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Introduction

Let /: M—> C be a proper surjective holomorphic mapping of complex
manifolds M, C with dim M=ra+12^3, dim C=l and let L be an/-ample line
bundle on M. Such a quadruple (/, M, C, L) will be called a Del Pezzo
fibration if (Mxi Lx) is a Del Pezzo manifold for any general point x on C, where
Mx=f~ι(x) and Lx is the restriction of L to MΛ. This means K+(n—ί)L=0
in Pic(Mj) for the canonical bundle K of M.

Let me explain how such a fibration appears in the classification theory of
polarized manifolds. Suppose that L is an ample line bundle on a compact
complex manifold M with dim M=m. Then we have the following result (cf.
[F7]):

Fact 1. K+mL is nef (i.e. (K+mL) Z^O for any curve Z in M) unless
{M, L)^(Pm, 0(1)). So K+tL is nef for any t^

Fact 2. K+(m-l) L is nef unless {My L)~(Pm, 0(1)), a hyperquadric
in Pm+1 with L=O{\)y (P2, 0(2)) or a scroll over a smooth curve.

For a vector bundle 6 over X, the pair (P(δ)> 0(1)) is called the scroll of
6 (or a scroll over X).

Fact 3. Suppose that K+(m—l)L is nef and m ^ 3 . Then K+(m—2)L
is nef except the following cases :
a) There is an effective divisor E on M such that (E, LE)—(Pm~\ (5(1)) and the
normal bundle of E is O(—l).

bO) (M, L) is a Del Pezzo manifold, (P\ O(j)) with j=2 or 3, (P\ 0(2)) or a
hyperquadric in P4 with L=O(2).

bl) There is a fibration f: M-+C over curve C such that (Mxi Lx) is a hyper-
quadric in Pm with L=O(l) or (P2, 0(2)) for any general point x on C.
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230 T. FUJITA

b2) (M,L) is a scroll over a surface.

This is a polarized version of the following classical

Fact 30. The canonical bundle of a smooth algebraic surface S is nef unless

S contains a (—\)-curve, is isomorphic to P2 or is a Pλ-bundle over a curve.

Now we want to study the behaviour of A=K-\-(m—2)L in case A is nef.
By the base point free theorem (cf. [KMM]), there is a fibration/: M-+W onto a
normal variety W and an ample line bundle B on W such that A=f*B. More-
over dim W<^3 unless dim W=m (cf. [F7]; (3.3)]). The latter case can be vie-
wed as "general type". When dim W=3<m,f looks like a scroll over an open
dense subset of W. When dim W=2, (Mχy Lx) is a hyperquadric for any gene-
ral point x on W. When dim W=0, we have K=(2—m)L. This is a polarized
higher-dimensional version of K3-surfaces. When dim W=l>f is a Del Pezzo
fibration. This corresponds to elliptic surfaces in the surface theory.

Thus, the study of Del Pezzo fibrations can be viewed as a polarized ver-
sion of the famous theory of Kodaira. If L is spanned by global sections, we
get in fact an elliptic surface by taking general members of \L\ successively
(m—2) times. Such cases were studied partly by D'Souza [D].

This paper is organized as follows. In § 1 we recall the theory of minimal
reduction and review basic results. In § 2 we classify reducible fibers. Ap-
parently the result (2.20) is surprizingly simple, but this is no wonder, since the
smoothness of M and the /-ampleness of L are very strong conditions. In § 3
we study irreducible non-normal fibers. Using these results and the theory
in [F6], we study the global structure of / in § 4.

Basically we empoly the same notation as in my preceding papers on polari-
zed varieties. In particular, vector bundles are not distinguished notationally
from the locally free sheaves of their sections. Tensor products of line bundles
are denoted additively, while we use multiplicative notation for intersection
products in Chow rings. The pull-back of a line bundle F on Y by a morphism
/: X-* Y is usually denoted by FXy or often just by F when confusion is im-
possible or harmless. In case Y is a projective space P£, we denote f*Oγ(l)
by £Γ$, using the same Greek index for the sake of identification.

l Preliminaries

(1.1) Throughout this paper let (/, M, C, L) be a Del Pezzo fibtation over
a curve C as in the introduction. Suppose that Mo is a singular fiber while any
nearby fiber Mx is smooth.

(1.2) Theorem. K+(n—\)L=f*A for some line bundle A on C unless
there exists a divisor E contained in a fiber of f such that (E, LE)—(Pn, 0(1)) and
O[E]E=O(-l).
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Proof. Suppose that K+(n— \)L is not /-nef, which means, (K+(n— l)L)Z
< 0 for some curve Z such that f(Z) is a point. By virtue of the theory in
[KMM], we may assume that Z is an extremal curve and we have the con-
traction morphism ψ of it. Z must be contained in a singular fiber of/ since
K-\-{n— 1)L=O on any general fiber. Hence ψ cannot be of fibration type.
By the argument in [F7; (2.11: a)]> we infer that there exists an exceptional
divisor E with the required properties.

When K-\r(n— \)L is nef, by the relative base point free theorem (cf.
[KMM]), there exist a factorization M-+W-+C of/ and a relatively ample line
bundle A on W such that K+(n— 1)L=AM. Then W-*C is birational since
K-\-(n— 1)L=O on any general fiber of/. So W~C and we are done.

(1.3) Thus, if K+(n— \)L does not come from Pic(C), we find a divisor
E as above. E can be blown down to a smooth point on another manifold M'
and L+E=L'M for some ample line bundle L' on ΛΓ. Then (/', M\ C, L')
is a Del Pezzo fibration for the natural map / ' : M'-» C.

Continuing such process if necessary, we finally obtain a model/1': M*->C
such that K*-\-(n— \)D comes from Pic (C). This is called the minimal reduc-
tion of f.

From now on, we assume that / is minimal, i.e., M=M}>, or equivalently,
K+(n-l)L=f*A for some

REMARK. If L is nef, we can show deg(^)^2g(C)—2. But we do not
use this fact in this paper.

(1.4) Proposition. / has no multiple fiber.

Proof, (almost the same as that of [M; (3.5.2)]). Suppose that Mo=
mD in Div(M) for some m^.2. Since [D] is numerically trivial on the subscheme
D, we have X(Oc[tD)]=X(OD) for any t. Hence X ^ H Σ Γ Γ o 1 X(OD[-tD])=
mX(OD). On the other hand X(OMo)=X(OMχ)=l by the flatness. Thus we get
a contradiction.

(1.5) In § 2 we study the case in which Mo is reducible. Here we recall
some general results on irreducible fibers.

By (1,4), V—Mo is reduced and (Vy Lv) is a polarized variety. By the flat-
ness of/we have X(V> tLv)=X(Mx, tLx) for any t and g(V, Lv)=ly whre g is
the sectional genus. We have Δ(F, LV)<^A(MX, Lx) = \ for the Δ-genus by the
upper semicontinuity theorem. So Δ(F, Lv)=l since Δ = 0 would imply
£ = 0 . Thus {V, Lv) is a Del Pezzo variety.

By [F8; (1.2)], (V, Lv) has a ladder. Hence, similarly as [F2; Theorem
4.1], we have the following results:
1) (D, LD) is a Del Pezzo variety for any general member D of \LV\.
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2) B s | L v \ = 0 if d=Ln

v^2.
3) Lv is simply generated and very ample if d^3.
4) The image of V via the embedding given by \LV\ is defined by quadratic
equations if d^A.

Furthermore we can apply the theory in [F6] if J ^ 5 , since V has only
hypersurface singularities and hence cannot be isomorphic to a cone over ano-
ther Del Pezzo variety when d>3.

2. Reducible singular fibers

(2.1) In this section we study the case in which Mo is a reducible fiber in
a minimal Del Pezzo fibration (/, M, C, L). Let MO=*Σ1 μ«D* be the prime
decomposition as a divisor on M. The restriction of L to each component DΛ

will be denoted by LΛ> or just by L when confusion is impossible.
We set dΛ=d(DΛ, LΛ)=Ln

Λ{DΛ}. Then Σ μΛdΛ=d=Ln

x{Mx}. By the clas-
sification theory of Del Pezzo manifolds we have d^9 (resp 8, 6, 5, 5, 4) if
w=2(resp. 3, 4,5, 6, ^

(2.2) We set ΎΛβ=Ln-ιDaDβEΞZ for each α, /?. Then % ^ 0 if
and the equality holds if and only if DΛ Π Dβ=0, since L is ample on Mo. For
each a> there exists /3Φα such that rγe6β>0 since Mo is connected. This implies

since Σp μβ7«β=0

(2 3) Let ωΛ be the canonical sheaf of ΌΛ. Then ω Λ =

-7*)! ,]^ by the adjunction formula. So 2^(DΛ, L)-2=(ω Λ

=A,LΓ ι ίDJ =7**<0. Hence £(DΛ, L)^0.
Set i? Λ =Σ/3φ Λ ^^β and ΓΛ=Rci\D{Λ^Όίv(Dΰ6) from now on.

(2.4) Lemma. For each a, (DΛ, LΛ) is a polarized variety of one of the
types below. In particular A(DΛ, LΛ)=g(Deii LΛ)=0.

2) (possibly singular) hyperquadric with L—O(l).
3) A scroll over P\
4) Veronese surface (P2, 0(2)).

Proof. ΓΛ is an effective divisor on DΛ and ΓΛΦθ. So there is a curve
Y in Όa such that Γ Λ Y>0. Note that / ^ A , Y = - r * y < 0 and KY=
(l—ή)LY<0. By the theory of [KMM], Y is a lineal combination of extremal
curves Z{ in the group of /-relative 1-cycles modulo numerical equivalence.
From this we infer that there exists an extremel curve Z such that DΛZ<0. Of
course such a curve must be contained in DΛ. Hence the contraction morphism
φ of Z cannot be of fibration type. By the argument [F7; (2.14)], we infer
that φ is a birational morphism with an exceptional divisor, which must be



DEL PEZZO FIBRATIONS 233

DΛ. Moreover, the type of (Dβ, L) is classified into four types al), a2), a3) and
a4) in [F7; Theorem 4] when n ^ 3 .

In case a4), we have (DΛy L)—(Pw, 0(1)) and 1) is the case.
In case a3), we have (Z>Λ, L)^(P\ (5(2)). This is ruled out by (2.3).
In case a2), DΛ is a hyperquadric and we are in case 2).
In case al), there is a surjection π: DΛ-+X onto a possibly singular curve

X such that (F, LF)—(Pn~\ 0(1)) for any fiber F over a smooth point on X.
Let Df

a->X' be the induced map of normalizations. Then (D£, L) is a polarized
variety and in fact a scroll over X' by [Fl; Corollary 5.4]. Note that £(DΛ, L ) ^
£(D«, L) and the equality holds if and only if codim (singular locus of DΛ)>ί.
Since g(D'Λ, L) is equal to the genus of X\ we infer g(DΛ, L)=g(D'Λi L)=0 by
(2.3). Moreover DΛ is normal by Serre's criterion. Thus Dά=DΛ is a scroll
over P 1, and we are in case 3).

When n=2, the type of (DΛ> L) is classified by Mori [M]. By similar
arguments as above we complete the proof of (2.4).

(2.5) Corollary. Δ(Z)Λ, La)=g(DΛy LΛ)=Q and γ Λ r t = - 2 for every a.
Moreover LΛ is very ample.

(2.6) Corollary. If the normal bundle N of an effective divisor Y on Da

is not ample, then (DΛi LΛ) is a rational scroll as in (2.4.3) or possibly (PιxP\
0(1, 1)), a special case of (2.4.2). If (Y, N)^(P»~\ 0(-e)) with e>0, then DΛ

is a Hirzebruch surface Έ,e (so n=2) and Y is the minimal section.

Proof. The first assertion is obvious, since Pic(D Λ )~Z' in the other
cases. In the second assertion, Y cannot be a fiber of Da-^P1. So we have a
surjection Y-^P1 and hence n=2. The rest is easy.

(2.7) Suppose in addition that μ Λ = l . Then, in Pic(DΛ), we have
-TΛ=[DΛ]=ωΰC-K=ωΛ+(n-l)Le6. So ΓΛ€Ξ|2LΛ| in case (2.4.1), ΓΛ<Ξ|LJ
in case (2.4.2), and ΓΛ is a line in DΛ—P2 in case (2.4.4). In these cases ΓΛ is
an ample divisor.

In case (2.4.3), the restriction of ΓΛ to any general fiber of φa: DΛ-+XΛ—Pι

is a hyperplane. Therefore it has a unique component mapped onto XΛ. Any
other component (if exists) is a fiber of φΛ.

From these observations we obtain:
0) YΛ is always connected.
1) (2.4.1) is the case if YΛ—2Y for some Carder divisor Y.
2) If TΛ=2Y for some Weil divisor Y, then (2.4.1) is the case unless DΛ is
a singular hyperquadric.

(2.8) Lemma. μΛ= \ for every a. Moreover, changing the indices suitably,
we have one of the following conditions.
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(1) M ^ A + + A , * ^ 3 , Ύa = Ύa=...=Ύt.ltt=γtι=l, 7aβ=Q for other
aφβ.
(2) Mt=D1+Di,Ύu=2.

Proof. Combining (2.2) and (2.5), we infer that γ^'s satisfy the same
condition as the intersection numbers of components in a singular fiber of an
elliptic surface. Therefore we can classify them by Kodaira's method. More-
over we have Σ μΛ^d^9 by (2.1). Therefore it suffices to rule out the case
corresonding to the type If in Kodaira's notation.

In case If, we may assume that μ1=μ2=ly μ 3 =2, γ 1 3 = γ 2 3 = l , γ 1 2 =0 and
yΛβ=0 for a^2f /3^3, by changing the indices if necessary. So [2D3]=Ta in
Pic (A,) for α = l , 2. Hence (Da, L)—(P\ 0(1)) for α = l , 2 by (2.7.1). More-
over YΛ3=DΛΓ\D3 is a hyperplane in DΛ. Since [Da]=O(—2) on DΛ, the
normal bundle of YΛ3 in D3 is O(—2). By (2.6), YΛ3 is the minimal section of
D 3—2 2 for each α. This contradicts Dx Π A = 0

(2.9) From now on, we study the case (2.8.1) until (2.12). We set YΛβ=
DΛf\Dβ for αΦ/?. First we claim b=3.

Indeed, Y12+ Y23=T2. So Y12Π Y23Φ0 by (2.7.0). Hence Dι Π D3Φ0 and
γ 1 3 >0. Thus έ > 3 cannot occur.

Note that (YΛβy L)^(Pn~\ 0(1)) since Z/"1 Yaβ=γmβ= 1 and LΛ is very ample.

(2.10) Claim. YΛβs are all different

Indeed, if Y12~ Y23 ίor example, then Y12= Y23dDι Π J33, So Y12= Y23= Y31.
Hence (DΛ, LΛ)^(P\ 0(1)) by (2.7.1). Then DΛ=O(-2) on Y=Yrtp. This
cannot occur since Di+Dg+Zλ^O in Pic(Y).

(2.11) We have Y 1 2nAj+0 by the argument (2.9), while Y12ctD3 by
(2.10). So [D3]=0(8) in Pic( Y12) for some δ>0. Hence [DJ or [D2] is nega-
tive on Y12. By symmetry we may assume that [DJ is negative on Y12. This
is the normal bundle of Y12 in D2. So, by (2.6), n=2, D2 is a Hirzebruch
surface Σe with e>0, and Y12 is the minimal section of it. Y^ is the other com-
ponent of Γ2, and hence is a fiber of φ2: D2->X2. Therefore DλΠD2ΠD3=
Y12Π Y23 is a simple point. So Z^ Y 2 3=l. Moreover D3Y23=0 since [D3] is the
normal bundle of Y23 in D?. Hence D2Y23= —(D^D^Y23 — — 1. Again by
(2.6), this implies Dz~Σι, Y2$ is the minimal section (the unique (— l)-curve in
this case), and Y31 is a fiber. Proceeding similarly, for each a^ZβZ we get:
£ U ^ - i , * = l > 0.y--i..=O, D^Y^^-1, DΛ^τ» YΛ.ltΛ is the minimal
section of DΛ, and YΛtΛ+ι is a fiber of DΛ-> P 1 .

(2.12) Thus we describe the structure of Mo completely in the case (2.8.1).
Since LYΛβ=l, we infer LΛ=Yΰύ_UΛ+2YΛ>Λ+1 in Pic(£>,). So dΛ=L2

Λ=3 and
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Any DΛ can be blown down smoothly to JY* —JP1. Suppose that we first
blow down D3. Then D2 is mapped isomorphically onto its image, which we
denote by D2. Dλ is mapped onto P2 since Y31 is mapped to a point. Next
we can blow down D2 to P1. Then Mo is transformed to a smooth fiber P2.

Conversely, a singular fiber of this type can be obtained from a P2-scroll
(M", H) as follows: First blow up along a line X in a fiber —P2. The ex-
ceptional divisor E is isomorphic to 2 r Next blow up along a fiber of E—>X.
Then we get a fiber of the type (2.11). The polarization is given by L=3H—
Ex—E2, where E{ is the total transform of the .exceptional divisor of the i-th
blow up.

REMARK. Any DΛ can be blown down first, and we get a fiber of the type
(2.19.4) below by this step. Thus there are several ways to get a P2-bundle
by blowing-down. This can be viewed as a 3-dimensional version of elementary
transformations of ruled surfaces.

(2.13) From now on, we study the case (2.8.2). First we claim that Y=
D1Π D2 is reduced.

Indeed, otherwise, (2.7.2) applies. So the normal bundle of Y in DΛ is
ample for each a. This contradicts [Dj+DJy^O.

(2.14) Suppose that Y is reducible. Since Ln~ι y = γ 1 2 = 2, Y has two
components Yly Y2 such that Ln~ιY~\. So (Y, , L) — (Pn~\ 0(1)) since LΛ is
very ample on DΛ. We have Dι-\-D2—0 in Pic( Y, ). Hence, by symmetry, we
may assume that [Z)J is not ample on Yv Then Γ2 is not ample on D2. Hence
D2 is a rational scroll by (2.6). In particular D2 is smooth and both Y/s are
Cartier on D2. Moreover Y^ Y2φ0. Since [Yι+Y2]γi=z[D^\Yl is not ample,
the normal bundle of Yx in D2 is negative. By (2.6) this implies n=2, D2^Σe

for some e>0 and Yλ is the minimal section of it. Y2 must be a fiber. Hence
1=(Y x + Y2) Y2{D2} =DX Y2.. So D2 Y2= -1. Similarly as above, we get A — 2 2

and Y2 is the minimal section of it, since — l=D2Y2=(Y1

J

rY2)Y2{D1}. This
in turn implies l=D2Yι=^—D1Yι and Z)2—Σ2 As for the polarization, we have
LY^LY^l. So Lλ= Y2+3Y1 on Dλ and L2= YX+ZY2 on D2. Hence dΛ=4
and d=d1

J

Γd2—S. Thus we get a complete description of Mo.

(2.15) In the above case either divisor DΛ can be blown down smoothly to
XΛ — Pι. When we blow down D2, then Dx is mapped onto a singular quadric
since Y2 is contracted to a point. The result is a hyperquadric fibration and
any nearby fiber is P1 X P\

Conversely, we get a singular fiber of the type (2.14) by blowing up a
hyperquadric fibration (M\ H) with a singular fiber (Mi, Ho) isomorphic to a
normal singular quadric in P3. The center should be a line / on MJ passing
the singular point. The polarization is given by L = 2H—E, where E is the
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exceptional divisor over /.

(2.16) From now on we suppose in addition that Y is irreducible. Since
Ln~ιY— 2, Y is a hyperquadric which is possibly singular. By symmetry we
may assume that [A]r *s n o t ample. Then Γ2 is not ample on D2y so D2 is a
rational scroll by (2.6). We have a surjection Y-»X 2 ^P\ This is possible
only when n=2y or n=3 and Y^PιxP\

(2.17) Here we suppose F - F x P 1 . A factor is identified with X^P\
and the other will be denoted by P\. The pull-backs of <9(l)'s will be denoted
by H$ and Hζ respectively. Then the normal bundle of Y in D2 is aHξ+Hζ for
some a^Z, since a fiber of Y-*X2 is a line in a fiber of D2-+X2. So [D2]γ~
[—DdY=—aHξ—Ήζ. Hence Y is not ample on A By (2.6), A is a scroll
over Xλ^P\ The restriction of D2 to a fiber of Y-^X1 is (3(1). Therefore
Y—>X1 is identified with the projection Y-+P\ and hence a= — \.

We have Lλ= Y+zHζ for some ^ G Z in Pic(Z)1), where i/^ is the pull-back
of 0(1) on X^Pl Restricting to Y we get Hζ+Hξ-=(Hξ—Hζ)+zHζy so
z=2. Now, using the exact sequence 0->ODl(2Hζ)->ODl(L1)->Oγ(L1)->0) we
obtain an exact sequence O->0(2)-»<?1-^O(l)φ0(l)-^O of locally free sheaves
on Xly where Sι—{φ^ODl{L^. So (Dv Lx) is the scroll associated to β1c^0(2)
Θ0(1)Θ0(1) = 0(2, 1, 1). Quite similarly (A, L2) is the scroll associated to
£ 2 ~ 0(2, 1, 1) over X 2 ^ P \ In particular we have dΛ=\ and rf=

(2.18) In the above case either divisor DΛ can be blown down smoothly to
XΛ. When D2 is blown down, Dx is mapped onto D{ ̂  P3 and the pull-back to
A of 0(1) on Z>ί is Lγ-Hζ. Thus we get a P3-bundle.

Conversely, we get a singular fiber of the type (2.17) by blowing up a P 3 -
scroll (M', i/). The center is a line in a fiber. The polarization is given by
L=2H—E, where E is the exceptional divisor.

There are two ways of blowing-down, and they give a 4-dimensional version
of elementary transformations.

(2.19) In the remaining cases we have n=2. So Y is a smooth quadric

curve. By symmetry we may assume A Y^O. Then Y is not ample on D2.

By (2.6) A — Σ β for some <?^0. Let i ί 2 ePic(A) be the class of a fiber and

let Z be the class of a section with Z2=e. When e>0, the minimal section is

the unique member of \Z—eH2\. In any case we have L2=ZJ

ΓaH2 for some

a>0 and ω2=-2Z+(e-2)H2. So Y=-(ω2+L2)=Z+(2-a-e)H2 in Pic(A).
Recall that 0^D1Y=Y2 = ^-2a-e. If α > 2 , then Y 2 < 0 and Y must be

the minimal section, but this contradicts Y2=4—2a—e<— e. If a=l, then

0^2—e and e*^2, so Y 2^0 is possible only when Y is the minimal section.

Thus, in any case, we have D1Y=Y2=—e, a = 2 and d2=L2

2=e-\-4. Note
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that D2 can be blown down smoothly to X2~P1. According to the type of
(D1, L2), we now divide the cases as follows:

1) (.1*0(1)).
2) (D19 Lx) is a singular quadric.
3) A scroll over Xx — P\ including the case (P 1 X P 1, (3(1, 1)).
4) (P2,0(2)).

(2.19.1) In this case Y is a conic on Dv So 4=Y2=D2Y and hence
-4=D1Y=-e, d^d.+d^ 1+8=9. We get a P2-bundle by blowing down
D2 to X2. The center of the converse blowing-up is a conic. The contraction
of Dγ yields a quotient singularity.

(2.19.2) In this case Y is a smooth hyperplane section on Dv So 2 =
Y M A ^ A ^ and hence 2 ^ - A Y ^ e , ^ = ^ + ^ = 2 + 6 = 8 . We get a sin-
gular quadric by blowing down D2. Any nearby fiber is P1χP1. The con-
traction of Dλ yields a hypersurface singularity of the type x?-\-y2-\-z2-\-u3=0.

(2.19.3) Dx is a Hirzebruch surface Σ s with s^O. Let fli be the class of
a fiber and let S be a section with 5 2 = ί as before. Then Lι=S+bHι for some
i>0 and Y^\S+(2-b-s)Hι\. So e= -D^^D.Y^Ϊ-lb-s. Hence
(ft, 5, e)=(2, 0, 0), (1, 0, 2), (1, 1, 1) or (1, 2, 0).

(2.19.3a) In case (ft, sy e)=(2, 0, 0), we have ^ = ^ + ^ = 4 + 4 = 8 and
1)^=1)2 Y=0. We get Σo by blowing down etiher divisor DΛ.

(2.19.3b) In case (ft, *, *)=(1, 0, 2), we have d=d1+d2=:2+6 = 8 and
—D 1 Y=D 2 y=2. We get Σo by blowing down D2. We get Σ2 by blowing
down D19 but in this case the ampleness of the polarization is not preserved
and the result is not a Del Pezzo fibration in our sense.

(2.19.3c) In case (5, s, *) = (1, 1, 1), we have ^ = ^ + ^ = 3+5 = 8 and
—D1Y=D2Y=l' We get Σx by blowing down D2. Any nearby fiber is also
2χ. We get a S^bundle by blowing down Dλ too, but the situation is not
symmetric (the center of the converse blow-up is different).

(2.19.3d) In case (ft, J, e)=(l9 2, 0), Y is a member of | S—Hx \ on A—2 2 .
This case is ruled out since Y must be irreducible.

(2.19.4) In this case Y is a line in Dι — P2. So 1=Y2{D1}=D2Y and
hence l=-DιY=e, d=d1+d2=4+5=9. We get a P2-bundle by blowing
down D2. The center of the converse blowing-up is a line. The contraction
of D} yields also a P2-bundle, but the center of the converse blowing-up is a
point.

These two processes yield a 3-dimensional version of elementary transforma-
tion.
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(2.20) Summing up the preceding observations we get the following clas-
sification table of reducible singular fibers in minimal Del Pezzo fibrations.

type m La)
ys dScdΛ

can blow
down first

t O
nearby
fiber

(2.12)
(2.19.1)

(2.19.4)

(2.19.3c)

(2.19.3b)

(2.19.2)

(2.19.3a)

(2.14)

(2.17)

2

2

2

2

2

2

2

2

3

three 2(2,
P2(l) + 2(6,

P2(2) + Σ(3,

2(2, l) + 2(3,

Σ(l9 l)+2"(4,

Σ'(2,0)+Σ(4,

Σ(2y 2) + 2"(2,

i (3, l ) + 2 (3,

*(2, 1, l)+*(2,

l)'s

2)

2)

2)

2)

2)

2)

1)

1,1)

9=3+3+3
9 = 1+8

9=4+5

8 = 3 + 5

8=2 + 6

8=2 + 6

8=4+4

8=4 + 4

8=4+4

any

D2

either

either

D2

either

either

either

pi

P2

P2

Σx

Σo

Σf

2

Σo

Σ2

pz

P2

pi

pi

Σλ

ΣQ

Σo

Σo

Σo

pz

3 lines
conic

conic

conic

conic

conic

conic
pi+pi

pixPi

Here P\μ) denotes (P2, O(μ)) and Σ(δχ, ••-, δΛ) denotes the scroll of the
vector bundle ©(δ^θ φC^δ,,) over P\ In particular the base space of Σ(a, b)
is Σ|β-δ|. Σ' denotes the projective image via the rational map defined by the
tautological line bundle. So Σ'(2, 0) is the singular quadric.

(2.21) Remark. In any case L is relatively very ample. When we cut a
fiber of the type (2.17) by a general member of \L\, we get a fiber of the type
(2.19.3a). If we cut (n— l)-times, then we get a singular fiber of Kodaira's
type I2 except in case (2.12), which yields type I3.

3. Non-normal fibers

In this section we study irreducible non-normal fibers in minimal Del
Pezzo fibrations. The main result here is the following

(3.1) Theorem.
d=6 and n^3.

^S, an irreducible non-normal fiber appears only when

(3.2) Beginning of the proof. As we see in (1.5), L is very ample on
V=M0 if d^Sy and such a pair (F, Lv) is classified in [F6]. Since V is not
normal, its singular locus is of dimension n—l. So, by [F6; (2.7)], n^3 and
V is of the type (c) there. Let us recall what this means precisely.

Embed V in P = P * + r f ~ 2 by \L\. Take a singular point v of V and let W
be the projective join v*V. By "type (c)" we mean that W is a generalized
cone over a Veronese curve Z—P\ of degree d—2 in Pd~2.

(3.3) In such a case the structure of V is described in [F6] as follows.
Both singular loci of V and W coincide with R= Ridge(W)> the set of points x
such that x*W=W. R is a linear Pn~ι in P. Let P be the blowing-up of P
along R and let Wy V be the proper transforms of W, V. Then (Wy HΛ) is the
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scroll of the vector bundle (d—2)Hβ®0@••• 0 0 over Z^Pι

βy where ΉΛ is the
pull-back of 0P(l). Vis a smooth member of \HΛ+2Hβ\ on Wby [F6; (c.l)].
The unique member D of \HΛ—(d—2)Hβ\ on W is the exceptional divisor of
W-> W. The natural mappings D -^ Z and D-> P yield D ^ Z X Λ=:P J X ̂ Γ 1

The intersection Vf]D is defined by αoi8o+α1ySo/?i+^2ySi=O when n=3 for
suitable homogeneous coordinates (α0: α x: α2) and (β0: βλ) of i? and Z. When
n=2, there are two cases as in [F6; p. 153, (ci)].

(3.4) Here and in (3.5), we assume n=3. In this case the exceptional
divisor VD—Vf)D of the birational map V-*V is a Px-bundle over Z and is a
double coevring of R branched along a smooth hyperquadric. Therefore ΫD —
PβXPl with HΛ=Hβ+Hτ in Pic(FD). The normal bundle of VD in Fis the
restriction of [D]=HΛ-(d-2)Hβ=Hτ+(3-d)Hβ.

(3.5) On the other hand, V is a hypersurface in M. Let S be its singular
locus and let 6 be the conormal bundle of S in M. Clearly S—R — Pl and
det β=Kϊs—ωs=HΛ. Let M be the blowing-up of M along 5, let E be the
exceptional divisor over 5, let F M be the proper transform of V and set VE=
VMΓιE. Then (E, [-E]) is the scroll of β over 5 and (VM, VE) — (V, VD).
Hence VE->S is a double covering, VE—PβxP\ and the restriction of [E] to "P£

is HT+{3-d)Hβ. Set J Ϊ (5)=[-£]ePic(E) . Then, since V(Ξ\[V]-2E\ on
ifr, F £ is a member of 12iϊ(£) |. So 2H(ε)2HJE} =H{S)HΛ{VE} - (-Hr+
{d-3)Hβ) (Hr-\-Hβ){PlxP\}=d-A. On the other hand H{ε)2HtA{E}=cι{β)
HΛ {S} = HI {Pi} = 1. Thus we get d= 6, as desired.

(3.6) Now we study the case n=2. First we consider the case in which
VD is irreducible. Then VD is a section of D-+Z and D->R^Pl

a makes t ^ a
double covering of R. The normal bundle of VD in Fi s HΛ—(d—2)Hβy which
is of degree 4—d. On the other hand, let S be the singular locus of V, 6 the
conormal bundle of S, M the blowing-up of M along S, E the exceptional
divisor over 5, VM the proper transform of V, and #"(£)=[—£] £ ePic(£).
Then, similarly as in (3.5), we have (VMy VE)—(V, VD) for VE=VMΠEy S^

Λ and VE^ \2H{β)\ on E. So A-d= [E]{VE} = -H(£){VE}
() -2c1{ε)=-2, hence d=6.

Next we consider the case in which VD is not irreducible. As we saw in
[F6], VD does not contain any fiber of D-> R and hence VD is of the form Y^ Y2

on D~ZxRy where Yλ is a fiber of D->Z and Y2 is a smooth member of
| # β + # J . Thus Y?=0, 7 ^ = 1 , 71=2 in Z). The normal bundle of VD in
V is the pull-back of [D]=HΛ-(d-2)Hβy so [2)]71=1 and [D]Y2=3-d. On
the other hand let Sy Sy My Ey VMy H{6) and VE be as above. Then S—R—P1^
άttε=HΛy VE^\2H(β)\ and VE is of the form Zλ+Z2 with [E\Zλ = l and
[E]Z2=3-d. Both Z/s are sections of £->S ί. Thus 4 - t / = [E]{ΫE} = -2
again.
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Thus we complete the proof of (3.1).

(3.7) REMARK. It is uncertain whether such non-normal fibers of degree
six appear really in Del Pezzo fibrations or not.

4. Global structures

Let (/, M, C, L) be a minimal Del Pezzo fibration as in § 1.

(4.1) First we study the case d=Ln=l. In [F4-III; § 14] we studied the
structure of Del Pezzo manifold of degree one, which can be generalized in the
present relative situation as follows.

Every fiber V=MX is irreducible and reduced since d=\ and Lv is ample.
Moreover every member of \LV\ is irreducible and reduced. Hence (F, Lv)
has a ladder. B s | L v | is the intersection of n general members of \LV\ and is a
simple point since rf=l. Set X=0M{L), 6=f*X and let C be the cokernel of
the natural homomorphism /*<£—>.£. The above observation implies that the
scheme-theoretical support Z of C is a section of /. Let M% be the blowing-up
of M along Z, let E be the exceptional divisor over Z and set -C*=O(L—E).
Then β—f^jy and /*/*-£*->-£* is surjective. Hence we have a morphism
φ: M*->P of C-schemes such that φ*Hβ=L—E, where (P, Hβ) is the scroll of
<5. Similarly as in [F4-III, § 13], rank(£)=/z and the restriction φE: E-+P is
an isomorphism. Every fiber of φ is an irreducible reduced curve of arithmetic
genus one.

Set Φ=OMK2L)
 a n d &=Φ*£>- Similarly as in [F4; (14.2)], £F is a locally

free sheaf of rank two on P, and we have a finite morphism p: M*-> W of degree
two such that p*HΛ=S)y where (W, HΛ) is the scroll of £F over P. The branch
locus of p is of the form S + J B 2 , where S=p(E) and B2 is a smooth divisor such
that S Π B2=0. S is a section of the ^-bundle W->P and £ — S— P.

We have an exact sequence 0->OM*(2L-2E)->OM*(2L-E)->OE(2L-E)
-»0. The map φ*OM*(2L—E)->φ*OE(2L—E) vanishes everywhere on P. So

φ*OM*(2L—E)— &p(2Hβ)- U s i n g t h e e x a c t sequence 0->OMK2L—E)->OM*(2L)

->O£«(2L)->0, we get an exact sequence (*) 0->QP(2Hβ)->EF->OP{2AP)->0,

where A is the line bundle on C corresponding to Lz via Z — C. Pull back (*)

to B2 by the branched covering 5 2-^P. Then PBJ^β) is the fiber product of W

and B2 over P, and hence has two disjoint sections. Therefore (*) splits on B2.

So it splits on P itself. Thus £F— OP{2Hβ)<SQP(2AP). Clearly 5 is the unique

member of \HΛ-2Hβ\on W=PP(%) and B2^\3(HΛ-2AW)\.

Conversely, (/, M, C, L) is obtained from the data C, 5, ^4ePic(C) and Z?2

abo^e as follows. Let (P, //β) be the scroll of the vector bundle 6 over C. Set

&=OP(2Hβ)®OP(2AP) and let (IF, HΛ) be the scroll of 3 over P. Let 5 be

the unique member of | HΛ—2Hβ \. Suppose that there is a smooth member B2
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of 17>{HΛ—2AW) I such that S (Ί B2=0. Let M* be the finite double covering of
W branched along S U B2 The ramification locus E over S can be blown down
smoothly along the direction E—P-+C. Let M be the manifold obtained by
this blowing-down. The line bundle L=Hβ-\-E comes from Pic(M). Clearly
we have /: M-> C and (/, M, L, C) is a Del Pezzo fibration of degree one.

Various invariants of (/, M, L, C) can be calculated by the above des-
cription. For example, we have K(PIC)=-nHβ+dtte, K(WjP) = -2HΛ+
(2Hβ+2Aw), K(MΊW) = 2HΛ-Hβ-3A, K(M*/M) = (n-l)E and hence
K(M/C)+(n— l)L=/*(det£—A), where K{XjY) denotes the relative canonical
bundle of X->Y.

The singular fibers of/ appear exactly where the mapping jB2->Ois not
smooth. Moreover, every fiber has only isolated singularities (hence normal).
Indeed, otherwise, there is a curve Y on B2 contained in a fiber F of W->C
such that B2 and F are tangent along Y. The tangent spaces of B2 and F at
each point y on Y are the same viewed as subspaces of the tangent space of
W. Hence their quotient spaces are the same. So [B2]Y—[F]Y. But [B2]γ

is an ample line bundle while [F]γ is trivial. This contradiction proves the
assertion.

Finally we remark that every fiber of/ is a weighted hypersurface of degree
6 in the weighted projective space P(3, 2, 1, •••, 1).

(4.2) Here we study the case d=2. Every fiber of / is irreducible and
reduced by the results in §2. Set X=OM(L), £=/*-£. Then f*β-+X is
surjective by (1.5.2). So we have a morphism p: M^P=P(S) such that
ρ*H=Ly where H=OP{\). 6 is locally free of rank n+ϊ and P is a Pw-bundle
over C. p is a finite double covering and hence its branch locus B is smooth.
B is a member of \4H-2AP\ for some ^ ^ P i c ( C ) and K(MjC)+{n-ί)L=
/*(det 6—A). Singular fibers of / appear exactly where the mapping B-> C is
not smooth and every fiber has only isolated singularities. It is a weighted
hypersurface of degree 4 in P(2, 1, •••, 1).

The proofs are easier than in (4.1).

(4.3) The case d=3. Every fiber of/ is irreducible and reduced by the

result in § 2. Moreover L is relatively very ample by (1.5). Hence we have an

embedding p: M-+P=P(S) for S=f*OM(L) such that p*H=L for H=OP(1).

M is a smooth member of [ 3H—AP \ for some ̂ 4ePic(C) and K(MIC)+(n— \)L

=/*(det 6—A). Every fiber of/ has only isolated singularities.

(4.4) The case d—\. Every fiber Mx^f~1(x) over x^C is irreducible

and reduced. We have an embedding p: M-+P such that p*£f=L, where

(P, H) is the scroll of <5=f*OM(L) over C. Mx is a complete intersection of two

hyperquadrics in Px^Pn+2. Let S be the ideal defining M i n P . The exact
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sequence 0-> J[2H] -> 0P[2H] -* 0M[2L] -> 0 yields an exact sequence 0->iR->
S2^-^/,,^[2L] -> 0 on C, where SI is a locally free sheaf of rank two. C=J/J2

is the conormal sheaf of M in P and Λ=/*(C[2L]). Hence C—f*3l[-2L] and
K(MIP)=4L-f*A for i l=det 51. So ίΓ(M/C7)+(if-l)L=/*(detέ?-i4).

We claim that every fiber Mx has only isolated singularities. To see this,
take a small neighborhood U of x in C such that SίΌ is free. A free basis of 3LO

gives two divisors D19 D2 on Pv such that MU=D1 f] D2. D/s are members of
12HVI. Since M is smooth we may assume that D/s are smooth, by shrinking
U and by choosing a suitable basis if necessary. We will derive a contradiction
assuming that Sing(MΛ) contains a curve Y. At every point y on Y, the
tangent space of M is contained in the tangent space of the fiber Px of P-> C.
So we have a surjection 9Z(Λf, P)γ->tJ2(Pχy P)γ where 37(X, P) is the normal
bundle of X in P. m(M, P)Y—[D1]Y®[D2]Y — 2HY®2HY is ample, while
V2(Pχy P)Y~OY. This yields a contradiction, as desired.

(4.5) The case d=5. Every fiber is irreducible and reduced, and further-
more normal by (3.1). L is relatively very ample. Any smooth fiber is a
linear section of the Grassmann variety Gr(5, 2) parametrizing C2's in C5

embedded by Pliicker coordinates (cf. [F4-II]). In particular w^6. Any sin-
gular fiber V is of one of the types classified in [F6]. Moreover we claim that it
has only isolated singularities. In view of [F6; (2.9)], it suffices to rule out the
cases (si21i), (si21u), (sillli), (silllu).

In case (silllu), we have n=5 and V is embedded in P—Pi by \LV\. Let
^eSing(F) and W=v*V as in (3.2). W is a generalized cone over the scroll
Σ(l, 1, 1) with i?=Ridge(W) — P2

a in case (silllu). Let W and V be the proper
transforms of W and V in the blowing-up of P along R. Since the scroll
2(1, 1, 1) is isomorphic to {P2

τxPl, Hτ+Hv)y (W, HΛ) is isomorphic to the scroll
of the vector bundle [HT+HV](BO(BO(BO over 5 = P j χ P } , where HΛ is the
pull-back of £V(1). The exceptional divisor of W-> W is the unique member
D of \Ha-Hτ-Hv\ and D^BxR. V is a member of \HΛ+HT\ on W and
ΫD=ΫΓ\D is defined by aoτQ-{-aιτι-\-a2τ2=Q in D, where (a0: aλ: a2) and
(τ0: Tj. τ2) are homogeneous coordinates of Z? and P\. Thus F has double
points along R.

Suppose that such a variety V is a fiber of /. Let S be the submanifold of
M corresponding to R. Then det Q=.—HΛ for the conormal bundle 6 of 5 in
Mf since i f s =(l—n)L 5 =—4i/ Λ and 5—P«. Let M be the blowing-up of M
along 5, let E be the exceptional divisor over S and let VM be the proper trans-
form of V on Λf. Then (E, [-E]) is isomorphic to the scroll of 6 over S and
F M is a member of \V&—2E\. So ΐ ^ = F M n £ is a member of |2ίf(£)| on
E~P{β). We have an exact sequence 0->OE[-H(ε)]-*OE[H(e)]^OvB[H(ε)]
->0. This yields 6— 7c*0E[H(β)] — π*OvE[H(ε)]y where π is the map £->S.
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Now we use the natural isomorphisms (VDdΫ)—(VEczVM) and (VD->R)~
(ΫE-»S). Since [#(<?)]=[-£] in Pic(P*) is the conormal bundle of VE in
VMy we infer β— φ*0vI)[~D]=φήi0vJHτ+Hy]—HΛ]y where φ is the map
D-+R. Using the exact sequence 0-*OD[—Hτ—Het]-*OD->OvD->0, we get
an exact sequence 0-*H°(B, HJ®0(-2)-+H\B, Hτ + HΊI)®O(-l)-+e-+0
on R^S. Since #>(£, # , ) = 2 and h\By i / τ + i / , ) - 6 , this implies cι{β)=~2Hety

contradicting the preceding observation. The case (silllu) is thus ruled out.
In case (sillli), the situation is similar as above and we get a contradiction

by the same method. Here we have n=4, Vc:PΊ

Λy R~Pι

Λ and (Wy HΛ) is the
scroll of [Hτ+Hr,]φ0®0 over B. Moreover d e t £ = — HΛ for the conormal
bundle 6 of S—P\ in M since Ks=(\—ri)Ls= — ZHct. The rest of the argu-
ment is completely the same as above.

In case (si21u), n=4 and J B ^ Σ 1 = {(τ0: τ x: τ2), (Vo: Vl)^P2

τxPiί\τoη1 =
τlVo}. (ϊP, HΛ) is the scroll of [Hτ+Hη]®0®0®0 over 5. Λ-Ridge(IF)^
P* and D — BxR. V is a member of l i ^ + Z ^ I on ϊ ^ and ΫD=ΫΠD is
defined by a0TQJ\-alTl-\-a2T2^0 in Z). Let 5 be the submanifold of M corres-
ponding to R. Then det^^O for the conormal bundle 6 of S in M, since
Ks= — 3LS= — 3i/Λ. On the other hand, we get an exact sequence 0-*H°(By Hv)
®0(—2)->H°(By Hr+H19)®O(—l)-*6->0 by the same argument as before.
This yields a contradiction since h°(B, Hv)=2 and h°(By Hr+Hv)=-5.

The case (si21i) is ruled out similarly. This time we have n—Zy R—S~Pι

Λ

and det<?=0, but the rest are the same as in the case (si21u).
Thus we complete the proof of the claim. In view of [F6; (2.9)], we ob-

tain the following

(4.5.1) Corollary. When d=5 and n^4} every fiber of f is smooth.

(4.5.2) REMARK. When d=5 and n^3y singular fibers can really appear.
An example is obtained by taking a Lefschetz pencil of a Del Pezzo manifold
of degree five.

(4.6) The case d=6. Every fiber of / is irreducible and reduced, but
possibly non-normal (cf. § 3). L is relatively very ample and w^4.

When n—Ay any singular fiber is normal and of the type (vu) in [F6; (2.9)].
It is uncertain whether such a singular fiber exists or not.

(4.7) The case d=7. Every fiber of/ is irreducible reduced and normal.

Smooth fibers are classified in [F4] and we have n^3.
When κ=3y every fiber is smooth by [F6; (2.9)] and is isomorphic to the

blowing-up of P2 at a point. Hence M is obtained from a P3-bundle over C
by blowing-up along a section.

(4.8) The case d=8. We have «^3 and reducible fibers are classified in
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the table (2.20).
When n=3y every irreducible fiber is smooth by (3.1) and [F6; (2.9)], hence

isomorphic to P 3 .
When n=2, every irreducible singular fiber is a singular quadric. In par-

ticular, every irreducible fiber is smooth if a general fiber is isomorphic to Xv

In this case M is the blowing-up of a P2-bundle along a section, off the fibers
of the type (2.19.3c).

(4.9) The case d^9. We have d=9 and n=2. Reducible fibers are
classified in § 2 (cf. table (2.20)). Every irreducible fiber is smooth as before,
hence isomorphic to P 2 . Thus, M is obtained by blowing up a P2-bundle
along curves in fibers as in (2.12), (2.19.1), (2.19.4).

(4.10) By the preceding observations altogether, we see that every irre-
ducible fiber has only isolated singularities unless d=6. It would be nice if
we have a conceptual proof of this fact which does not need so precise a clas-
sification as in [F6].

(4.11) Now we study non-minimal Del Pezzo fibrations. As we see in
§ 1, they are obtained from the minimal reductions by blowing up points. In
such a case the minimal reduction (Mb, D) has some additional properties.

First of all d>\ since L is /-ample and there exists a reducible fiber. More-
over, for any point p at which the reduction M* is blown up, there is no curve
Y in W such that Y(=p, DY=\ and/>( Y) is a point.

To see this, let M' be the blowing-up of M b at p and let E be the excep-
tional divisor over p. Then U—Έ is relatively ample on M\ since (M', U) is
an intermediate step of the reduction. Let Y' be the proper transform of Y
on M\ Then 0<LΎ'=(D-E)Y'<DY=l, since Y^p. Thus we get a
contradiction.

This is a very strong condition when w^3. In fact, any general fiber
(V, Lv) must be isomorphic to (P 3, 0(2)). Indeed, otherwise, we find a line Y
in V passing p for any point p on V, by virtue of the classification theory of
Del Pezzo manifolds in [F4]. Using relative Hubert schemes we infer that
there is a curve Y as above even if p is in a singular fiber. This is ruled out
by the preceding observation.

REMARK. When n=2, there are many examples where MΦM^.

(4.12) REMARK. A quadruple (/, M, C, L) is called a hyper quadric fibration
if a general fiber (Mx) Lx) is not a Del Pezzo manifold but a hyperquadric in
P* + 1 instead. In this case M is embedded in the scroll (P, H) of G=f*OM(L)
over C as a member of \2H—AP\ for some A<=?ic(C) and L=HM. Moreover
every fiber has only isolated singularities. In particular it is irreducible if n^2.
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These facts should be easily proved by those who have read through this
paper.
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