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1. Introduction

Soit m>1 un entier sans diviseur carré, tel que le deux-groupe Hy(m) des
classes d’idéaux au sens strict de Q(v/m) soit cyclique d’ordre au moins 8;
soit A(m)=0 (mod 8) le nombre des classes d’idéaux au sens strict de Q(\/m).
Pour un tel nombre m il y a deux possibilités ([1] et [2]):

a) m=pq, p et ¢ nombres premiers =1 (mod 4) tels que

(5)=()=(3) =+
b) m=2p, p nombre premier =1 (mod 16) tel que (%)4:1.

Rappelons que les facteurs principaux de Q(\/m) sont les deux diviseurs sans
diviseur carré du discriminant de Q(v/m) représentés par la forme X?*—mY?
Nous obtenons les résultats nouveaux suivants:

Théoreme 1. Soit p et q deux nombres fremiers tels que h(pq)=0 (mod 8).
Les équations
(1.1) 2= pXt—qV?, Z"*=gX"?—pY"
ont des solutions en entiers rationnels X, Y, Z, X', Y', Z' tels que

(X, V)= (X,Y)=1,

(1.2) ( ) ( ) ( )“(%):1’ Z>0, Z'>0,

XEPZ (mod 4), X'= q+1(mod4-) Z=7'=1 (mod 2).
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Alors les nombres a=<£) <2X> et ,8:<£> <2‘X:'> ne dépendent que de p
et g. p/aNZ q/:\Z

De plus h(pg)=0 (mod 16) si, et seulement si, a=0B=1. Sinonp,qou —1 est
facteur principal suivant que (a2, B8)=(1, —1), (—1, 1) ou (—1, —1) respectivement.

Siz=1 (mod 8), on pose <%> =(—1)@-0r
4

Théoreme 2. Soit p un nombre premier tel que h(2p)=0 (mod 8). Les
équations

(13) 7% = pXZ_ZYZ , 7% — 2XIZ_pYI2
ont des solutions en entiers rationnels X, Y, Z, X', Y', Z' tels que

(14) (X,Y)=1, Z>0, Z=+1 (mod 8),<§>:1, X=1ou3 (mod8),

(15) (X, ¥Y)=1, 2>0, Z'=1 (mod 8), (%) —

Alors les nombres a=<%>4< ) ( ) <‘;—(> ne dépendent que de p.
De plus h(2p)=0 (mod 16) sz, et seulement si, a=B=1. Sinon —2,2 ou —1

est facteur principal suivant que (a, B)=(1, —1), (— 1 1) ou (—1, —1) res-
pectivement.

Corollaire du théoréme 2. Un nombre premier p tel que h(2p)=0 (mod 8)
s’écrit

(1.6)  p = 14202 — 24 —3d? avec (1;;) — 1 et 20=0, d=1 (mod 8).
Alors

=(2); a=()(3)

Pour démontrer ces théorémes nous utilisons la théorie des formes quad-
ratiques binaires, et considérons le groupe des classes de formes quadratiques
[4, B, C]=Ax*+2Bxy+Cy* de discriminant 4m pour la composition, groupe
dont le deux sous-groupe est isomorphe a H,(m). Une méthode analogue a
été utilisée par Leonard et Williams ([4] et [5]) pour obtenir des critéres de
divisibilité de A(m) par 16 quand m est négatif.

Notre méthode est élémentaire en ce sens qu’elle n'utilise que la théorie
des corps quadratiques (dans le langage des formes quadratiques binaires). En
utilisant la théorie du Corps de Classes, Yamamoto [6] a obtenu des critéres



DivisiBILITE PAR 16 DU NOMBRE DES CLASSES 481

différents des notres. Nous comparons ses résultats avec les nétres et avec
ceux de Leonard et Williams ([4], [5]) 2 la fin des §§ 3 et 4 consacrés respective-
ment aux cas m=pgq et m=2p.

2. Racines carrée et quatrieme d’une forme d’ordre 2

Dans ce paragraphe p et g désignent deux nombres premiers distincts,
éventuellement 2, tels que 4(pg)=0 (mod 8).

Parmi les trois formes ¢_,=[—1,0, pq], ¢,=[p, 0, —ql, ¢,=[g, 0, —p]
exactement une est dans la classe unité, et les deux autres sont dans la classe
ambigué. Comme /(pg)=0 (mod 8) ces formes sont des puissances quatriémes;
et 4(pg)=0 (mod 16) si, et seulement si, ¢, et ¢, sont des puissances huitiémes;
si ¢, (respectivement ¢,) est puissance huitieme mais non ¢, (respectivement
¢,) alors p (respectivement q) est facteur principal, et si ni ¢, ni ¢, ne sont
puissances huitiémes alors —1 est facteur principal.

Nous allons déterminer une racine carrée de la forme ¢,=[p, 0, —q].
L’équation

2.1) 7 = pX?—qY?

a donc des solutions ou Z>0, (Z, 2pg)=1, (X, Y)=1, et tout Z solution
donne la valeur 1 aux caractéres génériques, donc

<%):<§>:1 sip et g2, (f)z(é)zl si ¢g=2,

B)-(@)-1 5 r=2

Considérons I’équation (2.1) modulo 4, on voit que

(2.2)

)(XEI(mOdZ),YEO(modZ) si p*2,
23 1X=Y=1(mod2) s p=2.

Soit maintenant A et u tels que
(2.4) AX—pY=1.
Si p==2 alors (2.3) monter que A est impair. Appliquant la substitution linéaire
de matrice (‘;g ﬁ) a la forme [p, 0, —q] on obtient I'identité

(2.5) PXE+ ) —q(YE+ Ny = Z2E+-2bEn+cnf
avec

(2.6) b=pXu—qYN, c=pu*—qr\.
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Tenant compte de (2.1), (2.4) et (2.6) on obtient
(2.7) bY = NZP—pX.

L’équation (2.5) signifie que les formes [p, 0, —g] et [Z% b, c] sont
équivalentes, donc une racine carrée de [p, 0, —q] est la forme

f=12b, Z.

Comme /(pg)=0 (mod 8) la forme f est dans le genre principal, donc il
existe des entiers x, y et r tels que

(2.8) 7 =Zx*+2bxy-+Zcy

avec

(2.9) (x,9)=(r, 2Zcpg) = 1.
Multipliant (2.8) par Z on obtient

(2.10) Zr = 22+ 2bxZy+c(Zy)® .
Appliquant I'identité (2.5) a (2.10) avec E=x, »=Zy on obtient

(2.11) Zrt = pS*—qT*?

avec

(2.12) S =Xx+uZy, T=Yx{+\y.

Comme, d’aprés (2.9), on a (x, Zy)=1 et que det<)§ x)zl on voit que

(2.13) (S, T) = (S, ¢Zr) = (T, pZr) = 1.

De (2.7) et (2.8) on déduit 1:(22”3’ ):(—nyZX YP). Mais (2.11) montre
que (%):(f)z(%q)-:l, donc

ew () () ()~ ().
VA Z Z VA

Le nombre 7 est le premier coefficient d’une racine quatriéme de la forme
[#, 0, —q], qui sera donc une puissance huitiéme si, et seulement si, le nombre
r donne la valeur 1 a un caractére générique.

Ceci est vrai ou faux indépendamment du choix des nombres X, Y, Z, \,
u, x, y et r, donc nous supposerons les signes de x et y choisis de maniére que
T=Yx+XZy>0. De plus, X étant impair, on peut, si nécessaire, supposer
w pair en remplagant éventuellement (A, ) par A+ Y, p+X).
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3. Démonstration du théoréme 1 (cas a)

Ici p et g sont deux nombres premiers impairs distincts, tels que 4(pq)=0
(mod 8).
Dans ce cas nous considérons @,=[p, 0, —g] et nous allons calculer le

caractére <L> ou 7 est défini par (2.8). Nous commengons par remarquer que

(3.1) YE{O(moM), si p=1(mod 8),

2 (mod 4), si p=5 (mod 8).

e GRGIGIG) e (G
(3.2) (é) _ @‘),(%,Z)

Nous voulons évaluer (%T—) L’équation (2.11) montre que

(3.3) {251 (mod 4)= S=1 (mod 2) et T'=0 (mod 2)

Z=3(mod4)= S=0(mod 2) et T=1 (mod 2).

Nous distinguerons deux cas, Z =1 (mod 4) et Z =3 (mod 4).

a) Z=1 (mod4). Alors T=2"T,, T, impair, avec n=1 si, et seulement si,
pZ =5 (mod 8).

On a, utilisant la loi de réciprocité quadratique et (2.11),

) =-G)V (G- F)-G) &)
=) (Z)-G)" (%)
Tenant compte maintenant de (2.12) et (2.14) on obtient
-G G &H) -G @ R
Pour évaluer (%—) nous posons y=2"y,, =1 (mod 2); alors
-G -G 6 -G
d’aprés (2.8), d’ou
34 G)-G) @G
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D’aprés (2.3) et (3.3) Y et T sont pairs, donc d’apres (2.12) y pair et x
impair, d’ot

(3.5) T=Y+y (mod4).
: —_— pa— b4 M 2 . 2T . %&
Sip=Z=1 (mod 8), I’équation (3.4) s’écrit (7)—< )

Z
Sip=1, Z=5 (mod 8), ona Y =0, T=2 (mod 4), donc m=n=1, donc

%) -GG =(%)-
Sip=5, Z=1(mod 8), ona Y=T=2 (mod 4), donc n=1, donc
G -)-%)
Si p=Z=5 (mod 8), ona Y =2, T=0 (mod 4),donc m=1, donc
()= 2E) = ().
b) Z=3 (mod 4). Comme T=Yx-+AyZ est impair et Y pair, y est

impair. De plus comme S=Xx+Zuy =0 (mod 2) on a x=p (mod 2). On
peut supposer g choisi pair, donc ¥=p=0 (mod 2). On a alors

(5 =G5 =GNE) =GN = GAF IZ)
-GN
Utilisant maintenant (2.14) on obtient
) -GIE)EF) = -GG
~-GAE)NZ):

On a utilisé, outre la loi de réciprocité quadratique, 1’équation (2.8) qui montre

e (5)-GE-G)

Comme Y, x et p sont pairsona T=AyZ=—Ay et AX =1 (mod 4), donc

Ty=—A=—X (mod 4) .

On trouve donc ici
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G -GIENZ)

Choisissons le signe de X de fagon que (%)(%{—1) =1, cest-a-dire X =

%——1 (mod 4). Alors, dans les deux cas Z=1 et Z=3 (mod 4), on trouve
QZ)_ 2X
()
r\_ (%) (2X
(—;) o <$>4< Z )
On voit donc que la classe de [p, 0, —g] est une puissance huitiéme si,

et seulement si, <§> (%):1, ce qui prouve le théoréme 1.
4

REMARQUE. Yamamoto ([6]) considére I’équation
£ = pri+gs.

Cette équation a d’une part des solutions #', 7, s'=2¢*® D2 et d’autre
part des solutions ¢/, r/=2p*@=V72 ¢ ou, de plus, on suppose les signes de ¢’
et ¢ choisis de fagon que t' (respectivement ¢/)=2, 6, 3, 7 (mod 8) suivant que
r’ (respectivement s”’)=0, 4, =1, &=3 (mod 8). Le résultat de Yamamoto

’ s
([6], Theorem 5.4) est que A(pq)=0 (mod 16) si, et seulement si, (L) :(t—>
p/4 q’/4
. .. . t t’
=1, et que, sinon, p, g, —1 est facteur principal suivant que <<~> , (~> ):
p/e g4
’ 74

(1, —1), (—1, 1) ou (—1, —1), autrement dit que a=<t—) ) ﬁ:<L> .
: p/4 q/4

4., Démonstration du théoréme 2

Soit p un nombre premier tel que A(2p)=0 (mod 8), donc p=1 (mod 16).
a) Nous considérons d’abord la premiére équation (1.3).

@4.1) 7%= pX*2Y?, (X,Y)=1, Z>0.
Comme Z==+1 (mod 8) on a
2\ _ e
4.2) (X)_( 1),

L’équation (2.11) avec ¢g=2 montre que .S est impair et que

{ZEI (mod 8) = T pair,

(4.3) o
=—1 (mod 8) = T impair .
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Nous allons calculer (%) L’équation (2.11) avec g=2 entraine

Z\ (—=2\(T Z\(T
(44 3)-G GG =GG)
P p/a\p /arp p/anp
Pour calculer (%) nous distinguons les cas Z=1 et Z=—1 (mod 8).
a) Z=1 (mod 8). On trouve successivement
I)zl';:(i_(é_ﬁ_ﬂ_&
(p (p) Tl)— Tl)“(z>_(z>_<z)
— (=X =(h (K): Z)if z(_){
( Z ) Z) Z <|yll (Z> z>
ou T et y, désignent les parties impaires de T et y et ou nous avons utilisé,
outre la loi de réciprocité quadratique, les équations (2.8), (2.11), (2.14) et (4.1).
b) Z=-—1 (mod 8). Comme Y est pair et T'=Yx+4AZy impair, y est

impair. Nous supposons g choisi pair, donc, comme S=Xx-+puZy est impair,
x est impair. Comme plus haut on trouve successivement

B)-3)-&)- D -GN -G
-G - ) - -

Comme g et Y sont pairs on a AX=1+4Y =1 (mod 4), donc

Ty = Yay+AZy*=Y—A=Y—X (mod 4),

ce qui, tenant compte de (4.2) donne

() -G -G

Supposons le signe de X choisi de fagon que <:%>: 1. On a alors, dans
les deux cas Z=1 et Z=—1 (mod 8), X

r\ _(Z\(X
o (-2
B) Nous considérons maintenant la deuxiéme équation de (1.3)
(46) ZIZ = ZX’Z—-.PY’Z ’ Z'>0 ) (X,’ Yl) =1.

Ici, d’aprés (2.3), X’ et Y’ sont impairs. De plus on peut toujours choisir
Z'=1(mod 8). En effet si (Z’, X', Y’) est solution on voit, en utilisant 'unité
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342y/ 2 de norme 1 de Q(v/ 2), que (3Z'+4|X'|, 2Z'+3]|X’|, Y’) est aussi
solution, et 3Z'+4|X’|=1 (mod 8) si Z'=—1 (mod 8). L’équation (2.11)
avec p=2, g=p s’écrit

(4.7) Z'P = 28t pT?

et montre que Z'7*=2—T?=T? (mod 16) c’est-a-dire
43) =2
D’autre part on déduit de (4.7) successivement, comme plus haut,
(7)- &) =(2) -(2)-(75)- %)
(@)@

Donc on a
“9) ) =-G\Z)
r 2/\2'
ce qui, avec (4.5), achéve de démontrer le théoreme 2.
Pour démontrer le corollaire il suffit de remarquer que les décompositions

p=1*+29* et p=2¢"—d® nous donnent pour solutions des équations (1.3) re-
spectivement

(X, Y, Z2)=(1,v,u) et (X,Y,Z")=(e1,4d).
REMARQUES. Si p vérifie A4(2p)=0 (mod 8), on a

(4.10) p = f?—2¢ avec f=1 (mod 8), (%) —1,fetg>0.

1) Yamamoto [6] considére (comme au § 3) ’équation
£ = pr*+2¢.

Cette équation a pour solutions particuli¢res (f, 1, g) et aussi (¢, 7, 2"®*)
avec t=2"®"*! (mod 8). Le résultat de [6] (Theorem 5.5) est que A(2p)=0

(mod 16) si, et seulement si, (%) —1 et #=2"» 41 (mod 16). Sinon —2, 2,
4

—1 est facteur principal suivant que

(22 =0 cLvmes
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En particulier, comparant avec le corollaire du théoréme 2 on voit que

FANSYE
(411 () =G
2) La relation (4.11) peut étre généralisée a tous les nombres premiers p

tels que A(—2p)=0 (mod 8). Un tel nombre p satisfait a (1.6) et (4.10), mais
n’est pas nécessairement =1 (mod 16), et alors on a

(%) —1 (Yamamoto [6], Theorem 5.8]
4

(%) =1 (Leonard et Williams [4], Theorem 2).
4

3) On retrouve ainsi le fait que, si #(2p)=0 (mod 8), #(—2p)=0 (mod 16)
si, et seulement si, 2(2p)=0 (mod 16) ou —2 est facteur principal, ce qui a été

prouvé dans [3] par une méthode utilisant les formules analytiques pour les
nombres des classes.

h(—2p) =0 (mod 16)

5. Exemples numériques

Théoréme 1.

ra | q X|Y\Z’X'{Y"Z"a|ﬂ‘FP]h(pq)
505 s| o101 | =9 2| 1| =1] 2| o 1]=1| »| 8
905 s|o18t | —13] 211 =1 6| 1l—=1] 1] 4 8
2305 s| 461 | —211 2| 19| —9| 8 | 19| 1| 1|—-1] 16
6953 | 17| 409 | 41| 8 | 49 9 40 | 77 | —1 | =1 | -1 8
8105 | 1621 s o1 18] 1 =37 20119 1] 1| | 16
8473 | 37| 229 | —s| 2| 3| —1| 2| 9| 1| 1| ¢ | 16
Théoréme 2.
» ’ X ‘ e z X’ ‘ Y’ ‘ z ' a ‘ ) 1FP { h(2p)
13 | 1 9 53 7 9 | —1|—1]-1 8
257 | 3 34 1 13 1 9 1] -1 -2 8
337 | 3 26 41 13 1 1 -1, 1, 2 8
3089 | 3 106 73 669 | 17 | 49 1] 1 -1 16
3361 | 3 118 49 41 1 1 1] 1] 2| 16
4481 | 3 142 1| 1941 | 41 49 1] 1]-2| 16
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