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1. Introduction

Let kG be the group algebra of a finite group G over an algebraically

closed field k of characteristic p>0> and let P be a Sylow/)-subgroup of G.

Following Motose and Ninomiya [9] we call G p-radical if the induced

module (kP)
G of the trivial &P-module kP is completely reducible as

a right &G-module.

In [10], Okuyama has proved that />-radical groups are p-

solvable. And Tsushima has characterlized />-radical groups which are

/>-nilpotent by group theoretical properties (see Lemma 2.2). So it seems

to be interesting to investigate the structure of />-radical groups of/>-length

2 and in this paper we shall treat such a group with some additional

properties.

Before describing our result we need to define some notations. Let

F=GF(qn) be a finite field of qn elements for prime q. Let V be the

additive group of F. Let T(qn) be the set of semilinear transformations

of the form v —• avσ with veV, QΦaeF, and σ a fied automorphism (see

[11, p229]). Then we can consider the semidirect product VT(qn) of V

by T(qn). Let A be a generater of the multiplicative group of F and

v_χqn'r-i £ o r s o m e integer r with r\n. Let T0 = {v —• avσ\ae < v > ,

σeGz\(F/GF(qn/r))}. Then we define A w = VT0 c VT(qn).

Theorem 1. Let G be a finite group with the following conditions.

(1) \G: Op,^p,(G)\=p, Op(G) = \ and O*'{G) = G.

(2) A Sylow p-subgroup Po of Op,p{G) is abelίan.

(3) V=[Op'(G)yP0] is a minimal normal subgroup of G.

Then G is p-radical if and only if the following conditions (A)y

(B) and (C) hold.

(A) G = G/VP0 is a Frobenius group with kernel Op,{G).

(B) V is an elementary abelian q-group for some prime q(Φp).

(C) One of the following (1) and (2) holds.
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(1) The following (i)-(vii) hold. Q
(i) G=VNG(P0) and VnNG(P0) = l.
(ii) P0<]P0H<]P0H<s>, where \s\=p and H is a ^*".

p'-group. H

(iii) By conjugation, we can regard V as an irreducible
NG(Poy module. Then V=V1x xVp, where Po P
Vh 1 < i<p, are the homogeneous components of VPo.

(iv) Set P —C (V x- xV. x V x x V )

Then P 0 = Λ x ••• x P

P

(v) F ί = K l + 1 , P ί = JPl + 1 , O ^ f ^ / ι - 1 .
(vi) V{ and Pi are H-invariant, \<i<p, and VP0 = (V1P1)x

(V P ).
(vii) Set r = \H/CH(Vi)\ and pm = \PΛ, gΛ = | F i | .

Then r\n and —. =pm and ViPiH/CH(Vλ~ Aanr,\ <i<p.
qn{r_ί * "V W > - -P

(2) CG(v) ^ Op>^p,{G) for any element v of V*.

Next, let t(G) be the nilpotency index of the radical J(kG) of kG
and let pa be the order of Sylow /)-subgroups of G.
Wallace [14] proved that if G is ^-solvable, then a(p -1) + 1 < t(G) <pa. If
G has />-length 1, then by Motose and Ninomiya [8] t(G) = a(p—1) + 1
if and only if P is elementary abelian.

All known examples of ^-solvable group G with t(G) = a(p—1) + 1
have /?-length at most 2. Using Theorem 1, we can prove the following
theorem.

Theorem 2. // G is a p-radical group with t{G) = a(p—\) + \, then
G = Opp> ppf(G). In particular, the p-length of G is at most 2.

2. Preliminaries

In this section, we shall give some lemmas which will be used to
prove the theorems.

Lemma 2.1. ([1, Theorem 6.5]). Suppose that N<\G. Then the
following (l)-(3) hold.

(1) If G is p-radical, so are N and G/N.
(2) IfNisap-group, then G is p-radical if and only if G/N is p-radical.
(3) If G/N is a p'-group, then G is p-radical if and only if N is p-radical.
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Lemma 2.2. ([13, Theorem 2]). Let G = PN be a p-nilpotent group
with N=Op,{G). Then G is p-radical if and only if [N,D]nCN(D) = ί
for any p-subgroup D of G. In particular, if N is abelian, then G is
p-radical.

Lemma 2.3. // G is p-radical, then OP(G) is solvable.

Proof. Suppose it is false and let G be a minimal couterexample.
Then we have G = OP'(G). By Theorem 1 of [10], G is />-solvable.
If Op(G) φ 1, then G/Op(G) is solvable since G/Op(G) is ^-radical. Hence
G is solvable, a contradiction. Hence Op(G) = l, and so Op>(G)Φ\.
Let P be a Sylow ^-subgroup of Op,p{G), and set W= <[Op,(G)yx]\
xeΩ1(Z(P))>. If W = l , then 1 φίl[(Z(P)) ^CG(Op,(G)) <Ξ OP(G), a
contradiction. Since G = Op,(G)NG(P)y \ΦW<\G. Furthermore, for
X G Ω 1 ( Z ( P ) ) [Op>(G)yx] is a normal subgroup of Op,(G) and is nilpotent
by Thompson [12] as COp'^G){x)Γ\[Op>{G),x\ — \ (see Lemma 2.2). Hence
W is solvable. Since G/W is />-radical, G/W is solvable. This implies
that G is solvable, contrary to our choice of G.

Let B be a block of kG. We call B a p-radical block if k®PB is
semisimple. Let N<\G and b0 a block of kN that is covered by B. Let
T be the inertia group of b0. Then there exists a unique block b of kT
with bG = B. We call 6 the Fowg correspondent of B w.r.t.{K,T). Then
the next lemma holds.

Lemma 2.4. The following (1) αwrf (2) hold.
(1) β ^ p-radical if and only if k®pynTb is a semisimple kT-module

for any yεG.
(2) ([13] Tsushima) // \G:T\ is a power of p, then B is p-radical if and

only if b is p-radical.

Proof. (1) Various facts are known about the relationship between
B and b. B = (kG)b(kG) and J(B) = (kG)J(b)(kG). Furthermore, (kG)b
is a direct summand of B as a k(G x T)-module. Hence k®P(kG)b is a
direct summand of k®PB as a right ΛT-module. On the other hand,

k®PkG~ ® k®PynTkT by Mackey decomposition, and so k®P{kG)b~
yεP\G/T

®pynτ a s

yeP\G/T

Assume that B is />-radical. Since (k®PB)J(b) ^ (k®PB)J(B) =
(k®PynTb)J(b) = Oy and so k®pynTb is semisimple.
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Conversely, assume that k®pynTb is a semisimple &T-module for any
yeG. Then k(x)P(kG)b is a semisimple ΛT-module. Therefore U=
(k®p(kG)b)®τkG is semisimple by Fong's theory. Since k®PB is a
natural homomorphic image of (7, it is also semisimple.

(2) Since G = PT by assumption, PynT is a Sylow />-subgroup of
T for any yeG, and hence k(x)pynΓ6 is semisimple if and only if b is
/>-radical. Therefore (2) follows from (1).

Let G[> V. We let Irr(F) be the set of ordinary irreducible characters
of V and let IG(φ) be the inertia group of φelrr(V).
Furthermore, for a block B of kG, let Irr(jB) be the set of irreducible
characters of G belonging to B.

Lemma 2.5. Let G = LVt>V, where V is an abelian pf-group with
LnV=l. Let φeΙτr(V) with IG(φ) = G. Then L is p-radical if and
only if all blocks which cover φ are p-radical.

Proof. Let b be a block of kG which covers φ. Let χelrr(b).
Then each irreducible constituent of χv is φ. Set ί7=Kerφ. Then we
have Kerχ => £/, and so Kerδ => U. Set G = G/U, then G = LxV. Let
g be a centrally primitive idempotent corresponding to φ. Then the
sum of all blocks which cover φ is isomorphic to kL®kke~kL. Then
the lemma follows immediately.

Throught this paper, we let ^ b e the family of all finite group G
such that t(G) = a(p—1) + 1, where pa is the order of a Sylow />-subgroup
of G.

Lemma 2.6. Let G be a p-solvable group and N<[G. If
then

Proof. Let pa> pb be the orders of Sylow ^-subgroups of G and N,
respectively.

At first, assume N is a //-group. By Theorem 2.2, 3.3 of [14],
a(p-\)+\<t{G/N)<t{G) = a{p-\) + \. Hence t{β/N) = a(p-\) + \,
and so G/Ne^.

Next, assume N is a />-group. By Theorem 2.4, 3.3 of [14],
\) + \<t{N) + t{G/N)-\<t{G) = a{p-\) + \. Hence

and t(G/N) = (a-b)(p-l) + l9 and so G/Ne^.
Now, we shall consider the general case. If NΦ\, Op>{N)φ\ or

0p(N) Φ1 since Nis/>-solvable. By induction on \N\y the lemma follows.
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Lemma 2.7. Let G = LV[>Vy where V is a p-group and L is a p-
radicalp-nilpotent group with Ln V= 1. IfGe^, then < VOp,{L)ys> e3F
for any p-element seL.

Proof. Set H=Op{L). By Theorem 3.1 of [14], \s\=p and V is
elementary abelian. Since L is ^-radical, [Hys]<s> is a Frobenius group
by Lemma 2.2. By Theorem 2.7 of [5], gr kV is semisimple as a
/eG-module. Let N=V[H,s\<s><\G. Then gr kV is semisimple as a
βΛΓ-module, and so Ne&by Theorem 2.7 of [5]. Set M= < VOp.{L),s>.
Since M\>N and M/N is a //-group, Me^.

3. Proof of Theorem 1

First we shall prove the if -part of Theorem 1. Let G be a finite
group with conditions (l)-(3) in Theorem 1 and we assume that G is
/)-radical.

Lemma 3.1. V=[OP (G),P0] is an elementary abelian Q
q-group for some prime q{Φp) and NG(P0) is a complement of
V in G.

Po P

L
Proof. Since G is />-radical with OP\G) = G, G is solvable

by Lemma 2.3. In particular, V is solvable. Then V is an
elementary abelian g-group for some prime q{φp) by the
condition (3) in Theorem 1.

Next, G=VNG(P0) by the Frattini argument. Since 1
[iVκ(P0),P0] c= F n P 0 = l, ΛΓF(P0)c=CV(P0) = l. Thus NG(P0) is a
complement of V in G.

Now, set L = NG(P0) and let P be a Sylow ^-subgroup of L.

Lemma 3.2. L = L/P0 is a Frobenius group with kernel Op>(L) and
complement P.

Proof. By the conditional) in Theorem 1, OP\L) = L. Then
L = [Op(L)iP]P since L = Op,JL). Furthermore, since L~G/VPOy L is
/>-radical by Lemma 2.1 (l),'and so [O^(L),P]nCo / ( L l(P) = l. Thus L
is a Frobenius group.

By Lemma 3.2, G satisfies the condition (A) in Theorem 1.

Lemma 3.3. Let φeΙrr(F) with φφ\v. Then one of the following
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(1) and (2) holds.

(1) IG( f)cO^(G).

(2) L = IL(φ)P0 and IL(φ)nP0 = l.

Proof. Set T=IG(φ) and assume that T^Op, pp,(G). Let b0 be a
block of kV with φeb0. Let B be a block of kG which covers b0 and
let b be the Fong correspondent of B w.r.t.(V,T). Let D be a defect
group of b and let P* be a Sylow />-subgroup of G which contains
D. Since B is ̂ -radical, k®P*ynTb is semisimple for any j/e G by Lemma
2.4. On the other hand, there exists an irreducible ΛT-module in b with
vertex D (see [1, Lemma 4.6]). Hence P*ytnT^D for some teT, in
particular P*ytnT_=D. Set G = G/VP0. JSince Z > £ O p ^ ( G ) , 25^ = JP**
= Z5#1. Since G is a Frobenius group, ^ ί e P * . Hence yeTP* = TP0.
This implies that G=TPOy and so L = (LnT)P0.

Next, set Q = (LnT)P0. Since P o is abelian, £)<L. Since
[F,Q] ^ kεrφΦV and [F,Q] is L-invariant, [V,Q] = l by the minimality
of F, and s o Q c Op(G) = 1.

Now assume that CG(v) ^ Op, ptP>(G) for some veV*. As F is a
//-group, this condition is equivalent to the condition that Iβ(φ) ^
°P',P,AG)

 f o r s o m e Φ^VeIrr(ΪO (see for example [3]§13). Then for
such a φ, IL(φ)P0 = L and 7 L (φ)P 0 =l by Lemma 3.3.

Let if be a Hall //-subgroup of IL(φ) (which is also a Hall //-subgroup
of L). Then H<\IL(φ) and IL(φ) = H<s> for some element s of order
/> in P\P0.

We continue our discussion by assuming that there exists an element
s of order p in NP(H)\P0 and shall prove that the condition (C)(l) in
Theorem 1 holds.

Lemma 3.4. // W is a subgroup of V with \V:W\ = q and [s, V\^Wy

then there exists a Hall pr-subgroup H1 of L with [Hi,V\<ΞkW.

Proof. Let φ be an irreducible character of V with kernel W.
Then since [5, V\ <Ξ Wy se IG(φ). Now the result follows by Lemma 3.3.

Lemma 3.5. Assume that F = W x W x ••• x W*P~\ where W is
P0H-invariant. Then the following (1) and (2) hold.

(1) // W1 is a subgroup of W with \W:W1\=q> then there exsts a
Hall pr-subgroup Hx of L with [H1)W] ^ Wγ. In particular,
Wx is H^invariant.

(2) Let Wo be an irreducible P0-module of W. Then WQ is H-
invarίant.
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Proof. (1) We can easily see that V—Wx [V,s] as V is an abelian
//-group. Put U=WX x [F,s]. By Lemma 3.4, there exists a Hall
//-subgroup H1 of L with [HUV]^ U. Since i?x ^ P0H, Wis Ht -invariant,
and so [HiyW] ^ WnU=Wi. In particular, W1 is //^-invariant.

(2) If Wo is not //-invariant, there exists an heH with W0^W^.
Let weW/ξ. Since W is elementary abelian, there exist subgroups W
and W" of W with P F 0 = < w > x P Γ and W=WoxWh

oxW". Set
W^W'xW^xW", then \W:Wγ\ = q and Wo $ WV By (1), H^ is
f/jL-invariant for some Hall //-subgroup H1 of L. Since heH £Ξ PQH^,
h — ahx for some aeP0 and h1eH1. Furthermore, since PFX ̂  t^o=W7o1,

Wo = (Wh

o

ι)hϊi c W\^ = WU contrary to our choice of Wx.

Since L acts on Fby conjugation, we can regard Fas an L-module.
Furthermore, since V is a minimal normal subgroup of G, V is an
irreducible L-module.

Lemma 3.6. Let V=V1x - xVn, where Vb \<i<ny are the
homogeneous components of V with respect to Po. Then n=p and we may
take Vf=Vi + ly 0<i<p — ί. Furthermore, V{ is an irreducible PQ-module
which is H-invarianty l<i<p.

Proof. We divide the proof of Lemma 3.6 into three steps.

STEP 1. s induces a regular permutation representation on the set

Proof. Suppose it is false, and let s fix V1. Since P o is abelian,
P0=P0/Cp0(Vi) is cyclic. Since < s > P 0 = <5>P o/CP o(F 1) has an abelian
subgroup of (pyp) type, there exists an xβ<s>P0 with CVί(x)^l and
x^\. If xePθJ then CVί(x) — \ since Vi is homogeneous as a
P0-module. Hence xφP0. Let υeCVί(x)*y then xeCP(v). Now by
Lemma 3.3 and the remark before Lemma 3.4, CPo(v) = \. So
CPo{Vγ) £ CPo(v) = \ and P o

 i s cyclic. Since L\>P0 and P o is abelian,
L = L/P0 acts on P o by conjugation. Since OP(L) = L and Aut(P0) is
abelian, Op,(L) centralizes P o . Hence L = Op>tP(L), and so G = Op>p(G)y

contrary to the condition (1) of Theorem 1. Hence s acts regularly on
the set {Vl9-,Vn}.

STEP 2. Let {Vl9-~,Vt} be an //-orbit of {Vi9—,VH}, and set
W=VXX'XVV Then V=WxWsX"XWsP~\
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Proof. Suppose s fixes an //-orbit {Vu -'yVt}. Since H is a //-group,
(pyt) = ί. Therefore s fixes Vt for some i, contrary to Step 1. Hence s
doesn't fix an //-orbit {Vly'~,Vt} and this implies that WxWx-'X
WsP <Ξ V. Furthermore, as Wx W x ••• x ίFsP~1 is L-invariant, we have
V=WxWsx-xWsP~\

STEP 3. Proof of Lemma 3.6.

Take an irreducible P0-submodule Wo in Vt. Then by Lemma
3.5(2), Wo is P0//-invariant. Therefore Wo x Ws

0 x ••• x Wg'1 is L-
invariant and coincides with V. Thus Wo = F\ (and t = 1 in Step 2) and
the lemma follows.

From Theorem 15.16 of [3], we obtain the following lemma.

Lemma 3.7. Let Po 3 Qx Ώ. Q2 2 Φ(P0)> wAer* Qx αwrf Q2

H<s>-invariant subgroups of Po. If H acts non-trivially on
then \Qi/Q1\>pp.

Lemma 3.8. Let φ be a homomorphism of Po into /*o/Cpo(^i) x ' " x

P0/CPo(Vp) which is defined by the rule φ(x) = (CPo(Vi)xy-'yCPo(Vp)x).
Then φ is an isomorphism.

Proof. Kerφ = Cpo(F) = l and Po is isomorphic to a subgroup of
Po/Cp^VJx-'XPo/Cp^Vp). On the other hand, P^/Cp^Vi) is cyclic,
\<i<p. Hence the rank of P o is at most p and \P0/Φ(P0)\<pp, and so
1^0^(^0)1=^ b y Lemma 3.7.

Suppose next that φ is not any epimorphism. Let Po have exponent
pm. Then pm = \Po/CPo(V1)\ as P0/Cp0{V,) is cyclic. Set Ωm_1(P0) = {xe
P0\χPm~ι = ί}. Then Ωm_x(P0) is <s>//-invariant and P o ? Ωm_1(P0) ^
Φ(P0). By Lemma 3.7, ί/ acts trivially on both P0/Ωm_1(P0) and
Ωm_1(P0)/Φ(P0) which is a contradiction.

Set P — C p ^ x x F ^ x F ^ x xF,), 1 </</>. Then P o =
Λ x ••* x pp b y Lemma 3.8, and so VP = (ViPi) x ••• x (VpPp). Pt is cyclic
as it acts on Vt irreducibly and faithfully.

Lemma 3.9. CPίH(v) contains a Hall p!-subgroup of Pj^H for any
veVt.

Proof. Set K=PiH. Then K acts on Irr(Fx) and on the set of
elements of Vi. We claim that Px-orbits coincide with /^-orbits on



O N />-RADICAL GROUPS 781

Vγ. Let Ai9~',Am be P r o r b i t s on lτv{yx) and let Biy yBn be P r o r b i t s
on the set of elements of Vx. By Corollary 6.3.3 of [3], we have m = n.

Let χ be an irreducible character in Aiy and set PF1 = Kerχ. Now
V= VϊxVs

ix ' x F f \ a n d V\ i s P0#-invariant. Hence, by lemma 3.5
(1), there exists a Hall //-subgroup Hx of L with [ i ί ^ F J c H^. As
P o = P 1 C F o ( F 1 ) by the remark before Lemma 3.9, we may take Hx in
K. Since K=P1H = PίH1 and u \ fixes χ, ^4X coincides with a ΛΓ-orbit
on Irr ίFi) . Similarly, A{ is a X-orbit on \γr{Vx)y 2<i<m. By Corollary
6.3.3 of [3] again, Bt is a K-orbit on the set of elements of Vl9 \<i<my

and our claim follows.
Let v be an element of Vγ. For each element geKy we have v9 = vx

for some XGP1 by the above claim. Hence gx1 eCκ(v)y and so
geCκ(v)Pi. This implies that K=CK(v)Px. Hence Cκ(v) contains a
Hall //-subgroup of K.

Lemma 3.10. Set r = |H/C H (F 1 ) | ami/>m = |ΛI> ίf" = l^il ΓΛCT r|n

^Σ\=pm and

Proof. Set N=V1P1H and J 7 = F 1 P 1 H / C H ( F 1 ) . By Lemma 3.9,
Cχ{ϋ) contains a Hall //-subgroup of N for any veV1. Hence every
Px-orbit of Vι contains an element which is centralized by H. Since
Pj is cyclic, by Proposition 19.8 of [11] and Lemma 3.6, we can identify
Vt with GF(qn) in such a way that PXH^ T(qn) = {v-> aυσ\aeGF(qn)\
σ e Gal(GF(<f)/GF(q))} and P x c {v -+ av\a e GF(qnfY

As Cfi{Pi) is contained in any Hall //-subgroup oϊ P1Hy Cg{Pχ) = 1.
Since Px is cyclic and H is a //-group, H acts regularly on P x .

Gdl(GF(qn)/GF(q)) —GF(q)

GF{ql)

1 GFiq")

Let H=<η>y where η(v) = bvσ

y for some fee GF(qn)* and σe
Gal(GF(#n)/GF(g)) for v e F l t By Proposition 19.8 of [11], ίϊ~Ί\H/
Cj^(Pi)^ G2λ{GF{qn)/GF(q))y and so r = \H\= \σ\ with r\n. Then
< σ > = Gal(GF(gw)/GF(^)), where n = /r. Let P j = < xa >, where xa(υ) = avy

a e GF{qnf. If a1 e GF(qι) for some ί, then ι/Λβι(t;) = if(α'ϋ) = 6(αί^)<τ = (ai)σbvσ

= aibvσ. On the other hand, xaίη(v) = xai(bvσ) = aιbvσ. Hence ηxai = xaiη2

and so η~1xa^l = ̂ a^ S i n c e ^ = (Λ;α)ί> ^ ~ 1 ( ^ ) ^ = (Λ:α)i T n υ s fll = 1 a s ^
acts regularly on Px. Hence
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Since <a> c GF(qn) is a P rorbits, η(ai) = ai for some i. Hence
ηia1) = 6(αιy = α*, and so b = (0f)(α " *)* e < α >. Thus b = aj for some j , and
so η = xaJσ. Then PιH= <xa> <xajσ> = <xa> <σ>.

Let c be any element of GF(qn)*. Since {c,ca, -,cavrn~1} is a Pj-orbit,
(ccf)σ = cai for some i. Hence ctfeGFtf). This implies that GF{qn)* =
<a>GF(qιγ. Hence ί"- l = ( « I - l ) ί w = (ίll/r-l)/>"1. Furthermore, we
have • F 1 P 1 H = F 1 < * β X σ > ^^ g,n, r.

Now we completed the proof of the if-part of Theorem 1 and we
shall prove the "only-if-part" of the theorem.

Lemma 3.11. Let G satisfy the conditions (l)-(3) in Theorem 1. If
G has the conditions {A), (B) and (C) of Theorem 1, then G is p-radicaL

Proof. Let φeΙrr(F) and let B be a block of kG which covers
φ. Then we shall prove that B is ^-radical.

CASE 1. φ = ίv.

Since L/Po is a Frobenius group, L is ^-radical by Lemmas 2.1,
2.2. By lemma 2.5, B is />-radical.

CASE 2.

Set T = IG{φ). Suppose that G satisfies the condition (C)(2) in
Theorem 1. By the remark before Lemma 3.4, T <^Op,ppf(G). Set
N= VPOy then D ^ N, where D is a defect group of B, Then
J(B) = J(kN)B by Theorem 2.3 of [1]. By Lemma 2.2, N is ^-radical,
and so (k®PB)J(B) = k®PJ(kN)B c k®PJ(kPo)(kN)B = 0. Hence &®P.B
is semisimple, and so B is /)-radical.

Suppose next that G satisfies the condition (C)(l) in Theorem 1. Let
v be an element of V. Then v = v1--vpy where v{eVh \<i<p. Then,
by (C)(2)(vii) in Theorem 1, there exist an x^Pi with O?\fϊ] = l, 1 <i<p,
where H is a Hall //-subgroup of G. Set x = xi -xp. Then vx = ϋ* v* =
vϊ1---^, and so [υ*,H] = l. This implies that CG(υ) contains a Hall
^'-subgroup of G for each weF. By a similar argument in the proof of
Lemma 3.9, T contains a Hall //-subgroup.

Since V c T and G= FL, we have Γ= F(Ln T). TnL is /)-closed
or TnL/OP(Tr\L) is a Frobenius group. In each case, TnL is />-radical
by Lemmas 2.1, 2.2. Let b be the Fong correspondent of B w.r.t.(V,T)
Then b is/>-radical by Lemma 2.5. Hence B is/>-radical by Lemma 2.4(2).
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4. Proof of Theorem 2

In this section, we shall prove the following theorem from which
Theorem 2 follows by using Lemma 2.6.

Theorem 3. // G is a p-radical group with G/Opf(G)e^y then

Proof. Suppose it is false and let G be a minimal counterexample
of Theorem 3. Now we divide the proof into several steps. At first,
we shall prove that G satisfies the conditions (l)-(3) in Theorem 1.

STEP 1. Op(G) = l and OP'(G) = G.

Proof. Suppose that Op{G)φ\. Set G = G/Op(G). Then G is
^-radical. Furthermore, since G/Op>{G) is a homomorphic image of
G/Op,(G), G/Op,(G)e&_by Lemma 2.6. By the minimality of G,
G = O P J Λ P , P ' ( Φ = OP, ^p,(G), and so G = Opj,>>p,(G), contrary to our choice
of G. Next we assume that OP\G) £ G. Set C7=OP'(G), then since U
is ^-radical and U/Op.{U)e&, U=Op^PtP(U) = Op%p.%p(U). Hence G =
°P,P',P,AG)>

 a contradiction.

Let V be a minimal normal subgroup of G. By Step 1 and Lemma
2.3, V is an abelian //-group. Furthermore, let Po be a />-subgroup of
G with Op(G/F) = P 0 ϊ 7 / I 7 τ h e n w e s h o w t h e following Step 2.

STEP 2.

(1) G/V=OP9P,9P(G/V), in particular, G =
(2) PQΦ\ is elementary abelian.
(3) Le£ M be a Hall p'-subgroup of G. Then there exists an

seNG(M) with \s\=p and G = Op. pp.(G)<s>.
(4) F=[O

Proof. Set G = G/V. For (1), we note that G is ^-radical and
F. Since VΦ\,G = Opy^(G) = OPiP,JG)ysothatG = Op,fPyJG).
For (2) and (3), let P be a Sylow ^-subgroup of G such that NP(M)

is a Sylow ^-subgroup of NG(M). If P 0 = l, then G=Op>p{G)y and so
G — Opfp{G), contrary to our choice of G. Hence P O T ^ 1 . By Theorem
3.1 of [14], P o is elementary jibelian. Hence Po==[POiM]xCPo(M).
Since G = PoNG(M) = PoNp(M)ML G =JPo,M]MNP(M). _ Furthermore,
[POyM]M<\G and [POyM]MnNP(M) = ̂ 0 , 7 1 ^ 0 ^ ( ^ 0 = ^ 0 , ^ n C P o ( M )
= 1. Therefore NP(M) is a complement of [POiM]M in G. By Theorem
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3.1 )̂f [14], Nψ(M) is elementary abelian. If Np(M) ^ p o > then
G = PpM. _Hence G = Op,pp,{G), contrary to our choice of G. Thus
Np(M) ^ Po. Therefore there exists an element seNP(M) with \s\=p
and sφP0.

Now set N=Op, pp,(G)<s>. Since ΛΓ<G, JV is />-radical by
Lemma 2.1 (1). Furthermore, N=N/Op,(G) = N/Op,(N)e&r by Lemma
2.7. If JV£ G, then ΛΓ=Opp, „ , (#) . Since ΛΓ<G, Op(JV) c Op(G) = l
and Op.JN) c Op,tP(G). Hence ΛΓ=O,w(iV), and so seOp,fP(iV) c=
Op.tP(G)> contrary to our choice of 5. Thus G = Op> pp,{G)<s>.

' For (4), we note [Op,(G),P0] c= Op{G)nP0V=V^

STEP 3. Proof of Theorem 3.

By Step 2, there exists an s with \s\=p and G = Op, pp>(G)<s>. By
the remark before Lemma 3.4, the condition (C)(l) in Theorem 1
holds. We set G = G/V, then GeJ^ by Lemma 2.6. Since ί^ is
jff-invariant, Px is 5-invariant (see the proof of Lemma 11(7) of [7]), and
we have a contradiction.

Acknowledgement. The author would like to thank Professor
Tetsuro Okuyama for his many helpful suggestions.

References

[1] W. Feit: "The representation theory of finite group," North-Holland, Amsterdam,
1982.

[2] D. Gorenstein: "Finite groups," Harper & Row, New York, 1968.
[3] I.M. Issacs: "Character theory of finite groups," Academic Press, New York, 1976.
[4] G. Karpilovsky: "The Jacobson radical of group algebra," North-Holland,

Amsterdam, 1987.
[5] M. Lorenz: On Loewy lengths of projective modules for psolvable groups, Comm.

Algebra 13(1985), 1193-1212.
[6] O. Manz: On the modular version of Ito's theorem of character degrees for groups of

odd order, Nagoya Math J. 105(1987), 121-128.
[7] K. Motose: On the nilpotency index of the radical of a group algebra IV, Math. J.

Okayama Univ. 25(1983), 35-42.
[8] K. Motose and Y. Ninomiya: On the nilpotency index of the radical of a group

algebra, Hokkaido Math. J. 4(1975), 261-264.
[9] K. Motose and Y. Ninomiya: On the subgroup H of a group G such that

J(KH)KG 3) J(KG), Math. J. Okayama Univ. 17(1975), 171-176.
[10] T. Okuyama: p-Radical groups are p-solvable, Osaka J. Math. 23(1986), 467-469.
[11] DJ. Passman: "Permutation groups", Benjamin, New York, 1968.
[12] J.G. Thompson: Finite groups with fixed-point-free automorphisms of prime order,



O N />-RADICAL GROUPS 785

Proc. Nat. Acad. Sci. 45(1959), 578-581.
[13] Y. Tsushima: On p-radical groups, J. Algebra 103(1986), 80-86.
[14] D.A.R. Wallace: Lower bounds for the radical of the group algebra of a finite p-souble

group, Proc. Edinburgh Math. Soc. 16(1968/69), 127-134.

Department of Mathematics
Faculty of Education
Gunma University
Maebashi 371, Japan






