Osaka University Knowledge Archive

Title	On p-radical groups G and the nilpotency indices of $\mathrm{J}(\mathrm{kG})$
Author(s)	Fukushima, Hiroshi
Citation	0saka Journal of Mathematics. 1994, 31(4), p. $773-785$
Version Type	VoR
URL	https://doi.org/10.18910/11887
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

ON p-RADICAL GROUPS G AND THE NILPOTENCY INDICES OF J(kG)

Hiroshi FUKUSHIMA

(Received April 8, 1993)

1. Introduction

Let $k G$ be the group algebra of a finite group G over an algebraically closed field k of characteristic $p>0$, and let P be a Sylow p-subgroup of G.

Following Motose and Ninomiya [9] we call $G p$-radical if the induced module $\left(k_{P}\right)^{G}$ of the trivial $k P$-module k_{P} is completely reducible as a right $k G$-module.

In [10], Okuyama has proved that p-radical groups are p solvable. And Tsushima has characterlized p-radical groups which are p-nilpotent by group theoretical properties (see Lemma 2.2). So it seems to be interesting to investigate the structure of p-radical groups of p-length 2 and in this paper we shall treat such a group with some additional properties.

Before describing our result we need to define some notations. Let $F=G F\left(q^{n}\right)$ be a finite field of q^{n} elements for prime q. Let V be the additive group of F. Let $T\left(q^{n}\right)$ be the set of semilinear transformations of the form $v \rightarrow a v^{\sigma}$ with $v \in V, 0 \neq a \in F$, and σ a fied automorphism (see [11, p229]). Then we can consider the semidirect product $V T\left(q^{n}\right)$ of V by $T\left(q^{n}\right)$. Let λ be a generater of the multiplicative group of F and $v=\lambda^{n / r-1}$ for some integer r with $r \mid n$. Let $T_{0}=\left\{v \rightarrow a v^{\sigma} \mid a \in<v>\right.$, $\left.\sigma \in \operatorname{Gal}\left(F / G F\left(q^{n / r}\right)\right)\right\}$. Then we define $A_{q, n, r}=V T_{0} \subseteq V T\left(q^{n}\right)$.

Theorem 1. Let G be a finite group with the following conditions.
(1) $\left|G: O_{p^{\prime}, p, p^{\prime}}(G)\right|=p, O_{p}(G)=1$ and $O^{p^{\prime}}(G)=G$.
(2) A Sylow p-subgroup P_{0} of $O_{p^{\prime}, p}(G)$ is abelian.
(3) $V=\left[O_{p^{\prime}}(G), P_{0}\right]$ is a minimal normal subgroup of G.

Then G is p-radical if and only if the following conditions (A), (B) and (C) hold.
(A) $\bar{G}=G / V P_{0}$ is a Frobenius group with kernel $O_{p^{\prime}}(\bar{G})$.
(B) V is an elementary abelian q-group for some prime $q(\neq p)$.
(C) One of the following (1) and (2) holds.
(1) The following (i)-(vii) hold.
(i) $G=V N_{G}\left(P_{0}\right)$ and $V \cap N_{G}\left(P_{0}\right)=1$.
(ii) $P_{0} \triangleleft P_{0} H \triangleleft P_{0} H<s>$, where $|s|=p$ and H is a p^{\prime}-group.
(iii) By conjugation, we can regard V as an irreducible $N_{G}\left(P_{0}\right)$-module. Then $V=V_{1} \times \cdots \times V_{p}$, where $V_{i}, 1 \leq i \leq p$, are the homogeneous components of $V_{P_{0}}$.
(iv) Set $P_{i}=C_{P_{0}}\left(V_{1} \times \cdots \times V_{i-1} \times V_{i+1} \times \cdots \times V_{p}\right)$, $1 \leq i \leq p$.

Then $P_{0}=P_{1} \times \cdots \times P_{p}$.
(v) $V_{1}^{s^{i}}=V_{i+1}, P_{1}^{s^{i}}=P_{i+1}, 0 \leq i \leq p-1$.
(vi) $\quad V_{i}$ and P_{i} are H-invariant, $1 \leq i \leq p$, and $V P_{0}=\left(V_{1} P_{1}\right) \times \cdots \times$ ($V_{p} P_{p}$).
(vii) Set $r=\left|H / C_{H}\left(V_{1}\right)\right|$ and $p^{m}=\left|P_{1}\right|, q^{n}=\left|V_{1}\right|$. Then $r \mid n$ and $\frac{q^{n}-1}{q^{n / r}-1}=p^{m}$ and $V_{i} P_{i} H / C_{H}\left(V_{i}\right) \simeq A_{q, n, r}, 1 \leq i \leq p$.
(2) $\quad C_{G}(v) \subseteq O_{p^{\prime}, p, p^{\prime}}(G)$ for any element v of V^{\nexists}.

Next, let $\mathrm{t}(G)$ be the nilpotency index of the radical $J(k G)$ of $k G$ and let p^{a} be the order of Sylow p-subgroups of G.
Wallace [14] proved that if G is p-solvable, then $a(p-1)+1 \leq t(G) \leq p^{a}$. If G has p-length 1 , then by Motose and Ninomiya [8] $t(G)=a(p-1)+1$ if and only if P is elementary abelian.

All known examples of p-solvable group G with $t(G)=a(p-1)+1$ have p-length at most 2. Using Theorem 1, we can prove the following theorem.

Theorem 2. If G is a p-radical group with $t(G)=a(p-1)+1$, then $G=O_{p, p^{\prime}, p, p^{\prime}}(G) . \quad$ In particular, the p-length of G is at most 2.

2. Preliminaries

In this section, we shall give some lemmas which will be used to prove the theorems.

Lemma 2.1. ([1, Theorem 6.5]). Suppose that $N \triangleleft G$. Then the following (1)-(3) hold.
(1) If G is p-radical, so are N and G / N.
(2) If N is a p-group, then G is p-radical if and only if G / N is p-radical.
(3) If G / N is a p^{\prime}-group, then G is p-radical if and only if N is p-radical.

Lemma 2.2. ([13, Theorem 2]). Let $G=P N$ be a p-nilpotent group with $N=O_{p^{\prime}}(G)$. Then G is p-radical if and only if $[N, D] \cap C_{N}(D)=1$ for any p-subgroup D of G. In particular, if N is abelian, then G is p-radical.

Lemma 2.3. If G is p-radical, then $O^{p^{\prime}}(G)$ is solvable.
Proof. Suppose it is false and let G be a minimal couterexample. Then we have $G=O^{p^{\prime}}(G)$. By Theorem 1 of [10], G is p-solvable. If $O_{p}(G) \neq 1$, then $G / O_{p}(G)$ is solvable since $G / O_{p}(G)$ is p-radical. Hence G is solvable, a contradiction. Hence $O_{p}(G)=1$, and so $O_{p^{\prime}}(G) \neq 1$. Let P be a Sylow p-subgroup of $O_{p^{\prime}, p}(G)$, and set $W=<\left[O_{p^{\prime}}(G), x\right]$ $x \in \Omega_{1}(Z(P))>$. If $W=1$, then $1 \neq \Omega_{1}(Z(P)) \subseteq C_{G}\left(O_{p^{\prime}}(G)\right) \subseteq O_{p^{\prime}}(G)$, a contradiction. Since $G=O_{p^{\prime}}(G) N_{G}(P), \quad 1 \neq W \triangleleft G$. Furthermore, for $x \in \Omega_{1}(Z(P))$ [$\left.O_{p^{\prime}}(G), x\right]$ is a normal subgroup of $O_{p^{\prime}}(G)$ and is nilpotent by Thompson [12] as $C_{O_{p^{\prime}(G)}}(x) \cap\left[O_{p^{\prime}}(G), x\right]=1$ (see Lemma 2.2). Hence W is solvable. Since G / W is p-radical, G / W is solvable. This implies that G is solvable, contrary to our choice of G.

Let B be a block of $k G$. We call B a p-radical block if $k \otimes_{P} B$ is semisimple. Let $N \triangleleft G$ and b_{0} a block of $k N$ that is covered by B. Let T be the inertia group of b_{0}. Then there exists a unique block b of $k T$ with $b^{G}=B$. We call b the Fong correspondent of B w.r.t. (K, T). Then the next lemma holds.

Lemma 2.4. The following (1) and (2) hold.
(1) B is p-radical if and only if $k \otimes_{P^{y} \cap T} b$ is a semisimple $k T$-module for any $y \in G$.
(2) ([13] Tsushima) If $|G: T|$ is a power of p, then B is p-radical if and only if b is p-radical.

Proof. (1) Various facts are known about the relationship between B and b. $B=(k G) b(k G)$ and $J(B)=(k G) J(b)(k G)$. Furthermore, $(k G) b$ is a direct summand of B as a $k(G \times T)$-module. Hence $k \otimes_{P}(k G) b$ is a direct summand of $k \bigotimes_{P} B$ as a right $k T$-module. On the other hand, $k \otimes_{P} k G \simeq \underset{y \in P \mid G / T}{\oplus} k \otimes_{P y_{\cap} T} k T$ by Mackey decomposition, and so $k \otimes_{P}(k G) b \simeq$ $\oplus \otimes_{P y_{\cap} T} b$ as right $k T$-modules.
$y \in P \mid G / T$
Assume that B is p-radical. Since $\left(k \otimes_{P} B\right) J(b) \subseteq\left(k \otimes_{P} B\right) J(B)=0$, $\left(k \otimes_{P y_{\cap} T} b\right) J(b)=0$, and so $k \otimes_{P y_{\cap T}} b$ is semisimple.

Conversely, assume that $k \bigotimes_{P y_{n} T} b$ is a semisimple $k T$-module for any $y \in G$. Then $k \otimes_{P}(k G) b$ is a semisimple $k T$-module. Therefore $U=$ $\left(k \otimes_{P}(k G) b\right) \otimes_{T} k G$ is semisimple by Fong's theory. Since $k \otimes_{P} B$ is a natural homomorphic image of U, it is also semisimple.
(2) Since $G=P T$ by assumption, $P^{y} \cap T$ is a Sylow p-subgroup of T for any $y \in G$, and hence $\mathrm{k} \otimes_{P_{y_{\cap}} b} b$ is semisimple if and only if b is p-radical. Therefore (2) follows from (1).

Let $G \triangleright V$. We let $\operatorname{Irr}(V)$ be the set of ordinary irreducible characters of V and let $I_{G}(\varphi)$ be the inertia group of $\varphi \in \operatorname{Irr}(V)$.
Furthermore, for a block B of $k G$, let $\operatorname{Irr}(B)$ be the set of irreducible characters of G belonging to B.

Lemma 2.5. Let $G=L V \triangleright V$, where V is an abelian p^{\prime}-group with $L \cap V=1$. Let $\varphi \in \operatorname{Irr}(V)$ with $I_{G}(\varphi)=G$. Then L is p-radical if and only if all blocks which cover φ are p-radical.

Proof. Let b be a block of $k G$ which covers φ. Let $\chi \in \operatorname{Irr}(b)$. Then each irreducible constituent of χ_{V} is φ. Set $U=\operatorname{Ker} \varphi$. Then we have $\operatorname{Ker} \chi \supseteq U$, and so $\operatorname{Ker} b \supseteq U$. Set $\bar{G}=G / U$, then $\bar{G}=\bar{L} \times \bar{V}$. Let e be a centrally primitive idempotent corresponding to φ. Then the sum of all blocks which cover φ is isomorphic to $k \bar{L} \otimes_{k} k e \simeq k L$. Then the lemma follows immediately.

Throught this paper, we let \mathscr{F} be the family of all finite group G such that $t(G)=a(p-1)+1$, where p^{a} is the order of a Sylow p-subgroup of G.

Lemma 2.6. Let G be a p-solvable group and $N \triangleleft G$. If $G \in \mathscr{F}$, then $G / N \in \mathscr{F}$.

Proof. Let p^{a}, p^{b} be the orders of Sylow p-subgroups of G and N, respectively.

At first, assume N is a p^{\prime}-group. By Theorem 2.2, 3.3 of [14], $a(p-1)+1 \leq t(G / N) \leq t(G)=a(p-1)+1$. Hence $t(G / N)=a(p-1)+1$, and so $G / N \in \mathscr{F}$.

Next, assume N is a p-group. By Theorem 2.4, 3.3 of [14], $b(p-1)+(a-\mathrm{b})(\mathrm{p}-1)+1 \leq t(N)+t(G / N)-1 \leq t(G)=a(p-1)+1$. Hence $t(N)=b(p-1)+1$ and $t(G / N)=(a-b)(p-1)+1$, and so $G / N \in \mathscr{F}$.

Now, we shall consider the general case. If $N \neq 1,0_{p^{\prime}}(N) \neq 1$ or $0_{p}(N) \neq 1$ since N is p-solvable. By induction on $|N|$, the lemma follows.

Lemma 2.7. Let $G=L V \triangleright V$, where V is a p-group and L is a p radical p-nilpotent group with $L \cap V=1$. If $G \in \mathscr{F}$, then $\left\langle V O_{p^{\prime}}(L), s>\in \mathscr{F}\right.$ for any p-element $s \in L$.

Proof. Set $H=O_{p^{\prime}}(L)$. By Theorem 3.1 of [14], $|s|=p$ and V is elementary abelian. Since L is p-radical, $[H, s]\langle s\rangle$ is a Frobenius group by Lemma 2.2. By Theorem 2.7 of [5], $g r k V$ is semisimple as a $k G$-module. Let $N=V[H, s]<s>\triangleleft G$. Then $g r k V$ is semisimple as a $k N$-module, and so $N \in \mathscr{F}$ by Theorem 2.7 of [5]. Set $M=\left\langle V O_{p^{\prime}}(L), s\right\rangle$. Since $M \triangleright N$ and M / N is a p^{\prime}-group, $M \in \mathscr{F}$.

3. Proof of Theorem 1

First we shall prove the if -part of Theorem 1. Let G be a finite group with conditions (1)-(3) in Theorem 1 and we assume that G is p-radical.

Lemma 3.1. $V=\left[O^{p^{\prime}}(G), P_{0}\right]$ is an elementary abelian q-group for some prime $q(\neq p)$ and $N_{G}\left(P_{0}\right)$ is a complement of V in G.

Proof. Since G is p-radical with $O^{p^{\prime}}(G)=G, G$ is solvable by Lemma 2.3. In particular, V is solvable. Then V is an elementary abelian q-group for some prime $q(\neq p)$ by the condition (3) in Theorem 1.

Next, $G=V N_{G}\left(P_{0}\right)$ by the Frattini argument. Since
 $\left[N_{V}\left(P_{0}\right), P_{0}\right] \subseteq V \cap P_{0}=1, \quad N_{V}\left(P_{0}\right) \subseteq C_{V}\left(P_{0}\right)=1$. Thus $N_{G}\left(P_{0}\right)$ is a complement of V in G.

Now, set $L=N_{G}\left(P_{0}\right)$ and let P be a Sylow p-subgroup of L.
Lemma 3.2. $\bar{L}=L / P_{0}$ is a Frobenius group with kernel $O_{p^{\prime}}(\bar{L})$ and complement \bar{P}.

Proof. By the condition (1) in Theorem 1, $O^{p^{\prime}}(\bar{L})=\bar{L}$. Then $\bar{L}=\left[O_{p^{\prime}}(\bar{L}), \bar{P}\right] \bar{P}$ since $\bar{L}=O_{p^{\prime}, p}(\bar{L})$. Furthermore, since $\bar{L} \simeq G / V P_{0}, \bar{L}$ is p-radical by Lemma 2.1 (1), and so $\left[O_{p^{\prime}}(\bar{L}), \bar{P}\right] \cap C_{o_{p^{\prime}}(\bar{L})}(\bar{P})=1$. Thus \bar{L} is a Frobenius group.

By Lemma 3.2, G satisfies the condition (A) in Theorem 1.
Lemma 3.3. Let $\varphi \in \operatorname{Irr}(V)$ with $\varphi \neq 1_{V}$. Then one of the following
(1) and (2) holds.
(1) $\mathrm{I}_{G}(\varphi) \subseteq O_{p^{\prime}, p, p^{\prime}}(G)$.
(2) $L=I_{L}(\varphi) P_{0}$ and $I_{L}(\varphi) \cap P_{0}=1$.

Proof. Set $T=I_{G}(\varphi)$ and assume that $T \nsubseteq O_{p^{\prime}, p, p^{\prime}}(G)$. Let b_{0} be a block of $k V$ with $\varphi \in b_{0}$. Let B be a block of $k G$ which covers b_{0} and let b be the Fong correspondent of B w.r.t. (V, T). Let D be a defect group of b and let P^{*} be a Sylow p-subgroup of G which contains D. Since B is p-radical, $k \otimes_{P^{* y_{\cap}}} b$ is semisimple for any $y \in G$ by Lemma 2.4. On the other hand, there exists an irreducible $k T$-module in b with vertex D (see [1, Lemma 4.6]). Hence $P^{* y t} \cap T \supseteq D$ for some $t \in T$, in particular $P^{* y t} \cap T=D$. Set $\bar{G}=G / V P_{0} . \quad$ Since $D \subseteq O_{p^{\prime}, p, p^{\prime}}(G), \bar{D}^{\overline{y t}}=\bar{P}^{* \overline{y t}}$ $=\bar{D} \neq 1$. Since \bar{G} is a Frobenius group, $\overline{y t} \in \bar{P}^{*}$. Hence $y \in T P^{*}=T P_{0}$. This implies that $G=T P_{0}$, and so $L=(L \cap T) P_{0}$.

Next, set $Q=(L \cap T) P_{0}$. Since P_{0} is abelian, $Q \triangleleft L$. Since $[V, Q] \subseteq \operatorname{ker} \varphi \neq V$ and $[V, Q]$ is L-invariant, $[V, Q]=1$ by the minimality of V, and so $Q \subseteq O_{p}(G)=1$.

Now assume that $C_{G}(v) \leftrightarrows O_{p^{\prime}, p, p^{\prime}}(G)$ for some $v \in V^{\#}$. As V is a p^{\prime}-group, this condition is equivalent to the condition that $I_{G}(\varphi) \nsubseteq$ $O_{p^{\prime}, p, p^{\prime}}(G)$ for some $\varphi \neq 1_{V} \in \operatorname{Irr}(V)$ (see for example [3]§13). Then for such a $\varphi, I_{L}(\varphi) P_{0}=L$ and $I_{L}(\varphi) P_{0}=1$ by Lemma 3.3.

Let H be a Hall p^{\prime}-subgroup of $I_{L}(\varphi)$ (which is also a Hall p^{\prime}-subgroup of L). Then $H \triangleleft I_{L}(\varphi)$ and $I_{L}(\varphi)=H<s>$ for some element s of order p in $P \backslash P_{0}$.

We continue our discussion by assuming that there exists an element s of order p in $N_{P}(H) \backslash P_{0}$ and shall prove that the condition (C)(1) in Theorem 1 holds.

Lemma 3.4. If W is a subgroup of V with $|V: W|=q$ and $[s, V] \subseteq W$, then there exists a Hall p^{\prime}-subgroup H_{1} of L with $\left[H_{1}, V\right] \subseteq W$.

Proof. Let φ be an irreducible character of V with kernel W. Then since $[s, V] \subseteq W, s \in I_{G}(\varphi)$. Now the result follows by Lemma 3.3.

Lemma 3.5. Assume that $V=\mathrm{W} \times W^{s} \times \cdots \times W^{s^{p-1}}$, where W is $P_{0} H$-invariant. Then the following (1) and (2) hold.
(1) If W_{1} is a subgroup of W with $\left|W: W_{1}\right|=q$, then there exsts a Hall p^{\prime}-subgroup H_{1} of L with $\left[H_{1}, W\right] \subseteq W_{1}$. In particular, W_{1} is H_{1}-invariant.
(2) Let W_{0} be an irreducible P_{0}-module of W. Then W_{0} is H invariant.

Proof. (1) We can easily see that $V=W \times[V, s]$ as V is an abelian p^{\prime}-group. Put $U=W_{1} \times[V, s]$. By Lemma 3.4, there exists a Hall p^{\prime}-subgroup H_{1} of L with $\left[H_{1}, V\right] \subseteq U$. Since $H_{1} \subseteq P_{0} H, W$ is H_{1}-invariant, and so $\left[H_{1}, W\right] \subseteq W \cap U=W_{1}$. In particular, W_{1} is H_{1}-invariant.
(2) If W_{0} is not H-invariant, there exists an $h \in H$ with $W_{0} \neq W_{0}^{h}$. Let $w \in W_{0}^{\#}$. Since W is elementary abelian, there exist subgroups W^{\prime} and $W^{\prime \prime}$ of W with $W_{0}=\langle w\rangle \times W^{\prime}$ and $W=W_{0} \times W_{0}^{h} \times W^{\prime \prime}$. Set $W_{1}=W^{\prime} \times W_{0}^{h} \times W^{\prime \prime}$, then $\left|W: W_{1}\right|=q$ and $W_{0} \ddagger W_{1} . \quad$ By (1), W_{1} is H_{1}-invariant for some Hall p^{\prime}-subgroup H_{1} of L. Since $h \in H \subseteq P_{0} H_{1}$, $h=a h_{1}$ for some $a \in P_{0}$ and $h_{1} \in H_{1} . \quad$ Furthermore, since $W_{1} \supseteq W_{0}^{h}=W_{0}^{h_{1}}$, $W_{0}=\left(W_{0}^{h_{1}}\right)^{h_{1}^{-1}} \subseteq W_{1}^{h_{1}^{-1}}=W_{1}$, contrary to our choice of W_{1}.

Since L acts on V by conjugation, we can regard V as an L-module. Furthermore, since V is a minimal normal subgroup of G, V is an irreducible L-module.

Lemma 3.6. Let $V=V_{1} \times \cdots \times V_{n}$, where $V_{i}, 1 \leq i \leq n$, are the homogeneous components of V with respect to P_{0}. Then $n=p$ and we may take $V_{l}^{s^{i}}=V_{i+1}, 0 \leq i \leq p-1$. Furthermore, V_{i} is an irreducible P_{0}-module which is H-invariant, $1 \leq i \leq p$.

Proof. We divide the proof of Lemma 3.6 into three steps.
Step 1. s induces a regular permutation representation on the set $\left\{V_{1}, \cdots, V_{n}\right\}$.

Proof. Suppose it is false, and let s fix V_{1}. Since P_{0} is abelian, $\bar{P}_{0}=P_{0} / C_{P_{0}}\left(V_{1}\right)$ is cyclic. Since $\overline{\langle s\rangle P_{0}}=\langle s\rangle P_{0} / C_{P_{0}}\left(V_{1}\right)$ has an abelian subgroup of (p, p) type, there exists an $x \in<s>P_{0}$ with $C_{V_{1}}(x) \neq 1$ and $\bar{x} \neq 1$. If $x \in P_{0}$, then $C_{V_{1}}(x)=1$ since V_{1} is homogeneous as a P_{0}-module. Hence $x \notin P_{0}$. Let $v \in C_{V_{1}}(x)^{\#}$, then $x \in C_{P}(v)$. Now by Lemma 3.3 and the remark before Lemma 3.4, $C_{P_{0}}(v)=1$. So $C_{P_{0}}\left(V_{1}\right) \subseteq C_{P_{0}}(v)=1$ and P_{0} is cyclic. Since $L \triangleright P_{0}$ and P_{0} is abelian, $\bar{L}=L / P_{0}$ acts on P_{0} by conjugation. Since $O^{p^{\prime}}(\bar{L})=\bar{L}$ and $\operatorname{Aut}\left(P_{0}\right)$ is abelian, $O_{p^{\prime}}(\bar{L})$ centralizes P_{0}. Hence $L=O_{p^{\prime}, p}(L)$, and so $G=O_{p^{\prime}, p}(G)$, contrary to the condition (1) of Theorem 1. Hence s acts regularly on the set $\left\{V_{1}, \cdots, V_{n}\right\}$.

Step 2. Let $\left\{V_{1}, \cdots, V_{t}\right\}$ be an H-orbit of $\left\{V_{1}, \cdots, V_{n}\right\}$, and set $W=V_{1} \times \cdots \times V_{t}$. Then $V=W \times W^{s} \times \cdots \times W^{s^{p-1}}$.

Proof. Suppose s fixes an H-orbit $\left\{V_{1}, \cdots, V_{t}\right\}$. Since H is a p^{\prime}-group, $(p, t)=1$. Therefore s fixes V_{i} for some i, contrary to Step 1. Hence s doesn't fix an H-orbit $\left\{V_{1}, \cdots, V_{t}\right\}$ and this implies that $W \times W^{s} \times \cdots \times$ $W^{s^{p-1}} \subseteq V$. Furthermore, as $W \times W^{s} \times \cdots \times W^{s^{p-1}}$ is L-invariant, we have $V=W \times W^{s} \times \cdots \times W^{s^{p-1}}$.

Step 3. Proof of Lemma 3.6.

Take an irreducible P_{0}-submodule W_{0} in V_{1}. Then by Lemma $3.5(2), W_{0}$ is $P_{0} H$-invariant. Therefore $W_{0} \times W_{0}^{s} \times \cdots \times W_{0}^{s^{p-1}}$ is L invariant and coincides with V. Thus $W_{0}=V_{1}$ (and $t=1$ in Step 2) and the lemma follows.

From Theorem 15.16 of [3], we obtain the following lemma.
Lemma 3.7. Let $P_{0} \supseteq Q_{1} \supseteq Q_{2} \supseteq \Phi\left(P_{0}\right)$, where Q_{1} and Q_{2} are $H<\mathrm{s}>$-invariant subgroups of P_{0}. If H acts non-trivially on Q_{1} / Q_{2}, then $\left|Q_{1} / Q_{2}\right| \geq p^{p}$.

Lemma 3.8. Let ϕ be a homomorphism of P_{0} into $P_{0} / C_{P_{0}}\left(V_{1}\right) \times \cdots \times$ $P_{0} / C_{P_{0}}\left(V_{p}\right)$ which is defined by the rule $\phi(x)=\left(C_{P_{0}}\left(V_{1}\right) x, \cdots, C_{P_{0}}\left(V_{p}\right) x\right)$. Then ϕ is an isomorphism.

Proof. $\operatorname{Ker} \phi=C_{P_{0}}(V)=1$ and P_{0} is isomorphic to a subgroup of $P_{0} / C_{P_{0}}\left(V_{1}\right) \times \cdots \times P_{0} / C_{P_{0}}\left(V_{p}\right)$. On the other hand, $P_{0} / C_{P_{0}}\left(V_{i}\right)$ is cyclic, $1 \leq i \leq p$. Hence the rank of P_{0} is at most p and $\left|P_{0} / \Phi\left(P_{0}\right)\right| \leq p^{p}$, and so $\left|P_{0} / \Phi\left(P_{0}\right)\right|=p^{p}$ by Lemma 3.7.

Suppose next that ϕ is not any epimorphism. Let P_{0} have exponent p^{m}. Then $p^{m}=\left|P_{0} / C_{P_{0}}\left(V_{1}\right)\right|$ as $P_{0} / C_{P_{0}}\left(V_{1}\right)$ is cyclic. Set $\Omega_{m-1}\left(P_{0}\right)=\{x \in$ $\left.P_{0} \mid x^{p^{m-1}}=1\right\}$. Then $\Omega_{m-1}\left(P_{0}\right)$ is $<s>H$-invariant and $P_{0} \supsetneq \Omega_{m-1}\left(P_{0}\right) \supsetneq$ $\Phi\left(P_{0}\right)$. By Lemma 3.7, H acts trivially on both $P_{0} / \Omega_{m-1}\left(P_{0}\right)$ and $\Omega_{m-1}\left(P_{0}\right) / \Phi\left(P_{0}\right)$ which is a contradiction.

Set $P_{i}=C_{P}\left(V_{1} \times \cdots \times V_{i-1} \times V_{i+1} \times \cdots \times V_{p}\right), \quad 1 \leq i \leq p$. Then $P_{0}=$ $P_{1} \times \cdots \times P_{p}$ by Lemma 3.8, and so $V P=\left(V_{1} P_{1}\right) \times \cdots \times\left(V_{p} P_{p}\right) . \quad P_{i}$ is cyclic as it acts on V_{i} irreducibly and faithfully.

Lemma 3.9. $\quad C_{P_{1} H}(v)$ contains a Hall p^{\prime}-subgroup of $P_{1} H$ for any $v \in V_{1}$.

Proof. Set $K=P_{1} H$. Then K acts on $\operatorname{Irr}\left(V_{1}\right)$ and on the set of elements of V_{1}. We claim that P_{1}-orbits coincide with K-orbits on
V_{1}. Let A_{1}, \cdots, A_{m} be P_{1}-orbits on $\operatorname{Irr}\left(V_{1}\right)$ and let B_{1}, \cdots, B_{n} be P_{1}-orbits on the set of elements of V_{1}. By Corollary 6.3.3 of [3], we have $m=n$.

Let χ be an irreducible character in A_{1}, and set $W_{1}=\operatorname{Ker} \chi$. Now $V=V_{1} \times V_{1}^{s} \times \cdots \times V_{1}^{s^{p-1}}$, and V_{1} is $P_{0} H$-invariant. Hence, by lemma 3.5 (1), there exists a Hall p^{\prime}-subgroup H_{1} of L with $\left[H_{1}, V_{1}\right] \subseteq W_{1}$. As $P_{0}=P_{1} C_{P_{0}}\left(V_{1}\right)$ by the remark before Lemma 3.9 , we may take H_{1} in K. Since $K=P_{1} H=P_{1} H_{1}$ and H_{1} fixes χ, A_{1} coincides with a K-orbit on $\operatorname{Irr}\left(V_{1}\right)$. Similarly, A_{i} is a K-orbit on $\operatorname{Irr}\left(V_{1}\right), 2 \leq i \leq m$. By Corollary 6.3.3 of [3] again, B_{i} is a K-orbit on the set of elements of $V_{1}, 1 \leq i \leq m$, and our claim follows.

Let v be an element of V_{1}. For each element $g \in K$, we have $v^{g}=v^{x}$ for some $x \in P_{1}$ by the above claim. Hence $g x^{-1} \in C_{K}(v)$, and so $g \in C_{K}(v) P_{1}$. This implies that $K=C_{K}(v) P_{1}$. Hence $C_{K}(v)$ contains a Hall p^{\prime}-subgroup of K.

Lemma 3.10. Set $r=\left|H / C_{H}\left(V_{1}\right)\right|$ and $p^{m}=\left|P_{1}\right|, q^{n}=\left|V_{1}\right|$. Then $r \mid n$ and $\frac{q^{n}-1}{q^{n / r}-1}=p^{m} \quad$ and $V_{i} P_{i} H / C_{H}\left(V_{i}\right) \simeq A_{q, n, r}, 1 \leq i \leq p$.

Proof. Set $N=V_{1} P_{1} H$ and $\bar{N}=V_{1} P_{1} H / C_{H}\left(V_{1}\right)$. By Lemma 3.9, $C_{\bar{N}}(\bar{v})$ contains a Hall p^{\prime}-subgroup of \bar{N} for any $v \in V_{1}$. Hence every \bar{P}_{1}-orbit of V_{1} contains an element which is centralized by \bar{H}. Since P_{1} is cyclic, by Proposition 19.8 of [11] and Lemma 3.6, we can identify V_{1} with $G F\left(q^{n}\right)$ in such a way that $\overline{P_{1} H} \subseteq T\left(q^{n}\right)=\left\{v \rightarrow a v^{\sigma} \mid a \in G F\left(q^{n}\right)^{\#}\right.$, $\left.\sigma \in \operatorname{Gal}\left(G F\left(q^{n}\right) / G F(q)\right)\right\}$ and $\bar{P}_{1} \subseteq\left\{v \rightarrow a v \mid a \in G F\left(q^{n}\right)^{\sharp}\right\}$.

As $C_{\bar{H}}\left(\bar{P}_{1}\right)$ is contained in any Hall p^{\prime}-subgroup of $\overline{P_{1} H}, C_{\vec{H}}\left(\bar{P}_{1}\right)=1$. Since \bar{P}_{1} is cyclic and \bar{H} is a p^{\prime}-group, \bar{H} acts regularly on \bar{P}_{1}.

Let $\bar{H}=\langle\eta\rangle$, where $\eta(v)=b v^{\sigma}$, for some $b \in G F\left(q^{\eta}\right)^{\#}$ and $\sigma \epsilon$ $\operatorname{Gal}\left(G F\left(q^{n}\right) / G F(q)\right)$ for $v \in V_{1}$. By Proposition 19.8 of [11], $\bar{H} \simeq \overline{P_{1} H /}$ $C_{\overline{P_{1} H}}\left(\bar{P}_{1}\right) \subseteq \operatorname{Gal}\left(G F\left(q^{n}\right) / G F(q)\right)$, and so $r=|\bar{H}|=|\sigma|$ with $r \mid n$. Then $<\sigma>=\operatorname{Gal}\left(G F\left(q^{n}\right) / G F\left(q^{l}\right)\right)$, where $n=l r$. Let $\bar{P}_{1}=\left\langle x_{a}\right\rangle$, where $x_{a}(v)=a v$, $a \in G F\left(q^{n}\right)^{\#}$. If $a^{i} \in G F\left(q^{l}\right)$ for some i, then $\eta x_{a^{i}}(v)=\eta\left(a^{i} v\right)=b\left(a^{i} v\right)^{\sigma}=\left(a^{i}\right)^{\sigma} b v^{\sigma}$ $=a^{i} b v^{\sigma}$. On the other hand, $x_{a i} \eta(v)=x_{a^{i}}\left(b v^{\sigma}\right)=a^{i} b v^{\sigma}$. Hence $\eta x_{a^{i}}=x_{a i} \eta$, and so $\eta^{-1} x_{a i} \eta=x_{a^{i}}$. Since $x_{a^{i}}=\left(x_{a}\right)^{i}, \eta^{-1}\left(x_{a}\right)^{i} \eta=\left(x_{a}\right)^{i}$. Thus $a^{i}=1$ as \bar{H} acts regularly on \bar{P}_{1}. Hence $\langle a\rangle \cap G F\left(q^{l}\right)^{\sharp}=1$.

Since $\langle a\rangle \subseteq G F\left(q^{n}\right)$ is a P_{1}-orbits, $\eta\left(a^{i}\right)=a^{i}$ for some i. Hence $\eta\left(a^{i}\right)=b\left(a^{i}\right)^{\sigma}=a^{i}$, and so $b=\left(a^{i}\right)\left(a^{-i}\right)^{\sigma} \in<a>$. Thus $b=a^{j}$ for some j, and so $\eta=x_{a j} \sigma$. Then $\bar{P}_{1} \bar{H}=\left\langle x_{a}\right\rangle\left\langle x_{a^{j}} \sigma\right\rangle=\left\langle x_{a}\right\rangle\langle\sigma\rangle$.

Let c be any element of $G F\left(q^{n}\right)^{\#}$. Since $\left\{c, c a, \cdots, c a^{p^{m}-1}\right\}$ is a \bar{P}_{1}-orbit, $\left(c a^{i}\right)^{\sigma}=c a^{i}$ for some i. Hence $c a^{i} \in G F\left(q^{l}\right)$. This implies that $G F\left(q^{n}\right)^{\#}=$ $<a>G F\left(q^{l}\right)^{\#}$. Hence $q^{n}-1=\left(q^{l}-1\right) p^{m}=\left(q^{n / r}-1\right) p^{m}$. Furthermore, we have $\overline{V_{1} P_{1} H}=V_{1}<x_{a}><\sigma>\simeq A_{q, n, r}$.

Now we completed the proof of the if-part of Theorem 1 and we shall prove the "only-if-part" of the theorem.

Lemma 3.11. Let G satisfy the conditions (1)-(3) in Theorem 1. If G has the conditions $(A),(B)$ and (C) of Theorem 1, then G is p-radical.

Proof. Let $\varphi \in \operatorname{Irr}(V)$ and let B be a block of $k G$ which covers φ. Then we shall prove that B is p-radical.

Case 1. $\varphi=1_{V}$.
Since L / P_{0} is a Frobenius group, L is p-radical by Lemmas 2.1, 2.2. By lemma $2.5, B$ is p-radical.

Case 2. $\varphi \neq 1_{V}$.
Set $T=I_{G}(\varphi)$. Suppose that G satisfies the condition (C)(2) in Theorem 1. By the remark before Lemma 3.4, $T \subseteq O_{p^{\prime}, p, p^{\prime}}(G)$. Set $N=V P_{0}$, then $D \subseteq N$, where D is a defect group of B. Then $J(B)=J(k N) B$ by Theorem 2.3 of [1]. By Lemma 2.2, N is p-radical, and so $\left(k \otimes_{P} B\right) J(B)=k \otimes_{P} J(k N) B \subseteq k \otimes_{P} J\left(k P_{0}\right)(k N) B=0$. Hence $k \otimes_{P} B$ is semisimple, and so B is p-radical.

Suppose next that G satisfies the condition (C)(1) in Theorem 1. Let v be an element of V. Then $v=v_{1} \cdots v_{p}$, where $v_{i} \in V_{i}, 1 \leq i \leq p$. Then, by (C)(2)(vii) in Theorem 1, there exist an $x_{i} \in P_{i}$ with $\left[v_{i}^{x_{i}}, H\right]=1,1 \leq i \leq p$, where H is a Hall p^{\prime}-subgroup of G. Set $x=x_{1} \cdots x_{p}$. Then $v^{x}=v_{1}^{x} \cdots v_{p}^{x}=$
 p^{\prime}-subgroup of G for each $v \in V$. By a similar argument in the proof of Lemma 3.9, T contains a Hall p^{\prime}-subgroup.

Since $V \subseteq T$ and $G=V L$, we have $T=V(L \cap T) . \quad T \cap L$ is p-closed or $T \cap L / O_{P}(T \cap L)$ is a Frobenius group. In each case, $T \cap L$ is p-radical by Lemmas 2.1, 2.2. Let b be the Fong correspondent of B w.r.t. (V, T). Then b is p-radical by Lemma 2.5. Hence B is p-radical by Lemma 2.4(2).

4. Proof of Theorem 2

In this section, we shall prove the following theorem from which Theorem 2 follows by using Lemma 2.6.

Theorem 3. If G is a p-radical group with $G / O_{p^{\prime}}(G) \in \mathscr{F}$, then $G=O_{p, \mathbf{p}^{\prime}, p, p^{\prime}}(G)$.

Proof. Suppose it is false and let G be a minimal counterexample of Theorem 3. Now we divide the proof into several steps. At first, we shall prove that G satisfies the conditions (1)-(3) in Theorem 1.

STEP 1. $O_{p}(G)=1$ and $O^{p^{\prime}}(G)=G$.
Proof. Suppose that $O_{p}(G) \neq 1$. Set $\bar{G}=G / O_{p}(G)$. Then \bar{G} is p-radical. Furthermore, since $\bar{G} / O_{p^{\prime}}(\bar{G})$ is a homomorphic image of $G / O_{p^{\prime}}(G), \bar{G} / O_{p^{\prime}}(\bar{G}) \in \mathscr{F}$ by Lemma 2.6. By the minimality of G, $\bar{G}=O_{p, p^{\prime}, p, p^{\prime}}(\bar{G})=O_{p^{\prime}, p, p^{\prime}}(\bar{G})$, and so $G=O_{p, p^{\prime}, p, p^{\prime}}(G)$, contrary to our choice of G. Next we assume that $O^{p^{\prime}}(G) \subsetneq G$. Set $U=O^{p^{\prime}}(G)$, then since U is p-radical and $U / O_{p^{\prime}}(U) \in \mathscr{F}, U=O_{p, p^{\prime}, p, p^{\prime}}(U)=O_{p, p^{\prime}, p}(U)$. Hence $G=$ $O_{p, p^{\prime}, p, p^{\prime}}(G)$, a contradiction.

Let V be a minimal normal subgroup of G. By Step 1 and Lemma 2.3, V is an abelian p^{\prime}-group. Furthermore, let P_{0} be a p-subgroup of G with $O_{p}(G / V)=P_{0} V / V$. Then we show the following Step 2.

Step 2.
(1) $G / V=O_{p, p^{\prime}, p}(G / V)$, in particular, $G=O_{p^{\prime}, p, p^{\prime}, p}(G)$.
(2) $P_{0} \neq 1$ is elementary abelian.
(3) Let M be a Hall p^{\prime}-subgroup of G. Then there exists an $s \in N_{G}(M)$ with $|s|=p$ and $G=O_{p^{\prime}, p, p^{\prime}}(G)<s>$.
(4) $V=\left[O_{p^{\prime}}(G), P_{0}\right]$.

Proof. Set $\bar{G}=G / V$. For (1), we note that \bar{G} is p-radical and $\bar{G} \in \mathscr{F}$. Since $V \neq 1, \bar{G}=O_{p, p^{\prime}, p, p^{\prime}}(\bar{G})=O_{p, p^{\prime}, p}(\bar{G})$, so that $G=O_{p^{\prime}, p, p^{\prime}, p}(G)$.

For (2) and (3), let P be a Sylow p-subgroup of G such that $N_{P}(M)$ is a Sylow p-subgroup of $N_{G}(M)$. If $P_{0}=1$, then $\bar{G}=O_{p^{\prime}, p}(\bar{G})$, and so $G=O_{p^{\prime}, p}(G)$, contrary to our choice of G. Hence $P_{0} \neq 1$. By Theorem 3.1 of $[14], P_{0}$ is elementary abelian. Hence $\bar{P}_{0}=\left[\bar{P}_{0}, \bar{M}\right] \times C_{\bar{P}_{0}}(\bar{M})$. Since $\bar{G}=\bar{P}_{0} N_{\bar{G}}(\bar{M})=\bar{P}_{0} N_{\bar{P}}(\bar{M}) \bar{M}, \quad \bar{G}=\left[\bar{P}_{0}, \bar{M}\right] \bar{M} N_{\bar{P}}(\bar{M})$. Furthermore, $\left[\bar{P}_{0}, \bar{M}\right] \bar{M} \triangleleft \bar{G}$ and $\left[\bar{P}_{0}, \bar{M}\right] \bar{M} \cap N_{\bar{P}}(\bar{M})=\left[\bar{P}_{0}, \bar{M}\right] \cap N_{\bar{P}}(\bar{M})=\left[\bar{P}_{0}, \bar{M}\right] \cap C_{\bar{P}_{0}}(\bar{M})$ $=1$. Therefore $N_{\bar{P}}(\bar{M})$ is a complement of $\left[\bar{P}_{0}, \bar{M}\right] \bar{M}$ in \bar{G}. By Theorem
3.1 of [14], $N_{\bar{P}}(\bar{M})$ is elementary abelian. If $N_{\bar{P}}(\bar{M}) \subseteq \bar{P}_{0}$, then $\bar{G}=\bar{P}_{0} \bar{M}$. Hence $G=O_{p^{\prime}, p, p^{\prime}}(G)$, contrary to our choice of G. Thus $N_{\bar{P}}(\bar{M}) \nsubseteq \bar{P}_{0}$. Therefore there exists an element $s \in N_{P}(M)$ with $|s|=p$ and $s \notin P_{0}$.

Now set $N=O_{p^{\prime}, p, p^{\prime}}(G)<s>$. Since $N \triangleleft G, N$ is p-radical by Lemma 2.1 (1). Furthermore, $\bar{N}=N / O_{p^{\prime}}(G)=N / O_{p^{\prime}}(N) \in \mathscr{F}$ by Lemma 2.7. If $N \subsetneq G$, then $N=O_{p, p^{\prime}, p, p^{\prime}}(N)$. Since $N \triangleleft G, O_{p}(N) \subseteq O_{p}(G)=1$ and $O_{p^{\prime}, p}(N) \subseteq O_{p^{\prime}, p}(G)$. Hence $N=O_{p^{\prime}, p, p^{\prime}}(N)$, and so $s \in O_{p^{\prime}, p}(N) \subseteq$ $O_{p^{\prime}, p}(G)$, contrary to our choice of s. Thus $G=O_{p^{\prime}, p, p^{\prime}}(G)<s>$.

For (4), we note $\left[O_{p^{\prime}}(G), P_{0}\right] \subseteq O_{p^{\prime}}(G) \cap P_{0} V=V$.
Step 3. Proof of Theorem 3.
By Step 2, there exists an s with $|s|=p$ and $G=O_{p^{\prime}, p, p^{\prime}}(G)<s>. \quad$ By the remark before Lemma 3.4, the condition (C)(1) in Theorem 1 holds. We set $\bar{G}=G / V$, then $\bar{G} \in \mathscr{F}$ by Lemma 2.6. Since \bar{P}_{1} is \bar{H}-invariant, \bar{P}_{1} is \bar{s}-invariant (see the proof of Lemma 11(7) of [7]), and we have a contradiction.

Acknowledgement. The author would like to thank Professor Tetsuro Okuyama for his many helpful suggestions.

References

[1] W. Feit: "The representation theory of finite group," North-Holland, Amsterdam, 1982.
[2] D. Gorenstein: "Finite groups," Harper \& Row, New York, 1968.
[3] I.M. Issacs: "Character theory of finite groups," Academic Press, New York, 1976.
[4] G. Karpilovsky: "The Jacobson radical of group algebra," North-Holland, Amsterdam, 1987.
[5] M. Lorenz: On Locwy lengths of projective modules for p-solvable groups, Comm. Algebra 13(1985), 1193-1212.
[6] O. Manz: On the modular version of Ito's theorem of character degrees for groups of odd order, Nagoya Math J. 105(1987), 121-128.
[7] K. Motose: On the nilpotency index of the radical of a group algebra IV, Math. J. Okayama Univ. 25(1983), 35-42.
[8] K. Motose and Y. Ninomiya: On the nilpotency index of the radical of a group algebra, Hokkaido Math. J. 4(1975), 261-264.
[9] K. Motose and Y. Ninomiya: On the subgroup H of a group G such that $J(K H) K G \supset J(K G)$, Math. J. Okayama Univ. 17(1975), 171-176.
[10] T. Okuyama: p-Radical groups are p-solvable, Osaka J. Math. 23(1986), 467-469.
[11] D.J. Passman: "Permutation groups", Benjamin, New York, 1968.
[12] J.G. Thompson: Finite groups with fixed-point-free automorphisms of prime order,

Proc. Nat. Acad. Sci. 45(1959), 578-581.
[13] Y. Tsushima: On p-radical groups, J. Algebra 103(1986), 80-86.
[14] D.A.R. Wallace: Lower bounds for the radical of the group algebra of a finite p-souble group, Proc. Edinburgh Math. Soc. 16(1968/69), 127-134.

Department of Mathematics
Faculty of Education
Gunma University Maebashi 371, Japan

