

Title	On p-radical groups G and the nilpotency indices of J(kG)
Author(s)	Fukushima, Hiroshi
Citation	Osaka Journal of Mathematics. 1994, 31(4), p. 773–785
Version Type	VoR
URL	https://doi.org/10.18910/11887
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Fukushima, H. Osaka J. Math. **31** (1994), 773–785

ON *p*-RADICAL GROUPS *G* AND THE NILPOTENCY INDICES OF *J(kG)*

HIROSHI FUKUSHIMA

(Received April 8, 1993)

1. Introduction

Let kG be the group algebra of a finite group G over an algebraically closed field k of characteristic p > 0, and let P be a Sylow p-subgroup of G.

Following Motose and Ninomiya [9] we call G *p*-radical if the induced module $(k_p)^G$ of the trivial kP-module k_p is completely reducible as a right kG-module.

In [10], Okuyama has proved that p-radical groups are psolvable. And Tsushima has characterlized p-radical groups which are p-nilpotent by group theoretical properties (see Lemma 2.2). So it seems
to be interesting to investigate the structure of p-radical groups of p-length
2 and in this paper we shall treat such a group with some additional
properties.

Before describing our result we need to define some notations. Let $F = GF(q^n)$ be a finite field of q^n elements for prime q. Let V be the additive group of F. Let $T(q^n)$ be the set of semilinear transformations of the form $v \to av^{\sigma}$ with $v \in V$, $0 \neq a \in F$, and σ a fied automorphism (see [11, p229]). Then we can consider the semidirect product $VT(q^n)$ of V by $T(q^n)$. Let λ be a generater of the multiplicative group of F and $v = \lambda^{q^{n/r-1}}$ for some integer r with r|n. Let $T_0 = \{v \to av^{\sigma} | a \in \langle v \rangle, \sigma \in \text{Gal}(F/GF(q^{n/r}))\}$. Then we define $A_{q,n,r} = VT_0 \subseteq VT(q^n)$.

Theorem 1. Let G be a finite group with the following conditions.

(1) $|G: O_{p',p,p'}(G)| = p, O_p(G) = 1 \text{ and } O^{p'}(G) = G.$

(2) A Sylow p-subgroup P_0 of $O_{p',p}(G)$ is abelian.

(3) $V = [O_{p'}(G), P_0]$ is a minimal normal subgroup of G.

Then G is p-radical if and only if the following conditions (A), (B) and (C) hold.

- (A) $\bar{G} = G/VP_0$ is a Frobenius group with kernel $O_{p'}(\bar{G})$.
- (B) V is an elementary abelian q-group for some prime $q(\neq p)$.
- (C) One of the following (1) and (2) holds.

H. FUKUSHIMA

- (1) The following (i)-(vii) hold.
 - (i) $G = VN_G(P_0)$ and $V \cap N_G(P_0) = 1$.
 - (ii) $P_0 \triangleleft P_0 H \triangleleft P_0 H \lt s >$, where |s| = p and H is a p'-group.
 - $\begin{array}{c} < s > p \\ H p' \\ P_0 p \\ \end{array}$ (iii) By conjugation, we can regard V as an irreducible $N_G(P_0)$ -module. Then $V = V_1 \times \cdots \times V_p$, where $V_{i}, 1 \leq i \leq p$, are the homogeneous components of V_{P_0} .
 - Set $P_i = C_{P_0}(V_1 \times \cdots \times V_{i-1} \times V_{i+1} \times \cdots \times V_p),$ (iv) $1 \leq i \leq p$.
 - Then $P_0 = P_1 \times \cdots \times P_p$. $V_1^{s^i} = V_{i+1}, P_1^{s^i} = P_{i+1}, 0 \le i \le p-1$. (v)
 - (vi) V_i and P_i are H-invariant, $1 \le i \le p$, and $VP_0 = (V_1P_1) \times \cdots \times V_i$ $(V_n P_n)$.

(vii) Set
$$r = |H/C_H(V_1)|$$
 and $p^m = |P_1|$, $q^n = |V_1|$.
Then $r|n$ and $\frac{q^n - 1}{q^{n/r} - 1} = p^m$ and $V_i P_i H/C_H(V_i) \simeq A_{q,n,r}, 1 \le i \le p$.
 $C_i(q_i) \subseteq O_i$ (C) for any element q_i of V^* .

(2)
$$C_G(v) \subseteq O_{p',p,p'}(G)$$
 for any element v of V^* .

Next, let t(G) be the nilpotency index of the radical J(kG) of kG and let p^a be the order of Sylow *p*-subgroups of G.

Wallace [14] proved that if G is p-solvable, then $a(p-1)+1 \le t(G) \le p^a$. If G has p-length 1, then by Motose and Ninomiya [8] t(G) = a(p-1)+1if and only if P is elementary abelian.

All known examples of p-solvable group G with t(G) = a(p-1)+1have *p*-length at most 2. Using Theorem 1, we can prove the following theorem.

Theorem 2. If G is a p-radical group with t(G) = a(p-1)+1, then $G = O_{p,p',p,p'}(G)$. In particular, the p-length of G is at most 2.

2. Preliminaries

In this section, we shall give some lemmas which will be used to prove the theorems.

Lemma 2.1. ([1, Theorem 6.5]). Suppose that $N \triangleleft G$. Then the following (1)-(3) hold.

- (1) If G is p-radical, so are N and G/N.
- (2) If N is a p-group, then G is p-radical if and only if G/N is p-radical.
- (3) If G/N is a p'-group, then G is p-radical if and only if N is p-radical.

774

Lemma 2.2. ([13, Theorem 2]). Let G = PN be a p-nilpotent group with $N = O_{p'}(G)$. Then G is p-radical if and only if $[N,D] \cap C_N(D) = 1$ for any p-subgroup D of G. In particular, if N is abelian, then G is p-radical.

Lemma 2.3. If G is p-radical, then $O^{p'}(G)$ is solvable.

Proof. Suppose it is false and let G be a minimal couterexample. Then we have $G = O^{p'}(G)$. By Theorem 1 of [10], G is p-solvable. If $O_p(G) \neq 1$, then $G/O_p(G)$ is solvable since $G/O_p(G)$ is p-radical. Hence G is solvable, a contradiction. Hence $O_p(G) = 1$, and so $O_{p'}(G) \neq 1$. Let P be a Sylow p-subgroup of $O_{p',p}(G)$, and set $W = \langle [O_{p'}(G), x] | x \in \Omega_1(Z(P)) \rangle$. If W = 1, then $1 \neq \Omega_1(Z(P)) \subseteq C_G(O_{p'}(G)) \subseteq O_{p'}(G)$, a contradiction. Since $G = O_{p'}(G)N_G(P)$, $1 \neq W \triangleleft G$. Furthermore, for $x \in \Omega_1(Z(P))$ $[O_{p'}(G), x]$ is a normal subgroup of $O_{p'}(G)$ and is nilpotent by Thompson [12] as $C_{O_{p'}(G)}(x) \cap [O_{p'}(G), x] = 1$ (see Lemma 2.2). Hence W is solvable. Since G/W is p-radical, G/W is solvable. This implies that G is solvable, contrary to our choice of G.

Let B be a block of kG. We call B a p-radical block if $k \otimes_p B$ is semisimple. Let $N \triangleleft G$ and b_0 a block of kN that is covered by B. Let T be the inertia group of b_0 . Then there exists a unique block b of kTwith $b^G = B$. We call b the Fong correspondent of B w.r.t.(K,T). Then the next lemma holds.

Lemma 2.4. The following (1) and (2) hold.

- (1) B is p-radical if and only if $k \otimes_{P^{y} \cap T} b$ is a semisimple kT-module for any $y \in G$.
- (2) ([13] Tsushima) If |G:T| is a power of p, then B is p-radical if and only if b is p-radical.

Proof. (1) Various facts are known about the relationship between *B* and *b*. B = (kG)b(kG) and J(B) = (kG)J(b)(kG). Furthermore, (kG)b is a direct summand of *B* as a $k(G \times T)$ -module. Hence $k \otimes_P (kG)b$ is a direct summand of $k \otimes_P B$ as a right kT-module. On the other hand,

 $k \otimes_{P} kG \simeq \bigoplus_{y \in P \mid G/T} k \otimes_{P^{y} \cap T} kT$ by Mackey decomposition, and so $k \otimes_{P} (kG)b \simeq$

 $\bigoplus_{y \in P \mid G/T} \bigotimes_{P^{y} \cap T} b \text{ as right } kT \text{-modules.}$

Assume that B is p-radical. Since $(k \otimes_P B)J(b) \subseteq (k \otimes_P B)J(B) = 0$, $(k \otimes_{P^y \cap T} b)J(b) = 0$, and so $k \otimes_{P^y \cap T} b$ is semisimple.

Conversely, assume that $k \otimes_{P^{y} \cap T} b$ is a semisimple kT-module for any $y \in G$. Then $k \otimes_{P} (kG)b$ is a semisimple kT-module. Therefore $U = (k \otimes_{P} (kG)b) \otimes_{T} kG$ is semisimple by Fong's theory. Since $k \otimes_{P} B$ is a natural homomorphic image of U, it is also semisimple.

(2) Since G = PT by assumption, $P^{y} \cap T$ is a Sylow *p*-subgroup of T for any $y \in G$, and hence $k \otimes_{P^{y} \cap T} b$ is semisimple if and only if b is *p*-radical. Therefore (2) follows from (1).

Let $G \triangleright V$. We let Irr(V) be the set of ordinary irreducible characters of V and let $I_G(\varphi)$ be the inertia group of $\varphi \in Irr(V)$. Furthermore, for a block B of kG, let Irr(B) be the set of irreducible characters of G belonging to B.

Lemma 2.5. Let $G = LV \triangleright V$, where V is an abelian p'-group with $L \cap V = 1$. Let $\varphi \in Irr(V)$ with $I_G(\varphi) = G$. Then L is p-radical if and only if all blocks which cover φ are p-radical.

Proof. Let b be a block of kG which covers φ . Let $\chi \in \operatorname{Irr}(b)$. Then each irreducible constituent of χ_V is φ . Set $U = \operatorname{Ker} \varphi$. Then we have $\operatorname{Ker} \chi \supseteq U$, and so $\operatorname{Ker} b \supseteq U$. Set $\overline{G} = G/U$, then $\overline{G} = \overline{L} \times \overline{V}$. Let e be a centrally primitive idempotent corresponding to φ . Then the sum of all blocks which cover φ is isomorphic to $k\overline{L} \otimes_k ke \simeq kL$. Then the lemma follows immediately.

Throught this paper, we let \mathscr{F} be the family of all finite group G such that t(G) = a(p-1)+1, where p^a is the order of a Sylow *p*-subgroup of G.

Lemma 2.6. Let G be a p-solvable group and $N \triangleleft G$. If $G \in \mathcal{F}$, then $G/N \in \mathcal{F}$.

Proof. Let p^a , p^b be the orders of Sylow *p*-subgroups of G and N, respectively.

At first, assume N is a p'-group. By Theorem 2.2, 3.3 of [14], $a(p-1)+1 \le t(G/N) \le t(G) = a(p-1)+1$. Hence t(G/N) = a(p-1)+1, and so $G/N \in \mathcal{F}$.

Next, assume N is a p-group. By Theorem 2.4, 3.3 of [14], $b(p-1)+(a-b)(p-1)+1 \le t(N)+t(G/N)-1 \le t(G)=a(p-1)+1$. Hence t(N)=b(p-1)+1 and t(G/N)=(a-b)(p-1)+1, and so $G/N \in \mathscr{F}$.

Now, we shall consider the general case. If $N \neq 1$, $0_{p'}(N) \neq 1$ or $0_{n}(N) \neq 1$ since N is p-solvable. By induction on |N|, the lemma follows.

776

Lemma 2.7. Let $G = LV \triangleright V$, where V is a p-group and L is a pradical p-nilpotent group with $L \cap V = 1$. If $G \in \mathcal{F}$, then $\langle VO_{p'}(L), s \rangle \in \mathcal{F}$ for any p-element $s \in L$.

Proof. Set $H = O_{p'}(L)$. By Theorem 3.1 of [14], |s| = p and V is elementary abelian. Since L is p-radical, [H,s] < s > is a Frobenius group by Lemma 2.2. By Theorem 2.7 of [5], $gr \ kV$ is semisimple as a kG-module. Let N = V[H,s] < s > < |G|. Then $gr \ kV$ is semisimple as a kN-module, and so $N \in \mathscr{F}$ by Theorem 2.7 of [5]. Set $M = < VO_{p'}(L), s >$. Since $M \triangleright N$ and M/N is a p'-group, $M \in \mathscr{F}$.

3. Proof of Theorem 1

First we shall prove the if -part of Theorem 1. Let G be a finite group with conditions (1)-(3) in Theorem 1 and we assume that G is *p*-radical.

Lemma 3.1. $V = [O^{p'}(G), P_0]$ is an elementary abelian q-group for some prime $q(\neq p)$ and $N_G(P_0)$ is a complement of V in G.

Proof. Since G is p-radical with $O^{p'}(G) = G$, G is solvable by Lemma 2.3. In particular, V is solvable. Then V is an elementary abelian q-group for some prime $q(\neq p)$ by the condition (3) in Theorem 1.

Next, $G = VN_G(P_0)$ by the Frattini argument. Since 1 $[N_V(P_0), P_0] \subseteq V \cap P_0 = 1$, $N_V(P_0) \subseteq C_V(P_0) = 1$. Thus $N_G(P_0)$ is a complement of V in G.

Now, set $L = N_G(P_0)$ and let P be a Sylow p-subgroup of L.

Lemma 3.2. $\bar{L} = L/P_0$ is a Frobenius group with kernel $O_{p'}(\bar{L})$ and complement \bar{P} .

Proof. By the condition (1) in Theorem 1, $O^{p'}(\bar{L}) = \bar{L}$. Then $\bar{L} = [O_{p'}(\bar{L}), \bar{P}]\bar{P}$ since $\bar{L} = O_{p',p}(\bar{L})$. Furthermore, since $\bar{L} \simeq G/VP_0$, \bar{L} is *p*-radical by Lemma 2.1 (1), and so $[O_{p'}(\bar{L}), \bar{P}] \cap C_{O_{p'}(\bar{L})}(\bar{P}) = 1$. Thus \bar{L} is a Frobenius group.

By Lemma 3.2, G satisfies the condition (A) in Theorem 1.

Lemma 3.3. Let $\varphi \in Irr(V)$ with $\varphi \neq 1_V$. Then one of the following

 $L\begin{cases} \begin{matrix} U \\ P \\ P \\ P \\ P \\ V \\ q \\ \end{pmatrix}$

(1) and (2) holds.

- (1) $I_G(\varphi) \subseteq O_{p',p,p'}(G).$
- (2) $L = I_L(\varphi)P_0$ and $I_L(\varphi) \cap P_0 = 1$.

Proof. Set $T = I_G(\varphi)$ and assume that $T \not\subseteq O_{p',p,p'}(G)$. Let b_0 be a block of kV with $\varphi \in b_0$. Let B be a block of kG which covers b_0 and let b be the Fong correspondent of B w.r.t.(V,T). Let D be a defect group of b and let P^* be a Sylow p-subgroup of G which contains D. Since B is p-radical, $k \otimes_{P^{*y} \cap T} b$ is semisimple for any $y \in G$ by Lemma 2.4. On the other hand, there exists an irreducible kT-module in b with vertex D (see [1, Lemma 4.6]). Hence $P^{*yt} \cap T \supseteq D$ for some $t \in T$, in particular $P^{*yt} \cap T = D$. Set $\overline{G} = G/VP_0$. Since $D \subseteq O_{p',p,p'}(G)$, $\overline{D^{\overline{yt}}} = \overline{P^{*\overline{yt}}} = \overline{D} \neq 1$. Since \overline{G} is a Frobenius group, $\overline{yt} \in \overline{P^*}$. Hence $y \in TP^* = TP_0$. This implies that $G = TP_0$, and so $L = (L \cap T)P_0$.

Next, set $Q = (L \cap T)P_0$. Since P_0 is abelian, $Q \triangleleft L$. Since $[V,Q] \subseteq \ker \varphi \neq V$ and [V,Q] is L-invariant, [V,Q]=1 by the minimality of V, and so $Q \subseteq O_p(G)=1$.

Now assume that $C_G(v) \notin O_{p',p,p'}(G)$ for some $v \in V^*$. As V is a p'-group, this condition is equivalent to the condition that $I_G(\varphi) \notin O_{p',p,p'}(G)$ for some $\varphi \neq 1_V \in \operatorname{Irr}(V)$ (see for example [3]§13). Then for such a φ , $I_L(\varphi)P_0 = L$ and $I_L(\varphi)P_0 = 1$ by Lemma 3.3.

Let *H* be a Hall p'-subgroup of $I_L(\varphi)$ (which is also a Hall p'-subgroup of *L*). Then $H \triangleleft I_L(\varphi)$ and $I_L(\varphi) = H < s >$ for some element *s* of order p in $P \backslash P_0$.

We continue our discussion by assuming that there exists an element s of order p in $N_P(H) \setminus P_0$ and shall prove that the condition (C)(1) in Theorem 1 holds.

Lemma 3.4. If W is a subgroup of V with |V:W| = q and $[s, V] \subseteq W$, then there exists a Hall p'-subgroup H_1 of L with $[H_1, V] \subseteq W$.

Proof. Let φ be an irreducible character of V with kernel W. Then since $[s, V] \subseteq W$, $s \in I_G(\varphi)$. Now the result follows by Lemma 3.3.

Lemma 3.5. Assume that $V = W \times W^s \times \cdots \times W^{s^{p-1}}$, where W is P_0H -invariant. Then the following (1) and (2) hold.

(1) If W_1 is a subgroup of W with $|W:W_1| = q$, then there exsts a Hall p'-subgroup H_1 of L with $[H_1, W] \subseteq W_1$. In particular, W_1 is H_1 -invariant.

(2) Let W_0 be an irreducible P_0 -module of W. Then W_0 is H-invariant.

778

Proof. (1) We can easily see that $V = W \times [V,s]$ as V is an abelian p'-group. Put $U = W_1 \times [V,s]$. By Lemma 3.4, there exists a Hall p'-subgroup H_1 of L with $[H_1, V] \subseteq U$. Since $H_1 \subseteq P_0H$, W is H_1 -invariant, and so $[H_1, W] \subseteq W \cap U = W_1$. In particular, W_1 is H_1 -invariant.

(2) If W_0 is not *H*-invariant, there exists an $h \in H$ with $W_0 \neq W_0^h$. Let $w \in W_0^*$. Since *W* is elementary abelian, there exist subgroups *W'* and *W''* of *W* with $W_0 = \langle w \rangle \times W'$ and $W = W_0 \times W_0^h \times W''$. Set $W_1 = W' \times W_0^h \times W''$, then $|W:W_1| = q$ and $W_0 \notin W_1$. By (1), W_1 is H_1 -invariant for some Hall p'-subgroup H_1 of *L*. Since $h \in H \subseteq P_0 H_1$, $h = ah_1$ for some $a \in P_0$ and $h_1 \in H_1$. Furthermore, since $W_1 \supseteq W_0^h = W_0^{h_1}$, $W_0 = (W_0^{h_1})^{h_1^{-1}} \subseteq W_1^{h_1^{-1}} = W_1$, contrary to our choice of W_1 .

Since L acts on V by conjugation, we can regard V as an L-module. Furthermore, since V is a minimal normal subgroup of G, V is an irreducible L-module.

Lemma 3.6. Let $V = V_1 \times \cdots \times V_n$, where V_i , $1 \le i \le n$, are the homogeneous components of V with respect to P_0 . Then n = p and we may take $V_i^{s^i} = V_{i+1}$, $0 \le i \le p-1$. Furthermore, V_i is an irreducible P_0 -module which is H-invariant, $1 \le i \le p$.

Proof. We divide the proof of Lemma 3.6 into three steps.

STEP 1. s induces a regular permutation representation on the set $\{V_1, \dots, V_n\}$.

Proof. Suppose it is false, and let s fix V_1 . Since P_0 is abelian, $\bar{P}_0 = P_0/C_{P_0}(V_1)$ is cyclic. Since $\overline{\langle s \rangle P_0} = \langle s \rangle P_0/C_{P_0}(V_1)$ has an abelian subgroup of (p,p) type, there exists an $x \in \langle s \rangle P_0$ with $C_{V_1}(x) \neq 1$ and $\bar{x} \neq 1$. If $x \in P_0$, then $C_{V_1}(x) = 1$ since V_1 is homogeneous as a P_0 -module. Hence $x \notin P_0$. Let $v \in C_{V_1}(x)^*$, then $x \in C_P(v)$. Now by Lemma 3.3 and the remark before Lemma 3.4, $C_{P_0}(v) = 1$. So $C_{P_0}(V_1) \subseteq C_{P_0}(v) = 1$ and P_0 is cyclic. Since $L \triangleright P_0$ and P_0 is abelian, $\bar{L} = L/P_0$ acts on P_0 by conjugation. Since $O^{p'}(\bar{L}) = \bar{L}$ and $Aut(P_0)$ is abelian, $O_{p'}(\bar{L})$ centralizes P_0 . Hence $L = O_{p',p}(L)$, and so $G = O_{p',p}(G)$, contrary to the condition (1) of Theorem 1. Hence s acts regularly on the set $\{V_1, \dots, V_n\}$.

STEP 2. Let $\{V_1, \dots, V_t\}$ be an H-orbit of $\{V_1, \dots, V_n\}$, and set $W = V_1 \times \dots \times V_t$. Then $V = W \times W^s \times \dots \times W^{s^{p-1}}$.

Proof. Suppose s fixes an H-orbit $\{V_1, \dots, V_t\}$. Since H is a p'-group, (p,t)=1. Therefore s fixes V_i for some i, contrary to Step 1. Hence s doesn't fix an H-orbit $\{V_1, \dots, V_t\}$ and this implies that $W \times W^s \times \dots \times W^{s^{p-1}} \subseteq V$. Furthermore, as $W \times W^s \times \dots \times W^{s^{p-1}}$ is L-invariant, we have $V = W \times W^s \times \dots \times W^{s^{p-1}}$.

STEP 3. Proof of Lemma 3.6.

Take an irreducible P_0 -submodule W_0 in V_1 . Then by Lemma 3.5(2), W_0 is P_0H -invariant. Therefore $W_0 \times W_0^s \times \cdots \times W_0^{sp-1}$ is L-invariant and coincides with V. Thus $W_0 = V_1$ (and t = 1 in Step 2) and the lemma follows.

From Theorem 15.16 of [3], we obtain the following lemma.

Lemma 3.7. Let $P_0 \supseteq Q_1 \supseteq Q_2 \supseteq \Phi(P_0)$, where Q_1 and Q_2 are H < s > -invariant subgroups of P_0 . If H acts non-trivially on Q_1/Q_2 , then $|Q_1/Q_2| \ge p^p$.

Lemma 3.8. Let ϕ be a homomorphism of P_0 into $P_0/C_{P_0}(V_1) \times \cdots \times P_0/C_{P_0}(V_p)$ which is defined by the rule $\phi(x) = (C_{P_0}(V_1)x, \cdots, C_{P_0}(V_p)x)$. Then ϕ is an isomorphism.

Proof. Ker $\phi = C_{P_0}(V) = 1$ and P_0 is isomorphic to a subgroup of $P_0/C_{P_0}(V_1) \times \cdots \times P_0/C_{P_0}(V_p)$. On the other hand, $P_0/C_{P_0}(V_i)$ is cyclic, $1 \le i \le p$. Hence the rank of P_0 is at most p and $|P_0/\Phi(P_0)| \le p^p$, and so $|P_0/\Phi(P_0)| = p^p$ by Lemma 3.7.

Suppose next that ϕ is not any epimorphism. Let P_0 have exponent p^m . Then $p^m = |P_0/C_{P_0}(V_1)|$ as $P_0/C_{P_0}(V_1)$ is cyclic. Set $\Omega_{m-1}(P_0) = \{x \in P_0 | x^{p^{m-1}} = 1\}$. Then $\Omega_{m-1}(P_0)$ is $\langle s \rangle H$ -invariant and $P_0 \supseteq \Omega_{m-1}(P_0) \supseteq \Phi(P_0)$. By Lemma 3.7, H acts trivially on both $P_0/\Omega_{m-1}(P_0)$ and $\Omega_{m-1}(P_0)/\Phi(P_0)$ which is a contradiction.

Set $P_i = C_p(V_1 \times \cdots \times V_{i-1} \times V_{i+1} \times \cdots \times V_p)$, $1 \le i \le p$. Then $P_0 = P_1 \times \cdots \times P_p$ by Lemma 3.8, and so $VP = (V_1P_1) \times \cdots \times (V_pP_p)$. P_i is cyclic as it acts on V_i irreducibly and faithfully.

Lemma 3.9. $C_{P_1H}(v)$ contains a Hall p'-subgroup of P_1H for any $v \in V_1$.

Proof. Set $K=P_1H$. Then K acts on $Irr(V_1)$ and on the set of elements of V_1 . We claim that P_1 -orbits coincide with K-orbits on

 V_1 . Let A_1, \dots, A_m be P_1 -orbits on $Irr(V_1)$ and let B_1, \dots, B_n be P_1 -orbits on the set of elements of V_1 . By Corollary 6.3.3 of [3], we have m=n.

Let χ be an irreducible character in A_1 , and set $W_1 = \text{Ker}\chi$. Now $V = V_1 \times V_1^s \times \cdots \times V_1^{sp^{-1}}$, and V_1 is P_0H -invariant. Hence, by lemma 3.5 (1), there exists a Hall p'-subgroup H_1 of L with $[H_1, V_1] \subseteq W_1$. As $P_0 = P_1 C_{P_0}(V_1)$ by the remark before Lemma 3.9, we may take H_1 in K. Since $K = P_1 H = P_1 H_1$ and H_1 fixes χ , A_1 coincides with a K-orbit on $\text{Irr}(V_1)$. Similarly, A_i is a K-orbit on $\text{Irr}(V_1)$, $2 \le i \le m$. By Corollary 6.3.3 of [3] again, B_i is a K-orbit on the set of elements of V_1 , $1 \le i \le m$, and our claim follows.

Let v be an element of V_1 . For each element $g \in K$, we have $v^g = v^x$ for some $x \in P_1$ by the above claim. Hence $gx^{-1} \in C_K(v)$, and so $g \in C_K(v)P_1$. This implies that $K = C_K(v)P_1$. Hence $C_K(v)$ contains a Hall p'-subgroup of K.

Lemma 3.10. Set $r = |H/C_H(V_1)|$ and $p^m = |P_1|$, $q^n = |V_1|$. Then r|nand $\frac{q^n - 1}{q^{n/r} - 1} = p^m$ and $V_i P_i H/C_H(V_i) \simeq A_{q,n,r}$, $1 \le i \le p$.

Proof. Set $N = V_1 P_1 H$ and $\overline{N} = V_1 P_1 H / C_H(V_1)$. By Lemma 3.9, $C_{\overline{N}}(\overline{v})$ contains a Hall p'-subgroup of \overline{N} for any $v \in V_1$. Hence every \overline{P}_1 -orbit of V_1 contains an element which is centralized by \overline{H} . Since P_1 is cyclic, by Proposition 19.8 of [11] and Lemma 3.6, we can identify V_1 with $GF(q^n)$ in such a way that $\overline{P_1H} \subseteq T(q^n) = \{v \to av^{\sigma} | a \in GF(q^n)^*, \sigma \in Gal(GF(q^n)/GF(q))\}$ and $\overline{P}_1 \subseteq \{v \to av | a \in GF(q^n)^*\}$.

As $C_{\overline{H}}(\overline{P}_1)$ is contained in any Hall p'-subgroup of $\overline{P_1H}$, $C_{\overline{H}}(\overline{P}_1) = 1$. Since \overline{P}_1 is cyclic and \overline{H} is a p'-group, \overline{H} acts regularly on \overline{P}_1 .

Let $\bar{H} = \langle \eta \rangle$, where $\eta(v) = bv^{\sigma}$, for some $b \in GF(q^n)^*$ and $\sigma \in Gal(GF(q^n)/GF(q))$ for $v \in V_1$. By Proposition 19.8 of [11], $\bar{H} \simeq \overline{P_1 H}/C_{\overline{P_1 H}}(\bar{P}_1) \subseteq Gal(GF(q^n)/GF(q))$, and so $r = |\bar{H}| = |\sigma|$ with r|n. Then $\langle \sigma \rangle = Gal(GF(q^n)/GF(q^l))$, where n = lr. Let $\bar{P}_1 = \langle x_a \rangle$, where $x_a(v) = av$, $a \in GF(q^n)^*$. If $a^i \in GF(q^l)$ for some *i*, then $\eta x_{a^i}(v) = \eta(a^i v) = b(a^i v)^{\sigma} = (a^i)^{\sigma} bv^{\sigma} = a^i bv^{\sigma}$. On the other hand, $x_{a^i}\eta(v) = x_{a^i}(bv^{\sigma}) = a^i bv^{\sigma}$. Hence $\eta x_{a^i} = x_{a^i}\eta$, and so $\eta^{-1} x_{a^i}\eta = x_{a^i}$. Since $x_{a^i} = (x_a)^i$, $\eta^{-1}(x_a)^i \eta = (x_a)^i$. Thus $a^i = 1$ as \bar{H} acts regularly on \bar{P}_1 . Hence $\langle a \rangle \cap GF(q^l)^* = 1$.

Since $\langle a \rangle \subseteq GF(q^n)$ is a P_1 -orbits, $\eta(a^i) = a^i$ for some *i*. Hence $\eta(a^i) = b(a^i)^{\sigma} = a^i$, and so $b = (a^i)(a^{-i})^{\sigma} \in \langle a \rangle$. Thus $b = a^j$ for some *j*, and so $\eta = x_{aj}\sigma$. Then $\bar{P}_1\bar{H} = \langle x_a \rangle \langle x_{aj}\sigma \rangle = \langle x_a \rangle \langle \sigma \rangle$.

Let c be any element of $GF(q^n)^{\sharp}$. Since $\{c, ca, \dots, ca^{p^m-1}\}$ is a \overline{P}_1 -orbit, $(ca^i)^{\sigma} = ca^i$ for some i. Hence $ca^i \in GF(q^l)$. This implies that $GF(q^n)^{\sharp} = \langle a \rangle GF(q^l)^{\sharp}$. Hence $q^n - 1 = (q^l - 1)p^m = (q^{n/r} - 1)p^m$. Furthermore, we have $\overline{V_1P_1H} = V_1 < x_a > \langle \sigma \rangle \simeq A_{q,n,r}$.

Now we completed the proof of the if-part of Theorem 1 and we shall prove the "only-if-part" of the theorem.

Lemma 3.11. Let G satisfy the conditions (1)-(3) in Theorem 1. If G has the conditions (A), (B) and (C) of Theorem 1, then G is p-radical.

Proof. Let $\varphi \in Irr(V)$ and let B be a block of kG which covers φ . Then we shall prove that B is p-radical.

CASE 1. $\varphi = 1_V$.

Since L/P_0 is a Frobenius group, L is *p*-radical by Lemmas 2.1, 2.2. By lemma 2.5, B is *p*-radical.

CASE 2. $\varphi \neq 1_V$.

Set $T = I_G(\varphi)$. Suppose that G satisfies the condition (C)(2) in Theorem 1. By the remark before Lemma 3.4, $T \subseteq O_{p',p,p'}(G)$. Set $N = VP_0$, then $D \subseteq N$, where D is a defect group of B. Then J(B) = J(kN)B by Theorem 2.3 of [1]. By Lemma 2.2, N is p-radical, and so $(k \otimes_P B)J(B) = k \otimes_P J(kN)B \subseteq k \otimes_P J(kP_0)(kN)B = 0$. Hence $k \otimes_P B$ is semisimple, and so B is p-radical.

Suppose next that G satisfies the condition (C)(1) in Theorem 1. Let v be an element of V. Then $v = v_1 \cdots v_p$, where $v_i \in V_i$, $1 \le i \le p$. Then, by (C)(2)(vii) in Theorem 1, there exist an $x_i \in P_i$ with $[v_i^{x_i}, H] = 1, 1 \le i \le p$, where H is a Hall p'-subgroup of G. Set $x = x_1 \cdots x_p$. Then $v^x = v_1^x \cdots v_p^x = v_1^{x_1} \cdots v_p^{x_p}$, and so $[v^x, H] = 1$. This implies that $C_G(v)$ contains a Hall p'-subgroup of G for each $v \in V$. By a similar argument in the proof of Lemma 3.9, T contains a Hall p'-subgroup.

Since $V \subseteq T$ and G = VL, we have $T = V(L \cap T)$. $T \cap L$ is *p*-closed or $T \cap L/O_p(T \cap L)$ is a Frobenius group. In each case, $T \cap L$ is *p*-radical by Lemmas 2.1, 2.2. Let *b* be the Fong correspondent of *B* w.r.t.(V, T). Then *b* is *p*-radical by Lemma 2.5. Hence *B* is *p*-radical by Lemma 2.4(2).

4. Proof of Theorem 2

In this section, we shall prove the following theorem from which Theorem 2 follows by using Lemma 2.6.

Theorem 3. If G is a p-radical group with $G/O_{p'}(G) \in \mathscr{F}$, then $G = O_{p,p',p,p'}(G)$.

Proof. Suppose it is false and let G be a minimal counterexample of Theorem 3. Now we divide the proof into several steps. At first, we shall prove that G satisfies the conditions (1)-(3) in Theorem 1.

STEP 1. $O_p(G) = 1$ and $O^{p'}(G) = G$.

Proof. Suppose that $O_p(G) \neq 1$. Set $\overline{G} = G/O_p(G)$. Then \overline{G} is *p*-radical. Furthermore, since $\overline{G}/O_{p'}(\overline{G})$ is a homomorphic image of $G/O_{p'}(G)$, $\overline{G}/O_{p'}(\overline{G}) \in \mathscr{F}$ by Lemma 2.6. By the minimality of G, $\overline{G} = O_{p,p',p,p'}(\overline{G}) = O_{p',p,p'}(\overline{G})$, and so $G = O_{p,p',p,p'}(G)$, contrary to our choice of G. Next we assume that $O^{p'}(G) \subseteq G$. Set $U = O^{p'}(G)$, then since U is *p*-radical and $U/O_{p'}(U) \in \mathscr{F}$, $U = O_{p,p',p,p'}(U) = O_{p,p',p}(U)$. Hence $G = O_{p,p',p,p'}(G)$, a contradiction.

Let V be a minimal normal subgroup of G. By Step 1 and Lemma 2.3, V is an abelian p'-group. Furthermore, let P_0 be a p-subgroup of G with $O_p(G/V) = P_0 V/V$. Then we show the following Step 2.

Step 2.

- (1) $G/V = O_{p,p',p}(G/V)$, in particular, $G = O_{p',p,p',p}(G)$.
- (2) $P_0 \neq 1$ is elementary abelian.
- (3) Let M be a Hall p'-subgroup of G. Then there exists an $s \in N_G(M)$ with |s| = p and $G = O_{p',p,p'}(G) < s >$.
- (4) $V = [O_{p'}(G), P_0].$

Proof. Set $\overline{G} = G/V$. For (1), we note that \overline{G} is *p*-radical and $\overline{G} \in \mathscr{F}$. Since $V \neq 1$, $\overline{G} = O_{p,p',p,p'}(\overline{G}) = O_{p,p',p}(\overline{G})$, so that $G = O_{p',p,p',p}(G)$. For (2) and (3), let *P* be a Sylow *p*-subgroup of *G* such that $N_P(M)$

For (2) and (3), let P be a Sylow p-subgroup of G such that $N_p(M)$ is a Sylow p-subgroup of $N_G(M)$. If $P_0 = 1$, then $\overline{G} = O_{p',p}(\overline{G})$, and so $G = O_{p',p}(G)$, contrary to our choice of G. Hence $P_0 \neq 1$. By Theorem 3.1 of [14], P_0 is elementary abelian. Hence $\overline{P}_0 = [\overline{P}_0, \overline{M}] \times C_{\overline{P}_0}(\overline{M})$. Since $\overline{G} = \overline{P}_0 N_{\overline{G}}(\overline{M}) = \overline{P}_0 N_{\overline{P}}(\overline{M}) \overline{M}$, $\overline{G} = [\overline{P}_0, \overline{M}] \overline{M} N_{\overline{P}}(\overline{M})$. Furthermore, $[\overline{P}_0, \overline{M}] \overline{M} \triangleleft \overline{G}$ and $[\overline{P}_0, \overline{M}] \overline{M} \cap N_{\overline{P}}(\overline{M}) = [\overline{P}_0, \overline{M}] \cap N_{\overline{P}}(\overline{M}) = [\overline{P}_0, \overline{M}] \cap C_{\overline{P}_0}(\overline{M}) = 1$. Therefore $N_{\overline{P}}(\overline{M})$ is a complement of $[\overline{P}_0, \overline{M}] \overline{M}$ in \overline{G} . By Theorem

3.1 of [14], $N_{\bar{p}}(\bar{M})$ is elementary abelian. If $N_{\bar{p}}(\bar{M}) \subseteq \bar{P}_0$, then $\bar{G} = \bar{P}_0 \bar{M}$. Hence $G = O_{p',p,p'}(G)$, contrary to our choice of G. Thus $N_{\bar{p}}(\bar{M}) \notin \bar{P}_0$. Therefore there exists an element $s \in N_P(M)$ with |s| = p and $s \notin P_0$.

Now set $N=O_{p',p,p'}(G) < s > .$ Since $N \triangleleft G$, N is p-radical by Lemma 2.1 (1). Furthermore, $\overline{N}=N/O_{p'}(G)=N/O_{p'}(N) \in \mathscr{F}$ by Lemma 2.7. If $N \subsetneq G$, then $N=O_{p,p',p,p'}(N)$. Since $N \triangleleft G$, $O_p(N) \subseteq O_p(G)=1$ and $O_{p',p}(N) \subseteq O_{p',p}(G)$. Hence $N=O_{p',p,p'}(N)$, and so $s \in O_{p',p}(N) \subseteq O_{p',p}(G)$, contrary to our choice of s. Thus $G=O_{p',p,p'}(G) < s > .$ For (4), we note $[O_{p'}(G), P_0] \subseteq O_{p'}(G) \cap P_0 V = V$.

STEP 3. Proof of Theorem 3.

By Step 2, there exists an s with |s|=p and $G=O_{p',p,p'}(G) < s >$. By the remark before Lemma 3.4, the condition (C)(1) in Theorem 1 holds. We set $\overline{G}=G/V$, then $\overline{G}\in \mathscr{F}$ by Lemma 2.6. Since \overline{P}_1 is \overline{H} -invariant, \overline{P}_1 is \overline{s} -invariant (see the proof of Lemma 11(7) of [7]), and we have a contradiction.

Acknowledgement. The author would like to thank Professor Tetsuro Okuyama for his many helpful suggestions.

References

- [1] W. Feit: "The representation theory of finite group," North-Holland, Amsterdam, 1982.
- [2] D. Gorenstein: "Finite groups," Harper & Row, New York, 1968.
- [3] I.M. Issacs: "Character theory of finite groups," Academic Press, New York, 1976.
- [4] G. Karpilovsky: "The Jacobson radical of group algebra," North-Holland, Amsterdam, 1987.
- [5] M. Lorenz: On Locwy lengths of projective modules for p-solvable groups, Comm. Algebra 13(1985), 1193-1212.
- [6] O. Manz: On the modular version of Ito's theorem of character degrees for groups of odd order, Nagoya Math J. 105(1987), 121–128.
- [7] K. Motose: On the nilpotency index of the radical of a group algebra IV, Math. J. Okayama Univ. 25(1983), 35-42.
- [8] K. Motose and Y. Ninomiya: On the nilpotency index of the radical of a group algebra, Hokkaido Math. J. 4(1975), 261-264.
- [9] K. Motose and Y. Ninomiya: On the subgroup H of a group G such that $J(KH)KG \supset J(KG)$, Math. J. Okayama Univ. 17(1975), 171-176.
- [10] T. Okuyama: p-Radical groups are p-solvable, Osaka J. Math. 23(1986), 467-469.
- [11] D.J. Passman: "Permutation groups", Benjamin, New York, 1968.
- [12] J.G. Thompson: Finite groups with fixed-point-free automorphisms of prime order,

Proc. Nat. Acad. Sci. 45(1959), 578-581.

- [13] Y. Tsushima: On p-radical groups, J. Algebra 103(1986), 80-86.
- [14] D.A.R. Wallace: Lower bounds for the radical of the group algebra of a finite p-souble group, Proc. Edinburgh Math. Soc. 16(1968/69), 127-134.

Department of Mathematics Faculty of Education Gunma University Maebashi 371, Japan