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0. Introduction

Let 8™ be the unit m-sphere. Let p be a prime and = the cyclic group
of order p. Denote by Bz the r-skeleton of the classifying space Bz. Recall
that Bz is the infinite real projective space for p=2 and the infinite lens space
for p>2. Let X be a space. Let m be a positive integer for the case p=2 and
m an odd integer for the case p>2. Then a map f:S™ — X is called symmetric
if there exists a map f: Bz — X such that the following diagram is commutative:

f

S ——

(1) o\, ST

Br™

, where w:S™— Bz“ is the canonical projection.

An element of the homotopy group z,,(X) is called symmetric if it is repre-
sented by a symmetric map. For p=2, the definition of a symmetric map is
due to J. H. C. Whitehead [14], in which he showed that if an essential element
of 7,,(S™") is symmetirc, then m=3 mod 4. Some results about the sym-
metricity of the elements of 7,,(X) are found in [4], [8], [10], [21] and [13].

Let X be an (/—1)-connected, finite CW-complex. Then our purpose is to
show the following

Theorem 1. Every element of n,(X) is symmetric for any m satisfying
2 dim X—I<m<2l—2 and

i) m=—1mod 2¢%*t>  for p=2,
ii) m=—1 mod 2plek+17xr-1] for p>2,

where k=m—1, ¢(s) is the number of integers i such that 0<i<s and i=0, 1, 2 or
4 mod 8 and [s] indicates the integer part of a rational s.

Corollary 2. For an arbitrary k>0, every element of the k-stem of the stable
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homotopy groups of spheres is symmetric.

To prove the above theorem we use the S-duality [11] and the Kahn-Priddy
theorem [6] which is stated as follows for our use. Denote by ?{X, Y} the
p-primary component of {X, Y}=lim [S"X, S"Y].

Theorem 3. [Kahn-Priddy]. Let N be a sufficiently large integer and
h:SNBr®>— SN a map such that the functional 3'(Sq*)-operation is non-trivial
(respectively). Then for a connected, finite CW-complex X of dimension<s, hy:
{X, Bx®} —>?{X, S} is an epimorphism. Furthermore, assume that the func-
tional PLE+HP@-L) Sg*+Y-operation of h is non-trivial for odd s (respectively), then
hy is an epimorphism for X of dimension <s.

We express our thanks to H. Toda who suggested us to use the S-duality.

1. A proof of the Kahn-Priddy theorem

First we shall prove Theorem 3 for p=2. The notations of [6] are carried
over to the present section unless otherwise stated.

Roughly speaking, the proof of Theorem 3 is to replace the infinite dimen-
sional real projective space P~ with the s-dimensional one P° and the map
¢: P~ —(0S°), with a map adj(h): P° —(OS°), (cf. p. 985 of [6] and Theorem 7.3
of [9]) in the proof of Theorem 3.1 of [6].

Let t: BSY — Q,,(BS#(2))®
= ém(éz. . 'QzB@Z)(s) c ém(éz. . _szs)
k—1 k—1

be a restriction of the pretransfer T:B@zkeém(B@zk(Z)) (Definition 3.1 of [6])

on the s-skeleton B&S’. Let g, Qm(ézu-QZPs) — émzk—l(Ps) be induced by the
k—1

wreath product and g,’: ka-l(P‘) — O(P*) a Dyer-Lashof map. Then we obtain

a commutative diagram

b
23 B8y ——> 237 (08°),

, where a=adj(g,’g,/t), b is a restriction of G, (p. 985 of [6]) on >1* & and 7’
is defined by 7'(x A f)=f(x) for x>~ S° and f=(QS°),. Remark that b is a
restriction of 31” ¢og.g,f, on 23° B&Y

For large k, byx:H(BSY;Z,)—> H,(Q(S°),;Z,) is an isomorphism if i<s
(p- 985 of [6]). So, by the Whitehead-Serre theorem, by:*{X, B&} —
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2{X, (0S4} is an isomorphism for a finite CW-complex X of dimension <s—1
and an epimorphism for X of dimension <s. It is clear that ry/: {X, (0S°),} —
{X, S°% is an epimorphism if X is connected. Thus (#'d)4 is an epimorphism
on the 2-component and hence so is 4. This proves the first part of Theorem
3 for p=2.

Under the first assumption of Theorem 3, the functional $3¢(S¢*)- and
BBi(Sq****)- operations are non-trivial for 2i(p—1)=<s (2i<s, respectively).
This is easily seen by use of the cohomology structure of Bz and the Adem
relation. So, by adding the second assumption, by : H,(B&$ ; Z,)—H (Q(S°)s; Z,)
is an isomorphism for 7<s and an epimorphism for 7<s. This completes the
proof of Theorem 3 for p=2.

For p>2, the argument is quite parallel (cf. Remark 3.5 of [6] and Theorem
7.5 of [9]) and we omit it.

2. The S-duality

From now on we shall devote ourselves to the proof of Theorem 1.
Denote by Bri=Br">|Bz“~", where Bry means Bz U (one point). Let X be
an (/—1)-connected, finite CW-complex of dimension j. Then f:S”—X is
symmetric if and only if there is a map f’: Bz — X for 1=<n</ such that the
following diagram is commutative: '

s x
(2) o N\, ST

7’
Bry

, where o’ is the map o of (1) followed by the collapsing map from Bz™ to Br}.
Let N be so large that N>max (2j+1, 2m-+1) and take N-duals of every-
thing in (2):
Anf

(2) Ayo’ \ L// AN(f’)
Dy(Br?)

, where Dy Y and Ay g are N-duals of a finite CW-complex Y and a map g [11].
If m<2n—2, then we work in the stable range. So, we obtain the following

Proposition 4. Let X be an (I—1)-connected, finite CW-complex, N=
max (2j+1,2m+-1) and m<2n—2. Then a map f:S™ — X represents a symmetric
element if and only if there is a map f: DX — Dy(Br) for 1<n=I such that the
following diagram is homotopy commutative:
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D
SN-"'-:—__”f DyX
(3) N
Dy (B

3. The S-dual of B=™,

Take N=N(a,s)=a2*® for p=2 and 2ap*’**~*1 for p>2, where a is a
sufficiently large integer.

Put s=m—n. Let é=€(s)=0 if s=—1 mod 2(p—1) and &=1 if sxx—1
mod 2(p—1) for p>2 and €=0 for p=2. Then we have the following

Proposition 5. Dy(Bzy) has the same homotopy type as Bri—n=% for
N=N(a, s+¢) with s=m—n.

Proof. For p>2, recall from Theorem 1 of [7] that the stunted lens space
Briit'=L"(p)/L""'(p) is the Thom complex (L°(p))™* ¥, where L’(p)=
Br®"*Y is the (2r41)-dimensional lens space, £ is the canonical line bundle over
the complex projective s-space CP*, r() is the real restriction of & and z¥r(£)=
rz¥(£) is the bundle induced by the natural projection =,: L°(p) — CP".

First we shall show

(4)  Da(Balot) == (L(p)-cmromrd
=~ Br¥-&, for N = N(a, 2s+1).

According to Theorem 3.3 of [3], the S-dual of Bagp*'==(L*(p))™"® is
(L*(p)) "™*®~", where 7 is the tangent bundle over L’(p). As is well known,
T+1=(s+1)z¥r(g). So (L°(p)) """ ®-r=(L°(p))'~"*>**"®, By Theorem 2
of [7] the J-order of z¥r(§)—2 is pI*/*='1, Obviously [s/p—1]=[2s+1/2(p—1)]
holds. So by Theorem 3 of [7], (L5(p))” "™ ® and (L*(p)) N/~ "+t ®
have the same stable homotopy type. Therefore we have obtained (4).

Observe that D y(Bzig)=Dy(Brin+t)[SN ~*"-% for N=N(a, 2s) and also that
D y(Brin) is obtained from Dy(Bzin*') by deleting the top dimensional cell
for N=N(a, 25s). By the same way as above we obtain Dy(Br3m,) from
D y(Br3w) for N=N(a, 2s).

Similarly and more simply we have the assertion for p=2 (Theorem 6.1
of [3]). We note that the J-order of £—1 is 2*®>, where £ is the cannonical line
bundle over the s-dimensional real projective space P° ([1] and [2]).

4. On the Kahn-Priddy map

Consider the cofibring sequence

/ V4 /
q

(5) o> 872 Brp s Baprt L g
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where ¢/ and ¢’ are the canoncial inclusion and projection respectively.
Put s=m—n and take N(a, s-+2)-duals of everything in (5) and use Theorem
6.2 of [11] and Proposition 5, then we have the following

Proposition 6. There is a cofibring sequence

h q i
v SNt BaFonl «—— BrFony «— SN

D /
for N=N(a, s+2), where h: Bx%="~Dy(Br) 2> SN-"=1 g—Dyi’ and
t=Dyq'.
We note that the cofibre of 4 is SBz¥-%7%.

Proposition 7. Let m--1=0 mod 2*“*> for p=2 and m+1=0
mod 2pleHAeD1 for p>2. Then

l) Br¥=n i~ SN-m-1Bys~ QN-m-1R,)\/ GN-m=1
ity k| SN-""'is of degree p and h| SN "Bz has non-trivial functional
Pi(Sq*)-operations for 2i(p—1)<s+1 (2=i=<s+1), respectively).

Proof. Recall that N=N(a, s+2) with sufficiently large a. Put m-1=
N(b, s+1) for any & with 0<b<a—1. Then N—m—1= N(c, s+1) and
N—n—1=N(c, s+1)+s for some integer c. So by the James periodicity for
p=2 ([5]) and by Theorem 4 of [7] for p>2, we have Bry-mi=S"V " "'Bri=
SN Br®\/ SN-™-1, This leads us to 1).

Since N—m—1 is even, k| S¥-™"* is of degree p. For i >N—m—2, there
is the natural isomorphism H(SBz¥-n%;Z,) =H"'(Bx'¥N-"";Z,). Letuand
v be generators of H*"Y(BzN~""";Z ) for i=2 and 3 respectively. Then the
non-triviality of the functional Pi-operation follows directly from the following
relation:
cples+1szcp-11-1

%i(uv(N-m—3)/2) — u%i(.v(N—m-f’)/'é’) :< : )u.v(N—m—:*)/Z'*'i(P—l):i: 0

for 2i(p—1)<s+1.
Similarly the functional Sg*-operation is non-trivial for 2<i<s+-1.
This completes the proof.

5. A proof of the main theorem

Obviously we have the following

Lemma 8. If Y is an (r—1)-connected CW-complex of dimension r--s with
r>s, then there exists an (s—1)-connected CW-complex W of dimension 2s such that
Y=8""W.

Now we are ready to prove Theorem 1 supposing Theorem 3. If X is
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(/—1)-connected and dim X=j, then DyX is (N—j—2)-connected and dim
DyX=N—I—1. Therefore, by the above lemma, there exists a (j—I—1)-
connected and 2(j—/)-dimensional CW-complex W such that DyX=
SN, If m4-1>2j, then SNV =8SN-""}(§™*-% ) and dim
S"+i-2W=m—I=k. Hence Propositions 4 and 7 for n=I[ and Theorem 3
complete the proof of Theorem 1.

6. An example

Theorem 1 does not hold without the assumption 2 dim X<m+.l This
is shown as follows.

Let c.= {S°, S%, n€ {S", S and v {S?, S°% be generators. Puta=vV2
and X=(S""°Vv S™"?) 9 e”"'. Then it is clear that z,,(X)= {7} =Z, for m>11,

where 7 is a co-extension of 7. It is shown as follows that # is not symmetric
for any m>10.

If % is represented by a symmetric map f: S” — X, then f is decomposed
as (2) for n=m—5. It is easily seen that m is odd and (f)*: H™(X; Z,)—
H™ Y (Pm_s; Z,) is an isomorphism. Put m=%k mod 8, where k=1, 3, 5or 7.
Since S¢* is non-trivial in H*(X; Z,), we have k=1 or 3 and (f")*: H"%(X; Z,)—
H™*(Pm_s; Z,) is an isomorphism. The operation Sg¢*: H” '(Pnt}; Z,)—
H™(Ppts; Z,) is non-trivial and so we have k=3.

Consider the diagram (2)’ for n=m—5. Then we have

A
SN m—1 Nf DNX
ANQ\ BT
N-—m+4
N—m——l

, where N=a2¢®=38a for sufficiently large a and Dy X=SV""UeN "+ JeN """,
Put N—m=38¢+5 and let ¢: Pgi{7— S®*° be the collapsing map. Then it is
clear that gA N(f "):DyX—>S®*° is also the collapsing map and (gAN(f"))*:
KO(S"' +9)—->KO(DNX) Z, is an isomorphism. On the other hand, we have
KO(PQEIZ) Z+Z, by Theorem 7.4 of [1]. 'This is a contradition. Hence 7 is
not symmetric for m>10.
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