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1. Introduction

Let M be ann -dimensional Riemannian manifold isometricatlymiersed in a
Kahlerian manifold #, g, J) endowed with Kahler metricg and almost complex
structureJ . For each vecto¥ tangentd , we put

(1.1) JX =PX +FX,

where PX andFX are the tangential and normal componentsXof . Fhem an i
endomorphism of the tangent bundie . For any nonzero veXtoangent toM at
a point p , the anglé)(X), 0 < 0(X) < 7/2, between/X and the tangent spaGeV
is called theWirtinger angleof X. The submanifold is calledlant if its Wirtinger
angle # is constant, i.e.fg(X) is independent of the choice of thé in the tangent
bundle TM . The Wirtinger anglé@ of a slant immersion is called th&lant angle A
slant submanifold with slant angk is simply calledf-slant. Slant submanifolds of a
Kahlerian manifold are characterized by the condit®h= c/ for some real number
¢ € [-1, 0]. Complex and totally real immersions are slant immarsiwith slant an-
gle 0 and7/2, respectively (cf. [4, 10]). A slant immersion is callpdoper slantif
it is neither complex nor totally real. A proper slant subiifEld is called K&hlerian
slantif its canonical endomorphisn® is parallel.

From J -action point of views, slant submanifolds are the $@sipand the most
natural submanifolds of a &hlerian manifold. Slant submanifolds arise naturally and
play some important roles in the studies of submanifolds ahl&rian manifolds. For
example, K. Kenmotsu and D. Zhou proved in [9] that every amefin a complex
space formM?2(4c) is proper slant if it has constant curvature and nonzemalfel
mean curvature vector.

When M is an oriented surface in aaKlerian manifold}, one also has the no-
tion of Kahler angle« defined bya = cos*((J X, Y)) € [0, 7], where {X,Y} is a
local positive orthonormal frame field oM . TheaKler anglea and the Wirtinger
angled of an oriented surfacd/ are related Bfp) = min{a(p), 7 — a(a)}. In this
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sense, an oriented surface in @Merian manifold is slant if and only if it has con-
stant Kahler angle.

Let x : M — M™ be an isometric immersion from a Riemannian manifold into a
Kahlerianm -manifold. We denote by amtl the second fundamdotal and the
shape operator of the immersion. And Byand V the Levi-Civita connections oM
and M™, respectively.

The Gauss and Weingarten formulasMf & are given respectively by

1.2) VxY = VxY +h(X,Y),
(1.3) Vx€ = —AeX + Dy,

where X, Y are tangent t&/ andis normal toM . The second fundamental fofm
and the shape operatar  are related(By X, Y) = (h(X, Y),£). The mean curvature
vector H of the immersion is defined bsf =/ tracek , where{e,...,e,} is a
local orthonormal frame field of the tangent bundié/

A nonminimal submanifoldy of a Riemannian manifold is caltetally umbili-
cal (or simply umbilical) if A(X,Y) = g(X,Y)H for X,Y tangent toM . Clearly, um-
bilical submanifoldsM are the simplest submanifolds whioh jpseudo-umbilical, i.e.,
the shape operator df &  satisfies the condition:

for any X € TM, wherep = g(H, H). It is well-known that a umbilical submanifold
of a Euclidean space is nothing but an open portion of an ardisphere. Umbili-
cal submanifolds (if they exist) are the simplest submad#faext to totally geodesic
ones in Riemannian manifolds from extrinsic point of viewawever, since the shape
operator of every proper slant surface and also eveikilétian slant submanifold of a
Kahlerian manifold must satisfy another condition:

(1.5) ApxY =ApyX,

for any X, Y tangent toM , there do not exist umbilicahllerian slant submanifold
in a Kahleriann -manifold. For these reasons, it is natural to st simplest slant
submanifolds which satisfy conditions (1.4) and (1.5). Va# such submanifoldslant
umbilical submanifoldsor simply slumbilical submanifoldsin some sense, slumbil-
ical submanifolds play the role of umbilical submanifolds Euclidean space in the
family of slant submanifolds. In terms of second fundamiefdaem, an n -dimensional
submanifold in a Khlerian manifold is a slumbilical submanifold with slamgée
0 € (0, /2] if its second fundamental form satisfies

h(ey, e1) = h(ez, e2) = -+ - = hlen, en) = A1,

1.
(1.6) h(ei, e;) = Xej-, hlej,ex) =0, j7zk, jk=2...,n
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for some function\ with respect to some orthonormal frame field ..., e,, where
e~ =CSCOFeq, ..., e, =CSCHFe,.

The purpose of this article is to obtain the complete clasdifin of slumbilical
submanifolds in complex space forms. Our classificatioré® (Theorem 4.1) states
that there exist twelve families of slumbilical submanifelin complex space forms
with slant angled € (0, /2]. Conversely, every slumbilical submanifold in a complex
space form is given by one of these twelve families.

2. Basic formulas and lemmas

Let M™(4c) denote a Khlerianm -manifold with constant holomorphic sectional
curvature 4 . Such #hlerian manifolds are calledomplex space formdt is known
that the universal covering of a complete complex space fbfft{(4c) is the complex
projectivem -spaceC P @ ), the complex Euclidean -sp@te or the complex hy-
perbolic spaceC H” (& ), according to> 0, ¢ =0, orc < 0.

Let x : M — M™(4c) be an isometric immersion of a Riemannian -manifold
into M™(4c). Denote byR andR the Riemann curvature tensors df  amfi(4c),
respectively. We denote by, ) the inner product forl¥ as well as faov”(4c). The
Riemann curvature tensor df™(4c) satisfies

2.1) R(X,Y;Z, W) = c{(X,W)(Y,Z)— (X, Z) (Y, W)+ (JX, W) (JY, Z)
' —(JX,Z)(JY, W)+ 2(X,JY)(JZ, W)}.
The well-knownequation of Gausss given by

R(X,Y;Z, W) = R(X,Y;Z, W)+ (h(X, Z), h(Y, W))

(2.2) — (h(X, W), h(Y, 2)),

for X, Y, Z, W tangent toM and,n normal toM . _
For the second fundamental forln , we define its covariantvaire Vi with
respect to the connection dhM & T+M by

(2.3) Vxh)(Y, Z) = Dx(h(Y, Z)) — h(VxY, Z) — h(Y, Vx Z).
The equation of Codazzs
(2.4) R(X,Y)Z)" = (Vxh)(Y, Z) — (Vyh)(X, Z),

where ®R(X, Y)Z)+ denotes the normal component B{X, Y)Z.

For an endomorphisn® on the tangent bundle of the submaniedddefine its
covariant derivativeV Q by (Vx Q)Y = Vx(QY)— Q(VxY). For any vectorX tangent
to M and each vectof normal toM , we put

(2.5) JX =PX +FX, J{=1&+ f§
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where PX andFX (respectivelyt and f¢) denote the tangential and normal com-
ponents of/ X (respectively/§). SupposeM ig-slant in M"(4c), then we have [1]

(2.6) P2=_(co$0)I, (PX,Y)+(X,PY)=0,
(27) (VXP)Y:th(X, Y)+AFyX,
(2.8) Dx(FY) — F(VxY) = fh(X,Y) — h(X, PY),

where I is the identity map.

For ann -dimensional slant submanifold 1™ (4c) with slant angled # 0,
F(T,M) is ann -dimensional subspace of the normal spE,éeM. Moreover, the di-
rect sumT,M @ F(T,M) is invariant under the action of the almost complex stret
J. Thus, for eachp € M, there exists a complex subspagg of T,,M’"(4c) such that
T,,M’"(4c) =T,M @© F(T,M) ® v, as an orthogonal decomposition.

When M is totally real inM"(4c), we shall choose an orthonormal local frame
€1, ..., €y, Clr, oy Cyx, €41, - - -, €2y ON M such thakey- = Jey, ..., e, = Je,, Where
e1,...,e, is a local orthonormal frame od . W/ is propérslant in M"(4c), then
n must be even; say =k2 (cf. [1]). In this case, we shall choos@rémnormal
local frameey, ..., e,, €1+, ..., e, €241, ..., €2, ON M such that

ey = (Se(ﬁ)Pel, Lo, e9 = (Se(ﬁ)PeZk_]_,

(2.9)
e1x = (cscl)Fey, ..., ex- = (csCh)Fey.

We call such orthonormal framesdapted(slan) frames.
By direct computation we also have

(2.10) tej« = —(sinfe;, i=1...,2m,
fe@j—1y=—(cost)eqjy,  fejy = (cosh)e;—1y,

(2.11)
Peyj = —(cosh)ezj—1, j=1,...,m.

For any vectorX tangent ta¢/ we put

(2.12) Vyer =Y wi(X)ej + > wl (X)ejm,
j=1 j=1
(2.13) Vyer =Y wh(X)e; + > wl (X)ejr, i,j=1....n.
j=1 j=1

Thenw! = —wi, wl, = —wi, wl. = —wi". Moreover, we also have

(2.14) Wi =3 hhwk k= (ke en),ep)
k=1



SLUMBILICAL SUBMANIFOLDS IN COMPLEX SPACE FORMS 27

wherew?, ..., w" is the dual frame ok, ..., e,.
We need the following lemmas.

Lemma 2.1. Let M be ann -dimensionalz = 2k) proper 6-slant submanifold of
a Kahlerian m -manifold. Thenwith respect to an adapted frajmeie have

2j— 1) 2j-1 2j) 2j—1)"
(2.15) uJ((z,-jfl))* —wy/ "~} = cotd (wgii)l - wéij ) )

2i—1)* i—1 _ 2j -1y 2y
(2.16) w((z;)* " w%’j t= COtQ(wgij_l ) +w§ij) )

27 ) 2i _ 27)* 2i—1)*
(2.17) w((Zij))* —wyl = Cow(wgii)l —w§i Y ).

foranyi,j=1,... k.

Proof. This lemma was proved by taking the derivatives of fiiiowing equa-
tions:

(Je@i-1), ej-1y) = (Je@) e@jy) =0,  (Je@iy, e@j—1)-) = COSHJ;
and applying (2.9-13). ]

Lemma 2.2. Let M be ann -dimensional propei-slant submanifold of a com-
plex space formiZ™(4c). Then the curvature tensak of M™(4c) satisfies

(2.18) RX,V)Z) ' =c{(JY,Z)FX — (JX,Z)FY +2(X, JY)FZ},

for X,Y,Z tangent to M, where (R(X, Y)Z))* denotes the normal component of
R(X,Y)Z.

Proof. Follows from the curvature formula (2.1). U

3. Hopf’s fibration and totally real submanifolds

We recall Hopf’s fibration and its relationship with totalfgal real submanifolds
in complex projective and complex hyperbolic spaces (ci])[1

Case (1). M™(4c)=CP™(4c), ¢ > 0.

Let

1

be the hypersphere of constant sectional curvature cehtgréhe origin.
Consider the Hopf fibration:

(3.1) 7§ Y e) — C P™(4c).
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Then 7 is a Riemannian submersion; meaning that restricted to the horizontal
space, is an isometry. Note that givenc $2"*1(c), the horizontal space at is the
orthogonal complement ok w.r.t. the metric induced $5t*(c) from the usual Her-
mitian Euclidean metric orC”*'. Moreover, given a horizontal vectof , theéX is
again horizontal (and tangent to the sphere) an@ X) = J(7.(X)), whereJ is the
complex structure orC P™ ¢ ).

Let v: M — CP™(4c) be a totally real isometric immersion. Then there ex-
ists an isometric covering map: M — M, and a horizontal isometric immersion
fi M — §2m*Y(¢) such thaty(r) = 7(f). Hence every totally real immersion can be
lifted locally (or globally if we assume the manifold is silpponnected) to a horizon-
tal immersion of the same Riemannian manifold. Converdetyf : M — $2"*Y(¢) be
a horizontal isometric immersion. Theh=7(f): M — CP™(4c) is again an isomet-
ric immersion, which is totally real. Under this correspende, the second fundamen-
tal forms h/ andh? of f andy satisfy w,h/ = h¥. Moreover,h/ is horizontal with
respect tor. (We shall denoté:/ and¥ simply by ).

Cast (2). M™(4c)=CH™(c), ¢ <O.

Consider the complex numberm( + 1)-spa€4*! endowed with the pseudo-
Euclidean metricgg given by

m+1
(3.2) 0= —dudz + Y dz;dz;
j=2
Put
2m+1 — — . — 1
(3.3) HP™() = {z =zt (D) = 5 < o},

where ( , ) denotes the inner product a@}*! induced fromgo. H?"*Y(c) is known
as an anti-de Sitter space-time.
We put

T/ = {z € C"":Re(u,z) =Re(u,iz) =0}, Hi={AeC:a\=1}.

Then we have arfil-action on H?"*}(c), z — Mz, and at each point € H2"*Y(c),

the vectoriz is tangent to the flow of the action. Since the mejiis Hermitian, we
have Rego(iz,iz) = 1/c. The orbit lies in the negative definite plane spannedby and
iz. The quotient spacé/?"*!/ ~, under the identification induced from the action, is
the complex hyperbolic spad@H™ (4 ) with constant holomoreictional curvature
4c, with the complex structurd  induced from the canonical glem structureJ on
C** via the following totally geodesic fibration:

(3.4) 7 H?"Y¢) — CH™(4c).
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Just as in Case (1), let: M — CH™(4c) be a totally real isometric immersion.
Then there exists an isometric covering map M — M, and a horizontal isometric
immersion f : M — HZ"*Y(c) such thaty(r) = n(f). Hence every totally real immer-
sion can be lifted locally (or globally if we assume the maffis simply connected)
to a horizonal immersion. Conversely, Igt M — H?"*Y(c) be a horizontal isometric
immersion. Themy = n(f): M — CH™(4c) is again an isometric immersion, which
is totally real. Similarly, under this correspondence, sieeond fundamental formis/
and h¥ of f and+ satisfy 7,.h/ = h¥. Moreover,h/ is horizontal with respect te.
(We shall also denoté/ ankt’ simply by #.)

4. Classification of slumbilical submanifolds

The main result of this article is the following classificatitheorem.

Theorem 4.1. Letz : M — M™(4c) be an isometric slant immersion from a
Riemanniann -manifold (n > 2) into a complete simply-connected complex space
form M™(4c) with slant angled € (0, 7/2]. Then the immersion is slumbilical if and
only if one of the following twelve cases occurs
(1) M is an open portion of the Euclideam -spad® and is immersedras a
open portion of a slank -plane iI€”" (c = 0).

(2) M is an open portion of the real projective -spadeP”(c) of constant curvature
¢>0and M is immersed as a totally geodesic totally real submédiiio the complex
projectiven -spaceC P™ (4c).

(3) M is an open portion of the real hyperbolic -spad&H"(c) of constant curva-
ture ¢ < 0 and M is immersed as a totally geodesic totally real submédhifio the
complex hyperbolia: -spac€ H™ (4c).

(4) n =2and M is an open portion of the Euclidediplane equipped with the flat
metric

4.1) g =e 2 Lax? + (ax +b)*dy?}

for some real numberga,b wita # 0. Moreover up to rigid motions ofC™, the
immersion is given by

+ Jp)1+ia *csco
z(x,y) = (ax+by ™ 77 b). e (cos( V1 +a2y
4.2) a+icsch
' a cosh asind +i
; i 2 i 2
+i 1+azsm(\/l+a y), Ti.2 S|n(v1+a y),O,...,O).

(5) n=2and M is an open portion of the Euclideghplane with the flat metric
(43) g :672.»‘ cotf {dx2 +b2dy2}

for some positive number . Moreover, up to rigid motionsCsf, the immersion is
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given by
(4.4) z(x, y) =b sindexp{ib~*x cscd — y cotd } (cosy, siny, 0...,0).

(6) & = w/2 and M is an open portion the warped product of a line and the unit
(n — 1)-spheres"~1(1) with the warped metric

5 (ax+ b)?

(4.5) g =ds’+ T

for some real numbers, b  with # 0, where g, is standard metric ors"~%(1). More-
over, up to rigid motions ofC™, the immersion is given by

: (ax + b)l+ia*1
(46) Z(X,)’L---’)’n)_ a+i

yEHYs+- o Hyi=1

(y1s---’Yn’0s-~-’O)’

(7) 6 =7/2 and M is an open portion the Riemannian prod&tx S"~1(1/b?) of a
line and the(n—1)-spheres"~* (b=2) of curvatureb—2. Moreover up to rigid motions
of C™, the immersion is given by

z(x, uz, ... uy) = bexp{ib=tx }(y1, ..., v, 0,...,0),

4.7
*-7) T SO )

(8) 0 =x/2, ¢ >0, and M is an open portion the warped product of a line and the
unit (n — 1)-spheres”—%(1) with the warped metric
_ 5, €08 (Var)
(48) 8 —dx +ng
for some positive numbér . Moreoyeip to rigid motions ofC P (4c), the immersion
z is the compositionr o ¢, where ¢ : M — §?"*1(¢) c C"*1 is given by

¢(X,)’1,---,yn)
ib i i c
(49 = ﬁ( +ﬁj'5”(ﬁx), (sec(v/ex) +tan(vex))™ Yy, ...,

(sec(y/cx) +tan(\/Ex))ib/‘/zyn, 0,..., 0) LoYEEY e HyE= 1,

and 7 : §2"*Y(c) — CP™(4c) is the projection of the Hopf fibration.
(9) 0 =7/2,¢c < 0, and M is an open portion the warped product of a line and
5"~%(1) with the warped metric

1
4.10 =dx’+ -
(4.10) 8T e exp{2,/—cx} 81
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for some positive numbér . Moreoyelp to rigid motions ofC H™(4c), the immersion
z is the compositionr o ¢, where ¢ : M — H2"*Y(c) ¢ CI'*! is given by

o(x, y1, ..., V) = % ib+\/__cf/xip_j—\/—_6x} ’

(4.11) exp{—v—cx} eXp{i (L) exp(\/—_cx)}yl, o

=

exp{—\/—_cx}exp{i (\/b__c> eXp(\/—_cx)}yn, 0,. O> ,

yi+yi++yi=1,
and 7 : H?"*Y(c) — CH™(4c) is the projection of the hyperbolic Hopf fibration.

(10)0 = 7/2, ¢ < 0, and M is an open portion the warped product of a line and
$"=1(1) with the warped metric

cost (=
(4.12) g =dx’+ 72( cx) g1
b +c

for some positive numbér . Moreoyeip to rigid motions ofC H" (4c), the immersion
z is the compositionr o ¢, where ¢ : M — H2"*Y(c) ¢ CI'*! is given by

A(X, Y1, .00 Y) = \/% (\/l—f_c — sinh(v/—cx),
(4.13) cosh(v/—cx) exp{Zi <\/L_7) tan ! (tanh(@)) } Vis ooy

cosh(v/—cx) exp{Zi (\/b__c> tan! (tanh( _Zcx>) } Y, O, ., O) ,

yi+yi+ ki =1

(11)0 =7/2, ¢ < 0, and M is an open portion the warped product of a line and the
Euclidean(n — 1)-space E"~1 with the warped metric

(4.14) g =dx*+cost (v=cx) go,

where go denotes the standard metric oB”~1. Moreover up to rigid motions of
C H™(4c), the immersion;  is the compositiono ¢, where¢ : M — HZ"*Y(c) c Cp*t
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is given by
(4.15)
Alx, y2, .y yn) = % exp{Zi tan ! <tanh(\/?x>)}
X (Ztanl <tanh<\/2_cx)> +sech (v/—cx) (i +sinh(v=cx)) — iciyjz- i,
j=2

2tarr <tanh<\/2_cx>> + sech (v/7ax) (i + sinh(v=ax)) —ie Y57 - i
=2
2\/—_Cy1,...,2\/—_6'}’n,0,...,0) .

(12)0 =7/2, ¢ < 0, and M is an open portion the warped product of a line and the
real hyperbolic(n — 1)-space H"~1(—1) with the warped metric

cosHf (v/—
(4.16) g =ax - OV e
b +c

whereb is a positive number satisfyilbd+c < 0 and g_; denotes the standard metric
on H"~%(—1) of constant curvature-1. Moreover up to rigid motions ofC H™(4c),
the immersion; is the compositiano ¢, where¢ : M — H?"*Y(c) c C*1 is given

by

A(x, Y1, Y2, -+, Yn)

= (n% exp{Zi (\/1%> tan* <tanh(\/?x>) } e

(4.17) yn% exp{Zi <\/L__C> tan* (tanh(ﬁx)) } )

ib sinh(/—cx

— ( ),O,...,O), yf—y%—---—y,%:l.
Ve +e) /=% +c)

Whenn = 2, the second factor in the product decompositionsipf mentione
above shall be replaced by a real line.

Proof. Suppose¥ is an -dimensional slumbilical submanifald/™(4c) with
m > 2. Then the second fundamental form ®@f  takes the followingnfo

h(ey, e1) = h(ez, e2) = --- = hle,, en) = N1,

(4.18)
h(e1, e;) = Xej~, hlej,ex)=0, j7zk, Jjk=2....n

for some function\ with respect to some orthonormal frame fiald ..., e,, where
e1= = CSCOFeq, ...,e, =CSCHFe,.
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Using (2.14) and (4.18), we have

w% =l w

oowl, Wl =l 2<j<n,

w w
(4.19) J
0, 2<j#k<n.

S
1]

Case (o). A=0.

In this case,M is a totally geodesic slant submanifold withnslangled <
(0,7/2]. Whenc¢ = 0,M is thus an open portion of a Euclidean -space ®nds i
immersed as an open portion of a slant -planeCih. Whenc¢ # 0, M is a totally
geodesic totally real submanifold [4]. Moreover, according4], M is either an open
portion of RP" (¢) or RH" ¢ ), according t@ > 0 or ¢ < 0, respectively. Hence, when
A =0 we obtain statements (1), (2) and (3) of Theorem 4.1.

Case (8). X #0 andéd € (0, 7/2).

In this case, Lemma 2.1 and (4.19) implies

(4.20) w? = w? — 2)\cothuw?,
(4.21) wh 1 = w4 — Acothw, k> 2,
4.22) wh. = wi +Acotbw* L k> 2
( 2k 2k
(4.23) w2 = w? = Acothw!, j >3,

J J
(424) wlj: = w[jv .]’l Z 3’

From the equation of Codazzi with &,Y = Z = e, and using (4.18-24) and
Lemma 2.2, we get

(4.25) €2\ = 3\w(e1) — 22 cotd + 3¢ sinf cosh.
Case (8-a). n>3.
From the equation of Codazzi witk &5, {Y, Z} = {ez, e;} for j > 3, and using
(4.18), (4.19) and Lemmas 2.1 and 2.2, we find
(4.26) ea\ = Mw2(eq) + 2¢ sind cosh.
Combining (4.25) and (4.26) we get
(4.27) 2w?(e1) = 2\ coth — ¢ sinf cosh.

From the equation of Codazzi witk 2Z &,Y =ey;_1 for j > 1, and using
(4.18-24) and Lemma 2.2, we find

(4.28) w2 (e2;_1) = — A cotd.
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Similarly, from the equation of Codazzi with &;_1,Y =e1, Z =ep; for j > 1,
and using (4.18-24) and Lemma 2.2, we find

(4.29) A2 (e2;-1) = ¢ sind cosh + A2 cotd

by comparing the coefficients @f-. Combining (4.28) and (4.29) yields
(4.30) ¢ simd cosd + 2)\% cotd = 0.

Substituting (4.30) into (4.27) yields

(4.31) w3(ey) = 2\ coth.

On the other hand, from the equation of Codazzi wikh eY = Z = ¢; for
Jj >3, and applying (4.18-24) and Lemma 2.2, we find

(4.32) e\ =0,
Combining (4.26) and (4.32) yields
(4.33) Aw?(e1) = —2¢ sind cosh.
Equations (4.31) and (4.33) imply
(4.34) ¢ sing cosh + A2 cotf = 0.
From (4.30) and (4.34) we obtaik = 0 which is a contradiction. Therefore, this case
cannot occur.
Case (8-b). n =2.
In this case, (4.18) reduces to

(4.35) h 1, e1) = hiez, e2) = Aeyx, h(er, e2) = Aex-.

From (4.35) and the equation of Codazzi we have

(4.36) e1\ = Aws(e2),
(4.37) ex)\ = A2 cotd + 3¢ sind cosb,
(4.38) w3(e1) = Acot,

Moreover, from (4.35-38) and the equation of Gauss, we find

(4.39) ere1(In\) — (e1In \)? — ¢ = A2 cot? 0 — coth ex\ + 3¢ cog 0.
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Therefore, by applying (4.37), we get
(4.40) erer(IN ) — (e1In\)? = c.

Let ;. be a function onM . Then, (4.36) and (4.38) imply thaeq, \~teo] = 0 if
and only if u satisfies

(4.41) eo(In ) = — coté.

Thus, there exists a coordinate chést, y} such thatue; = 9/0x and A\~e; = 9/0y
if and only if 3/9y(In 1) = — cotd. Consequently, by putting = ¢~ %%, we obtain a
coordinate char{x, y} such that

0 0
— ,ycotd -
(4.42) e1=e e e )\—ay .

From (4.42) we know that the metric tensor &f  is given by

1
(4.43) g =e e x4 vdyz.

Using (4.37) and (4.42) we obtain

(4.44) 9 _ A2 cotd + 3¢ sind cosh.
0
y
Solving (4.44) yields
(4.45) A= i\/(p(x)ez)' cotd _ 3¢ sirf 6.
First, we assume that
4.46) A =1/ p(x)e cot0 _ 3¢ sirt 6.
( @
Then (4.42) implies
e3y cotd

ei(ln)) = 2—)\290/(96),
(4.47)
4y cotd
224

Substituting (4.47) into (4.40) gives

e

erei(ln)) = {)\Zgal/(x) — ¥ Cowga/(x)z} .

(th(x) <p”(x) _ (p/(x)Z) eBycotd _ (66‘ sinZ GQON()C) +4c¢ QO()C)Z) g4y cotd

(4.48)
+24c¢%p(x) Sin? Ge? < + 363 sin* 9 = 0.
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Since (4.48) holds true on the whole coordinate neighbathee obtainc = 0. Sim-
ilarly, we also haver = 0 for the case:= —+/p(x)e? ¥ — 3¢ sirf §. Thus, in both
cases, we obtain from (4.45) that

(4.49) A =g(x)e’ cotf

for some functiong X ).
From (4.40), (4.42) and (4.49), we find that ¢g=c ( ) satisfies tWing second
order differential equation:

(4.50) qq" =29".

Solving (4.50) yieldsg X ) = 1(ax + b) for some constants arel . Thus we get

Y Cot0
(4.51) A=
From (4.43) and (4.51), we find
Va/ax2 - oo 2
Ox  (ax +b)2dy
(4.52) va/ax% = cotQa% + ax"—ﬂ)%,

0 0 0
va/aya = —a(ax +b)a—x — Cotea.

On the other hand, using (2.5), (2.12), (4.35) and (4.51) hase
g 0 csch 0 cotd 0
"(xx) ()

Ox’ 0x/) ax+b \dx/) (ax +b)2dy’
o 0 0 csch 0
(4.53) h(a—x, @) = (coth) - +— +b1(5),
o 0 0 0
h(;y a) = (ax +b)csc€J(a) - (cote)@.

Let z = z(x,y) denote the immersion o# int€". Then (4.52), (4.53) and
the formula of Gauss imply that satisfies the following systef partial differential
equations:

_ (z‘csc€>
Zxx ax +b x>

a+icsch
(4.54) Ixy = (W)Zy,
Zyy = (i csch — a)(ax + b)z, — 2 cotbz,.
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Case (8-b-1). a #0.
Solving the first equation of (4.54) yields

(4.55) 26, y) SAW)+ax +b JeTSOB(y),

for some C”-valued functionsA ¥ ) andB y( ). Substituting (4.55) into thecawd
equation of (4.54) shows that y ( ) is a constant vector. Thues,nvay choosed =0
by applying a suitable translation d” if necessary. Hence, we get

(4.56) 26, y) = @x +bfT S B(y),

Substituting (4.56) into the third equation of (4.54) yeld
B"(y) + 2 cotdB'(y) + (a® + cs¢ 0) B(y) = 0.

By solving this differential equation and using (4.56), wedfi

2(x, ) = (ax +b)1+ia‘1csc067ycot9

(4.57) " (Cl COS(my) +cpsin (my))

wherec; andc, are constant vectors i6”.
If we choose the following initial conditions:

2:(0, 0) = (b"a‘1°5°9, 0,..., 0) . z,(0, 0) =p@ % (; cosp, sing, 0, . .., 0),

then (4.57) implies

1 1 iacosf .
(458) Cl—(m,o,...,o), C2—m<a+icsw,SIn9,O,...,0>.

From (4.57) and (4.58) we obtain (4.2). This gives statenténtof Theorem 4.1.
Case (8-b-2). a =0.
In this case, (4.54) becomes

(459) 7, = (l CZCH) Txs  Zxy = (l CZCH) Zy, Zyy =ibcsclzy — 2 cotz.
Solving the first equation in (4.59) yields
(4.60) 2k, y)=A@)+exp{ib 'xcsch} B(y).

Substituting (4.60) into the second equation of (4.59) shtlat A is a constant vec-
tor. Without loss of generality, we may choode =0.
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Substituting (4.60) withA = 0 into the third equation of (4)5@ields B” +
2cotd B’ + cs@ 6 B = 0. Hence, we obtain

(4.61) z(@,y) =exp{ib tx csch — ycotd} (c1 cosfy ) +czsin(y)),

for some constant vectokg andc, in C™.
If we choose the following initial conditions:

%(0,0)=¢,0Q...,0), z,(0, 0)=(bcost, bsingd,0,...,0),

then we obtainc; = (bsing, 0, ...,0),c2 = (0,5 sind, 0, ..., 0). Thus, we obtain state-
ment (5) of Theorem 4.1 in this case.

Case (7). A #0 andf =7/2.

In this case, the second fundamental formMdf  takes the form:

h(ey, e1) = - =h(ey, e,) = Neq,

(4.62)
h(ei, e;) = Nej, h(ej,e)=0, j7Zk, jk=2....n

with respect to some orthonormal frarag ..., e,.
From (4.62) and the equation of Codazzi we find

(4.63) e1(InX) = wi(ez) = - -+ = wy(en),
(4.64) ejA=0, w{(el):O, j=2...,n,
(4.65) wie)=0, 1< j#k<n.

From (4.63) and Cartan’s structure equations, we have
(4.66) ere1(ln)) — (e1InN)? =c.
Using (4.63), (4.64), and (4.65) we get

(4.67) dw'=0, wi=e(nNw/, j=2....n,
which implies that the integral curves ef are geodesics i/

Let D and D+ denote the distributions spanned Hy;} and {ey,...,e,},
respectively. From (4.65) we know tha®' is integrable as well asD is triv-
ially integrable, sinceD is of rank one. Thus, there exist local coordinate sys-
tems {x,x2...,x,} such thatD is spanned byd/0x and D! is spanned by
d/0x3, ..., d/0x,. Moreover, sincelw! =0, we may choose =x; such thatw! = dx
and e; = 0/0x. From (4.64) it follows that\ is independent ofxy, ..., x,. Thus,
A= A(x).

Using (4.62) and the equation of Codazzi we may obtain as ,irpp[®2] that

(468) <VXY, €1> = 761('” /\) <X, Y> s
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for vector fieldsX, Y inD~+. Thus, the leaves ob' are totally umbilical hypersur-
faces inM with parallel mean curvature vector vector. Heriee, is a spherical dis-
tribution.

From (4.62), (4.68) and the equation of Gauss, we know theth ézaf of D+ is
of constant sectional curvaturex () given by

(4.69) w @) =c +A2(x) + (In\(x))'2

On the other hand, since the integral curvesidfare geodesics, the distributich
is auto-parallel. Therefore, by applying a result of Hiepl8) (see, also [7]), the
equations of Gauss and Codazzi, we conclude Hat is locaNyamped product
I X sy N"~ ), where f = ¥\/u,1/), or 1//—u and N ) is a space of constant
curvaturee, € = 1,0, or —1, according tou > 0,u = 0, oru < 0, respectively. When
n = 2, the second factoN"~(¢) in the warped product decomposition shall be re-
placed by a real lindR.

From (4.66) ande; = 9/0x, we get

(4.70) AN =202+ e)2.
Solving (4.70) yields
(4.71) N (x)? = aX*(x) — eX?(x),

for some constantv. It is easy to verify that the nontrivial solutions of (4.7aje
given by

(ax +b)7 1 if ¢=0,
(4.72) A = ¢ b sech(y/cx) if ¢>0,
bexp{y/—cx} or b sech(y/—cx) if ¢<0,
wherea? +b? # 0 whenc =0; and # 0 whenc # 0.
Case (y-a-1). ¢ =0 and\ = (ax +b)~* with a # 0.

In this case,M is a warped product Bf and S"~%(1) with the warped metric
given by

2, (ax +b)

- dx©+ T+ dx% if n=2,
. 8 =
a’2+({M+b)2 if n>3
e e
where

(4.74) g1 =dx2+ o€ xpdx?+- -+ C0Lxp - - COL x_1dx>
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is the metric onS"~1(1) with respect to spherical coordinatés,, . .., x, }.
From (4.62), (4.73) and the formula of Gauss, we know thatitmersionz of

M in C™ satisfies
_ I
Zxx - ax +b Zxa

(4.75) Tye= (2 )y
' Yox ax+b ’
VyVzz= (ax +b) (Y,Z)z, +VyZ,

for Y, Z tangent to the second componevite) ¢f the warped decomposition aif
Solving system (4.75) yields

n

2= (ax +b)tHia” 01HCOij +cz Sinx;

i
(4.76) ! -
+c3SINX3COSXp + -+ - - + ¢, Sinx, H cosx;
=2
for some vectorsy, ..., ¢, € C™. Hence, if we choose the initial conditions:
2(0,...,0) = ((a +i)pie 0. ..,o) ,
ZXZ(O’ ] 0) = (07 b1+iail, 07 RN} O) E}
4.77)

2,0, ...,0) = (o,...,o,blﬂ‘a‘l,o,...,o),

then we obtain (4.6). This gives statement (6) of Theorem 4.1
CasE (y-a-2). ¢ =0 andx=1/b.
In this case, system (4.75) reduces to

i ~ i
xx — '’ X x = '’ Ys
z (b)z Vyz (b)

(4.78) .
VyVyz = (i) (Y, Z)z: +Vy Z,
By applying an argument similar to case-4-1) we obtain statement (7) of Theorem

4.1 in this case.
Cast (y-b). ¢ >0 and\ =b sec(y/cx).
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In this case,M is a warped product B and $"~(1) with the warped metric
given by

cos
dx®+ #dx% if n=2,
c
(4.79) g = 2
CcO cX .
dx?+ #gl if n>3.

From (4.62), (4.79) and the formula of Gauss, we know thathtbegzontal lift ¢ :
M — §?"*Y(c) c C"*t of z: M — CP"(4c) satisfies

Gxx =ibsec(/cx) ¢ — co,
(4.80) Vyo, = (ibsec(vex) — vctan(Vex)) Y,

VyVz¢ = {ibsec(\cx) ¢ — co} (Y, Z) +Vy Z,

for Y, Z tangent to the second componenite) ¢f the warped decomposition aff
Solving the first equation of (4.80) yields

¢ = A(xo, ..., x,) (ib + \/Esin(\/Ex))
+B(x, ..., x,)cos(y/cx) (sec(y/cx) +tan<\/zx))ib/\/5.

The second equation in (4.80) and (4.81) imply/0x; =0 for j =2 ...,n. Thus, A
is a constant vector, say, in C"*1.
By applying (4.81) and the last equation of (4.80) wkh Z= 0/x,, we obtain

¢ = co (ib +4/csin (\ﬁx)) + (ca(x3, . .., x,) Sinxy
+By(x3, . .., x,) COSX) COS(y/c x) (sec(y/cx) + tan(\/Ex))”’/‘/E.

By applying (4.82) and the third equation of (4.80) with 0#0xp, Z = 0/0x;, j =
3,...,n, we conclude that, is a constant vector. Furthermore, by applying (4.82) and
the third equation of (4.80) witlY Z 8/0x3, we have

(4.81)

(4.82)

(483) By = (sinx3)02(x4, ceey xn) + (COS.X3)Bz(X4, ey xn).

By applying (4.82), (4.83) and the third equation of (4.80hwY = 0/0x3, Z =
0/0x;, j =4,...,n, we also know that, is a constant vector. Continue such pro-
cessn — 1 times, we obtain

¢ =co(ib+/csin(ycx))
n—2 n—1
(4.84) + (cl SiNx, + ¢ SiNx3 COSxp + - - - + ¢, 1 SiNX,_1 H cosx; +cy H COSxk>

k=2 k=2
x (sec(v/cx) +tan(yex))™/ V<.



42 B.-Y. CHEN

By choosing the initial conditions:

_ ib 1
#,...,0) = (%c(b2+c)’ \/b2+c,o,...,o>,

_ (Ve b )
¢.(0,...,0) <m,m,o...,o ,

1
v(0,...,00=(0,0,—,0,...,0],
P ) < b2+c )

1
y, (0,...,0)=10,...,0, —,0,...,0),
00020 = (0.0, 752.0...0)

we obtain (4.9) for¢. Thus, we obtain statement (8) in this case.

Case (y-c). ¢ <0 andX=bexp{y/—cx}.

In this case,M is a warped product Bf and $"~1(1) with the warped metric
given by

1
2
e b2exp{2\/—cx}
X%+ S — 81
b2exp{2\/—cx}

From (4.62), (4.85) and the formula of Gauss, we know that ltbgzontal lift ¢ :
M — H?"*Y(c) c C*l of z: M — CH™(4c) satisfies

dx: if n=2,
(4.85) g =
if n>3.

Gxx = ibexp{v—cx} ¢r — co,
(4.86) Vyéy = (ibexp{v—cx} —V~¢) Y,
VyVz¢ = {ibexp{v/=cx} ¢, — c¢} (Y, Z) + Vy Z.
Solving system (4.86) as in case-lf) yields
¢ =co (ib+v/—cexp{—v—cx})

n—2 n—1
+ | ¢1SiNxy +¢2SINX3COSxp + - -+ + ¢, 1 SiNx,_ cosx; +c, COSx,
. ( L SERUELE | | )

J—c

By choosing the initial conditions:

¢(o,...,0):}<"b\+/lc_c,exp{\/"b7},o,...,o),

x exp{—v/—cx} exp{i <L> eXp{\/—_cx}} .
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#(0,...,0) = % (—\/—_c,(ib—\/—_c)exp{\/i—f_c},O,...,O),

1 ib
¢x,(0,...,0) = 5 (0,0, exp{\/_c},o,...,o),

1 ib
¢x,(0,...,0) = b (O,...,O,exp{\/_c},o,...,0>,

we obtain (4.11) forp. Thus, we obtain statement (9) in this case.

Cast (y-d). ¢ <0, A=b sech( /cx)

In this case, we have x( ) & X(x)+ (INX(x))? = (b2 + c) sech (y/—cx). We
divide this case into three subcases.

Cast (y-d-1). b?+c¢ > 0.

In this case,M is the warped product Bf and §"~1(1) with the warped metric
given by

cosif (/=
dx®+ %d}cg if n=2,
c
(4.88) g = P
COos iV
dx?+ Mgl if n>3.
b2+c

From (4.62), (4.88) and the formula of Gauss, we know thathhegzontal lift ¢ :
M — H?"*Y(c) c C*l of z: M — CH™(4c) satisfies

¢xx = ib sech(v/—cx) ¢x — co,
(4.89) Vydy = (ib sech(v—cx) +v/—ctanh(v/—=cx)) ¥,
VyVz¢ = {ib sech(v/=cx) ¢x — cd} (Y, Z) + Vy Z.

Solving system (4.89) as in case-lf) yields

¢ =co (ib— v/—csinh(v/—=cx)) + <c1 SiNx, + ¢ SiNx3 COSxp + - - -

n—2 n—1
(4.90) +c,_1SiNx,_1 H cosx; +c, H COSxk>
k=2 k=2

x cosh(v/—c x) exp{Zi (\/b__c> tan * (tanh(J?x)> }
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By choosing the initial conditions:

6(0,....0) = =+ (—” 1 o...,o>,

¢x(0,...,0) =

(;5,(2(0,...,0):4+(0,0,1,Q...,0),

¢y, (0,...,0) = ©,...,0,1,Q...,0),

we obtain (4.13) forg. Thus, we obtain statement (10) in this case.

Cast (y-d-2). b%+c¢=0.

In this case, Hiepko’s result implies thA  is locally a watg@oduct of a real
line and £~ with warped product metric given by

(4.91) g =dx?+b*costf (vV—cx) {dxi +dx5+ - +dx2}.

Without loss of generality, we may choose =1.
From (4.62), (4.91) with =1 and the formula of Gauss, we knbet tthe hori-
zontal lift ¢ : M — HZ"*Y(c) C C* of z: M — CH™(4c) satisfies

Gux = iv/—c seCh(V—cx) dx — co,
(4.92) Vy ¢, = (iv/—c sech(v/=cx) ++/—ctanh(v/—cx)) Y,
VyVz¢ = {iv—c sech(v/—cx) ¢, — co} (Y, Z) + Vy Z.

Solving the first equation of (4.92) yields

o = A(xg, ..., x,)h(x)
(4.93) +B(xa, ..., x,) cosh(v/—cx) exp{Zi tan ! <tanh ( \/?x >) } ,

for someC"*1-valued vector functionst an# , where

h(x) = % exp{Zi tant <tanh( 2cx>)}

X {Ztan‘l (tanh(@)) +sechf (vV—cx) (i +sinh(\/—_cx))}.

(4.94)

From (4.94) and the second equation of (4.92), we know that a é®nstant vector,
say co.
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By applying (4.93), (4.94), the third equation of (4.92) amdong straightforward
computation, we obtain

0B

(4.95) 5.

=iv—cdjco, i, k=2,...,n.

Hence,B takes the following form:

n l n
(4.96) B (o, ...,x,) :cl+chxj +§co\/chx12-,
j:2 j=2
for some constant vectoks, ..., ¢,. Combining (4.93) and (4.96) we obtain

n i n
¢ = coh(x) + (cl + chxj + ZCOV_CZXJZ)
j:2 j=2

x cosh(v/—cx) exp{Zi tan ! <tanh<\/?x>> } )

By choosing the initial conditions:

(4.97)

a
Mm“ﬂ%(73ﬁwq®,
$:(0,...,0)=(0,1Q...,0),
¢x,(0,...,00=(0,01Q...,0),

¢:.(0,...,00=(0,...,0,1,0,...,0)

we obtain statement (11) in this case.

Case (v-d-3). b?+c < 0.

In this case, Hiepko’s result implies thM  is locally a watpggoduct of a real
line and H*~%(—1) with warped product metric given by

., cosif (V=cx)

(4.98) g =dx 24 e

8-1,

where

n—1
(4.99) g_1=dx3+sinlfx, {dx:)z, +C0S xadxZ+--- + H cog xkdxnz}
k=3

is a metric onH"~1(—1) with constant negative curvaturel.
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From (4.62), (4.98), and the formula of Gauss, we know that hibrizontal lift
¢: M — HZYc) c C*L of z: M — CH™(4c) satisfies

¢xx = ib sech(v/—cx) ¢y — co,
(4.100) Vyéy = (ib sech(v/—cx) ++v/—ctanh(v—cx)) Y,
VyVz¢ = {ib sech(v/=cx) ¢x — co} (Y, Z) + Vy Z.

Solving the first and second equations of (4.100) yields

¢ = co (ib - \/—_csinh(\/—_cx)) + B(x2, ..., x,) COSh(\/—_cx)

conf (o ()}

From (4.101) and the third equation of (4.100) we concludg th satisfies

(4.101)

B = c1coshx, + sinhx; (cz Sinxg + c3COSx3 Sinxg + - - -
(4.102)
+++ 4y, COSX3 - - - COSX,_1)

Combining (4.101) and (4.102) we obtain
o = co (ib —V—c Sinh(\/—cx))
(4.103) + (c1 coshr + sinhx; (¢ Sinxs + c3 COSx3 Sinxg + - - -
+++ 4y COSX3 - - - COSX,_1)

x cosh(v/—cx) exp{Zi (%) tant <tanh(@>) } )

By choosing the initial conditions:

#0,...,0) = 1(1,0,...,0, ib ,o,...,o),
V=070

1
.O,...,00) = ————(ib,0,...,0,—/—¢,0,...,0),
éx( ) \/W(l V—c )

1

¢x,(0,...,0) = (0,1,0...,0),

1

¢xn(0,...,0) = \/ﬁ

(0""70’:L 07""0)’
we obtain statement (12).

Conversely, by straightforward long computations, we ceove that the subman-
ifolds given in statements (1)—(12) are slumbilical. L]
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Remark 4.1. The totally real submanifolds given by (4.6) and (4./® eomplex

extensors in the sense of [3].

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8l
[0l
[10]

(11]

[12]
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