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Abstract
We prove pathwise uniqueness for stochastic differentjgb&ons driven by non-
degenerate symmetrig-stable Lévy processes with valuesf having a bounded
and g-Hoélder continuous drift term. We assunfe> 1 — «/2 andw € [1, 2). The
proof requires analytic regularity results for the assmciantegro-differential opera-
tors of Kolmogorov type. We also study differentiability sélutions with respect to
initial conditions and the homeomorphism property.

1. Introduction

In this paper we prove a pathwise uniqueness result for thewiog SDE
t
(1.1) Xt =x+/ b(Xs)ds+ L;, xeRY t>0,
0

where b: RY — RY is bounded ands-Hélder continuous and. = (L) is a non-
degeneratel-dimensional symmetria-stable Lévy procesd ¢ =0, P-a.s.) andd > 1.

Currently, there is a great interest in understanding pathwniqueness for SDEs
when b is not Lipschitz continuous or, more generally, whens singular enough so
that the corresponding deterministic equation (1.1) witk= 0 is not well-posed. A
remarkable result in this direction was proved by Vereteowiin [25] (see also [28] for
d = 1). He was able to prove uniqueness wieiR? — RY is only Borel and bounded
and L is a standardl-dimensional Wiener process. This result has been gernedain
various directions in [9], [13], [27], [6], [7], [5], [8].

The situation changes whdnis not a Wiener process but is a symmetristable
process € (0, 2). Indeed, wherd = 1 anda < 1, Tanaka, Tsuchiya and Watanabe
prove in [24, Theorem 3.2] that even a bounded gh#idlder continuousb is not
enough to ensure pathwise uniquenesa ¥ 8 < 1 (they consider drifts likeb(x) =
signx)(|x|® A 1) and initial conditionx = 0). On the other hand, whed = 1 and
«a > 1, they show pathwise uniqueness for any continuous anddealin
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422 E. PrRIOLA

In this paper we prove pathwise uniqueness in any dimendign 1, assuming
thate > 1 andb is bounded ang-Hdolder continuous with3 > 1 —« /2. Our proof is
different from the one in [24] and is inspired by [7]. The as@tions on thex-stable
Lévy procesd. which we consider are collected in Section 2 (see in pagicHlypoth-
esis 1). Here we only mention two significant examples whiatisg/ our hypotheses.
The first is whenL = (L;) is a standardr-stable process (symmetric and rotationally
invariant), i.e., the characteristic function of the randwariableL; is

1.2) E[ettW] = e&M" yeRY t >0,

where ¢, is a positive constant. The second exampleLis= (L}, ..., LY), where
L, ..., LY are independent one-dimensional symmetric stable presestindexa.
In this case

(1.3) E[eLtv] = gthelual++u) e RY, t > 0,

wherek, is a positive constant. Martingale problems for SDEs driver(lg}, ..., LY)
have been recently studied (see [3] and references therein)
We prove the following result.

Theorem 1.1. Let L be a symmetriex-stable process withr € [1, 2), satisfy-
ing Hypothesis 1 gee Section 2) Assume that k& C@(Rd; RY) for somep € (0, 1)
such that
o
1——.
B> >
Then pathwise uniqueness holds for equatfirl). Moreover if X* = (X{) denotes
the solution starting at x RY, we have
(i) for any t>0, p> 1, there exists a constant (€ p) > 0 (depending also o,
and L = (L)) such that

(1.4) E[ sup|Xg — Xé’lp} <C( p)Ix—VyI’, x yeR

O<s<t

(i) for any t > O, the mapping x > XX is a homeomorphism frorR? onto R¢,
P-a.s;
(i) for any t> 0, the mapping x — X is a C'-function onRY, P-a.s.

All these assertions require that is non-degenerate. Estimate (1.4) replaces the
standard Lipschitz-estimate which holds without expéatate when b is Lipschitz
continuous. Assertion (ii) is the so-called homeomorphisroperty of solutions (we
refer to [1], [19] and [14]; see also [20] for the case of Logdchitz coefficients).
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Note that existence of strong solutions for (1.1) followsikaby a compactness argu-
ment (see the comment before Lemma 4.1). On the other haisterse of weak solu-
tions whenb is only measurable and bounded is proved in [15]. Siﬁgé(Rd, RY) C
cl(rd, RY) when 0< g < g/, our uniqueness result holds true for amy> 1 when
B €(1/2,1). Theorem 1.1 implies the existence of a stochastic flee Remark 4.4).

The proof of the main result is given in Section 4. As in [7] onethod is based
on an It6—Tanaka trick which requires suitable analyticutagty results. Such results
are proved in Section 3. They provide global Schauder estgnfor the following re-
solvent equation omR¢

(1.5) AU—Lu—b-Du=g,

wherel > 0 andg € C,f(Rd) are given and we assunae> 1 anda + 8 > 1. HereL is
the generator of the Lévy proceks(see (2.5), [1] and [22]). IL satisfies (1.2) the
coincides with the fractional Laplaciar(—A)*/? on infinitely differentiable functions
f with compact support (see [22, Example 32.7)), i.e., for anyRY,

(1.6) —(—A)2f(x) = /Rd(f(x +y)— F(X) = Ly<y Y- Df(x))M% dy.

It is simpler to prove Schauder estimates for (1.5) when 1. In such a case, assum-
ing in addition thatl = —(—A)%/?, i.e., L is a standardx-stable process, these esti-
mates can be deduced from the theory of fractional powersctiosal operators (see
[16]). We also mention [2, Section 7.3] where Schauder egts) are proved when
a > 1 and £ has the form (1.6) but with variable coefficients, i.€,,= (X, y). The
limit casea = 1 in (1.5) requires a special attention even for the fraeidraplacian
L = —(—=A)Y?. Indeed in this casé& is of the “same order” ob-D. To treata = 1,
we use a localization procedure which is based on TheorenwBe3e Schauder esti-
mates are proved in the case lufk) = k, for any x € RY, showing that the Schauder
constant is independent &f (the casex < 1 is discussed in Remark 3.5).

In order to prove Theorem 1.1, in Section 4 we apply Itd’s folanto u(X;),
whereu € Cg*‘8 comes from Schauder estimates for (1.5) whes: b (in such case
(1.5) must be understood componentwise). This is needectiorm the It6—Tanaka
trick and find a new equation faX; in which the singular ternfg b(Xs)ds of (1.1) is
replaced by more regular terms. Then uniqueness and (llldyvfby LP-estimates for
stochastic integrals. Such estimates require Lemma 4.ltrendonditione/2+ 8 > 1.

In addition, properties (ii) and (iii) are obtained transfiing (1.1) into a form suitable
for applying the results in [14].

We will use the letterc or C with subscripts for finite positive constants whose

precise value is unimportant; the constants may change fraposition to proposition.

2. Preliminaries and notation

General references for this section are [1], [21, Chapte[2Z] and [26].
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Let (u, v) (or u-v) be the euclidean inner product betweemnd v € RY, for any
d > 1; moreover|u| = (u,u)¥/2. If D c RY we denote by 3 the indicator function of
D. The Borelo-algebra ofRY will be indicated byB(RY). All the measures considered
in the sequel will be positive and Borel. A measyreon R is called symmetric if
y(D) = y(~D), D € BR?).

Let us fix e € (0, 2). In (1.1) we consider a-dimensionalsymmetrica-stable
process L= (L), d > 1, defined on a fixed stochastic bas®, (F, (Ft)i=0, P) and
Fi-adapted; the stochastic basis satisfies the usual assmsfsee [1, p.72]). Recall
that L is a Lévy process (i.e., it is continuous in probability, @shstationary incre-
ments, cadlag trajectories; — Ls is independent ofF;, 0 < s <t, and Lo = 0) with
the additional property that the characteristic functidnLe verifies

(1)  E[M =W yu) = —/ €Y —1—i(u, y)Lgy=y(V)v(y),
Rd
ueRY t >0, wherev is a measure such that

o d
22) o) = [ ue) [ o)z, D eB®),

for some symmetric, non-zero finite measureconcentrated on the unitary sphe&§e=
{yeRY: |y| =1} (see [22, Theorem 14.3]).

The measure is called the Lévy (intensity) measure bfand (2.1) is the Lévy—
Khintchine formula. The measune is a o-finite measure oR? such thatv({0}) = 0
and [ps(1A ly|?)v(dy) < oo, with 1A |-| = min(1,|-]). Formula (2.2) implies that (2.1)
can be rewritten as

Y(u) = [ (cos(u, y)) — 1yu(dy)
— [u@e) [~ D R ar —o, [ju s, uers

(see also [22, Theorem 14.13]). The measurés called the spectral measure of the
stable procesd.. In this paper we make the following non-degeneracy assompt
(cf. [23] and [22, Definition 24.16]).

(2.3)

HyYPOTHESIS1. The support of the spectral measuyteis not contained in a
proper linear subspace @.

It is not difficult to show that Hypothesis 1 is equivalent b tfollowing assertion:
there exists a positive constaBt, such that, for anyu € RY,

(2.4) ¥(u) = Cylul®.
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Condition (2.4) is also assumed in [11, Proposition 2.1].s@e that (2.4) implies Hy-
pothesis 1, we argue by contradiction: if SuppC (M N'S) where M is the hyper-
plane containing all vectors orthogonal to somg# 0, theny(ug) = 0. To show
the converse, note that Hypothesis 1 implies that for any RY with [v| = 1, we
have ¢»(v) > 0 (indeed, otherwise, we would hayg{& € S: |[{v, &§)| > 0}) = 0 and
SO Suppf) C {& € S: (v, &) = 0} which contradicts the hypothesis). By using a com-
pactness argument, we deduce that (2.4) holds for laeyRY with |u] = 1. Then,
writing, for anyu e RY, u # 0, [|(u,&)[“n(d&) = |u|* [5[(u/|ul, £)|*u(dE), we obtain
easily (2.4).

The infinitesimal generatof of the procesd is given by

(25) Lf(x) = /Rd(f(X +¥) = £(0) = Lyy<y {y, DECO)v(dy), f € CERY),

where CX(RY) is the space of all infinitely differentiable functions tvitompact sup-
port (see [1, Section 6.7] and [22, Section 31]). Let us atersthe two examples of
«a-stable processes mentioned in Introduction which satibfpothesis 1. The first is
when L is a standardr-stable process, i.eyy(u) = ¢,|ul®. In this casev has density
C./|x|9t* with respect to the Lebesgue measuréRfh Moreover the spectral measure
w is the normalized surface measure ®n(i.e., u gives a uniform distribution or§;
see [21, Section 2.5] and [22, Theorem 14.14]).

The second example is = (L}, ..., LY), see (1.3). In this casg(u) = Kk, (Jus|* +
-+ + ug|*) and the Lévy measure is more singular since it is concentrated on the
union of the coordinates axes, i.e.,has density

1 1
Cu (1{x2_0 ..... X4 =0} |X1|—1+“ + -+ L=o,.. x1=0} W)

with respect to the Lebesgue measure. The spectral measisre linear combination
of Dirac measures, i.eu = 2521(8@ + 8_g,), Where €&) is the canonical basis iRY.
The generator is

d
LX) = Z/[f(x +58) = T(X) — Lg<S e T ()] —2— ds, € CF(RY).
= /R |s[ 1+

Let us fix some notation on function spaces. We de@p@R?; R¥), for integersk,d > 1,

as the set of all function$: RY — R* which are bounded and continuous. It is a Banach
space endowed with the supremum ndfn|o = sup,ge| f(X)|, f € Cp(RY; R¥). More-
over, Cff(]Rd; R¥), B € (0,1), is the subspace of gl-Holder continuous function$, i.e.,

f verifies

(2.6) [fls:= sup =TI _
X,yeRdx#£y |X - y|ﬁ
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Cl(RY; R¥) is a Banach space with the norfn- |5 = || - lo +[-1s. If k =1, we
setC/(RY; R¥) = CL(RY). Let CI(RY, R¥) = Cp(RY, R¥) and [-]o = || - 0. For any
n>1, « €0, 1), we say thatf € CJ**(RY) if f € C"(RY) N CZ(RY) and, for all
j =1,...,n, the (Fréchet) derivative®’ f € CZ(RY; (RY)®()). The spaceC;)™(RY)
is a Banach space endowed with the ndfnie = || fllo+ Y g1 |ID* flo +[D" f]a,
f € CoT(RY). Finally, we will also consider the Banach spaCg(R?) C Cp(RY) of
all continuous functions vanishing at infinity endowed witie norm|| - | o.

REMARK 2.1. Hypothesis 1 (or condition (2.4)) is equivalent to tledofving
Picard’s type condition (see [17]): there existse (0, 2) andC, > 0, such that the
following estimate holds, for any > 0, u € RY with |u| =1,

[ upedy = ot

{[{(uy)=p}

The equivalence follows from the computation

[ uyreey = [ e [ Liwazortdr
{(u.y)l=p} S 0

22—« 2 ~ ds . 10270( o
=t [l oruos [ 5% = 7 [ orue.

S3—a 2 —

The Picard’s condition is usually imposed on the Lévy measuof a non-necessarily
stable Lévy proces4 in order to ensure that the law df;, for anyt > 0, has a
C*-density with respect to the Lebesgue measure.

3. Some analytic regularity results

In this section we prove existence of regular solutions t6)(IThis will be achieved
through Schauder estimates and will be important in Secfioto prove uniqueness
for (1.1).

We will use the following three properties of thestable process (in the sequel
ut denotes the law ofy, t > 0).

(@) ue(A) = it A), for any A € B(RY), t > 0 (this scaling property follows from
(2.1) and (2.3));

(b) ut has a densityp; with respect to the Lebesgue measure; 0; moreoverp; €
CL(RY) and its spatial derivativdp, € L1(RY, RY) (this is a consequence of Hypoth-
esis 1);

(c) for anyo > o, we have by (2.2)

(3.1) /{|X51}|x|"v(dx) < 0.
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The fact that (b) holds can be deduced by an argument of [2&joBe3]. Actually,
Hypothesis 1 implies the following stronger result.

Lemma 3.1. For any« € (0, 2),t > 0, the density pe C*(RY) and all deriva-
tives O‘p; are integrable onRY, k > 1.

Proof. We only show thap, € C*(RY) and Dp; € LYRY, RY), following [23];
arguing in a similar way one can obtain the full assertion. By}), we know that
e W < e Ctlul” y e RY, and so by the inversion formula of Fourier transform (see
[22, Proposition 2.5]); has a densityp; € LY(RY) N Cy(RY),

(3.2) p(X) = —— / e de¥@dqz xeRY t > 0.

Rd
Note that (a) implies thap,(x) = t~%*p,(t-¥*x). Thanks to (2.4) one can differentiate
infinitely many times under the integral sign and verifiest thae C*(RY). Let us fix

j =1,...,d and check that the partial derivatidg p; € LY(RY). By the scaling property
(a) it is enough to considdr= 1. By writing ¢ = ¥1 + ¥,

YaU) = — [ (cos(u, y)) — (dy), vz = v — v,
(lyi<1)
1 —i(X,z i —V1(2)\a—V2(Z
dx, Pa(x) = (@) /Rd e 2 ((—iz))e1@)eV2Adz  x e RY.

We find easily thaty; € C*(RY) and so, using also (2.4) we deduce thag;e /1@

is in the Schwartz spac§(RY). In particular, there exists; € LY(RY) such that the
Fourier transformﬂ(z) = (~izj)e"*@. On the other hand (see [22, Section 8]), there
exists an infinitely divisible probability measuge on R? such that the Fourier trans-
form $(z) = e V2@, By [22, Proposition 2.5] we infer thaf; xy = f; - . By the
inversion formula we deduce thag, pi(x) = (f1 * y)(x) and this proves thady, p; €
LY(RY). O]

Remark that (c) implies that the expression®f in (2.5) is meaningful for any

fe Cé*y(Rd) if 1 +y > «. IndeedL f(x) can be decomposed into the sum of two
integrals, over|y| > 1} and over{|y| < 1} respectively. The first integral is finite since
f is bounded. To treat the second one, we can use the estimate

[f(y +x) = f(x) —y-Df(x)|

(3.3) 1 )
s/o|Df(x+ry)—Df(x)||y|drs[Df]y|y| Yoyl =1

Note thatL f € Co(RY) if f e Co7"(RY) and 1+ y > a.
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The next result is a maximum principle. A related result is[10, Section 4.5].
This will be used to prove uniqueness of solutions to (1.5)vel as to study existence.

Proposition 3.2. Leta € (0,2). If u e Cé*V(Rd), 1+ y > «, is a solution to
AU—Lu—Db-Du =g, with » > 0 and ge Cp(RY), then

1
(3:4) lullo = —ligllo, A > 0.

Proof. Since—u solves the same equation of with g replaced by—g, it is
enough to prove that(x) < ||gllo/A, X € RY. Moreover, possibly replacingi by
u — infycre U(X), we may assume that > O.

Now we show that there existy > 0 such that, for ang > 0 we can findu, €
Cé”(Rd) with ||uc]lo = maxerd|U(X)|] and also

lu—uellit, < €cr.

To this purpose let, € RY be such thatu(x.) > |Jullo — ¢ and take a test function

¢ € CP(RY) such thatp(x.) =1, 0< ¢ <1, andg(x) = 0 if |[x — x| = 1. One
checks that,(x) = u(x) + 2e¢(x) verifies the assumptions. Let us define the operator
L1=L+b-D and write

Me(X) = LaUe(X) = g(x) + A(Ue(X) — u(x)) = La(ue — U)(x).

Let y. be one point in whichu, attains its global maximum. Since cleadyju.(y.) <0,
we have (using also (3.3))

MUello = AUe(Ye) = I9llo + Cllu — Ucll1+, = [I9llo + Care.
Letting ¢ — 0T, we get (3.4). O

Next we prove Schauder estimates for (1.5) wieis constant The case ob €
cl(r9, RY) will be treated in Theorem 3.4. We stress that the constaint (3.6) is
independent ob = k.

The conditiona + 8 > 1 which we impose is needed to have a reg@assolution
u. On the other hand, the next result holds more generallyouttithe hypothesis +
B < 2. This is assumed just to simplify the proof and it is notnieste in the study
of pathwise uniqueness for (1.1). Indeed sirg(RY, RY) c C/(RY, RY) when 0<
B < B, it is enough to study uniqueness whgrsatisfiesp < 2 — «.

Theorem 3.3. AssumeHypothesis 1 Let o € (0, 2) and 8 € (0, 1) be such that
l<a+p <2 Thenforanyr>0,keR% ge Cg(]R{d), there exists a unique solution
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u=u, € C{(RY) to the equation
(3.5) A—Lu—k-Du=g

on RY (£ is defined in(2.5)). In addition there exists a constant ¢ independent of g
u, k and » > 0 such that

(3.6) Mullo + 1€+ Dullo + [Dula+-1 < cllgllg-

Proof. Equation (3.5) is meaningful far e Cb+ﬂ(Rd) with @ + B8 > 1 thanks to
(3.3). Moreover, uniqueness follows from Proposition 3.2.

To prove the result, we use the semigroup approach as in [d]thiB purpose,
we introduce thex-stable Markov semigroupR) acting onCy(RY) and associated to
L+ k-Du, ie.,

Ptf(x):/d f(z+tk)p(z—x)dz, t >0, f e Cy(RY), x € RY,
R

where p; is defined in (3.2), and®y = |I. Then we consider the bounded function
U= Uy,
(3.7) u(x) = / e MPg(x)dt, x eRY.

0

We are going to show thai belongs toCb“’(]Rd) verifies (3.6) and solves (3.5).

PART I We prove that € C¢ ™ (RY) and that (3.6) holds. First note thaju|lo <
llgllo since ;) is a contraction semigroup. Then, using the scaling pitgppf(x) =
t=9/« py (t~Y2x), we arrive at

e Coll fllo

(38) DR < o

/|f(z+tk)||Dp1(t g _p-Yey)| dz < DI Lo

t >0, f e Ch(RY), wherecy = [ Dp1ll ey, and so we find the estimate

Co
(3.9) IDPcfllo < 7l flo, f e Co(RY), t > 0.

By interpolation theory we know tha€h(R?), CL(R?)); ., = CL(RY), B € (0, 1), see for
instance [16, Chapter 1]; interpolating the previous estiwith the estimatgD P f ||g <
[Dfllo, t >0, f € C}RY), we obtain

(3.10) IDP flo < t>0, f eClRY),

C1
Tyl
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with ¢; = ¢1(Co, B). In a similar way, we also find

C2

2
(3.11) [D°P fllo < W'

|fllg, t>0, feCl®Y.

Using (3.10) and the fact that & B)/o < 1, we can differentiate under the integral
sign in (3.7) and prove that there exidbu(x) = Du,(x), x € RY. Moreover Du; is
bounded orRY and we have, for any > 0 with & independent of, u, k and g,

2@tV Dullo < €9l

(we have used thaf,” e "'t~ dt = ¢/A7, for 0 < 1 and > 0).

It remains to prove thaDu € C{(RY, RY), whered = o« — 1+ B € (0, 1). We
proceed as in the proof of [2, Proposition 4.2] and [18, Theo#.2].

Using (3.10), (3.11) and the fact that-3 > «, we find, for anyx,x’ € RY, x # x/,

, [X—x"|* 1 00 |X— X/|
|DU(X)— DU(X)| SC”g”ﬁ L mdt‘i‘/xx,a Wdt

2]
< clgllglx = X",

and so Pul,-14s =< C3l|9]lg, wherecs is independent ofj, u, k and A.

PART Il.  We prove thatu solves (3.5), for any. > 0. We use the fact that the
semigroup P) is strongly continuous on the Banach sp&€RY); see [1, Section 6.7]
and [22, Section 31].

LetA: D(A) C Co(RY) — Co(RY) be its generator. By [22, Theorem 31.6§(RY) C
D(A) and moreoverd f = £ f + k- Df if f € C3(RY) (we say thatf belongs toC2(RY)
if f e CARY) N Cy(RY) and all its first and second partial derivatives belon@gR?)).

We first show the assertion assuming in addition thadt CS(R“). It is easy to
check thatu belongs toCé(Rd) as well. To this purpose, one can use the estimates
[D*P.gllo < |ID*gllo, t = 0, k =1, 2, and the dominated convergence theorem. On the
other hand, by the Hille-Yosida theorem we know that D(A) and Au — Au = g.
Thus we have found that solves (3.5).

Let us prove the assertion whene Cg(]Rd). Note that alsau € Cﬁ(Rd). We con-
sider a functionyr € C2(RY) such thaty(0) = 1 and introduceg,(x) = ¥ (x/n)g(x),

x € RY, n> 1. Itis clear thatg,, u, € C3(RY) (un is given in (3.7) wherg is replaced
by gn). We know that

(3.12) AUn(X) — LUp(x) — k- Dup(x) = ga(x), x € RC.
It is easy to see that there exisfs> 0 such that|g,|l < C, n > 1, and moreoveq;

and Dg, converge pointwise t@ and Dg respectively. It follows that alsduy|2 is
uniformly bounded and moreover, and Du, converge pointwise ta and Du re-
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spectively. Using also (3.3), we can apply the dominatedvemence theorem and
deduce that

lim Lun(x) = Lu(x), x e RY.

Passing to the limit in (3.12), we obtain thatis a solution to (3.5).

Let now g e C/ (RY). Take anyp € C3°(RY) such that 6< ¢ <1 and s ¢(x) dx=1.
Define ¢n(x) = nip(xn) and g, = g * ¢,. Note that ¢,) C C(RY) = (-, CE(RY)
and |[gnllg < llgllg, n > 1. Moreover, possibly passing to a subsequence still denoted
by (gn), we may assume that

(3.13) g — g in CF(K).

for any compact seK ¢ RY and 0< g’ < B (see p.37 in [12]). Leu, be given in
(3.7) wheng is replaced byg,. By the first part of the proof, we know that

[unlla+s = Clignlls = Cliglls.

where C is independent oh. It follows that, possibly passing to a subsequence still
denoted with @), we have thatu, — u in C**#(K), for any compact seK c RY
and g’ > 0 such that 1< « + B’ < « + B. Arguing as before, we can pass to the
limit in Aun(X) — Lup(X) — K- Dup(X) = gn(x) and obtain that solves (3.5). The proof
is complete. []

Now we extend Theorem 3.3 to the case in whizhs Hoélder continuous. We
can only do this whemx > 1 (see also Remark 3.5). To prove the result whes 1
we adapt the localization procedure which is well known fecand order uniformly
elliptic operators with Holder continuous coefficientsg4&2]). This technique works
in our situation since in estimate (3.6) the constant is pedeent ofk € RY.

We also need the following interpolatory inequalities (B p. 40, (3.3.7)]); for any
te[0,1),0<s<r < 1, there existdN = N(d,k,r,t) such that iff € C{™"(RY,R¥), then

(3.14) [flsse < N[FILIFT,

where [f]s;+ is defined as in (2.6) if & s+t <1, [flo=|fllo, [f]s =|Dfo, and
[flstt = [Dflsyi—1 if 1 < s+t < 2. By (3.14) we deduce, for any > 0,

(3.15) [flspe < N[l ¢ + NeS[ ]y, f e C[T'(RY, R).

Theorem 3.4. AssumeHypothesis 1 Leta > 1 and g € (0, 1) be such thatl <
a+ B <2 Thenforanyi >0,ge Cg(Rd), there exists a unique solution= u; €
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CP(RY) to the equation
(3.16) AM—Lu—b-Du=g

on RY. Moreover for any w > 0, there exists c= c(w), independent of g and,u
such that

(3.17) Mullo + [DUlarp-1 < clglls, » > o.
Finally, we havelim;_ | Du,|lo = O.

Proof. Uniqueness and estimatgu|o < ||gllo, » > O, follow from the maximum
principle (see Proposition 3.2). Moreover, the last agserfollows from (3.17) using
(3.14). Indeed, with =0,s=1,r = « + B, we obtain, forr > w,

[Du;Jo = [Ui: < N[DUIYE D u,lg Ve < New b D/t g

where € = ¢(w). Letting A — oo, we get the assertion.

Let us prove existence and estimatu],,s—1 < c|lg| g, for A > w, with w > 0
fixed. We treate > 1 anda = 1 separately.

PART | (the casex > 1). In the sequel we will use the estimate

(3.18) o < IMlloll fllo + 1l Flolla, 1, f € CH(RY), 6 € (O, 1).

Writing Au(x) — Lu(x) = g(x) + b(x) - Du(x), and using (3.6) and (3.18), we obtain the

following a priori estimate (assuming thate Cﬁ*ﬁ(Rd) is a solution to (3.16))

[Dule+p-1 < C|igls + C|b- Dulg
=Cliglis + Clibllg[IDullo + Cllbllo[Dulg,

(3.19)

where C is independent of. > 0. Combining the interpolatory estimates (see (3.15)
witht=0,s=1+8,r=a+p)

[Duls < Ne* " [Dulasp-1 + Ne=™Puflo, € >0,

and |Dullo < Ne®*#~Du],4p 1 + Ne Yullo (recall thata 4+ 8 > 1 + ) with the
maximum principle, we get foe small enough the a priori estimate

[Dula+p-1 = ca(llglls + Cle)llullo)

(3.20) Cle Cle
< st + 2ol = (gt + < yglo) < gl
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for any A > w. Now to prove the existence of @;‘*ﬂ-solution, we use the continuity
method (see, for instance, [12, Section 4.3]). Let us intced

(3.21) Au(x) — Lu(x) — sb(x) - Du(x) = g(x),

x € RY, wheres € [0, 1] is a parameter. Let us defifie= {8 € [0, 1]: there is a unique
solutionu = us € Ci#(RY), for any g e CL(RY)}.
Clearly I" is not empty since @& I'. Fix g € I' and rewrite (3.21) as

AU(X) — Lu(x) — ob(x) - Du(x) = g(x) + (8 — do)b(x) - Du(x).

Introduce the operatos: C*#(RY) — CZ*/(RY). For anyv € C7P(RY), u = Sv is
the uniquecg"*’s—solution toru(x) — Lu(x) —8ob(x)- Du(x) = g(x) + (§ —8o)b(X) - Dv(X).

By using (3.20), we gef|Svi — Svzlle+p = 2[6 — ol - Cul|bllg [lvr — v2llatp- BY
choosing|é — 89| small enough,S becomes a contraction and it has a unique fixed
point which is the solution to (3.21). A compactness argunstrows thatl” = [0, 1].
The assertion is proved.

PART Il (the casex = 1). As before, we establish the existence o@éﬁ s (RY)-
solution, by using the continuity method. This requires ¢hpriori estimate (3.20) for
a=1.

Let u e Co*#(RY) be a solution. Let > 0. Consider a functiof € C°(RY) such
thaté(x) =1 if [x| <r and&(x) =0 if |x| > 2r.

Let now xo € RY and definep(x) = £(x —Xo), X € RY, andv = up. One can easily
check that

Lu(x) = p(X)Lu(x) + u(x)Lo(x)

3.22
(3.22) + /Rd(p(x +y) — p))(UX + y) —u(x))v(dy), x e R

We have
A(X) — Lv(x) — b(xo) - Dv(x) = f1(x) + fa(x) + fa(x) + fa(x), x €RY,
where

fi(x) = p(¥)9(x),  f2(x) = (b(X) — b(Xo)) - Dv(x),
fa(x) = —u(x)[Lp(X) + b(x) - Dp(X)],

fa(x) = — /Rd(p(x +Y) = p())(UX +y) —u))v(dy), x € R
By Theorem 3.3 we know that

(3.23) Dvlg < Cu(ll frllg + [ f2llp + [ f3llg + |l falls),
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where the constar; is independent ok, and 1. Let us consider the crucial terrfp.
By (3.18) we find

Il f2llp = ( sup_ |b(x) — b(XO)|)[DU]B + [Dvlloliblls-

X€B(Xo,2r)
Let us fixr small enough such tha&; sup. g, 2)|P(X) — b(xo)| < 1/2. We get
(3.24) [Dv]s = 2Ca(] falls + [IDvlloliblls + Il fallp + Il fallp)-

Note that| f1]|z < C(r)|lglls. By the interpolatory estimates (3.15) and the maximum
principle, arguing as in (3.20), we arrive at

[Dvlp = Co(llglls + Il falls + [l fallp),

for any A > w. Let us estimatefs. To this purpose we introduce the following non-
local linear operatoi

TH(x) = /Rd(p(x +¥) = pCO)(F(x +y) = FEO)v(y), f e CyRY), x e RY

One can easily check thatis continuous fromC(RY) into Cy(R?) and fromC.* (RY)
into CL(RY). To this purpose we only remark that, for ary R,

IDT ()] < 5||p||2||f||1(/

{lyl=1

2p(dy) +
Iy [{

lyl>1}

v(d Y))

+slobal ([ WP+ [ u@n), fecii®),
{lyl=1) {lyl>1}
By interpolation theory we know that
(CRY), G5 (R0 = G5 (RY),

see [16, Chapter 1], and so we get tFatis continuous fromCL* (R9) into C/(RY)
(see [16, Theorem 1.1.6]). Sinck = —Tu, we obtain the estimate

I fallp = Callullzs g2

We have| falls + || fslls = ca(r)llull+42 and so

[Dv]s = Calligllp + ullrep2),

whereC, is independent ok > w. It follows that [Du]cs(gx,r)) < Calllglls + lull14p2),
where B(Xg, r) is the ball of centerxg and radiusr > 0. SinceC, is independent of
Xo, We obtain

[Dulg = Ca(ligllp + llullz+p2),



SINGULAR SDES DRIVEN BY STABLE PROCESSES 435

for any » > w. Using again (3.15) and the maximum principle, we get theiaripr
estimate (3.20) forx = 1. The proof is complete. [

REMARK 3.5. In contrast with Theorem 3.3, in Theorem 3.4 we can notvsh
existence ofC§+ﬁ—squtions to (3.16) whem < 1. The difficulty is evident from the

a priori estimate (3.19). Indeed, starting from
[Dule+p-1 = Cliglls + Cllbllg [ Dullo + Cllbllo[Du],

we cannot continue, since < 1 gives Du € C) with 6 =« + B —1 < 8. Roughly
speaking, wherr < 1, the perturbation ternb - Du is of order larger thanC and so
we are not able to prove the desired a priori estimates.

4. The main result

We briefly recall basic facts about Poisson random measuhéshwve use in the
sequel (see also [1], [14], [19], [26]). The Poisson randoerasureN associated with
the a-stable process = (L) in (1.1) is defined by

N(O,t] xU) = Y 1y(AL) =#0<s<t: ALse U},

O<s<t

for any Borel setU in R\ {0}, i.e., U € B(RY\ {0}), t > 0. HereALs = Ls— Ls_
denotes the jump size df at times > 0. The compensated Poisson random measure
N is defined byN((0,t] x U) = N((0, t] x U) — tv(U), wherev is given in (2.2) and

0 ¢ U. Recall the Lévy—Itd decomposition of the procdsgsee [1, Theorem 2.4.16]

or [14, Theorem 2.7]). This says that

t t
(4.1) Lt:f)t—ir// xN(dsdx)Jr// xN(ds, dx), t=>0,
0 J{[x|=1} 0 J{[x|>1}

whereb = E[Ll—folf{‘xbl} xN(ds, dx)]. Note that in our case, sinaeis symmetric,
we haveb = 0.

The stochastic integrf;yfot f{\x|51} xN(ds,dx) is the compensated sum of small jumps
and is anL?-martingale. The procesﬁf f{\x|>ll xN(ds, dx) = f(o,t] fux|>1] xN(ds, dx) =
2 0-s<t, |aL,-1 ALs is @ compound Poisson process.

Let T > 0. The predictables-field P on Q2 x [0, T] is generated by all left-
continuous adapted processes (defined on the same stodhasi fixed in Section 2).
Let U € B(RY\ {0}). In the sequel, we will always consider7ax B(U)-measurable
mappingF: [0, T] x U x Q — RY,

If 0 ¢ U, then fOT Ju F(s, X)N(ds, dx) = Y"1 F(s, ALs)ly(ALs) is a random
finite sum.
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If E fOT ds [, IF(s, X)[?v(dx) < oo, then one can define the stochastic integral

t ~
zt=/0/UF(s, xN(ds dx), te[0,T]

(here we do not assumeg¢0U). The proces¥ = (Z;) is anL?-martingale with a cadlag
modification. MoreoverE|Z|? = E [, ds [, |F(s, X)[?v(dx) (see [14, Lemma 2.4]). We
will use the following LP-estimates (see [14, Theorem 2.11] or the proof of Propos-
ition 6.6.2 in [1]); for anyp > 2, there existg(p) > 0 such that

E[Oil;|5pt|zs|p} < c(p)E[(/ot ds/U|F(s, x)|2v(dx)) p/z}

+ c(p)E|:/ot ds/U|F(s, x)|pv(dx)}, te[0, T]

(4.2)

(the inequality is obvious if the right-hand side is infinite

Let us recall the concept oktfong solutionwhich we consider. A solution to the
SDE (1.1) is a cadlagr-adapted procesX* = (X{) (defined on Q, F, (Fi)=o0, P)
fixed in Section 2) which solves (1.1)-a.s., fort > 0.

It is easy to show the existence of a solution to (1.1) usirg férct thatb is
bounded and continuous. We may arguewafixed. Let us first considet € [0, 1].
By introducingv(t) = X; — L, we get the equation

t
v(t) = x +/ b(v(s) + Ls) ds.
0

Approximating b with smooth driftsb, we find solutionsv, € C([0, 1]; RY). By the
Ascoli—Arzela theorem, we obtain a solution to (1.1) on [P, The same argument
works also on the time interval [1, 2] with a random initialnciition. Iterating this
procedure we can construct a solution for taft 0.

The proof of Theorem 1.1 requires some lemmas. We begin wittetarminis-
tic result.

Lemma 4.1. Lety €[0,1] and fe C.™”(RY). Then for any uv € RY, x € RY,
with |x| < 1, we have

1FU+x)— FU)— f+X)+ FO) < flluey lu—v|x]Y, with ¢, =37,
Proof. For anyx € RY, |x| < 1, define the linear operatdi: CL(RY) — CL(RY),

T f(u)=fu+x)—f), feClRY), ueRrd
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Since || Tx fllo < [Df[lolx| and | D(Tx f)]lo < 2||Df|Jo, it follows that T, is continuous
and | T flla < 2+ [x)| flls, f e CLRY). Similarly, Ty is continuous fromC2(RY)
into C}(RY) and

ITeflla < IXIfll2 e CORY).
By interpolation theory CL(RY), C2(RY)), .. = Ca'” (RY), see for instance [16, Chap-
ter 1]; we deduce that, for any € [0,1], Ty is continuous fromC*” (RY) into CL(RY)
(cf. [16, Theorem 1.1.6]) with operator norm less than oraéda (2+ |x|)*7|x|”.

Since |x| < 1, we obtain that| T, f|1 < c, |[X]["[| f |14y, T € Cé+y(Rd). Now the
assertion follows noting that, for any, v € RY,

[fU+x)—fU) = f+x)+ f@)|=|TcfU) =T f@)| <||DTxfloJu—1v].
The proof is complete. []
In the sequel we will consider the following resolvent edgpraton R
(4.3) AU—Lu—Du-b=h,
whereb: RY — RY is given in (1.1),£ in (2.5) andi > 0 (the equation must be un-
derstood componentwise, i.e.y; — Lu; —b-Du; = bj, i =1,...,d). The next two

results hold for SDEs of type (1.1) whénis only continuous and bounded.

Lemma 4.2. Leta € (0, 2) and be Cp(RY, RY) in (1.1). Assume thatfor some
A > 0, there exists a solution & C*” (RY, RY) to (4.3) with y € [0, 1], and moreover

1+y>ec.
Let X = (X;) be a solution of(1.1) starting at xe RY. We have P-a.s, t > 0,

u(X) — u(x)

4.4 ~
(4.4) =X—Xt+Li+4A [Ot u(Xs) ds+ [Ot/Rd\{o}[u(Xs_ + X) — u(Xs=)]N(ds, dx).

Proof. First note that the stochastic integral in (4.4) isamegful thanks to the
estimate

t
E/ ds/ Ju(Xs— + X) — u(Xs_)|?v(dX)
(4.5) 0 RS
s4t||u||g/ u(dx)+t||u||§/ IX|?v(dx) < 0.
{1X|>1} {Ix|=1)
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The assertion is obtained applying It6’'s formula u¢X;) (for more details on Itd’s
formula see [1, Theorem 4.4.7] and [14, Section 2.3]).

Let us fixi =1,...,d and setu; = f. A difficulty is that 1td's formula is usu-
ally stated assuming that € C?(RY). However, in the present situation in whith
is a-stable, using (3.1), one can show that It6’s formula holals f(X;) when f €
Cé”(Rd). We give a proof of this fact.

We assume thay > 0 (the proof withy = 0 is similar). By convolution with
mollifiers, as in (3.13) we obtain a sequenchk)(C Cg°(Rd) such thatf, — f in
C¥7'(K), for any compact seK C RY and 0< y’ < y. Moreover,|| fnll11y < || f[l14y,
n> 1. Let us fixt > 0. By Itd's formula for f,(X;) we find, P-a.s.,

fn(Xt) — fn(x)

- / t / [fa(Xs_ +X) — fa(Xs)IN(ds, dX)
0 JRY\{0}
(4.6) t
+/0 ds[Rd[fn(xs_ + %) = fa(Xsl) — L <y X - DEa(Xe)]1(dX)
t
-I-/ b(Xs) - Dfp(Xs)ds.
0

It is not difficult to pass to the limit a;g — oco; we show two arguments which are
needed. To deal with the integral involving one can apply the dominated conver-
gence theorem, thanks to the following estimate similar3@)(

| fa(Xs— + X) = fn(Xs2) — X - Dfp(Xs2)| < [DF], |X|1+y, x| =1

(recall thatf”)(‘Sl
stochastic integral with respect td, one uses the isometry formula

]|x|1+?’v(dx) < oo since 1+ y > «). To pass to the limit in the

2
E

t
// [ fa(Xse 4+ X) — fn(Xs2) — f(Xse + X) + f(Xs_)]N(ds, dx)
0 JRI\(0)
t
(47) = / dS/ E| fn(XSf + X) - f(XS, + X) - fn(Xsf) + f(xs,)|21)(dx)
0 {Ix|=1}
t
+/ ds/ E|fa(Xs. +X) — F(Xs + X) — fa(Xs) + F(Xs)[Pv(dX).
0 {Ix|>1}
Arguing as in (4.5), sincg full1+, =< || f |14y, N = 1, we can apply the dominated con-
vergence theorem in (4.7). Letting— oo in (4.7) we obtain 0. Finally, we pass to

the limit in probability in (4.6) and obtain Itd’s formula veh f € Cé“’(]Rd).
Noting that, for anyi = 1,...,d,

£u) = [ 100+ - u) - Leux: DuWvEo, yeRr?,
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and using thau solves (4.3), i.e.Lu + b- Du = Au — b, we can replace in the It6
formula for u(X;) the term

t t
/Eu(Xs)ds+/ Du(Xs)b(Xs) ds
0 0
d
= ; (/Ot Lui(Xs) ds + /Ot Du;i(Xs) - b(XS)ds)a

with — [5 b(Xs)ds+A fy u(Xs)ds= x— X¢ +L¢ + 4 f3 u(Xs)ds and obtain the assertion.
O

The proof of Theorem 1.1 will be a consequence of the follguiasult.

Theorem 4.3. Leta € (0, 2) and be Co(RY, RY) in (1.1). Assume thatfor some

A > 0, there exists a solution & u, € C;*”(RY, RY) to the equation(4.3) with y €
[0, 1], such that ¢ = ||Du,|lo < 1/3. Moreovey assume that

2y > «a.

Then the SDH1.1), for every xe RY, has a unique solutiofX}).
Moreover assertions(i), (i) and (iii) of Theorem 1.1hold.

Proof. Note that 2 > « implies the condition + y > « of Lemma 4.2.

We provide a direct proof of pathwise uniqueness and assefili. This uses Lem-
mas 4.2 and 4.1 together withP-estimates for stochastic integrals (see (4.2)). State-
ments (ii) and (iii) will be obtained by transforming (1.%) a form suitable for apply-
ing the results in [14, Chapter 3].

Let us fixt > 0, p > 2 and consider two solutionX andY of (1.1) starting at
x and y € RY respectively. Note thak; is not in LP if p > « (compare with [14,
Theorem 3.2]) but the differenc¥; — Y; is a bounded process. Pathwise uniqueness
and (1.4) (for anyp > 1) follow if we prove

(4.8) E|:sup|XS—Ys|p] <C@H)|x—y|?, x,yeRY

O<s<t

with a positive constanC(t) independent ofk and y. Indeed in the special case of
X =y estimate (4.8) gives uniqueness of solutions.
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We have from Lemma 4.2P-a.s.,
Xi = Yo =[x = y] + [u(x) = u(y)] + [u(¥) —u(Xp)]
(4.9) + /0 t /R d\{o}[u(xs, +X) — u(Xs) — u(Ys_ + x) + u(Ys )IN(ds, dx)
t
+ A/O [u(Xs) —u(Ys)] ds.

Since ||Dufp < 1/3, we have|u(X;) —u(Yy)] =< (1/3)|X; — Y;|. It follows the estimate
IXt = Yi| = (3/2)A1(t) + (3/2)Ax(t) + (3/2)As(t) + (3/2)As, Where

Aq(t) =

t
/ / [u(Xs + X) — u(Xs) — u(Ys_ + X) + u(Ys )]N(ds, dx)
0 J{x|>1}

t
Aslt) = 2 [0 u(Xs) — u(Ys)| ds,

As(t) =

/t/ [Uu(Xs— 4+ X) — u(Xs_) — u(Ys_ + X) + u(Ys_)]N(ds, dx)
0 J{ix|=1}

4
Ag=[x=y|+ [ux) —u(y)| = §|X -yl

Note that, P-a.s.,

3
sup|Xs — Ys|P < Cplx —y|P + Cp Z sup Ax(s)P.

0<s<t ko Ossst

The main difficulty is to estimate\s(t). Let us first consider the other terms. By the
Holder inequality

t
sup Ay(s)P < cl(p)t’H/ sup|Xs — Ys|P dr.
0

0<s=t O<s=r

By (4.2) with U = {x € RY: |x| > 1} we find

E[ sup Al(s)p]
O<s<t
t p/2
— _ 2
< c(p)E|:(/O ds/{X|>l}|u(Xs_ + X) —u(Ys— + X) + u(Ys_) — u(Xs)| v(dx)) i|

+c(p)E /t ds/ JU(Xs— + X) — U(Ys_ 4+ X) + u(Ys_) — U(Xs_)|Pv(dX).
0 {Ix]>1}

Using [u(Xs_ + X) —u(Ys_ + X) + u(Ys_) —u(Xs_ )| < (2/3)|Xs_ — Ys_| and the Holder
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inequality, we get

E[swunww]scumu+¢wzﬁ

O=<s<t
p/2 t
</ v(dx)+(/ v(dx)) )/ E|: sup|XS—Ys|p]dr.
{Ix]>1} {Ix|>1} 0 O<s=r

Let us treatAs(t). This requires the conditiony2> «. By using (4.2) withU = {x €
RY: |x] <1, x # 0} and also Lemma 4.1, we get

t p/2
E[ sup A3(S)p] < c(p)||u||f+yE|:(/ ds/ [Xs — Ys|2|x|2Vv(dX)) }
O=<s<t 0 {Ix|=1}
t
ol E [ ds [ X YlPIPu(@x).
0 {Ix|=1}
We obtain

E [ sup A3(S)pi|

O=s=t

< Co(p)(L+ tPZ Hullf,,

p/2 t
. <(/ |x|27v(dx)) +/ |x|va(dx)> / E[ sup | Xs — Ys|p} dr,
{Ix|=1} {Ix|=1} 0 O<s=r

where f{‘xlfl}|x|va(dx) < 400, sincep > 2 and & > «. Collecting the previous
estimates, we arrive at

t
E[ sup|X5—Ys|p} < Cp|x—y|p+C4(p)(l+tp*1)/ E[ sup|xs—YS|p} dr.
0

O=<s=t O<s=r

Applying the Gronwall lemma we obtain (4.8) wit@(t) = Cp expCa(p)(L + tP~1)).
The assertion is proved.

Now we establish the homeomorphism propéiidy(cf. [14, Chapter 3], [1, Chap-
ter 6] and [19, Section V.10]).

First note that, sincéDul|o < 1/3, the classical Hadamard theorem (see [19, p. 330])
implies that the mapping: RY — RY, ¥ (x) = x4u(x), x € RY, is aC*-diffeomorphism
from RY ontoRY. Moreover,Dvy ! is bounded oR? and||Dy o < 1/(1—¢;) < 3/2
thanks to

(4.10) Dy (y) =1 + Du(y ') * = Y (-Du@ '), yeR".

k=0
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Letr € (0, 1) and introduce the SDE

Y, = y+/t b(Ys) ds
(4.11) 0

t t
// g(YS_,z)N(ds,dz)—|—// 9(Ys_, 2N(ds, d2), t >0,
0 J{lz|=r} 0 J{lz|>r}

whereb(y) = AU(¥(Y)) = {1, U HY) +2) —u(¥ 1 ()]v(d2) and

aly,2) =u Xy)+2)+z—u@Xy)), yeRY zeRY

Note that (4.11) is a SDE of the type considered in [14, Sac8cb]. Due to the
Lipschitz condition, there exists a unique soluth= () to (4.11). Moreover, using
(4.4) and the formula

t t
L :// xN(ds, dx)+// xN(ds, dx), t>0
0 J{|x|=r} 0 J{[x|>r}

(due to the fact that is symmetric) it is not difficult to show that
(4.12) y(X) =YY, xerd t>o.

Thanks to (4.12) to prove our assertion, it is enough to sh@ahibmeomorphism prop-
erty for Y. To this purpose, we will apply [14, Theorem 3.10] to equat{d.11). Let
us check its assumptions.

Clearly,b is Lipschitz continuous and bounded. Let us consider [14ditmn (3.22)].
Foranyy e RY, ze RY, |g(y, 2)| < |z|(1 + ||Dullo) < K(2), with K(2) = (4/3)|z| (recall
thatflzl51|z|2v(dz) < o0); further by Lemma 4.1 and (4.10) we have, for any’ € RY,
ze RYwith |z| <1,

l9(y. 2 -9y, 2l = L@y - Y| where L(2) = Cyllullr+, 2",

with fmsl L(2)%v(d2) < oo, since & > «. Note that we may fix > 0 small enough
in (4.11) in order thatK(r) + L(r) < 1 (according to [14, Section 3.5], this con-
dition is needed to study the homeomorphism property foragon (4.11) without
f(f f{|2\>r} o(Ys—, ZN(ds, d2); see also [14, Remark 1, Section 3.4]).

By [14, Theorem 3.10] in order to get the homeomorphism pitygpé remains to
check that, for any € RY, the mapping:

(4.13) y— y+9g(y,2) is a homeomorphism frorR® onto RC.

Let us fix z. To verify the assertion, we will again apply the Hadamardotem.
We have

Dyg(y, 2) = [Du(¥ () + 2) — Du(y ~H(y)I Dy (Y]
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and so by (4.10) (sincgDullo < 1/3) we get||Dyg(-,2)|lo < 2¢:/(1—¢;) < 1. We have
obtained (4.13). By [14, Theorem 3.10] the homeomorphisoperty forY; follows
and this gives the assertion.

Now we show thatfor any t > 0, the mapping x > XX is of class G on R¢,
P-a.s. (see (iii)).

We fix t > 0 and a unitary vectog, of the canonical basis iR%. We will show
that there existsP-a.s., the partial derivative ligno(X; "% — XX)/s = De XX and,
moreover, that the mapping — De XX is continuous orRY, P-a.s.

Let us consider the proced® = (YY) which solves the SDE (4.11). If we prove
that the mappingy — Y/ is of classC! on RY, P-a.s., then we have proved the as-

sertion. IndeedP-a.s.,
De XX = [DY HY/NIDY¥1De v (x), x R

We rewrite (4.11) as
t t B

(4.14) Yi =Y+ A/ u(yY)) dr + // h(Y;—, Z)N(dr, d2) + L4,
0 0 JRY\{0}

t >0, yeRY where

h(y,2) = u(y (y) + 2 —u(y '(¥) = 9(y. ) — 2,

and note that the statement of [14, Theorem 3.4] about tHeréiftiability property
holds for SDEs of the form (4.14), provided that the coeffitse.uoyy— andh satisfy
[14, conditions (3.1), (3.2), (3.8) and (3.9)]. Indeed thesgnce ofL; in the equation
does not give rise to any difficulty. To check this fact, reknénat, for anyt > 0,
y e RY, s # 0, we have the equality

y+sa& _ Y t 1 YESEyy ~1yY
Wy, =a<+(A/ Uy O —uw )

S 0 S
t h(YW 5% 2) = h(Y, 2) -
+// ( r lz) ( r 'Z)N(dr,dZ)),
0 JRY\(0} S

whereL; is disappeared. Thus we can apply the same argument whidedsta prove
[14, Theorem 3.4] (see also the proof of [14, Theorem 3.33), we can provide esti-
mates for

p:|

p
E[ sup } and E[ sup
0<t<T 0<t<T

p>28¢8#0,v,Y €RY by using (4.2) and the Gronwall lemma (remark that in
[14] the terms~1(YY"*% —Y) is denoted byNi(y,s)), and then apply the Kolmogorov
criterion in order to prove thay — Y/ is of classC! on RY, P-a.s.

Yy vy YYESE _yy yYHse vy

S s

S
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Let us check thatuoy~1 andh satisfy the assumptions of [14, Theorem 3.4] (i.e.,
respectively, [14, conditions (3.1), (3.2), (3.8) and JB.9Conditions (3.1) and (3.2)
are easy to check. Indeedi(y~%(-)) is Lipschitz continuous oRY and, moreover,
thanks to Lemma 4.1 and to the boundenes®gf 1,

Iy, 2) = h(y, 2)| = Cllulls, (Lz=n12” + Ljz-u)ly =¥l z€RS,

y, Y € RY, with Joa@z<y 12" + Lz-1))Pv(d2) < oo, for any p > 2. In addition,
Ih(y, 2)| < Lo(2), z€ RY, y € RY, where, sincd|Duljo < 1/3,

1 .
Lo(@) = 3La=u |zl + 2l|uflol(z-y  with [d Lo(z)Pv(d2) <00, p=2.
R

Assumptions [14, (3.8) and (3.9)] are more difficult to chedkey require that there
exists some’ > 0 such that (setting(x) = Au(y~1(x)))

(1) supDI(y)| <oo; [DI(y)—DI(y)l <Cly—y/l, y,y eR"
(4.15) yeR«

(2) IDyh(y, 2)I = Ki(2);  [Dyh(y, 2) = Dyh(y', 2)| = Ko(2)ly = Y/,
for anyy, y' € RY, ze RY, with [5, Ki(2)Pv(d2) < oo, for any p> 2, i =1, 2. Such
estimates are used in [14] in combination with the Kolmogocontinuity theorem to
show the differentiability property.
Let us check (1) withs = y, i.e., DI € C}(RY RY). Since, for anyy € RY,
DI(y) = ADu(y~1(y))Dv1(y), we find thatDI is bounded orR®. Moreover, thanks
to the following estimate (cf. (3.18))

[DI], < AIDullo[Dy ], + A[Du], Dy 5*,

in order to prove the assertion it is enough to show tiay '], < oc. Recall that for
dxd real matricesA and B, we have (+A)™*—(I +B)™t = (I + A)}(B—A)(1 +B)™*
(if (I + A) and ( + B) are invertible). We obtain, using also thBt, ! is bounded,

Dy H(y) — Dy H(Y)| = |[1 + Du(y (yN] ' = [ + Du(y *(yN |
<c[Dul,ly—y/|", v,y eR®

and the proof of (1) is complete with = §. Let us consider (2). Clearly,
Dyh(y, 2) = [Du(y(y) + 2) — Du(¥~(y))I Dy (y)
verifies the first part of (2) wittK1(z) = c,||Dul|, (1z<y|2]” + Ljz=1)-

Let us deal with the second part of (2). We chogse= (0, y) such that 2’ > «
and first show that, for anyf € C}(RY, RY), we have

(4.16) N fl,_, <C[fl,|x|", xeRY
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where (as in Lemma 4.1) for any € RY, we define the mappingy f : RY — RY as
T f(u) = f(x +u) — f(u), ueRY Using also (3.14), we get

[Tx fly—p = N[Tx f]g,yiy/)/y[TX f]éi(yiy/)/y < CN[f]V|X|V(1*(V*V')/V) < CN|X|y’[f]y,

for any x € RY. By (4.16) we will prove (2) with§ =y —y’ > 0.
First consider the case whep < 1. By (4.16) withDu = f, we get

IDyh(y, 2) — Dyh(y', 2)|
= [Du(y(y) +2) — Du(y()) = Du(y (y") + 2) + Du(@ (Y DIID¥ o
= CGi[Dul,ly -y 12",

for anyy, y € RY. Let now |z| > 1; we find, fory, y € RY with |y —y/| < 1,
IDyh(y, 2) — Dyh(y', 2)| = Co[Du], |y — Y| < Co[Dul, |y — |7

On the other hand, ify—y'| > 1, |z| > 1, [Dyh(y,z)— Dyh(Y',2)| < 4| Dulloly—y'|”~"".
In conclusion, the second part of (2) is verified with=y —y’ and

K2(2) = Cs||Dull, (L=< 12" + Ljz-1)-

(note that [, K2(2)Pv(d2) < oo, for any p > 2, since 2’ > «). SinceC}(R¢, RY) C
Cl 77 (RY, RY), we deduce that both (1) and (2) hold with= y —y’.

Arguing as in [14, Theorem 3.4], we get that> Y/ is C!, P-a.s., and this proves
our assertion. We finally note that [14, Theorem 3.4] alsoigdes a formula forH? =
DY/, i.e.,

t
HY =1+ [ DU ) DY HY)HY ds
0
t
+// (Dyh(YY ,zHY)N(ds d2, t>0, yeR"
0 JR\{0}

The stochastic integral is meaningful, thanks to (2) in %%.&and to the estimate
SURy<s<t E[|Hs|P] < o0, for anyt > 0, p > 2 (see [14, assertion (3.10)]). The proof
is complete. []

Proof of Theorem 1.1. We may assume thatol/2 < 8 < 2—a. We will deduce
the assertion from Theorem 4.3.

Sincea > 1, we can apply Theorem 3.4 and find a solutione C,*” (RY, RY)
to the resolvent equation (4.3) with = o« — 1+ B € (0, 1). By the last assertion of
Theorem 3.4, we may choosesufficiently large in order thafDu|o = ||Du; |0 < 1/3.
The crucial assumption aboyt and « in Theorem 4.3 is satisfied. Indeeqt 2= 2o —
2+ 2B > a since > 1—«a/2. By Theorem 4.3 we obtain the result. O
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REMARK 4.4. Thanks to Theorem 1.1 we may define a stochastic flow iassoc
ated to (1.1). To this purpose, note that by (i) we ha® = &(x), t > 0, x € RY,
P-a.s., wheré% is a homeomorphism fronR® onto RY. Let £7* be the inverse map.
As in [14, Section 3.4], we sels(xX) = & o £51(x), 0<s <t, x € R4

The family €s:) is a stochastic flow since verifies the following properiifsa.s.):

(i) for any x € RY, (£5¢(x)) is a cadlag process with respectttand a cadlag process
with respects;

(i) &¢: RY — RY is an onto homeomorphisns, < t;

(iii) &st(x) is the unigue solution to (1.1) starting fromat times;

(iv) we havegsi(X) = &u(Esu(X)), for all 0<s<u <t, x e RY, and&ss(x) = x.
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