.4) hold. Thus the system {0/=0} (=1,
---,n) is completely integrable and defines a fibering of Y. (There is

* This result now has a very simple proof using homological algebra; see [8].
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some trouble that the leaves may not be closed—however, this will be

automatically satisfied in the applications below.)
®/=0
Let the quotient space be Z; we have Y{ }+Z. Similarly, the dis-

tribution on Y given by {®/=0; z*=0} is involutive and we get a
w/=()

{5
fibering Y > R,.

In order to show that R, fibres over Z, we must prove that the
forms @', .-, ®" project from Y down to R,. Thus we must show that
1(0)w’=0=_Ly’ for any vector field & tangent to the fibres of Y—R,
(here i(f)w’=<w, §>). But 6 is tangent to the fibres if, and only if,
(o’ >=0={2" 6> (j=1, -, m; p=1,-,7), and it follows from (2.3) that
L,w’=0. Thus we may project o', ---, ®" to R,, where the system {»/=0}

is again completely integrable and defines a fibering R, - }+Z so that
Y
/4 commutes.
R - Z
We assert that R,—Z is a principal bundle with group G,. To
prove this, we must define on R, r-vector fields e,, -+, ¢, such that

(i, ¢,>=0 and [e,, e,]=>"a;,¢.. Let ¢: R —Y be alocal cross-section.

Then the {®’} and {p*(=")} give a local parallelism, and we define e, by
wi, e,y =0, {p*(z"), e,>=0,. To prove that the ¢, are globally defined,
we may show that, if ¢: R —Y is another local cross-section, then
PH(z")— pN(z")= 2] biel. Set £=pN(=’); £=¢*(="). From (2.4), we get
V@i (B —E)A 0t =0 (i=1, -, n). Set di=3ai(&—£). Then X dinw*=0
k,P k k
and, by Cartan’s lemma, di=3d}, o with di,=d!,. Thus 3)a!(&—&)
=>1di,»' and, since the r-matrices a,=(a};) are linearly independent, we
4
get & — &= 21 b7 as desired. Consequently the {¢,} are defined and we
compute [e,, ¢,]. We have d@*(np)z¢*(d7t°)E%Za;fp*(z“)/\ P*(")
(modulo @', --+,®") and then {dp*(z"), (¢,, ¢.)>=a;, or [e,, e.]=2>]al.e,.
This proves that R,—Z is a principal G,-bundle ; in order to complete
the Theorem, we need an obvious induction plus the fact that R, is a
sub-bundle of P(Z). Now L, ®'=i(e)do’+di(e,)o’= 2] al@* (by (2.3)),
and thus o=(e', .-, ") is an R"-valued form on R, which satisfies the
conditions: (a) the ¢ are independent at each point and the equations
{#/=0} define the fibering R,—Z; (b) «(pg)=w(p)g (PER,, g€G,). We
shall prove that, under these assumptions, there exists a bundle injection
f: R,—~P(Z) compatible with the linear representation of G, given on g,
by ¢ —(a;;).



184 P. GRIFFITHS

Indeed, choose a connexion in Gl—>RIZ>Z given by a field of G-
invariant horizontal spaces H,T (R,) (p€R,). For each p, the forms
o'(p), -+, ®"(p) give a basis of the dual space H}, and we let f(p), -, f(D)
be the corresponding basis of H,. Then v, (f(9)), -, v«(f.(p)) is a basis
of Ty, »(Z), and we let f(p)€P(Z) be this frame. It is easy to see that
f is an injective bundle mapping. Q.E.D.

6. Deformations of structure; the case of a parallelism. Because
of the theorem in §5, in order to deform an integrable I'-structure on
X, we may go to a suitable prolonged bundle @.,, and peturb the
Maurer-Cartan form ®" so as to have (5.1) satisfied. In order to carry
this out precisely, we begin with the simple case when M is a Lie group
A and I'" consists of the left translations in A.

Let S? be the sheaf on A of vector-valued g—forms. If ¢, -, e, are
a basis for the left-invariant vector fields on A, then any germ ¢ in &7

may be written guzge,,@qr", 9" being a germ of an ordinary g-form.
We define [, ]: S2Q87—> 8% by [6, R %", e, QY |=[¢,, ¢, R @° AY°,
There are then the usual identities:

6.1) [P, ¥]1 = (1[I, 91 (PESP, YeS;

(6.2) (—1)?[o, [V, 211+(=1Y"Ln, Lo, v11+(—1)*[¥, [7, #]11 =0
(PpeS? Yes, nel);

(6.3) dle, ¥v1=Ldp, ¥1+(=1V[p, d¥] (peS?),

where d(2]e,Q9°)= 2 e€,Qdp".
For later use, we observe from (6.2) that, if @€ S*, we have

6.4) [ [V, 711 =[[e ¥ 21+(—1[¥, [#, 211  (peS?);
(6.5) [Le 21, ¥1=2[2, Lo ¥]1].

Let now o', :-+, ©" be the forms dual to ¢,, -+, ¢,, and set Q= 3"¢,Q0".
Then

(6. 6) dﬂ—%[ﬂ, Q]=0.

Denote by 77 the global sections of S?. The nearby almost I'-structures
(=parallelisms close to ¢, -, ¢,) are given by forms ®=0Q+¢@ where
@€ T" is small; the integrability condition is just

(6.7) d(m(p)—%[mcp, Q+p]=0.
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Using (6.6) and (6.1), (6.7) reduces to

(6.8) D¢—-;—[¢, ?]1=0
where
(6.9) Dp = dp—[Q, ¢].

Theorem. I[f we define D: S*— S by D(p)=dp—|Q, ], then D
has the following properties :
(i) D*=0 and D[, ¥]1=[Dp, ¥1+(=1)Le, D¥] (p€S?);
(ii) The kernel of D on S° is just ©;
(iii) The sheaf sequence

(6. 10) 0-058—-&

is exact; and
(iv) The equation (6.8) for small @€ T' gives the deformations of the
integrable TI'-structure.

Proof. Using (6. 6), (6.5), and (6. 3), we get: D’¢=D(dp—[Q, )=
—d[o, #1-[0, dp-[0, #11= -5 ([0, a1, #1+[0, dpl—[0, dy]

+[Q, [Q, #]1]1=0. The derivation rule follows from (6. 3) and (6. 4).
To establish (ii), it will suffice to prove that, for a germ 6 € S°,

(6. 11) DO =6,Q Lo

Indeed, if {c’.} are the structure constants of aq,
21 6Q Ly =21 6,Q(i(0)do’ + di(0)")= 2] ¢,Q(c;.0°w" 4 db”)
=3¢, Qd0"—> 2., Q0’0" =d0—[Q, 0]=D6.

The D-Poincaré lemma follows from the usual one together with
the following remark: If (locally) f,, -, f, are a basis for the right-
invariant vector fields, and if we write = 3>) f,Q¢", then

(6.12) Dy =2 f,®de".

The theorem now follows.

7. Deformation of structures of finite type. Let A and B be
connected Lie groups with B A a closed subgroup. Let M=A/B and
let I" be the transitive continuous pseudo-group on M induced by the
action of A on A/B. From the principal fibering B—A—M, we may
construct the vector bundle 7(A)/B— M (i.e. we identify tangent vectors
to A which are right translates by an element of B), and we denote by
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>¥ the sheaf on M of germs of g-forms with values in this bundle.
Now it is easy to see that

(7.1) T(A)/B = Axza,*

where B acts on a by the adjoint action. Thus we have an injection
20 — Sq

Lemma. [X2, DY]1C > and DY < >V,

Proof. We choose a basis ¢,, --+, ¢, for a such that ¢, -+, ¢, gives a
basis for bca. Also, we let 1<<i, j<#x and 1<p, ¢, 77 be our ranges
of indices. Then >V consists of the germs o € §? which satisfy

(7.2) i(e)p =0
(7.3) Lo p = [e, P]
where i(¢,)p= Z e; <P, e,» and [e,, P]= > ¢t 0. Q9.

Now let p€ 337,y €3, Then i(e,) @, ¥]=Li(e,)p, ¥1+ Lo, i(e,]=0.
Also, L£,[p,¥]=[L,® ¥1+ [P, L] =[[er, 21 ¥1+ [P, [0 ¥11=
[es, [, ¥11 [by (6.2)), and consequently [, 23]=2>2"".

On the other hand, for @ €32, we have:
i(ep)Dp=i(e,)dp—i(es) [Q, P1=-L,,p—di(e,)p— [i(esQ, P1=L¢, P1—L[e,, ]
=0. Also, L, Dp=_L;dp—L,[Q, pl=d[L,,, P1-[L.,Q ¢]1-[Q, L, 2]
=d[e,, p1-[e, 01, P1-Q, [, P11=L¢, dp]1—Le,, [Q, P1]1=L¢s, DP].

Q.E.D.

We now phrase the above in a manner suggestive of the general
case. Let X be a manifold on which we have an integrable I'-structure,
where I’ is a transitive continuous pseudo-group of finite type acting on
M. Then, for some p/, Qu=Q.,=-+-=@Q and G*=G"*'=..-=G, and we
denote by >’ the sheaf over X of germs of g-forms with values in the
vector bundle 7(Q)/G (=@ Xg4). Then there is an algebraic bracket
L, 1:22Q3¥—>>1?" which makes >1*= @ >}’ a sheaf of graded Lie

=0
algebras. The operator D defined on 3 by Dep=dp—[®, ¢] (P=
Maurer-Cartan form on @) maps >\ into >?*", and satisfies D*=0 together
with the derivation law in >*.
The sheaf ® of infinitessimal transformations preserving the in-
tegrable I'-structure on X may be naturally lifted or prolonged to a
subsheaf of 3, and we have the

Theorem. The sequence

* g=left-invariant vector-fields on A.
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D D D
(7'4) 0—>®—>20—>21——>----—>Zq—>...

is exact. Furthermore, if C'=HYX, 37, the integrable I'-structures close
to ® are given by the small @€ C* which satisfy the differential equation

(7.5) D¢—%[¢, 91=0.

8. The general case, a first resolution. Let I' be a transitive
continuous pseudo-group of transformations on M, and let X be a mani-
fold with an integrable I'-structure. We denote the x™ prolonged bundle
over X by Q. so that we have a principal fibering G*—Q.—X. Consider
the bundle 7(Q.)/G" and let >*? be the sheaf on X of germs of g—forms
with values in this bundle.

We wish to define on 3*= @ 3¥? a bracket product. In order to
79=0

do this, we first observe that the Lie algebra structure on g, induces a
well-defined bracket

(8.1) L, 1:¢"""®gk—ac™,
and consequently, for »=1 (which will henceforth be assumed), a bracket
(8.2) L, J:¢"""®gk—ak.

Thus the adjoint representation of G*** on gi is defined, and it is easy
to see that (c.f. (7.1))

(8.3) T(Qu)/G" = Qu,\ X gr+vgk .
From (1.2) and (8.3), there is then naturally defined
8.4) L, J: 2@ > W S w-tee

which satisfies (6.1) and (6. 2).
The sections of >¥? are given by the gi-valued g-forms ¢ on Q...
which satisfy

(8.5) i(le)p =0, and
(8.6) L.p = [e, ]

where e€ g™ acts on Q.,, on the right. Now the gi-valued Maurer-
Cartan form @®* is defined on Q.,,, and so, for a germ ¢ in >*? the
expression

(8.7) Do = dp*-'—[@*, ]+
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makes sense and is a g§ *-valued (¢+1)-form on @.,,. From the Lemma
in §7 and (8.5), (8.6), we see that Do is a section of > 9+, Thus
we have defined

(8. 8) D : Eﬂuq — Zu—l,q+1 ,

where D*=0 and D is compatible with the bracket (8. 4).
We now investigate the kernel of D on >*° for u sufficiently large.
A germ 6 in > is a vector field on @Q., and we assert that

(8.9) DO = Ld",

where ®“~' is the Maurer-Cartan form on Q.. Symbolically, this goes
as follows: _L,®" '=di(0)®"'+i(0)dd"*=d(0"")+i(0) (%[d)“, <I>“]'”“>=
do*——[®* 61*'=D0. This formal computation is easily justified.

Now the sheaf ® on X of germs of infinitessimal transformations
preserving the integrable I'-structure induces naturally a sheaf @ c>*°
on Q., and from (8.4) we see that D(®")=0. Conversely, let w=pu,
(§4) and suppose that 0€>¥° is a germ for which D8=0. Then, by
(8.9), 0 preserves the fibering G"—@Q.— X and induces an infinitessimal
transformation 6, on X whose local one-parameter group preserves all
of the bundles G"—>Q,—X (p<p). Thus 6, preserves the integrable

I'-structure (since these bundles determine it).*
In conclusion then, for u sufficiently large, we have over X a sheaf

sequence
> @ — S0 2 1 l_), vee —> SW-G+1,¢ 2
(8.10) 0-0-3 2 2] )

which is exact at the second stage, and which is such that the small
@ e C*'=HY(X, 3" which satisfy

(8.11) Dy =L, p1 = 0
give the integrable I'-structures close to ®*.

9. Deformations of structure; the general case. For the purpose
of existence theory, the sequence (8.10) has the defect that the u index

* It is perhaps worthwhile to illustrate this process in local coordinates. Let (w!,---, ®";
al,-,n") be as in §2 and let 6=(6,+, 6") be a local vector field on X. Then Lywi=
Najiowi (=d6i—3) ciwif*) for some matrix function @;i(x). If a;i €g;, then 6 induces a
vector field § (=first prolongation of 6) on P. In fact, ¢;i(x)=3]ap(x) @p;/ and 6™ has
components (6! -+, 6"; a,, -, a,) ; observe that f € 1,9, Furthermore, DA has components
dii —3) chwi0k— apapjiwi=0. Conversely, given 0 on P, with DIO=0, we see that 6
is the prolongation of a vector field § on X which preserves G,—P,—X.
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is dropped by one each time (the top term in ¢ goes undifferentiated in D).
One remedy for this is to pass to the projective limit: Set Q=1im Q,

e

and >V=1im >*9 Then D: 3?31 is a well-defined operator and

ey
D?=0. Furthermore, just as in (6.12), the D-Poincaré lemma is the
d-Poincaré lemma on @, and is hence formally true. If X and Q are
real-analytic, and if >V*= EBE" consists of real analycic germs only,
then the sequence

D D D D
9.1) 0->0->3V>>" 5w 5>V S
is exact, and, since H?(X, 3**)=0 (¢_>0) (by Theorems A and B and the

general Kiinneth relation), the groups H X, ®) are represented by the
global D-cohomology groups.

However, even in this real-analytic case, the available techniques
fail to prove the fundamental theorem: If X is compact and has an
integrable I'-structures and if H*X, ®)=0, then the nearby integrable
I'-structures are effectively parametrized by a neighborhood of the origin
in H'(X, ®) (indeed, it is not clear that dim H'(X, ®)< ). Some of
these difficulties may be circumvented by the following device taken
from [7]: Define S*? to be the set of all pairs yr=(, §) for @ a germ
in 37 and £=[Q"", p*']* where "' is a germ in >**? which, under
the projection >332 goes onto @. Thus we have an exact
sequence

(9. 2) 00— AVL9 5 EMI-‘I _1 Swe 5 ()

defined by =(p)=(¢* [Q*", #]*), and A7 ={pe>W+|¢p*=0 and
[co, ¢]=0}.
With (8.7) in mind, we define D on S$*? by

9.3) D(p, §) = (dp—§, —d¥f).

Then it is easy to verify that D(S*?)&S*?" and D?*=0. Also, with
(8.11) as motivation, we define a bracket [ , ]:S*?QS8*?—S*?*7 by

9.4 [ 1=, 91 208, o7 (b =(, &), ¥ =(#, ).
Let now u be sufficiently large and set 47=HX, S*9). If ¥=(p,§)

is a small element in A', and if D«Ir——%—[«[r, Yr]=0, then from (9. 3) and
(9. 4) it follows that

(9.5) D«f*——;—m, P =0,
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which implies that Q"+ @" gives an integrable I'-structure close to the
structure given by Q"

Theorem. Let X be a compact manifold on which we have an integrable
[-structure, and let ® be the sheaf of germs of infinitessimal T'-trans-
formations. Then there exists on X sheaves of graded Lie algebras
SN0 qg<n), differential operators D: S?— S, and an injection (pro-
longation) ® —S° such that :

(1) In the sequence

D D D
(9.6) 0-—)@——)50——)51_.)...98”—168"_»0,
D
D=0 and 0—- 0 — S — S is exact;

(il) D is compatible with the graded Lie algebra structures, and the nearly

integrable T-structures are given by the small sections € A'=H(X, S
which satisfiy

9.7) D«p—%w, ¥1=0.

10. Deformations of transitive I'-structures and of I'-structures.
In §9 we have established the mechanism for deforming an integrable
I’-structure on a manifold X. If the original structure is either transi-
tive or a I'-structure (i.e. “local coordinates exist”—c.f. §3),* it may be
asked whether or not the same holds for the new structure. This is a
local problem and we now derive the relavant systems of partial differen-
tial equations.

Let U= R" be a domain and consider over U a family of bundles
Qu(t)—=U coming from almost I'-structures. Let ®(¢) be the gi—valued
Maurer-Cartan form on Q,.(¢), and assume the integrability equations

(10.1) d@(t)”“——;—[cb(t), B = 0.

Let o(t): U—Q...(t) be local cross-sections which define trivializations
Qui(t)=UXG**. If we set o(f)=0o(¢)*®(¢), then the Maurer-Cartan form
&(¢) is given on UXG*"' by o(f)+(Maurer-Cartan form on G**'). The
bundle T(Q.(?))/G"=g% x U and so the sections of >'° are given by the
gy-valued functions on U.

Now let ®=w(0) and assume that this structure is transitive. Thus
there exist “sufficiently many” local solutions of

* It may well be that this is always the case.
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(10.2) DO = do*'—[o, 0] (cf. §8),

for local g4-valued functions 8. The condition that the peturbed structures
be transitive is simply that there exist local solutions of

(10.3) D(1)6(t) = do(ty=—[olt), 6t = 0.

We now give a system of partial differential equations for the exis-
tence of bundle diffeomorphisms f(#): Qu#) — Q. (=Q.(0)) such that
f(#Y*®=d(t). RBefore doing this we recall that, associated to a vector
field £ on V= RY, there exists a local 1-parameter group A(s)=exp (s, &)
acting on W<V, Similiarly, given a section 6 of >°(=g4-valued
function on U), there is a corresponding local 1-parameter group A(s)=
exp (s, ) of bundle diffeomorphisms of Ux@.* We now seek a 1-
parameter family 6(¢) of sections >*° with 6(0)=0 and such that

(10. 4) gy @ = d(t)
where g(¢#)=exp (¢, (t)).

Theorem. If we set (p(t)=?%t), then (10.4) holds if, and only if,
(10.5) D(t)0(t) = a0ty —[u(t), 6)]* " = ().

Proof. By (8.9), D(#)0(¢)= Ly»a(t) ", and we shall prove the Theorem
in the following form: Let W& RY be a domain, #(¢) a family of 1-
forms on W, and &) a family of vector fields with &0)=0. Then

(Y =n(t) if, and only if, ,fg(t)n(t)z?g(t_” where £(£)=exp (¢, &2)).

Assume f(#)*n=1(t), and write n(f)=j2:m(f)dx", FO=(F1E) -, M),
EH)=(&(), -+, EN(t)). It is easy to see that f(#) is defined by

Ofi(t) _ <~ Of (D) g;
(10. 6) eI S OR

By assumption, 327 /()L 0=y (t) where n(f(t)=nit)of(t). Using

o ofi) _ ok (1) ff
(10.6), we get a—t(Zm(f(t)) Py —Zm(l‘)WﬂLZm(f(t))axjax,f(f)+

S0y, LN W s), On the other hand, Lrcom(t)= S Licom (%
ox®  ox! O«

. ont) 5 DEi(t e O
+Zn]-(t)g.[godxf:Zf’(t)g#(I)dx’ +217 j(t)—a—x(l—)dx’ . Substituting _g_;(l_) =

* Indeed, h(s)=(exp (s, 8°), exp (sf")) where @ is the projection of § into g and exp (s8") is
the exponential mapping in G*.
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(f@)ofi®) ofi(#) _ fit) :
1074 5ot ol oy + 394 f(t))axfax’ in the above expression for

%(2 7:( f(t))ag;(jt)>=?_%§t_) , we get Ik,)n(t):?%. Since this argument
is reversible (using the fact that f(¢),£(t)=&(#)), the Theorem follows.
Q.E.D.

The equations (10.3) and (10.5) present the same analytical difficulty
as the sequence (8.10). Again then, we define over U a family of sheaves
S? where a germ in S? is represented by a pair (@, &), @ is a germ in
SWe (=gh-valued g-forms) and &=[w(t), **']* for some germ ¢**' in
S+t¢ which projects onto @. We define D(¢): Si— Sit by

(10.7) D(t)(p, &) = (dp—§&, —dE).
Then, by (10.1), D(¢¥=0 and we get a sequence
D(¢ D(t
(10. 8) 0—>®t—>5‘3——(—)‘3%—>"‘—>5§—(-)>5T1—*"'

which may be viewed as a peturbation of (9.6). For example, from (10. 3),
we see that ®, is just the sheaf of germs of infinitessinal automorshisms
preserving ().

. Qa(t) ()M .. @
If now #(¢) is the germ <—-—at—, [m(t), e ] ) in S, we get from

dw(t)‘”“l—%[a(t), o(t)]'=0 that D(f)n(f)=0. If we can find &F) in S°
such that D(#)&(#)=7(t), then &@#)=(0(t)""", [o(f), 8(¢)]*') and we have that

-1
D(t)&(t):a("gf , i.e. (10.5). Thus, in order to insure that our family
of integrable I-structures is in fact a family of ['-structures, it is

sufficient to have the D(¢)-Poincaré lemma in (10. 8).

ReEMARK. For some I, it is possible to see directly that a transitive
I-structure is a I'-structure. For eample, suppose that we have a transi-
tive almost-complex structure, and let &', ---, 8" be local vector fields, of
type (1, 0), which are a frame and are also infinitessimal automorphisms.
Then, if € is any other I' vector field, §=3>1f;6/ for some complex
functions f;. Now, for any function g, 3)f;0L,;8=>"f;Ls;08=Lsog=0Lyg
=0f;-Ly;8+ 3 f:9Le;& and so 3Of;-Le;g=0 for all g, i.e. 3f;=0 (j=1,
...,n). Thus we have local holomorphic functions, which is in this case
the same as a I'-structure.

11. Elliptic pseudo-groups. Suppose that we have on X an in-
tegrable I'-structure. The sheaf ® of infinitessimal I’~transformations is
a sub-sheaf of Y, the germs of all C~ vector fields, which is defined by
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a system of linear partial differential equations. We say that I' is
elliptic if this system is elliptic.

To be more precise, for a vector bundle E— X denote by J*E) the
bundle of jets up to order x of C~ sections of E, and let 4*(E) be the
sheaf of sections of /%E). There is a natural prolongation mapping
i*: 99— 94T), and there is a sub-bundle Q —J¥T) (x=p,) such that a
germ 6 in T is in ® if, and only if, %0) is a section of @ * We set
R=J%T)/Q; there is a natural linear mapping A: J%T)— R which may
be considered as a system of linear partial differential equations defining

e d.

For each covector 5 € T, there is defined the symbol o 4(n)=0o{n) of
the system; o{n)€Hom(T,, R,), and we say that A< Hom (JT), R)
defines an elliptic system if o(zn) is injective for each n==0. We shall
explicity write out o(7) below.

In §9 we have defined the operators D:S?— S?*'; by introducing
metrics, we may define the adjoint operators D*: S?— &7 (¢=1) and,
as usual, the Laplacians

(11.1) DD*+D*D=L:S5" - & (¢g=1).
(For ¢=0, L=D*D).

Theorem. L' is elliptic if, and only if, the Laplacians (11.1) are
elliptic.**

Proof. The main trouble is notational, and we shall show that I’
elliptic implies that L is elliptic for ¢=0,1. This is sufficient for appli-
cations to (10.3), and the reader may easily supply the general argument.
We assume that x is such that H"*(g,)=0 for »=x—1, and we set

Erl={pe > 9" '=0} so that the sequence OaA“'“—»E“’in"—l'“‘eO
is exact. If we define @: $*?—3> by &(p, &)=, then we have
(11.3) 0 — Amatt — Gha e >0,

For a covector », the symbol mapping of D,
(11.4) op(n): S*7 — S

is defined and o4(7)’=0. Also defined are opdn): S*?—S*?! and o(y):
S*?— S Since oy (n)=oxn)op(n)+opi{n)o.(n), it follows that L is
elliptic if, and only if, the symbol sequence

* In fact, @ corresponds to the subsheaf 3*° of J*(T).
** Quillen has a more general result in his Harvard thesis.
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a1 o0k7) 57 o) gae

(11.5)

is exact. Furthermore, we easily see that op(n)(A*?")A*?"* in (11. 3)
and that (11.5) is exact if, and only if

op(n)

(11. 6) Ara RLS))

A a+2

is exact where, for A € A**, o5 (n)A=7AN. (Remark: If we denote the
algebraic cohomology groups arising from (11.6) by H%?"(A), then from
(11.2) and the fact that H%?(E)=0 always, we see that H%?(A)=
HY*"9(A)= ..., This is an algebraic proof of the statement that a pro-
longation of an elliptic equation is elliptic.)

We now introduce local coordinates (x',---, ") so that n=dx'. As
is customary, we let p=(p,, -, p,) represent a vector of non-negative
integers; |p|=p,+ =+ +P,, x2=(x")?1-++(x")?x, etc. Also we set p+1,=
(Dis o Pe+1, -+, p,). We let e, -+, ey be a local basis for R, and we
agree on the ranges of indices |<1i,J, &, ---,gn; |<7, s, t<N. A local
section @ of 4*(T)is written as @= 2 % j®x", and A€ Hom (J4T), R)

pl=p
is locally written as

(11.7) (Al@)y = 2,} aP;

For a covector £=(&, .-+, £") and Y=(y9) € T, the symbol mapping is
given by

(11.8) (c@)¥) = Z 55 €

We now prove that OeA“ldn(”)A“zob(n) #* is exact. If A€ A™,

A=0y for some y € E*"°, Since E™° 3V 4(T), we write v={v.;lal
=p+1}. Then, with a suitable choice of coordinates, (8y),= > 7,41, dx**
k

Furthermore,
(11.9) (oon)(B7)p = dx' A (B7)y = T vpinyda’ A dc*.

If op(n)y=0, then from (11.9) we get v,=0 for ¢==(x+1,0,:--,0). On
the other hand, A(y)=0 and we then get from (11.7) that

(11 10) Zd%’" =0 (d; = ﬂ(ﬂu 1,0,,007 'yj = '73’1:-4 1,0,---,0)) .

But (11.10) contradicts the injectivity of the symbol (11.8) for &=
(17 0, *tty 0)'

* This representation is only valid at a point.



THEORY OF VARIATION OF STRUCTURES 195

Now let A€ A*? and assume that dx'AA=0. We write A=0¢p for
peE and then we may express @ as quﬁkq)dx" (pp € EFTO),
k=1

Clearly this is possible. We write explicitly ,p={,®,; |a| =#+1} so that

(11.11) (0p), = 2 (ePps1;,— 1Ppr1) AX* N dx? .
From (11.11) and dx'A ép=0, it follows that
(11' 12) k(pp+11_l(pp+1k = O; 1<k<l’ lp‘ =M.

We wish to find == {r,} € E**"° such that dx'A ér=0p, which is explicitly
written as

(11- 13) Tp+1p = (Po+1p— kPo+1y -

Now it follows immediately from (11.12) and (11.13) that we may con-
sistently define, for q=(x+1,0, ---, 0),

(11.14) Tq = 1Ppsp— kPor1, (@ = D+1,).

To complete the proof, it will suffice to define 7cu,1.0.,00 SO that A(7)=0
(t={7g}). In the notation of (11.10), we wish to solve
(11.15) Dajri = — 3 ayT]

g#(p¢+1,0,-4,0)
From (11.14) it follows that the right hand side of (11.15) satisfies N—#
independent linear relations which are also satisfied by vectors a(¢) =
Saj¢i. Since the symbol o(§) (6=(1,0, -+, 0)) is injective, we may then
(uniquely) solve (11.15). Q.E.D.

ExamprLE. The following example is due to Singer. Let V be a
(real) vector space and G—GL(V) a linear Lie group with Lie algebra
g=gl(V)=VRV* We let X=V and I'=I; be the pseudo-group deter-
mined by the flat G-structure on V; that is, a local diffeomorphism of
V is in I'; if, and only if, the jacobian matrix J(f),€G for all x. (We
make the identifications T=Vx V; J(T)=Vx(VQV*); etc.)

Proposition. I'; is elliptic if, and only if, g contains no lincar trans-
formatiohs of rank 1.

Proof. A germ 0€ 4 is in @ if, and only if, ji(f),€g for all x;
thus Q—J(T) is Vxg and A is essentially given as the projection
&:gl(V)—gl(V)/g. For £€ V* (=cotangent vector), the symbol of A4, o(£)
€Hom (V, g/(V)/g), is given by o({)Yy=&(y®&). The symbol mapping
fails to be injective if, and only if, y®&Eeg=VRV* for some +, &,
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which in turn happens if, and only if, g contains a linear transformation
of rank 1. Q.E.D.

12. Remarks and examples

(i) Remark on Elliptic Systems. We consider the following problem :
Let X be a manifold, E— X a vector bundle, E‘=EQA‘T*, and AYE)
the sheaf of germs of C~ sections of E. Suppose that we are given a
linear differential operator D: AYE)— A**(E) whose principal part is d.
Thus, locally, Dp=dp— AA ¢ where A is a local section of Hom (E, E").
Suppose that, for each ¢, we are given a locally free subsheaf S?— A%E)
such that D(S?)—=S?" and D?:S?—-S?" is zero. Finally, we assume
that the symbol sequences

oy(D) a(D)

(12.1) S? S Stz (ne T*—0) (¢=0)

are exact. Question: Is the Poincaré lemma for

D D D
(12.2) 0-0—->5"585 ... 87589 5 ...

true? This is a special case of the general problem of solving “regular”
over-determined elliptic systems, but is one which has arisen several
times in differential geometry.

ExampLE 1. We shall check that the D-Poincaré lemma for D: S?
—S?' as given in the Theorem of §9 falls in the above class. (More
generally, the D(¢)-Poincaré lemma for the operators in (10.8) will be of
the form (12.2).) By (11.3) we have a diagram

A A

'/EI:IJ-.G—I___, /2#.0 —_— /2#.%1

| | I I
(12.3) Vmon D Ny DAL,

/ / Ve

! T oo, | T I T

\A”"’ —‘i-p \Af"“'l_é_, \A#.q—s—z
without the broken arrows and the operators d and A. The broken
arrows mean that locally, after trivializing all bundles, we split the
vertical sequences. The operators A and d (=exterior differentiation) are
then induced by commutativity. Now the top row in (12.3) is exact
because (locally) >'*'?=germs of gi-valued g-forms and A has the exterior
derivative d as its principal part.

As for the bottom row (whose exactness would obviously give the

D-Poincaré lemma), we have locally a diagram
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=L e+ =IaLaR
(12. 4) T T
A_l-".q d A_l*qurl d _A_l",(H—Z

where the E*? are just (locally) vector-valued p-forms. If I' is elliptic,
then the symbol sequence of the bottom row in (12.4) is exact (c.f. §11)
and we are precisely in the situation (12.1).

ExaMpPLE 2. Suppose we have given in E a connexion » with covariant
differential D: AYE)— A?*'(E). For pe€ AY(E), D’¢p=Q@ where Q€
A’(Hom (E, E)) is the curvature. If we let S A%E) be the germs @
with Qop=0, then D(S?)=S?** since, for ¢ € S?, QDp=D(Qp)—(DQ)p=0
(DO=0 by the Bianchi identity). Then the sequence

D D
(12.5) 0-0->5—>5 >S5
has D?*=0. If the connexion » in E has the property that the sheaves

S? are locally free and that the symbol sequences in S? ‘125"—25"“ are
exact (g=1), then we say that o is regular.

Unfortunately, the condition of regularity may be quite restrictive;
for example, if E=T and » is a Riemannian connexion of constant

D
curvature, then the symbol sequence of S°— S'— S? is nof exact (although

D _ D .
that of S?7'—S?— 8" is exct for g _>1).

The reason that one would like the D-Poincaré lemma for (12.5) is
to say what elements @ in AY(E) (=global sections of A'(E)) are of the
form @=DéE for £€ AE). To treat this question, we may introduce the
sheaves R? by R‘=A%E) (¢=0,1) and R=A"E)/Q-A"X(E) (g=2).
Then D induces D: R?—R?" and we have

D_ D
(12.6) 0-®—->R"->R'->R*—

with D?=0. Furthermore, it is easy to check that D-Poincaré lemma
in (12.5) is equivalent to corresponding statement for D in (12.6). Then
@ above should be a global section of R' which satisfies Dp=0 and we
are looking for a global section & of R° with D&=e.

ExampLE 3. Deformations of Structures of Finite Type. Let A, B be
connected Lie groups with B— A a closed subgroup. If X=A/B, then
the action of A induces a transitive continuous pseudo-group I' on X
which is elliptic. Furthermore, the analytical difficulties disappear and
the D-Poincaré lemma in (7.4) holds. We shall give an interpretation
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of the groups HYX, ®) as calculated from the resolution (7. 4).
If C=(A)=C> functions on A, then b acts on C(A) by right trans-
lation and there is an isomorphism

(12.7) € = {C(A)® a @ A%a/b)*}"

Now the right hand side of (12.7) is the Lie algebra cochain group
C%a,b; C°(A)®a) and the whole point is that, under the isomorphism
(12.7), D: C?—C?*" goes into the boundary operator 6: C%a, b; C*(A)®a)
—(C"*a,b; C*(A)®a). Furthermore, A acts on C?, this action commutes
with D, and under the isomorphism (12.7) this corresponds to A acting
on C~(A) by left-translation. With this understood, we get then an
isomorphism of A-modules

(12.8) HX, ®) = H(a,b; C*(A)Qa).

For instance, if E is a finite dimensional A-module which is a direct
summand of C~(A), we have the reciprocity formula

(12.9) Hom(E, HY(X, ®) ~ H%a, b; Hom (E, a)).

For example, taking E=a, we find that aQ H'(a, b) is a direct summand
of H'(X, ®) where A acts by Ad®1l. The deformations arising from
this space have been constructed in [3], §10. Also, taking E=trivial
A-module in (12.8), we find that H'a,b;a) is a direct summand of
H'(X, ®) where A acts trivially. This vector space gives rise to deforma-
tions of the I'-structure constructed as “outer automorphisms of a
preserving b/inner automorphisms of a preserving b”.
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