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1. Introduction

W.J. Harvey [4] associated to a surfaSe a finite-dimensisimaplicial complex
C(S), called the curve complex, which we recall below.

For a connected orientable surfage 5, of gegus  with  punctuhes
curve complexC(F) of F is the complex whosé& -simplexes are the isotopy classes
of k + 1 collections of mutually non-isotopic essential lodpsF which can be real-
ized disjointly. It is proved in [16] that the curve complex ¢onnected ifF is not
sporadic (wheref' isporadicif g=0,n < 4org =1,n < 1). For x] and ],
vertices of C ), thedistanced([x],[)]) between [x] and | ] is defined by the min-
imal number of 1-simplexes in a simplicial path joining [ ] [®]. It is known that
if S is not sporadic, therC K ) has infinite diameter with respicthe distance de-
fined above (cf. [11], [16])C ¥ ) is not locally finite in the ssnthat there are infi-
nite edges around each vertex, and the dimensio@ &f ( }is 8+n.

Recently, J. Hempel [11] studied Heegaard splittings ofetb3-manifolds by us-
ing the curve complex of Heegaard surfaces. et  be a closedtable 3-manifold
and (V1, Vo, S) a genusg > 2 Heegaard splitting, that i3/; i ( =1 and 2) is a genus
g handlebody withM =V; UV, and Vi NV, = 9Vi NIV, = S. By using the curve
complex, Hempel defined the distance of the Heegaard aglitienoted byl Vi, V>),
and proved the following results.

Theorem 1.1 (J. Hempel). (1)Let M be a closed orientable irreducible
3-manifold which is Seifert fibered or which contains esséntri. Thend(Vy, Vo) < 2
for any Heegaard splittingd Vi, Vo; S) of M.

(2) There are Heegaard splittings of closed orientaBlenanifolds with distance> n
for any integern.

In particular, the theorem above implies that a Haken méhiie hyperbolic
if a Heegaard splitting of the manifold has distance 3. Results along these
lines were also obtained by A. Thompson [20]. Moreover, Hd&oC. Hayashi and
N. Yoshida [2] made detailed study of tunnel number one krotd C. Hayashi ([6],
[7]) studied (1 1)-knots from similar points of view.
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In this paper, we apply this idea to genus one 1-bridge krfotsnot K in an ori-
entable closed 3-manifold? is calledgenus onel-bridge knof a (1, 1)knot briefly,
if (M, K)=(V1,11)Up(Va,t2), Where /1, Vo; P) is a genus one Heegaard splitting and
t; is a trivial arc inV; ¢( =1 and 2). (An arc properly embedded in &dstorus V
is said to betrivial if there is a diskD inV withr C 0D anddD —t C 9V.) Set
W; =(V;, ;) (i =1 and 2). We call the tripleW,, Wy; P) a (1, 1)splitting of (M, K).
In this paper, we study (1 1)-splittings by using the disean€ the curve complex. To
define the distance of a (1 1)-splitting, we use the twice fwed torus:® =P — K.
Fori = 1 or 2, letKC(W;) be the maximal subcomplex of X( ) consisting
of simplexes([cg],[ci], ... [ck]) such that an essential loop representiag [ j] ( =
0,1,...,k) bounds a disk inV; —¢,.

Derinimion 1.2, We define thalistanceof a (1 1)-splitting W1, W2; P) by

d(W1, Wa) = d(K(Wh), K(W2))
= min{d([x],[)]) | [x]: a vertex in KC(W1), [y]: a vertex in K(W>)}.

In this paper, we give topological characterizations of tkeots admitting
(1, 1)-splittings of distance< 2 (Theorem 2.2, 2.3 and 2.5). As a corollary, we see
that a (1 1)-knot is hyperbolic if and only if it has a,(1 1)igpig of distance> 3,
except for certain knots (Corollary 2.6). Further we willope that there are (1 1)-
splittings with arbitrarily high distance (Theorem 2.7).

2. Statement of results

Let K be a knot in a closed 3-manifold . By K( ), we mean therior of K
in M, i.e., E(K)=clM — N(K)), whereN K ) is a regular neighborhood &f M

Derinimion 2.1. (1) K is atrivial knot if K bounds a disk inM .
(2) K is acore knotif K is non-trivial andM admits a genus one Heegaard splitting
(V1, Vo; P) such thatK is isotopic to the core & for =1 or 2.
(3) K is atorus knotif K is isotopic to a simple loop on a genus one Heegaard sur-
face of M and is not a core knot.
(4) K is a 2bridge knotif there is a genus zero Heegaard splittinB,(B2; Pp) of
$% such that 8;, B, N K) (i =1, 2) is a 2-string trivial tangle. (Note that a trivial kno
in S is also regarded as a 2-bridge knot.)
(5) For a paira (> 4) and 8 of coprime integers and an elemente Q U {1/0},
K (a, 8; r) denotes the knoK, in K;(r), where K; U K> is the 2-bridge link of type
(o, B) (cf. Chapter 10 of [22]) and1(r) is the manifold obtained by -surgery aty.

By an argument similar to that in Section 1 of [18], we can de# K (o, 5; r)
is a (1 1)-knot. These knots form an important family of (1kbpts (see [1], [3]
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and [8]).

For the definition of other standard terms in three-dimaraidopology and knot
theory, we refer to [10], [12] and [22].

In this paper, we prove the following theorems.

Theorem 2.2. Let K be a(l1, 1}knot in M and(Wy, Wy; P) a (1, 1)-splitting of
(M, K). Thend(Wy, W) =0 if and only if K is a trivial knot

Note that Theorem 1.1 of [9] essentially implies Theorem 2.2

Theorem 2.3. Let K be a(1, 1yknot in M and(Wi, Wo; P) a (1, 1)splitting of
(M, K). Thend(Wy, W,) = 1 if and only if M isS? x S and K is a core knot

Theorem 2.4. Let K be a(, 1yknot in M and(Wi, Wo; P) a (1, 1)splitting of
(M, K). If d(W1, Wy) = 2, then one of the following holds
(1) M is $® and K is a non-trivial2-bridge knot
(2) M is a lens space an& is a core knot
(3) K is a non-trivial torus knat
(4) E(K) contains an essential torus
(5) K is non-trivial and K = K («, 3; r) for somea, 8 andr.
Conversely if (M, K) satisfies one o{1)—(4), then any(1, 1)splitting of (M, K)
has distance= 2.

In the above theorem, by kens spacewe mean a closed 3-manifold which ad-
mits a Heegaard splitting of genus one and is homeomorphiwither S nor $2x S1.
To prove Theorem 2.4, we need the following results.

e The classification of (1 1)-splittings of 2-bridge knots $8 by T. Kobayashi and
O. Saeki [15].

e The classification of (1 1)-splittings of core knots in leraces by C. Hayashi [6].

e The classification of (1 1)-splittings of torus knots by K. NMuooto [17].

e A characterization of (1 1)-splittings of (1 1)-knots whasderiors contain an es-
sential torus (Proposition 6.1), which generalizes resaftC. Hayashi [7] (cf. [18]).

Moreover, we prove the following characterization of, (1khpts whose exteri-
ors contain an essential torus. A torus properly embedded rompact orientable
3-manifold is called aressential torusf it is incompressible and nad-parallel in the
3-manifold.

Theorem 2.5. The exterior of a(1, 1yknot K in M contains an essential torus
if and only if K belongs tofCy, Kz, K3 or K.

In the above theoreniC; (i =1, 2 3 4) denote the families of (1 1)-knots defined
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Ko KO
Q Q
K, K> 0 K
Fig. 1. Fig. 2.

as follows.
(1) K € K, if K is a knot in lens spaces which is the connected sum of a cooe k
in a lens space and a non-trivial 2-bridge knot.
(2) K € K, if K is constructed as follows. LeKy be a non-trivial torus knot in a
closed 3-manifoldM , and lel. X3 U K, be a 2-bridge link of type d, 3) with
a > 4. Let p: E(K2) — N(Ko) be an orientation-preserving homeomorphism which
takes a meridiam, C JE(K7) of K, to a regular fiberf C (ON(Ko) N P) of E(Kjy).
Then K =p(K1) C N(Kg) C M.
(3) K € K3 if K is constructed as follows. LeKo U K; U K, be the connected
sum of two Hopf links illustrated in Fig. 1, and l&; U K; be a non-trivial 2-bridge
link. SetM =E K1 U K2) Uig,,0,) E(K{ U K3), wherey;: 0E(K;) — OE(K/) is an
orientation-reversing homeomorphism which takes a prefetongitudel; C JE(K;)
of K; to a meridianm; C JE(K/) of K] (i = 1 and 2). Thenk =Ko C E(K1 U
K;) C M. It should be noted thal/ = S2 x S'. This can be seen as follows. For
(6, j) = (L 2) and (2 1), letD; be a disk ifE K(; ) bounded by . Then each of
Cl(E(K1 U K3) — N(D1 U D)) and E K7 U K%) U N(D1 U D) is homeomorphic to
52 x [0, 1].
(4) K € K4 if K is constructed as follows. LeKy be K (4 1; 0) andK; a meridian
of Ky (see Fig. 2). Letl; € OE(K) be a longitude ofK; which bounds a disk in
E(K3) intersectingKy transversely in a single point. Lé&t; be a non-trivial 2-bridge
knot andy: OE(K1) — OE(K2) an orientation-reversing homeomorphism which takes
[1 to a meridian ofK,. SetM =FE K1) U, E(K2). ThenK =Ko C E(K1) C M. It
should be noted that? = $2 x S. This can be seen by using the fact that the union
of E(K3) and a regular neighbourhood of a disk #h K1 bounded by/; is a 3-ball.

By using Thurston’s hyperbolization theorem of Haken maldsg (see for exam-
ple [13]), we can obtain the following corollary.

Corollary 2.6. Let K be a(l1, 1}knot in M. Suppose tha{M, K) is not equiv-
alent to K(«, 8; r) for any «, 6 and r, and that the bridge index ok is at least
three if M = S°. Then K is a hyperbolic knot if and only if it has @, 1)-splitting
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with distance> 3.
In the last section, we construct,(1 1)-splittings with &ddily high distance.

Theorem 2.7. Let M be a close®-manifold which admits a genus one Heegaard
splitting. Then for any positive integer, there is a(1, 1}knot in M which has a
(1, 1)-splitting with distance> n.

3. The structure of IC(W,)

In this section, we describe the structure of the simplicgaimplex KC(W;).
Throughout this sectionfy 34t ) denotes a pair of a solid tovusnd a trivial arc
t properly embedded i , and  denotes the twice punctured @vus r. The two
punctures ofx are denoted lpp and p,. Two subspaceX and W  are said to
be pairwise isotopic if there is an ambient isotopyh; }o<s;<1 0of V such thathg = id,
he(t) =t andhy(X) =Y.

Derinimion 3.1, An essential loop irE  is called anloop (an «-loop resp.) if it
is essential (inessential resp.) @V.

DeriniTion 3.2. Let D be a properly embedded disk ¥h
(1) D is called an-diskin W if DNt =0 anddD is an:-loop on ¥ .
(2) D is called arneo-diskin W if DNt =0 anddD is ane-loop on T .
(3) D is called ans;-diskin W if DNt = {1 pointt anddD is ane-loop on X .

Lemma 3.3. Let Dg be aneg-disk in W witha = 9Dg, and let 3 be an essential
loop in £ disjoint froma. Then precisely one of the following conditions holds
(1) ¢ is isotopic tow in X.
(2) /6 bounds an.-disk in W.
(3) B bounds ans;-disk in W.

Proof. LetB be the 3-ball obtained by cutting alofl, and letD} and D}
be the copies ofDg in OB.

Case 1. Suppose thag does not separat®) and D{ in dB.

Then 8 does not separatg; and p, in 9B, becauses is essential inz . Let’
be a properly embedded arc i  witlh’ = {p1, p2} which is parallel to an arc in
OB — (3 joining p1 to pp. Then 3 bounds a separating disRg in B disjoint from ¢’
Sincet’ is isotopic tor inB relativeDyUD{, the arct’ in V is isotopic tor inV rel-
ative {p1, p2}. Moreover by the hypothesis of Case g cuts (V,¢) into (/, ) and
(V2, 0), where vy is a 3-ball andv; is a solid torus. Hence the condition (2) holds.

CAse 2. Suppose thaf separate; and DJ in 9B.

Then we can see, by an argument similar to the above, that dhditon (3)
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or (1) holds according a8 separateq p1, p2} in 9B or not.
This completes the proof of Lemma 3.3. [l

Lemma 3.4. Any twoep-disks inW are pairwise isotopic

Proof. LetD andD’ be ep-disks in W . If D N D’ = (), then we can see that
D U D’ bounds a product region disjoint from by an argument simitrthat of
Lemma 3.3. Hence we may assume tliat  didintersect transverselyD N D’| is
minimized up to pairwise isotopy ifi¥ and thgdn D’| > 0, where|-| is the number
of connected components. By a standard innermost disk angiiwe can see thddn
D' has no loop components. Letbe a component ob N D’ which is outermost in
D’ and¢; the outermost disk irD’ with v C 9¢’, that is, the interior o] is disjoint
from D. The arcy also cutsD into two diskg; and §,. Then each of§; U §; and
d,Ud] is a properly embedded disk v disjoint from . If eith@fd,Ud]) or 9(5.Ud1)
is inessential iND(V —t), then we can decreas® N D’| by a pairwise isotopy oD in
W, a contradiction. So we may assume that) §; andd, U d; are eo-disks or:-disks
in W.

CLav. At least one ofs; U 6] and §, U d; is anc-disk in W.

Proof. Suppose thaf; U 7 is a eo-disk in W to show thaty, U §; is an ¢-disk.

Let B be the 3-ball obtained fron¥ by cutting along , and It and D_ be
the copies ofD indB. We denote the image af; in B by the same symbol. Then
we may assumé;ND. = () andé;ND_ =~. By cutting B alongd;, we obtain 3-balls

By and B, with D, C 9B1, (61 Ud)) C 9B;1 and 2 U ;) C OB,. SinceD andd; are

disjoint froms in vV, precisely one oB; and B, containst . Ift C Bi, then9(d2U d7)

is inessential iM(V —1t), a contradiction. Hence C Bz, andd, U4, is an:-disk in W.

]

Let B, Dy, D_, B; and B, be as above. Puf, = cl(D’ — ¢}), and letA be the
annulus defined byA =By N (0B — int(D+ U D_)). Puta = 9D’ N 845, and let
v 3 pi1, p2, ..., pn € 0y be the components adD N « sitting on « in this order.
Then by the minimality of DN D’|, we may assume that N 94, consists of essential
arcs in the annulust . Let; be the subarc o joining p; to p;+1 in «, and letp;,
p; , respectively the copies g, D, andoD_ (i = 1,2 ...,n—1). Thenay N
D, = p; andas N D_ = p,, becausen; is essential inA . Inductively, we obtain
aiNDy=pfando;ND_=p; ., (=12...,n—1). In particular,c,_1 N D+ = p;_,
and a,,_1 N D_ = p, . This means thatD’ does not intersecD transversely jn
a contradiction. Hence the interior of s disjoint frofid;, and there is arzg-disk
obtained by movingD. so that it is disjoint fromD’. This meansD’ is isotopic toD .

]
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Lemma 3.5. Let [a] be the vertex ofC(W) represented by the boundary of an
eo-disk and let [5] be an arbitrary vertex oflC(W) different from[«]. Then[5] is
represented by am-loop disjoint from ane-loop representind«].

Proof. If [4] is represented by ar-loop, then we haved] = [F] by Lemma 3.4,
a contradiction. Sof] is represented by anloop, saygs. Let Dg be a disk inV —¢
bounded bygs. Since is inessential inV , there is an essential didk Vin  disjoint
from Dg (and hence disjoint from ). By Lemma 3.4D representsd] and hence
we obtain the desired result. ]

Lemma 3.6. Any two mutually disjoint-disks inW are pairwise isotopic

Proof. LetD andD’ be mutually disjoint:-disks in W and put3 = 9D and
B =0D'. ThenD cuts V,t ) into Y1, ¢) and (», 0), whereV; is a 3-ball andV; is a
solid torus. If necessary, by exchanging the naes Rhdf disks, we may assume
that D’ is contained inV; and 3’ is an inessential loop WV, — ¢, becauseD’ is an
-disk and is disjoint fromD . If3’ bounds a disk ir0V; disjoint from the copy ofD
in 9Vy, then 3’ is inessential iV — ¢, a contradiction. Hencg’ separates the copy
of D from 9t in V1, and this impliesD and)’ are pairwise isotopic. ]

Let o be ane-loop which bounds amg-disk, sayD,. We fix a properly embed-
ded arc, sayp, in OV such thatdry = 0t, rnNa =0 andr Uty bounds a disk inv . Let
B be the 3-ball obtained by cutting  along,,, and letD/, and D! be the copies of
D, in OB. SetP = dr U {the centers ofD/, and D/'}. Then @B, P) is identified with
(R?,Z?)/T, whereT" is the group of isometries & generated byr-rotations about
the points of the integral lattic&?. Here 1, is identified with a line inR? of slope
1/0, i.e., a lift of o joins (Q 0) to (Q 1) iNR2.

Let A be the set of the vertices &f(W) different from [], where ] is the ver-
tex of (W) represented by. In the following, we define a map: A — QU {1/0}.
Let [3] be an element ofd. Then by Lemma 3.5,d] is represented by antloop, say
B, which is disjoint froma. Let t3 be an arc in0V — g joining distinct components of
Ot. Note thatzs is unique up to isotopy relative to the endpoints. Egt [0, 1] — R2
be a lift of t5: [0, 1] — (0B, P). Theniz(1l) — 75(0) is an integral vector, sayp(q ),
in R2.

Lemma 3.7. Let[S] and (p, ¢q) be as aboveThen the rational numbey/p does
not depend on the choice of a representative[@f and hence the correspondence
B — ¢q/p induces a well-defined map: A — QU {1/0}. Moreovery is injective and
the image is equal tdq/p € QU {1/0} | (p, q) = (0, 1) (mod 2}.
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Proof. Let3 be another representative disjoint from of [3]. Then there is
a homotopy inX betweer and 3'. Since« is an essential loop it and is ho-
motopic to neither3 nor 3’, we can modify the homotopy so that it is disjoint from
«. HenceB3 and 3/ are homotopic inX — « and therefore in the four times punc-
tured 2-spheredB — P. This implies thaty is well-defined and injective, because
it is well known that the correspondengke — ¢/p induces a well-defined injective
map from the set of the isotopy classes of essential loop8Bn- P to Q U {1/0}
(cf. Section 2 of [5]). Moreover, since anrloop representing ] does not separate
ot in OV, we see p,q )= (0,1) (mod 2). On the other hand, it is easy to see that
for any g/p € Q U {1/0} with (p,q) = (0, 1) (mod 2), there is a vertex3] € A
with o([8]) = ¢/p- Hence we obtain the desired result. U

Proposition 3.8. Let [«] be the vertex ofC(W) represented by the boundary of
an go-disk of W, and let A be the countably infinite set as abovéhen [C(W) is iso-
morphic to the join{[«a]} * A.

Proof. By Lemma 3.4, we see that][is unique. Lemma 3.5 indicates that for
any vertex p] of A, there is an edge joiningd] to [a]. On the other hand, by
Lemma 3.6, there are no edges ©fx ( ) joining distinct verticEsA. ]

4. (1, 1)-splittings of distance =0

Lemma 4.1. Let K be a(l, 1}knot in M and (Wi, Wy, P) a (1, 1)splitting of
(M, K). Then K is a trivial knot if and only if there are andisk D; in W; with
0D1=0D; (i =1 and 2).

Proof. We first prove the “only if part”. Suppose th&t s talviLet D be a
disk in M with 9D = K. Then by Theorem 1.1 of [9], we can isotof# so that
D N P separated) into two disks. S&; oN(D)NV; (i =1 and 2). Then we see
that D; is an:-disk anddD; =0D, (i =1 and 2).

We next prove the “if part”. Suppose that there are.atisk D; in W; ( =1
and 2). ThenD; U D, forms a 2-sphere which cuts( K ) inta(— int B2, () and
(B2, 1-bridge knot) and henc& s a trivial knot. O

Lemma 4.2. Let K be a(1, 1)}knot in §? x ST and (W1, W, P) a (1, 1)-splitting
of (82 x S, K). ThenK is a trivial knot if and only if there are ary-disk D1 in Wy
and aneg-disk D, in W, with 9D, = 9D».

Proof. We first prove the “if part”. Suppose that the latterndition in
Lemma 4.2 holds. Then there aralisks D] and D} in Wi and Wa, respectively, with
OD!NID; =0 (i =1, 2) andoD} = OD5. Hence by Lemma 4.1K is a trivial knot.

Suppose conversely th& s a trivial knot $8 x S1. By Lemma 4.1, there are
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an ¢-disk §; in W; with 96; = 99, (i =1 and 2). Then there arg-disks in each ofW;
and W, such that they are disjoint frony U d> and they share their boundaries since
the manifold isS? x St. Hence we see that the latter condition holds. O

Proof of Theorem 2.2.  Suppose th#t is a trivial knot Mi . Then b
Lemma 4.1, we havd Wi, W) = 0.

Conversely, letKk be a (1 1)-knot idd  andV{, W,; P) a (1, 1)-splitting of
(M, K) with d(W1, Wy) = 0. Then there is an essential loap 1 P=— K which
bounds a disk inv; — ¢ for eachi =1 and 2.

If x is an eo-loop, then W1, Wo; P) satisfies the condition of Lemma 4.2. Hence
M is §? x St and K is a trivial knot.

If xis an (-loop, then Wi, W,; P) satisfies the condition of Lemma 4.1, that is,
K is a trivial knot in M .

We have completed the proof of Theorem 2.2. U

5. (14 1)-splittings of distance =1

Proposition 5.1. Let K be a(l, 1}knot in $? x S* and (W1, Wp; P) a (1, 1)
splitting of (§2 x S, K). ThenK is a core knot if and only if there are ap-disk D;
in W; and anes-disk D; in W; withdD; = 9D; for (i, j) = (1, 2) or (2, 1).

Proof. The “if part” follows from the light bulb theorem (cChapter 9, Sec-
tion E, 4 Exercise of [22]).

To prove the “only if part’, suppose tha is a core knotSfix S*. Then there
is an essential 2-spher®  which intersefis in one point.Put S FV; (i =1
and 2). We may assume that each componens;ofs either anep-disk, anes-disk
or an (-disk in W; = (V;,1;). Note that|S;|] > 0 and thatS; contains at most one
e1-disk component. LeD be afp-disk in W» such thatD intersectS, transversely.
We chooseS and> so that each componentSpis either anso-disk, ane;-disk or
an (-disk in Wy, and the pair 1], |S2 N D|) is minimized with respect to the lexico-
graphic order.

If |S1) =1, thenSN P is ane-loop becauseS is an essential 2-spheresinc S*.
Hence the assertion obviously holds. So we may assifiaie> 1.

Ciam 1. Son D #0.

Proof. Suppose that, is disjoint from D . LetB be the 3-ball obtained by cut
ting V, along D . Then there is a disk amB with EN S, =0F and |[ENK| < 1.
Let E’ be the disk obtained fronf by pushing the interior ©f into theefior of
B. Then 9E’ cuts S into two disksQ:1 and Q,. Precisely one of them, sa@i, is
a component ofS;.

Suppose thatE’'NK|=0. If |01NK]| =1, thenQ1UE’ is a 2-sphere which inter-
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sectsK in one point. Hence the disky and E’ satisfy the desired condition. So we
may assume thdtD;N K| =0 and hencéQ,NK|=1. LetS’ be the 2-sphere obtained
from Q, U E’ by pushingdE’ into the interior of V, slightly. Then each component
of §; := 8" NV is either anep-disk, ane;-disk or an:-disk in Wi, and|S;| < |S1],

a contradiction.

Suppose thate’ N K| = 1. If |01 N K| =0, thenQ; U E’ is a 2-sphere which
intersectsK in one point, and hence the digks and E’ satisfy the desired con-
dition. So we may assume thaD; N K| = 1 and hencgQ, N K| = 0. Let S’ be
the 2-sphere obtained fro@,UE’ by pushingdE’ into V; slightly. Then each compo-
nent of §7 := §'NVy is either ansg-disk, anes-disk or an¢-disk in Wq, and|S7| < |$4],

a contradiction. |

Clam 2. S, N D has no loop components.

Proof. Suppose that, N D has a loop component. Let be a loop component
of S, N D which is innermost inD and, the innermost disk withr = 9D,, that is,
the interior of D, is disjoint from S,. Theno cuts § into two disksE; and E,. We
can assume that1NK| = 1. SinceD,, is disjoint fromK ,S’ = E;UD,, is a 2-sphere
which intersectsk in one point. P8t =S’ NV; (i =1 and 2). Note thas; is either
an eo-disk, anej-disk or an(-disk in Wy. If o is essential inS,, then |S]| < |S1],
a contradiction. Ifo is inessential inS,, then |S;| = |S1]. In this case, by isotoping’
so thatD, is disjoint from D, we see thdts; N D| < |S2N D|, a contradiction. [

By Claim 1 and Claim 2, there is an arc componentf S, N D which is outer-
most in D . LetD, C D be the outermost disk with C 9D,. Puty’ = cl(9D., — 7).
Let F be the component of the surface obtained by cutéing along 951 such that
v C F. Let S be a 2-sphere obtained by isotopigy alobg near the arey, and
put SH=sO v, (i =1 and 2).

CLam 3. The arcy’ is essential inF .

Proof. Suppose that’ is inessential inF . Then we obtain an annulus compo-
nentA in S&l) such that one of the components @i bounds a diskE inHV;. Note
that |[E N K| < 2 and JE cuts S into two disksR; and R,. Since S intersectX
transversely in one point, we may assume ti&atN K| =1 and|R; N K| = 0.

Suppose thatENK|=0. If A C Ry, let S’ be a 2-sphere obtained froRyUE by
pushingE into the interior o¥/1; otherwise, letS’ be a 2-sphere obtained froRyUE
by pushing the interior o2 into the interior df;,. Then we see that each component
of §7 is either aneo-disk, anei-disk or an¢-disk in Wy, and that [S}]. |S; N D|) <
(I$1], |S2 N D|), a contradiction.

Suppose thatENK|=1. If A C Ry, let S’ be a 2-sphere obtained froRp,bUE by
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pushingE into the interior of/;; otherwise, letS’ be a 2-sphere obtained froRyUE
by pushing the interior o into the interior df,. Then we see that each component
of §; is either aneo-disk, ane;-disk or an:-disk in Wy, and that [S;], |S5 N D|) <
(I$1], |S2 N D), a contradiction.

Suppose thatE N K| = 2. If 4/ joins an.-disk to itself, thenE’ := cl(F — E) is
a disk bounded by a component @fA. Since E’ is disjoint from K , by an argument
similar to the case ofE N K| = 0, we obtain a contradiction by using the digk
instead of E . So we may assume thatjoins aneo-disk to itself. Then there is ary-
disk disjoint fromdE. By Lemma 3.3,0E bounds an.-disk. Hence by an argument
similar to the case ofENK| =0, we obtain a contradiction by using thelisk instead
of E. ]

Ciav 4. S; has noe;-disk components.

Proof. Suppose thaf; has ane;1-disk component. The; has no:-disk compo-
nents. ThusS; haseg-disk components, becaus$g| > 1. Hence by Claim 35’ joins
distinct components of;.

CAase 1. The arcy’ joins distincteo-disks.

Let 4 be the disk component " obtained from these disks. Then we can push
0 out of vy fixing #;. After this operation, we see that each componenﬁ&@f is either
an go-disk or ane;-disk in Wy, and that|S§1)| < |81/, a contradiction.

CAsE 2. The arcy’ joins aneg-disk to ans;-disk.

Then Sgl) has the disk componer from these disks. Note that cuts (V3 #1)
into (V{,#) and (V{’,#), whereV] is a 3-ball,#] is a trivial arc inV;], v/’ is a solid
torus andr;’ is a trivial arc inV,’. So we can pusk’ out of V3 through (7, ¢;). After
this operation, each component S)ﬁl) is either ansg-disk or ane;-disk in W1, and we
have |S{] < |$1], a contradiction. O

CLav 5. S1 has nogp-disk components.

Proof. Suppose tha$; has ancp-disk component. Note thaf; may have:-disk
components, becaus®y has noe;-disk components by Claim 4. Sineg is essential
in F by Claim 3, we have the following cases.

CAase 1. The arcy’ joins distincteg-disks, or joins distinct-disks.

By an argument similar to Case 1 in the proof of Claim 4, we iobtacontradic-
tion.

CASE 2. The arcy’ joins anep-disk to an:-disk.

Then Sil) is either aneo-disk, ane;-disk or an(-disk in Wi, and |S£l)| < |81,
a contradiction.

CAse 3. The arcy’ joins anep-disk to itself.

By Claim 3,+’ must be essential if . Hend® must consist of ar,-disk and
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i~disks, and we obtain a Mobius band #", a contradiction.

CAase 4. The arcy’ joins an:-disk to itself.

Let § be the.-disk component ofS; with 9+ C 94, and lety, and . be arcs
such thatdé = v U, and 01 = 0v2 = 0v'. Since S; hasep-disk components, by
Claim 3,~’ U~ bounds anco-disk, sayE’, whose interior is disjoint froms . Hence
by an argument similar to Claim 3, we have a contradiction bingi the diskE’.

]

By Claim 4 and Claim 58; consists of:-disks, becauséS;| > 1. But this implies
that S is inessential irf? x S*, a contradiction.
This completes the proof of Proposition 5.1. U

Proof of Theorem 2.3.  Suppose th& is a core knot Sth x S By
Proposition 5.1, we may assume that there aregagisk D1 in W1 and ane;-disk D,
in W, with 9D, =0D,. Then there is anso-disk D; in W, which is disjoint
from D,. Hence we havel(Wy, W) = 1 since Theorem 2.2 implied( Wy, Wy) # 0 for
(1, 1)-splittings of the core knot 5?2 x S,

Conversely, we supposW,, W,) = 1, that is, there are mutually disjoint essential
loopsx andy inX =P — K which bound disks inV; — #; and V, — #,, respectively.
Suppose that either or , say , is atoop. If x bounds arep-disk, theny bounds
an (-disk in Wy by Lemma 3.3. (Otherwisey is pairwise isotopicio .) Her€e s
a trivial knot, a contradiction. So we may suppose thaty ( .Jelspunds arep-disk
in Wi (W, resp.). Thenx bounds an-disk in W, by Lemma 3.3. Henc& is a core
knot in §? x S* by Proposition 5.1.

We have completed the proof of Theorem 2.3. O

6. (L 1)-knots whose exteriors contain essential tori

In this section, we study (1 1)-knots whose exteriors contm essential torus
and prove Theorem 2.5 and the following Proposition 6.1.

Proposition 6.1. Let K be a(1, 1}knot in M whose exterior contains an essen-
tial torus. Then every(1, 1)splitting (W1, Wo; P) of (M, K) satisfies one of the fol-
lowing conditions
(#,) There are an.-disk D; in W; and ane;-disk D; in W; such thaD; N9D; =0
for (i, j) = (1, 2) or (2, 1).

(#,) There is an annulug C P which is incompressible in botk; and V,, and there
is an -disk D; in W; withdD; c Z for eachi =1 and 2.
(#.) There are anc;-disk D1 in Wy and ane;-disk Dy in W, with 0Dy = 0D».

Before proving Theorem 2.5 and Proposition 6.1, we preseminias which de-
scribe topological consequences of the conclusions ind3itpn 6.1.
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Lemma 6.2 ([7] Lemma 2.1). Let K be a non-trivial (1, 1}knot in M with
a (1, 1)-splitting (W1, W»; P) satisfying the conditiorf#,) of Proposition 6.1Then one
of the following holds
(1) K is a 2-bridge knot
(2) K is a core knot in a lens space
(3) K belongs toK;.

Remark 6.3. Though this lemma is proved under the assumption Mag
$2 x $tin [7], we can easily see that the same conclusion holds dvah¥ $2 x S*.
In fact, we can show by using the light bulb theorem tfat is sedamot in this
case.

Lemma 6.4. Let K be a non-trivial (1, 1}knot in M with a (1, 1)splitting
(W1, Wy; P) satisfying the conditior(#,) of Proposition 6.1.Then one of the follow-
ing holds.

(1) K is a core knot or a torus knot
(2) K =K (o, 3; r) for somea, 5 and r.
(3) K belongs to/Cs.

Proof. LetZ be an annulus which satisfies the condition (# ) roipBsition 6.1.
For eachi =1 and 2, sincE is incompressibleVin 90); bounds a diskD/ in Z.
Let A; be an annulus irV; obtained frow = (& D!) U D;) by pushing the
interior of Z; into the interior ofV; . For each = 1 and 2, let;{,#) and (Vi2, ;)
be the pair obtained fromW{,r, ) by cutting alony , where eaclVgfand V;; is a
solid torus and; is a trivial arc iV;,. Then we see thav;; U Vi, is either a solid
torus or the exterior of a torus knot. On the other handy,{;) is identified with
(cl(B® — 71), 72), where B2, 7 U 1) is a 2-string trivial tangle, in such a way that
the copy ofA; corresponds to the boundary of the regular neigtitood ofr;. Since
V11N Vo1 is a 2-sphere with two holes which contains the two poiAts) K, we see
that (V11 U Voq, K) is identified with E K32), K1), where K; U K, = L is a 2-bridge
link.

Suppose thal. is a trivial link. Thek; bounds a disk InE K,) and hencek is
a trivial knot, a contradiction.

Suppose thal. is a Hopf link. Theki; is isotopic to K,. So we can putk on
P. HenceK is a core knot or a torus knot.

Suppose tha¥;;U Viz is a solid torus. Then we see th&t Kk=«, (3; r) for some
o, Bandr.

In other cases, we see thag U A, is an essential torus. Hendé  belongskig

]
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Lemma 6.5. Let K be a non-trivial (1, 1}knot in M and (W1, Wy, P) a
(1, 1)-splitting of (M, K). Suppose thatWi, Wy; P) satisfies the conditior(#.) of
Proposition 6.1.ThenM = 52 x S* and either
(1) K =K(4 1, 0),0r
(2) K belongs to/C3 or K.

Proof. LetD; and D, be a pair of disks which give the condition.(# ) of Propo-
sition 6.1, and putV,” = cl(V; — N()) (( = 1 and 2). Leta;; (j = 1 and 2) be the
components ob(V,” N N(t;)), and let4;; ( =1 and 2) be annuli properly embedded
in V= satisfying the following conditions (see Fig. 3).

(1) A;; is parallel toD; N V™ in V.

(2) A,'j n N(lj) =0.

(3) «j; is parallel to a component @¥A;; in cl(OV,” — N(#)).
(4) 0(A12U A12) = 0(A21U A2).

For eachi =1 and 2, let/1, ) and (V;2, ;) be the pairs obtained fromV(,z; )
by cutting alongA;; U A/, whereV;;1 is a genus two handlebody;, is a 3-ball and
t; is a trivial arc in V;2. Then V;; is identified with the exterior of a 2-string trivial
tangle (8%, 7) in such a way that the copy of;; U A;> corresponds to the boundary
of the regular neighbourhood of.

Case 1. Aj1U AU Az U Ay composes two tori.

Suppose that one of the tori, sdy, is inessential inE X ). Then sinc is not
parallel toON(K), Tp is compressible inE K ). So we can obtain the 2-sphgre by
compressindlp. Note thatS is essential, becaufgis non-separating irE K ). Hence
S is an essential 2-sphere B K( ). This implies that  is a trikiabt by Proposi-
tion 2.9 of [2], a contradiction. Henc#, is an essential torus i@ K( ). In the follow-
ing, we show thatk belongs t3. Since V11N Vo1 is a 2-sphere with four holes, we
see thatVii U Vo1 is the exterior of a non-trivial 2-bridge link, sag . On thehet
hand, we can recognizeMp, ko) = (Viz, t1) U (Va2 t2) as follows. We first note that
(Vi2, ;) is identified with 83, 7), wherer is a trivial arc in B3, in such a way that
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the copy of A;1 U A;» corresponds to a regular neighborhood @B* of two homo-
topically non-trivial simple loops iMB3 — 7. Moreover, {12, t1) N (Vaz, t2) consists
of an annulus and two copies oD¢, 0), whereo is the center of the disk. By us-
ing this fact, we can see thdt kof is identified with B x S, an orientableS*-bundle
over a two-holed diskB , and that a meridian Bfkg)(is isotopic to a fiber. Here the
S1-bundle structure is obtained by glueing ti&-bundle structure o #{) and E ¢,).
Now let Ko U K; U K> be as in the definition ofC;. Since E Ko U K1 U K>) is iden-
tified with B x S?, where longitudes ofk; and K, correspond to fibers oB x S?,
(Va2, 11) U (Vag, t2) = (E(ko), 0) U (N (ko), ko) is identified with & Ko U K1 U K3), Ko),
where a longitude ok corresponds to a fiber (with respect to the bundle structure
B x S§* on E (ko). Hence € &1 U K>3), Ko) = (E(Ko U K1 U K>), 0) U (N(Ko), Ko) is
identified with E o), @) U (N (ko), ko). Thus we have M, K ) = VY11, 0) U (Va1, 0) U
(Va1 t1) U (Vaz, t2) = (E(L), 0) U (E(K1 U K3), Kg). HenceK belongs tdCs.

Case 2. A11U A1pU Az U Axp composes a torug

Since Vi1 N Vo1 is a 2-sphere with four holes, we see tHay U Vo is the ex-
terior of a 2-bridge knot, say,. On the other hand, we can recognizdy( kg) :=
(Vio, t1) U (Va, t5) as follows. We first note thatWo, #;) is identified with B3, 7),
where 7 is a trivial arc in B% in such a way that the copy of;; U A;» corresponds
to a regular neighborhood ofiB® of two homotopically non-trivial simple loops in
OB® — 7. Moreover, (12, 11) N (Vo 12) consists of an annulus and two copies of
(D?, (). By using this fact, we can see thét ko) is identified with Bx S, an ori-
entable twistedS*-bundle over a one-holed Mobius bal , and that a meridian of
E (ko) is isotopic to a fiber. Here th&'-bundle structure is obtained by glueing thi&
bundle structure o #) and E ¢,). Now let KoUK1 C S2x St andl; C OE(K31) be as
in the definition of 4. Then (V12, 1) U (Vaz, t2) = (E (ko), 0) U (N (ko), ko) is identified
with (E(K1), Ko), wherel; corresponds to a fiber (with respect to the bundle structure
BxS' on E (ko). This can be seen as follows. Siné& = K (4, 1; 0), Ko intersects
each fiberS? in two points. SOE Ko) is a twisted annuls bundle ovef, and hence
it is a twistedS*-bundle over a Mobius band. Moreover, the meridin of Ko corre-
sponds to a regular fiber. This implies th&tKo(U K1) is identified with Bx S, where
I1 corresponds to a fiber a8 xS1. Hence € Ko), K1) = (E(KoU K1), 0) U(N(Ko), Ko)
is identified with E ko), @) U (N (ko), ko). Thus we have M, K ) =11, ) U (Va1, ) U
(Va1, t1) U (Vao, t2) = (E(K2), 0) U (E(K1), Ko).

Suppose tha” is essential i K( ). Théf is non-trivial. HenceK belongs
to K4.

Suppose thatl" is inessential i K( ). Then we see tKatis trivial. Hence
E(K) is homeomorphic taBx S, whereB is a Mdbius band. Hende K ( ) is a Seifert
fibered space whose base space is a disk with two singulatsp@ind the Seifert in-
variant of the singular fibers are/4. Hencek is a torus knot i x ST which inter-
sectsS? x {1point} in two points. This impliesk =« (4 1 0). ]
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To prove Proposition 6.1, we prepare some lemmas which a@neldl by an ar-
gument similar to those in Section 3 of [14]. An annulus progpembedded in an
orientable 3-manifold is calledssentialif it is incompressible and nod-parallel. For
a solid torusV and a trivial arc i , an annulus properly embddoh V — ¢ is
called essential in(V,¢) if it is essential inV — ¢.

Lemma 6.6. Let V be a solid torus and a trivial arc irV, and letA be an
essential annulus ifV, t). Then one of the following holdseeFig. 4).
(1) A cuts(V,1) into (V1,?) and (V», r), where vy is a genus two handlebody, is
a 3-ball and ¢ is a trivial arc in Vj.
(2) A cuts(V,t) into (v, ®) and (V2, 1), where v is a solid torus V; is a genus two
handlebody and is a trivial arc irvs.
(3) A is a non-separating annulus iW —t and there are arep-disk D and ans;-disk
D' in (V,t) with DN D' =0 and An(DuUD’)=0.

Proof. LetD be a disjoint union of amp-disk and an:-disk in (V, ). SinceA
is incompressible inV — ¢, A intersectsD. By a standard innermost/outermost disk
argument, we can find a diskin V such thaté Nt =%, § N A = a is an essential
arc in A andé N9V = b is an arc withda = 0b anda U b = 06. By performing a
0-compression ofA along, we obtain a diskD properly embedded ¥— ¢. Since
A is essential inV — ¢, D is essential invV — .
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Case 1. D is an:-disk.

Then D cuts ¥,t ) into ¥’,¢) and (V”, ), whereV’ is a 3-ball,z is a trivial
arc in V' and V" is a solid torus. IfA — D C V’, then we obtain the conclusion (1).
Otherwise, we obtain the conclusion (2).

CASE 2. D is ango-disk.

Then D cuts ¥, ) into B,t ), where8 is a 3-ball amd is a trivial arcBn y B
a pairwise isotopy of B,¢ ), we may assume C JB. Then sinceA is essential in
V —t, the corea of A separates the two punctures @B — r. Hence by Lemma 3.3,
a bounds are;-disk D’ in (V,t). By moving D andD’ so that DUD’)NA =0, we
obtain the conclusion (3). O

Lemma 6.7. LetV be a solid torus and a trivial arc itv, and let A = A;UA)
be a disjoint union of non-parallel essential annuli (K, r). Then one of the following
holds (seeFig. 5).

(1) A cuts(V, 1) into (Va,®) and (V», t), where V1 is a genus two handlebody, is
a 3-ball and ¢ is a trivial arc in V, which satisfy.4 C dV; (j =1 and 2). Moreovey
there are anso-disk D and ane;-disk D’ in (V, t) with DND’ = () and AN(DUD') =
0.

(2) A cuts (V,t) into (Vi,0), (V2,0) and (Vs,t), where V; is a solid torus V, is
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Fig. 6.

a genus two handlebody; is a 3-ball and ¢ is a trivial arc in V3, which satisfy
ANoVy = A, A C 9V, and AN IV3 = A, after changing the subscriptdloreover
there is an¢-disk in (V, ¢) disjoint from A.

(3) A cuts (V,1) into (V1, 0) and (V2, t), where V; is a genus two handlebody; is
a 3-ball andr is a trivial arc in V,, which satisfyA C 0V, and AN JV, = A, after
changing the subscripts

Proof. By performingd-compressions ofi; and A,, we obtain mutually disjoint
disks D1 and D, properly embedded itv¥ —¢. Since A; and A, are essential iV —t,
D; and D, are essential iV — t. Suppose that botlD; and D, are ep-disks. Then
we obtain the conclusion (1). Suppose next that bbthand D, are .-disks. Then we
obtain the conclusion (2). Suppose finally that preciselg ohD; and D,, say Dj, is
an ep-disk and D, is an(-disk. Note thatA; is disjoint from D,. This implies thatA,
is parallel tooON(K). Hence we obtain the condition (3). O

The following lemma is obtained by using Lemma 3.3 of [14].

Lemma 6.8. Let V be a solid torus and a trivial arc iV, and let. A = A; U
Az U Az be a disjoint union of non-parallel essential annuli (i, ¢). Then A cuts
(V,1) into (Vq, D), (V2,0) and (V3,t), where V1 is a genus two handlebody, is a
solid torus andV3 is a 3-ball and r is a trivial arc in V3, which satisfy.4A N oV, =
A1 UAy, AC 0V, and AN OVz = Az after changing the subscriptseeFig. 6).

Proof. Note thatd; U A, satisfies one of the conclusions of Lemma 6.7. Suppose
that A; U A, satisfies the conclusion (2) of Lemma 6.7. Thénu A, cuts (V,t) into
(v, 0), (Vo,0) and (s, t), where V; is a solid torus,V, is a genus two handlebody,
V3 is a 3-ball andr is a trivial arc iVs. If Az C Vi or V3, then Az is parallel toA;
or Ay. If Az C V,, then by Lemma 3.3 of [14]A3 is parallel toA; or A;. Hence we
may assume thati; U A, satisfies the conclusion (1) or (3) of Lemma 6.8.
SupposeA; U A, satisfies the conclusion (1) of Lemma 6.7. Thépu A, cuts
(v, 1) into (V1,0) and (», 1), whereV; is a genus two handlebody, is a 3-ball and



(1, 1}kNOTS AND THE CURVE COMPLEX 445

t is a trivial arc inV,. By Lemma 3.3 of [14],A3 must be contained itV,. HenceAs
is parallel toON(z).
SupposeA; U A, satisfies the conclusion (3) of Lemma 3.3. Thépu A, cuts
(V,1) into (V1, @) and (V,, r), whereV; is a genus two handlebody; is a 3-ball and
t is a trivial arc in V,. By Lemma 3.3 of [14],A3 is parallel to an annulus, say’,
in OV,. Since Az is essential inV — ¢ and is not parallel toA; i( = 1 and 24’
containsdA; U 0A,. This implies A3 satisfies the condition (3) of Lemma 6.6. Then
by changing the subscripts, we can see tHabatisfies the condition of Lemma 6.8.
|

Proof of Proposition 6.1.  LetWi, Wo; P) be a (1 1)-splitting of #, K ) and’
an essential torus i K ). We pat FEnNV,.

Ciam. We may assume tha,  consists of essential annuWini ( =1 and 2)

Proof. Sincex(T) =0, we have only to show that; has no disks.

We may assume that after an isotopy, each diskTof is essantid; —

(i =1 and 2). Suppose that boiy and 7> have disk components. Then this implies
d(W1, Wp) < 1 becausedTy = 0T,. Hence we see thak is a trivial knot or a core
knot in §? x ST by Theorem 2.2 and Theorem 2.3, a contradiction. Hence we asay
sume that eithefly or T», say T», has no disk components. Further we assume that
the number of disk components @f is minimal among all essential tori satisfying
the condition as above. Lek  be the union of the disk companehtr;. Choose a
disjoint unionD of an gp-disk and an:.-disk in W, which intersectl» transversely.

Note thatE K ) is irreducible, i.e.£ K ) contains no essentiapBeres. Other-
wise, K is a trivial knot by Proposition 2.9 of [2], a contratihm. Hence by a stan-
dard argument, we can eliminate all loop componentd,0fiD by an ambient isotopy
on E(K).

Suppose thah N D = (). Then each component @A is isotopic to one of the
components of0D because each component @A is either ane-loop or an:-loop.
This implies thatoA bounds a disk inV, — t,, and henced W1, W2) = 0. By Theo-
rem 2.2,K is a trivial knot, a contradiction. S9N D # ().

Let " be the union of the arc components BN D incident todAND. Let v be
a component of” such that clips a disk, say,, from D with 6, N I" =~. Suppose
that 6, N 7> # . Then there is a component of § N 7> which clips a diskd., with
d NT, =~'. We can isotopel’ along,, near~’ without increasing the number of
disks of 7h. By repeating this operation, if necessary, we may suppussiiN7, = v.
By isotoping7T alongd.,, we can reduce the number of disk componentdioht least
by one, a contradiction.

This completes the proof of the claim. U
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Let 4; be a union of mutually disjoint, non-parallel, essentiahahnin W; =
(Vi, ;) of which T; consists of parallel copies ( = 1 and 2). Note thdg| < 3
by Lemmas 6.6-6.8. By changing the subscripts, if necessegymay assume that
x| > [ Agl.

Case 1. |A4=3.

Note that one of the following holds.

e A, consists of an annulus satisfying one of the conditions imina 6.6.
e A, consists of two annuli satisfying one of the conditions inmiea 6.7.
e A, consists of three annuli satisfying the condition in Lemm@é. 6

Suppose thatd, satisfies the condition (1) of Lemma 6.6, the condition (2) of
Lemma 6.7, the condition (3) of Lemma 6.7, or the conditionLeinma 6.8. Here,
the sentence A, satisfies the condition (1) of Lemma 6.6” means tht consists of
an annulus satisfying the condition (1) in Lemma 6.6. THgn T, contains a torus
which is parallel toON(K), a contradiction.

Suppose thatd, satisfies the condition (2) of Lemma 6.6 or the condition (8) o
Lemma 6.6. Let{ p1, p»} be points of PN K. Note thatA; has a component which is
isotopic toON(p;; P) for eachi =1 and 2. On the other hand, for =1 or4, does
not have a component which is isotopic @& (p;; P). This implies thatoT; # 0T», a
contradiction.

Suppose thaid, satisfies the condition (1) of Lemma 6.7. R = A11UA10UA13
and A, = A1 U A, We may assume thatis is isotopic toON(K) N Vi. Suppose that
T1 consists ofm; parallel copies ofAi;, m, parallel copies ofA;, and mg parallel
copies of A;3, and 7> consists ofny parallel copies ofA,; and n, parallel copies of
A2y Then sincedTy = 01>, we havemy+my = ny+ny, mi+msz=ny andmy+ms = ny.
This implies thatms = 0, a contradiction. Hence Case 1 does not occur.

CASE 2. |A4|=2.

Set A; = A;3 U Ao, We have the following three subcases by Lemma 6.7.

Case 2.1. A; satisfies the condition (1) of Lemma 6.7.

By an argument similar to Case 1, we see thit satisfies the condition (1) or
(2) of Lemma 6.7. Sed, = A1 U Ago.

Suppose that4, satisfies the condition (1) of Lemma 6.7. Then we $Eg =
|T»| = 2. (OtherwiseT1 UT» has plural components.) So we may assufne A;7=J A,

(i =1 and 2) (cf. Fig. 3). Since/ = 52 x S, we can find are;-disks D; inW; ¢ =1
and 2) withdD1 = 0D,. Hence 1, W,; P) satisfies the condition (# ) of Proposi-
tion 6.1.

Suppose thatd, = Az U A, satisfies the condition (2) of Lemma 6.7. Then we
can find anes;-disk Dy in Wy and an¢-disk D, in W, which satisfy the condition (# )
of Proposition 6.1 (see Fig. 7). Hence by the remark below man6.2, K is a core
knot, a contradiction.

CASE 2.2. A; satisfies the condition (2) of Lemma 6.7.

Then by an argument similar to Case 1, we see iasatisfies the condition (1)
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of Lemma 6.7. Hence by changing the subscripts, Case 2.2uisadent to the latter
case of Case 2.1.

CASE 2.3. A; satisfies the condition (3) of Lemma 6.7.

Then by an argument similar to Case 1, we see that Case 2.3p&ssible.

CAsSE 3. |A4|=1.

By Lemma 6.6, we have the following three subcases.

Cask 3.1. A; satisfies the condition (1) of Lemma 6.6.

By an argument similar to Case 1, we see thit satisfies the condition (1) of
Lemma 6.6. Henc&1UT» contains a torus which is parallel & (K), a contradiction.

CAsk 3.2. A; satisfies the condition (2) of Lemma 6.6.

By an argument similar to Case 1, we see thit satisfies the condition (2) of
Lemma 6.6. Moreovefl; consists of an annulis ( =1 and 2). (@iker 71UT> con-
sists of plural components.) Let be one of the component8 Af = 9.A,. For each
i=1and 2, letA; be a disk if¥; such thatC A, and A;NOV; = cl(0A; —1;) =1 ¢t/
is disjoint from z. Then there are-disks D; in W; with 9D; = ON(¢/; P) for each
i=1and 2. Henc&Z :=cK — N(z; P)) gives the condition (# ) of Proposition 6.1.

CAsk 3.3. A; satisfies the condition (3) of Lemma 6.6.

By an argument similar to Case 1, wee see tHatsatisfies the condition (3) of
Lemma 6.6. Then there are ap-disk D; in W; ( =1 and 2) withoD; = dD,. Hence
(W1, Wo; P) satisfies the condition (# ) of Proposition 6.1.

This completes the proof of Proposition 6.1. U

Proof of Theorem 2.5. Letk be a ,(1 1)-knot i andv,( Wo; P) a
(1, 1)-splitting of (M, K ). By Proposition 6.1, W1, W»; P) satisfies one of the con-
ditions in Proposition 6.1.

Suppose thatWi, Wy; P) satisfies the condition (# ) of Proposition 6.1. Then by
Lemma 6.2,K belongs t&;, because the exteriors of 2-bridge knots and core knots
do not contain essential tori (see [5]).

Suppose thatWi, Wo; P) satisfies the condition (# ) of Proposition 6.1. Then by
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arguments in the proof of Lemma 6.4 and the proof of Propwsi6.1, K belongs to
ICo, becausef K ) contains an essential torus.

Suppose thatWi, W»; P) satisfies the condition (# ) of Proposition 6.1. Then by
Lemma 6.5,K belongs té3 or /Cy.

We have thus proved Theorem 2.5. [l

7. (4 1)-splittings of distance =2

In this section, we give the proof of Theorem 2.4.

Proof of Theorem 2.4. We first assuradeWy( W) = 2, that is, there is an es-
sential loopx ¢ resp.) inE =P — K which bounds a disk invy —#; (Vo — 12
resp.) such that ang intersect each other, and there is amtieédoopz in X
with zN (x Uy) =0.

Case 1. Bothx andy are-loops.

If zis an (-loop, thenz bounds andisk in each ofW; and W, by Lemma 3.3.
This implies that W1, Wy; P) is of distance = 0, a contradiction. Hence by Lemma 3.3,
z must be are-loop andz bounds anp-disk or ane;-disk in each ofW; and W».

Suppose that bounds af-disk in each of W, and W,. Then this means that
d(Wy, Wp) < 1, a contradiction.

Suppose that bounds an-disk in each ofW; and W,. Then (W1, Wp; P) sat-
isfies the condition (# ) of Proposition 6.1. By Lemma 66, K=, 1) or E(K)
contains an essential torus.

CAse 2. Precisely one ok and , say , is afoop.

We see that is an-loop by an argument similar to Case 1. Then by Lemma 3.3,
z bounds ane;-disk in Wi. So Wi, Wy; P) satisfies the condition (# ) of Proposi-
tion 6.1, and henceM, K ) satisfies one of the conditions (1)ef3)emma 6.2. Note
that if K satisfies the condition (3), we can find an essentialston E (K ) by making
an appropriate “swallow-follow torus”.

Case 3. Bothx andy are-loops.

Thenz must be anr-loop by the same argument as above. In particyar, must
be contained in the surfack obtained from the torug® by removing the interior of
the disk bounded by . So all componentsyofi Ty (# @) are parallel inTp. Note that
we can regardy adN(t5; P), wherer, is an arc inP such that U} bounds a disk
in V2. By an isotopy onX , we may assume that y| is minimal.

CAase 3.1. |yNTp =2

Then K is isotopic to a knot ir? , and henée  satisfies the comdi®) or (3)
of Theorem 2.4.

CAsSE 3.2. |yNTo > 2.

Let A1 in Vi~ (A2 in V, resp.) be an annulus obtained by pushing the interior
of N(z; P) into the interior ofVy (V, resp.), whereV,” = cl(V; — N(t;)) (i =1, 2). So
T :=A1UA; is atorus inE K ) (see Fig. 8).

A1 (A3 resp.) cutsV (V, resp.) into a solid torud/;; (V,; resp.) and a genus
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Fig. 8.

two handlebodyVy, (V,, resp.).M; = V; UV,, is the exterior of a trivial knot, a core
knot or a torus knotM> = V,; UV,, is the exterior of a 2-bridge link, and/, U N(K)
should be a solid torus. I#; is a solid torus, thenM, K ) is equivalent #6 «,(5; r)

for someq, 8 and~. If not, by the hypothesis of Case 3.2, we can see that is not
parallel toON(K). HenceT is an essential torus m K ( ).

This completes the proof of the first part of Theorem 2.4.

Next, we prove the second part of Theorem 2.4.

CASE (1). K is a non-trivial 2-bridge knot ir§.

By Theorem 8.2 of [15], every (1 1)-splitting of a non-trivi2-bridge knot
is isotopic to that constructed as follows. For a non-tfiviabridge knot K , let
(B1, a1 U az) Us (B2, b1 U by) be a 2-bridge decomposition. PUy = By U N(b2; Bo),
Vo = cl(By — N(b2; B2)), 1 = agUaxUby andrp, = by. ThenW, = (;,t;) is a
pair of a solid torusV; and a trivial arg i; i ( =1 2), anW/{, W5, P) gives a
(1, 1)-splitting of (53, K). In the following, we show that this (1 1)-splitting has dis
tance = 2.

Let D; be a properly embedded disk ) such tiiat separates twialtarcs
in B; (i =1, 2). ThenD; determines amg-disk in W1, and D, determines an-disk in
Wa. Further,0D; and 0D, are disjoint from an essential logp B 2— K, where
z is one of the boundary components of the meridian diBksY N(b,; B,). Hence
d(Wy, Wy) < 2. By Theorem 2.2 and Theorem 2.3, we hal@ 1, W) = 2.
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CAsSE (2) and (3). K is a core knot in a lens space or a torus kna¥in

By Theorem C of [6] and Theorem 3 of [17], every, (1 1)-spligtiof (M, K) is
isotopic to that constructed as follows. Léti( Vo, P) be a genus one Heegaard split-
ting of M such thatk C P. Let p; and p, be distinct points inK . Therp; U p»
cuts K into two arcd; andl.. Letr; be the properly embedded arc by slightly push-
ing the interior of/; into the interior oV; , and pW; F{(r J ( =1 and Jhen
(W1, Wy, P) is a (1, 1)-splitting of (4, K ).

Let z be a core of the annulus &I N(K; P)). ThendN(l;; P) bounds an-disk
in W; (i =1, 2), anddN(l;; P) and ON(l2; P) are disjoint from the essential loop
z in P. So we haved W1, W,) < 2. By Theorem 2.2 and Theorem 2.3, we obtain
d(Wl, Wz) =2.

CAsE (4). E(K) contains an essential torus.

Let (W1, Wy; P) be a (1 1)-splitting of #, K ). By Proposition 6.1, Wy; P)
satisfies one of the conditions,(# ),,(# ) and (# ).

Suppose that Wi, Wo; P) satisfies the condition (# ). LeD; (D, resp.) be an
-disk (an e1-disk resp.) inWy (W» resp.) such thabbD; N D, = (. By cutting
Wo = (Va,12) along D,, we obtain a 2-string trivial tangleB( 7). Let D; and D,
be the copy ofD, in 9B. Let D; be a disk properly embedded iB  such that
D, N (D; U D,) = ( and D; separates a component offrom the other. ThenD),
determines are;-disk W», and D} is disjoint from D,. Hence 9D, and 9D, give
d(Wl, Wz) < 2.

We can easily see that the condition, (# ) directly givie®/1,(W2) < 2.

Finally, if the condition (# ) is satisfied, then we can alsdaiid (Wy, W5) < 2
by using an argument similar to that in case of the conditi#n.(By Theorem 2.2
and Theorem 2.3, we obtaih Wg, W,) = 2.

We have completed the proof of Theorem 2.4. O

Proof of Corollary 2.6. By Thurston’s hyperbolization them of Haken man-
ifolds (see, for example, [13]), a knat  is hyperbolic if andlyif E(K) is irre-
ducible, E (K ) contains no essential torus, afidk ( ) is not a Beffeered space.

Case 1. E(K) is reducible.

By Proposition 2.9 of [2],E K ) is reducible if and only K is aivial knot.
Henced W1, W2) =0 by Theorem 2.2.

CASE 2. E(K) contains an essential torus.

Then by Theorem 2.6 Wi, Wy) = 2.

Case 3. E(K) is a Seifert fibered space whose regular fiber is not adiaeri
of K.

Then by Lemma 5.2 of [14], if£ K ) is a Seifert fibered space whesgular fiber
is not a meridian ofKk andE(K) is incompressible inE K ), then one of the fol-
lowing holds: (1) the base space is a disk with two singuldantgp where the regular
fiber in OE(K) intersects the meridian in one point, (2) the base spaae Ndbius
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band with one singular point, where the regular fibe®ii(K) intersects the meridian
in one point, (3)E K ) is a twisted*-bundle over a Mobius band. I K( ) satisfies
the condition (1) or (3), therk is a torus knot. # K( ) satisfigée tcondition (2),
then there is an essential torus fhK (). Hence by Theoremd2W;, W») = 2.

Suppose thabDE(K) is compressible inE K ). Then we obtain a 2-sphére in
E(K) by compressingdE(K). If S bounds a 3-ball inE K ), ther K ) is a solid
torus and hencek is a trivial knot or a core knot. OtherwisacesiS is essen-
tial in E(K), K is a trivial knot by Proposition 2.9 of [2]. Henceybrheorems 2.2
and 2.3, we havel W1, W,) =0 or 1.

CAse 4. E(K) is a Seifert fibered space whose regular fiber is a meridfak .

Let B be the base orbifold of K ). Them(M) = mi(E(K))/{f), where f is
the element ofr1(E(K)) represented by a regular fiber, is isomorphic to thefoldbi
fundamental groupri(B). Since M is a lens spacer(B) is cyclic. It is known that
such an orbifold is isomorphic to a disk with only one singutaint (see, for exam-
ple, Section 3 of [19]). Therefor& K( ) is a solid torus, anddeK is a core knot.
Hence by Theorem 2.3, we haveW{, W) = 1.

Hence by Theorems 2.2-2.4 and the hypothesis of Propostti®nd (Wi, W) <
2 if and only if E(K) is a Seifert fibered space or contains an m#se2-sphere or
torus. By Thurston’s hyperbolization theorem, we obtaia tkesired result. ]

8. (1 1)-splittings of distance> 3

Theorem 2.7 can be proved by the arguments of J. Hempel irio8e2tof [11].
To this end, we first recall the covering distance introduefl1].

Let § be a connected, compact, orientable surface. We sayatleatering space
p: § — S separatesessential loops ang i§ if there are components pot(x)
and y of p~1(y) with ¥ N5 = 0. A finite coveringp :S — S is sub-solvablef p can
be factored as a composition of cyclic coverings.

Derinimion 8.1 ([11] Section 2). Lety ] andy] ] be distinct vertices 6fS ( gnd
let x (y resp.) be a representative of [ [y([ ] resp.). Then we defime covering dis-
tance between f ] and § ] as follows.

there is a degree”2 sub-solvable coveringSo}

cd([x].[5]) = 1 + min {n ‘ which separates and

As an analogy of Lemma 2.3 in [11], we obtain the following.
Lemma 8.2. Let[x] and[y] be distinct vertices of’(S). Then

(1) d([x],[y]) = 2 if and only if cd[x].[)]) = 2 and
(2) cd([x].[) <d(lx].[).
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Fig. 9.

Proof. Letx ( resp.) be a representative of [ J ([ ] resp.).

(1) Suppose that ,])[ 1) =2, that iss Ny # 0 and there is an essential loop
zin Swith zNn(xUy)=0.

Case 1. z is ane-loop.

Since ans-loop is a non-separating loop ifi S/ :=cl(S — N(z)) is connected. We
can construct a double covér of S by gluing two copiesS; and S} of S’ alongz.
Hencex™ inS; and y' onS} can givecd([x],[)]) = 2.

CAse 2. z is an:-loop.

Let v be an essential arc which joins two puncturesSof  such thas dis-
joint from z. Then we can construct a double covenf S by gluing two copies of
cl(S — N(v)). Therefore we can also get([x],[)]) = 2.

The converse follows from the proof of Lemma 2.3 in [11].

(2) The second assertion can also be proved by the same argas¢hat in the
proof of Lemma 2.3 of [11].

This completes the proof of Lemma 8.2. U

By Lemma 8.2, we can get a lower estimation of the distancevémt distinct
vertices onC § ). For the covering distance, the following teanis proved in [11].

Lemma 8.3 ([11] Theorem 2.5). If [x] and [y] are vertices of C(S) and
h: S — S is a pseudo-Anosov homeomorphism, them, .. cd([x],[#"())]) = oo.

Proof of Theorem 2.7. We first construct a pseudo-Anosov nfapf X o:=
P — K whose extension ta® is isotopic id. To this end, leta and> be essential
loops onX illustrated in Fig. 9, and pyt ='o7,, wherer, (7, resp.) a right-hand
Dehn twist alonge & resp.). Thesi is pseudo-Anosov by Theorelmo8 [21], be-
causea U b fills X. Sincea andb are isotopic i , the extensigfnof ftoPis
isotopic to the identity.

Now let M be a 3-manifold with a genus one Heegaard splittingck Pa
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(1, 1)-knot K inM and its (1 1)-splitting W1, Wo; P). Let x (y resp.) be arz-loop
in X which bounds arxp-disk in Wy (W, resp.). By Lemma 8.2 and Lemma 8.3 , for
any positive integen , there is an integsr  such tat ,([f1[y (D)) + 2, where
[x] ([ FM(y)] resp.) is represented by ¢ y( ) resp.). Sing?e: id, the manifold ob-
tained fromM by cutting along® and regluing it after composifﬁj is homeomor-
phic to M . Let W1, W3; P) be a (1 1)-splitting obtained in the above way. Then by
Proposition 3.8, we have Wj, W}) > d([x],[ fM]) — 2> n.

We have completed the proof of Theorem 2.7. U
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