
Title Fibred double torus knots which are band-sums of
torus knots

Author(s) Murasugi, Kunio; Hirasawa, Mikami

Citation Osaka Journal of Mathematics. 2007, 44(1), p.
11-70

Version Type VoR

URL https://doi.org/10.18910/11912

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Hirasawa, M. and Murasugi, K.
Osaka J. Math.
44 (2007), 11–70

FIBRED DOUBLE TORUS KNOTS WHICH ARE BAND-SUMS
OF TORUS KNOTS

M IKAMI HIRASAWA and KUNIO MURASUGI

(Received May 2, 2005, revised February 23, 2006)

Abstract
A double torus knotK is a knot embedded in a Heegaard surfaceH of genus 2,

and K is non-separating ifH n K is connected. In this paper, we determine the
genus of a non-separating double torus knot that is a band-connected sum of two
torus knots. We build a bridge between an algebraic condition and a geometric
requirement (Theorem 5.5), and prove that such a knot is fibred if (and only if)
its Alexander polynomial is monic, i.e. the leading coefficient is �1. We actually
construct fibre surfaces, using T. Kobayashi’s geometric characterization of a fibred
knot in our family. Separating double torus knots are also discussed in the last
section.

1. Introduction

A knot (or link) K in S3 is called adouble torus knot(or link) if K can be em-
bedded in the Heegaard surfaceH of genus 2 (i.e., a standardly embedded closed sur-
face of genus 2). In [6] and [7], such knots are extensively studied. Double torus
knots form a large family of knots that contains torus knots,2-bridge knots, knots with
(1, 1)-decomposition (i.e., genus one bridge one knots) andtunnel number one knots.
However, the class of double torus knots is not excessively large, with some 3-bridge
knots outside the category. (Also, double torus knots have tunnel number at most 2.)

Other interesting examples of double torus knots are Berge’s doubly primitive knots
[1], and Dean’s twisted torus knots [3] [11]. The class of Berge’s knots is conjectured
(cf. [5]) to cover all knots which yield lens spaces via Dehn surgery. They are known
to be fibred knots [14], [7]. Some twisted torus knots yield small Seifert fibred spaces
via Dehn surgery, and so far, all examples which yield those with finite fundamental
groups are known to be fibred.

In general, it is not easy to decide whether or not a given knotis a fibred knot,
and to study fibred knots, both algebraic and geometric methods have been used.

In this paper, we study double torus knots of type (1, 1), (or simply, (1, 1)-double
torus knots). These should not be confused withg1-b1 knots. For a detailed descrip-
tion of such knots, see§2 or [7]. We characterize completely fibred (1, 1)-double torus
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knots, and establish a method to determine whether or not a given (1, 1)-double torus
knot is fibred. We also determine the genera of (1, 1)-double torus knots.

If K is embedded in a double torusH so that H n K is connected (resp. discon-
nected), thenK is callednon-separating(resp.separating). Note that a non-separating
K may be embedded inH in a different way so thatK is also called separating, and
vice versa.

Double torus knots of type (1, 1) are, in general, satellite knots, and their pattern
knots are also of type (1, 1) which are, if non-separating, ribbon knots and hence slice
knots [7].

Our main theorem proved in this paper is as follows;

Theorem A. A non-separating double torus knot K0 of type(1,1) is fibred if and
only if its Alexander polynomial1K0(t) is monic, i.e., the leading coefficient of1K0(t)
is �1.

In Section 14, we deal with separating (1,1)-double torus knots. They are of genus
at most one, and we determine which of them are fibred (i.e., determine when they are
the unknot, the trefoil knot or the figure-eight knot).

The Alexander polynomial rarely determines the fibredness of knots, except for
limited situations like alternating knots. Although our theorem does not hold in gen-
eral for all double torus knots, there are other classes of double torus knots for which
a similar theorem holds. As one of such classes, satellite knots of tunnel number one
are discussed in [8].

Recall that if a knotK is fibred, then1K (t) is monic [2, Proposition 8.16]. The-
orem A is proved as follows: First we note that (1, 1)-double torus knotK0 is, in gen-
eral, a satellite knot of a satellite knot, where the companions are torus knots and the
final pattern knot, denoted byK = K (n, p j �,�), is also a non-separating (1, 1)-double
torus knot (Proposition 2.2).

Then we prove:

Theorem A0. The knot K(n, p j �, �) is fibred if and only if its Alexander poly-
nomial is monic.

This is the first and crucial step toward the proof of Theorem A.1 In fact, the most
of this paper is devoted to the study ofK (n, p j�,�). To prove Theorem A0, we define
the graphH and the notion of the graph beingadmissible.

We establish a quick algorithm that calculates1K (t) using this graphH (K ) for
K = K (n, p j �, �). This algorithm also works for all 2-bridge knots (Corollary 4.9),

1For the fibredness, Theorem A does not immediately follow from Theorem A0. See [2, Corol-
lary 4.15 and the following Remark].
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and we see that ifH (K ) is admissible, then1K (t) is monic. Then our proof of Theo-
rem A0 splits into two parts: one is algebraic and the other is geometric in nature. In
the algebraic part, we show:

Theorem B. If 1K (t) is monic, then H(K ) is admissible.

In the geometric part, we define (in Section 12) the notion of (admissible) word
W(K ) of K , and show thatW(K ) is admissible if and only ifH (K ) is admissible
(Proposition 12.9). WhenW(K ) is admissible, we actually construct a fibre surface for
them. Using T. Kobayashi’s theory ofpre-fibre surfaces(see [10], or Section 12 for
definitions) we show the following theorem which completes the proof of Theorem A0:

Theorem C. If W(K ) is admissible, then K is fibred.

Using the fibre surface forK (n, p j�,�), we construct a fibre surface for the satel-
lite knot K0, and complete the proof of Theorem A.

Then, we construct a minimal genus Seifert surface for (1, 1)-double torus knots,
and prove the following:

Theorem D. Let K0 be a non-separating double torus knot of type(1, 1). Then
the genus of K0 is exactly half of the degree of the Alexander polynomial of K0.

If K is separating, neither Theorem A nor Theorem D holds. In fact, the genus
of a separating double torus knot is at most one. However, in the last section, we
determine the genus of such knots and characterize fibred knots.

This paper is organized as follows: Section 2 begins with a brief description of
double torus knots, particularly, those of type (1,1). In Section 3, we prove some basic
properties of non-separating double torus knots of type (1,1). In Section 4, we define
the graphH (K ) of K = K (n, p j�,�), and the notion ofH (K ) being admissible. Then
we provide an easy algorithm to calculate, usingH (K ), the Alexander polynomial of
K , and also that of any 2-bridge knot. The following five sections, §5–9, are devoted to
a proof of Theorem 5.5, called the Non-Cancellation Theorem, which is one of the key
theorems in our paper. Theorem B, proved in Section 10, is an easy consequence of
Theorem 5.5. In Section 11, we classifyK (n, p j�,�) into six classes according to the
monicity of their Alexander polynomials1K (t) (i.e., 1K (0) =�1). In Section 12, we
review basic tools to prove fibredness (Stallings twists, and K -banding of pre-fibre sur-
faces), and define the wordW(K ). In Section 13, we first construct fibre surfaces for
the pattern knotsK (n, p j�,�) whose wordW(K ) is admissible (Subsection 13.1), thus
proving Theorem C. In 13.2, we construct fibre surfaces for all non-separating (1, 1)-
double torus knots and prove Theorem A. We then construct minimal genus Seifert
surfaces for (1, 1)-double torus knots whose word is not necessarily admissible (Sub-
section 13.3), thus proving Theorem D. In Section 14, we study separating (1,1)-double
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Fig. 2.1. K = f(3, 3, 3; 3, 3, 3j 4)(1, 0, 1, 1)(0,�1, 1, 1)g.
torus knots. Using theorems proved in [6], we determine which separating (1,1)-double
torus knots are fibred knots (i.e., the unknot or 31 or 41).

2. Preliminaries

In this section we state some properties of (1, 1)-double torus knots. For the self-
containedness, we begin with a few necessary definitions. However, for details, we
refer to [6] and [7].

Throughout this paper, we consider almost exclusively knots, not links, unless spec-
ified otherwise. Also, we do not consider orientations of knots.

Let K be a knot embedded in a standard double torusH . As in Fig. 2.1, we
regard H as being obtained by glueing two once-punctured toriTL (on the left side)
andTR (on the right side) along the circleO. Then,K is cut byO into parallel classes
of arcs properly embedded inTL and TR. If K misses one of the tori,K is a torus
knot. Therefore, we assumeO cuts K non-trivially.

On each torus,K nO consists of at most three parallel classes. Then as in Fig. 2.1,
we denote by (n1,n2,n3,n01,n02,n03) the numbers of constituent arcs. Of course we have
the equalityn1 + n2 + n3 = n01 + n02 + n03 := n. Denote by (r , s), (u, v) the slopes of
the first and second parallel classes of arcs inTL , and the slope of the third is au-
tomatically (�r + u,�s + v). Also denote by (r 0, s0), (u0, v0) the slopes of the two
of the parallel classes inTR. The convention of ordering the arcs and that of the
slope should be inferred from Fig. 2.1. Finally, in gluing the arcs alongO, we have
a choice, which is denoted by�n < p � n. Then by arranging the above numbers as
in K = f(n1, n2, n3; n01, n02, n03 j p)(r , s, u, v)(r 0, s0, u0, v0)g we can express a double torus
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knot K . When K has only one parallel class of arcs on bothTL and TR, K can be
denoted by

(2.1) K = f(n, 0, 0;n, 0, 0j p)(r , s,�,�)(r 0, s0,�,�)g,
and we say thatK is of type(1,1), or simply a (1,1)-double torus knot. As other types,
we have (1, 2)-, (1, 3)-, (2, 2)-, (2, 3)- and (3, 3)-types. We say that K is separatingif
H n K is disconnected, and otherwise,K is non-separating.

If n = 1, K is a connected sum of two torus knots and henceK is fibred. There-
fore, we assume hereafter thatn > 1.

The following is the starting points of the study of (1, 1)-double torus knots.

Proposition 2.1 ([7, Proposition 4.5]). Let K be a(1,1)-double torus knot. Then
(1) gcd(n, p) = 1, and
(2) K is non-separating if and only if n is odd.

For K = f(n, 0, 0;n, 0, 0j p)(r , s,�,�)(r 0, s0,�,�)g, if any of r , s, r 0, s0 equals 0,
then K is a torus knot (or a trivial knot). Since all torus knots are fibred, we assume
rsr 0s0 6= 0.

Since our knots are, in general, satellite knots, we first review when our knots are
satellite knots and what the pattern knots are.

Proposition 2.2 ([7, Theorem 4.4]). LetK=f(n,0,0;n,0,0j p)(r ,s,�,�)(r 0,s0,�,�)g,
n � 2 be a (1, 1)-double torus knot. If jr j, jsj, jr 0j, js0j � 2, then K is a satellite knot.
To be more precise;
(1) If jr j � 2 and jsj � 2, then K is a satellite knot with companion a torus knot
T(r , s), and its pattern knot K0 is a (1, 1)-double torus knot of the form:

K 0 = f(n, 0, 0;n, 0, 0j p)(1, rs,�,�)(r 0, s0,�,�)g.
(2) If further jr 0j � 2 and js0j � 2, then K0 is a satellite knot with companion a torus
knot T(r 0,�s0), and its pattern knot K00 is a (1, 1)-double torus knot of the form:

K 00 = f(n, 0, 0;n, 0, 0j p)(1, rs,�,�)(1, r 0s0,�,�)g.
REMARK 2.3. By Proposition 2.4 below, it is justified to assume that the pattern

knot of a (1,1)-double torus knot is of the following form, where� and� are non-zero
integers.

K = f(n, 0, 0;n, 0, 0j p)(1,�,�,�)(1,�,�,�)g,
For simplicity, the knot of the above form will be denoted byK (n, p j �, �). (If� = 0 or � = 0, thenK is a trivial knot.)
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Fig. 2.2.

Proposition 2.4. If jr j = 1 or jsj = 1, then K is ambient isotopic to K0 =f(n, 0, 0;n, 0, 0j p)(1, rs,�,�)(r 0, s0,�,�)g. If jr 0j = 1 or js0j = 1, then K is ambient
isotopic to K00 = f(n, 0, 0;n, 0, 0j p)(r , s,�,�)(1, r 0s0,�,�)g.

Proof. General cases are understood by a typical deformation in Fig. 2.2.

3. Non-separating (1, 1)-double torus knots

We assume, from this section through Section 13, that our (1,1)-double knots are
non-separating, and hence we assume:

(3.1) n is odd and gcd(n, p) = 1.

(Separating knots are discussed in the last section, Section 14.)
In this section, we prove some basic properties of non-separating (1,1)-double torus

knots. As is found in [7],K = f(n, 0, 0;n, 0, 0j p)(r ,s,�,�)(r 0,s0,�,�)g is obtained by
a band-connected sum of a split union of two torus knots of type (r , s) and (r 0,�s0).
See Fig. 3.1 for a special case. If any ofr , s, r 0, s0 equals 0, thenK is a torus knot.
Since all torus knots are fibred, we assumersr 0s0 6= 0.

Now the pattern knotK (n, p j�,�) is obtained from the split union of two unknots
by banding. See in Figs. 3.1 and 3.2 for example,K (5, 2j 2, 2) andK (7, 4j 2, 2) in a
schematic form, where the band is depicted by an arc. Moreover, we can prove that the
full-twists of the arcs can be removed without affecting thefibredness, while preserving
the Alexander polynomials. (See Proposition 3.5 and§13.)

By rotating, twisting TR, taking mirror images, and isotopies, we have the
following:

Proposition 3.1. We have the following equivalences, where�K means the mir-
ror image of K. K (n, pj�,�) �= K (n,�pj�,�) �= K (n,n� pj�,�) �= K (n, pj��,��) �=�K (n, p j �, �).

Proof. We can deformK (n, p j �, �) into K (n, n + p j �, �) by twisting TR (right
half of the double torus) by� . In particular, we have the second equivalence. Other
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Fig. 3.1. K (5, 2j 2, 2).

Fig. 3.2. K (7, 4j 2, 2).

equivalences are demonstrated by Fig. 3.3, where ‘rotation’ means a�-rotation along
the axis vertical to the paper, and ‘mirror’ means the simultaneous crossing changes.
Note that (�,�) becomes (��,��) by a rotation, because of the difference of the con-
vention of positive twists inTL and TR. Refer to Figs. 2.1 and 3.1.

As a consequence of Remark 2.3 and Proposition 3.1, we have:

Corollary 3.2. Let K be a non-trivial, non-separating(1, 1)-double torus knot
K (n, p j �, �). Then n� 3, n is odd, gcd(n, p) = 1 and �� 6= 0. Furthermore, without
loss of generality, we may assume that n> p > 0 and � � j�j > 0.

REMARK 3.3. In drawing figures and just calculating the Alexander polynomials,
it is sometimes convenient to assume thatp is even.

The Alexander polynomial of (1, 1)-double torus knots has been obtained in the
following proposition. (In Section 4, we see that the polynomial f (t) below is shown
to coincide withh(t) defined in Definition 4.4.) We denote byB(n, p) the 2-bridge
knot of type (n, p) using Schubert’s notation.
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Fig. 3.3. Deformation ofK (5, 2j �, �).

Proposition 3.4 ([7, Theorem 4.7]). LetK=f(n,0,0;n,0,0j p)(r ,s,�,�)(r 0,s0,�,�)g.
Then K is a band sum of a split union of two torus knots T(r , s) and T(r 0,�s0), and
the Alexander polynomial of K is of the form:

1K (t) = 1T(r ,s)(t)1T(r 0,�s0)(t) f (t) f (t�1)

for some f(t). Moreover, if rs = r 0s0 = �, then f(t) = 1B(n,p)(t�).

This is the first place where we can see an algebraic relationship between the 2-
bridge knot B(n, p) and the knotf(n, 0, 0;n, 0, 0j p)(r , s,�,�)(r 0, s0,�,�)g. Inspired
by this, T. Nakamura has given a geometric interpretation ofthese relationships for
K (n, p j 1, 1) [12].

Proposition 3.5 ([12, Proposition 3.3]). The double torus knot K= K (n, p j1, 1)
can be deformed by‘ twistings of bands’ into the connected sum of B(n, p) and its
mirror image�B(n, p). Moreover the twistings preserve the Alexander polynomial.

Fig. 3.4 illustrates the former half of Proposition 3.5. Note that by constructing
Seifert surfaces in Section 13, we can see that the twisting of bands are realized by
Stallings twists on minimal genus Seifert surfaces. However, in general, the Seifert sur-
face obtained by smoothing the ribbon singularities of the ribbon disk is not of minimal
genus.
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Fig. 3.4. The connected sum ofB(5,4) and�B(5,4). PutB(5,4)
on this side of the sheet and�B(5, 4) on the other side. Mak-
ing the connected sum is equivalent to cutting ‘the band’ at (�)
and we obtain a ribbon knot consisting of two unknots connected
by a band along ‘the half’ of Schubert’s diagram. Compare to
Fig. 3.1 regarding� = � = 1.

4. The Alexander polynomial of K (n, p j �, �) and the sequence of signs

For a (1,1)-double torus knotK (n, pj�,�), we define the key notions of this paper,
namely, the sequence of signs for (n, p), the graphH (K ), and the polynomialh(t) =
h(n,pj�,�)(t). We assumen is odd.

4.1. Sequence of signs.Given a pair of co-prime integers (n, p) with n > p >
0, consider a sequencẽS = fp, 2p, : : : , (n� 1)pg. Choose the representativekp, (1�
k � n � 1) mod 2n so that�n < kp < n, and define a new sequence of integers
S =

�
p, 2p, : : : , (n� 1)p

	
. Let "k be the sign ofkp, i.e., "k = kp

Æ��kp
��. The sequence

of signs for the pair(n, p) is defined to beS = f"1, "2, : : : , "n�1g. In the following,
when we refer to the pair of integers (n, p), we always assume gcd(n, p) = 1 and
n > p > 0, unless otherwise specified. The following is an importantfact which
relatesK (n, p j �, �) and the 2-bridge knotB(n, p).

Fact 4.1. The sequenceS, (or more generally, the sequence S) for the pair (n, p)
recovers the Schubert normal form of the diagram for the2-bridge knot B(n, p).

Now we prove two simple propositions onS.

Proposition 4.2. (1) If p is even, then S is skew-symmetric, i.e., "k = �"n�k.
(2) If p is odd, then S is symmetric, i.e., "k = "n�k.

Proof. (1) Supposep is even, i.e.,p = 2r . (i) If "k = 1, thenkp> 0, and hence,
for somem, kp = 2mn+q, where 0< q < n. Then, (n�k)p = 2rn�(2mn+q) = 2n(r�
m)�q. Since 0< q < n, we have(n� k)p < 0 and hence"n�k = �1. (ii) If "k = �1,
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then kp = 2mn� q, where 0< q < n. Thus (n � k)p = 2n(r � m) + q, and hence"n�k = 1. (2) Supposep is odd, i.e.,p = 2r + 1. (i) If "k = 1, thenkp = 2mn+ q, for
somem, where 0< q < n. Thus, (n�k)p = n(2r +1)� (2mn+q) = 2n(r �m)+ (n�q).
Since 0< n � q < n, we have"n�k = 1. (ii) If "k = �1, thenkp = 2mn� q, where
0< q < n. Thus (n� k)p = 2n(r �m) + (n + q) = 2n(r �m + 1)� (n� q), and hence"n�k = �1.

We can relate the sequence of signs for (n, p) and (n, n� p) as follows:

Proposition 4.3. Let S = f"1, : : : , "n�1g be the sequence of signs for the pair
(n, p), and S= f"01, : : : , "0n�1g for (n, n� p). Then"k = (�1)k+1"0k.

Proof. We may assume, without loss of generality, thatp is odd. (1) Supposek
is even, i.e.,k = 2a. (i) If "k = 1, thenkp = 2mn+ q, for somem, where 0< q < n.
Thereforek(n � p) = 2an� (2mn + q) = 2n(a � m) � q, and hence"0k = �1. (ii) If"k = �1, thenkp = 2mn�q, where 0< q < n. Thereforek(n� p) = 2n(a�m)+q, and
hence"0k = 1. (2) Supposek is odd, i.e.,k = 2a + 1. (i) If "k = 1, thenkp = 2mn+ q,
where 0< q < n. Thereforek(n� p) = (2a + 1)n� (2mn+ q) = 2n(a�m) + (n� q).
Since 0< n � q < n, we have"0k = 1. (ii) If "k = �1, then kp = 2mn� q, where
0 < q < n. Thus similarly,k(n � p) = 2n(a �m) + n + q = 2n(a �m + 1)� (n � q),
and hence,"0k = �1.

4.2. Graph H(K ) and polynomial h(t) of K . In this subsection, we introduce
two basic tools.

DEFINITION 4.4. Let S = f"1, "2, : : : , "n�1g be the sequence of signs for (n, p),
wheren is odd, p is even andn > p > 0.

Let Q = fqi g = f0,��"1,�"2,��"3, : : : ,��"n�2,�"n�1g, and R = fr i g =
�Pi

k=1 qk
	
.

Define the polynomial by:

h(t) = h(n,p j �,�)(t) =
nX

i =1

(�1)i t r i .

DEFINITION 4.5. The graphH (K ) of K (n, p j�,�), where p is even, is defined
as follows: H (K ) consists ofn vertices with coordinates (0,r1), (1,r2), (2,r3), : : : , (n�
1, rn) in the xy-plane and edges connecting adjacent vertices, wherefr i g is defined in
Definition 4.4. The vertices ofH (K ) are bi-colored, black and white alternately, so that
the first and the last (then-th) are black. We say that the graphH (K ) is admissible
if H (K ) has exactly one highest vertex and one lowest vertex.

Note that we can read offH (K ) from the half of Schubert’s diagram ofB(n, p),
as in Fig. 4.1, by following one underpath from the left end-point and recording from
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Fig. 4.1.

which direction (above or below) one goes under the overpath. At each step, they-
coordinate of the vertices changes by� or � alternately.

REMARK 4.6. We can read offh(t) from H (K ):

(the coefficient fort j ) = #(black vertices on the liney = j )

� #(white vertices on the same line),

where # indicates the number of elements.

See Fig. 4.1 for example whereK (n, p j �, �) = K (11, 8j 2, 1).

S = f8,�6, 2, 10,�4, 4,�10,�2, 6,�8g,
S = f1,�1, 1, 1,�1, 1,�1,�1, 1,�1g,
Q = f0,�1,�2,�1, 2, 1, 2, 1,�2,�1,�2g,
R = f0,�1,�3,�4,�2,�1, 1, 2, 0,�1,�3g.
h(t) = �t�4 + 2t�3 + t�2� 3t�1 + 2 + t � t2.

EXAMPLE 4.7. See Figs. 4.2, 4.3 for the cases of (n, p) = (7, 2) and (7, 4) for
various (�, �).

Now we state some applications ofh(t). Using h(t), we can calculate the Alexan-
der polynomial ofK (n, p j �, �).

Theorem 4.8. Suppose that n� 3, n > p > 0, and that p is even. Then, for
K = K (n, p j �, �), we have1K (t)

.
= h(t)h(t�1).

A proof will be given in Section 10.
By Theorem 4.8 and Proposition 3.5, we can calculate the Alexander polynomial

of B(n, p) as follows:

Corollary 4.9. For a 2-bridge knot K= B(n, p) with p even, we have1K (t)
.
=

hK 0 (t), where K0 = K (n, p j 1, 1).
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Fig. 4.2.

Fig. 4.3.

REMARK 4.10. If (�, �) = (1, 1), cancellations of the terms inh(t) never oc-
cur, because the vertices of the graphH (K ) with the samey-coordinate have the same
color. However in general, as seen inK (7, 2j 2, 1), some terms ofh(t) may cancel
each other. Moreover cancellations among terms of local maximum may happen: try
for example,K (11,2j2,1). Cancellations among terms of the highest degree may yield
a ‘non-fibred knot with a monic Alexander polynomial.’ However, Theorem B asserts
it never happens.

REMARK 4.11. As 2-bridge knots,B(7, 2) = B(7, 4), and hence they have the
same Alexander polynomial. However, as seen in the above example, the ways terms
appear are different. This difference causes the followinginteresting fact. The 2-bridge
knot B(7, 2) = B(7, 4) is non-fibred, and henceK (7, 2j 1, 1) andK (7, 4j 1, 1) are non-
fibred. However,K (7,2j2,1) is fibred, whileK (7,4j2,1) is non-fibred. See Section 11
for a further discussion.

Finally, we can use the diagrammatic calculations of1K (t) to have a straight for-
ward explanation to the facts found in [7]. For example, the latter half of Theorem 3.4
is understood as follows: ForK = K (n, p j �, �) with p even, the graphH (K ) is ob-
tained by expanding each edge of the graph forK 0 = K (n, p j 1, 1) � times. Therefore
hK (t)

.
= hK 0(t�). Meanwhile, by Proposition 3.5, we havehK 0(t) .

= 1B(n,p)(t). There-
fore, 1K (n,pj1,1)(t) is monic if and only if1B(n,p)(t) is monic.
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We give one more application. The following was pointed out in [7, p.636]. We
understand this by seeing that the Alexander polynomial is not monic.

Proposition 4.12. For any non-zero�, K (n, p j �,��) is not a fibred knot.

Proof. Assumep is even. Then they-coordinates of the verticesv0, : : : ,vn�1 are
as follows:

f0,�"1, �"1 + �"2, �"1 + �"2 + �"3, : : : , �"1 + �"2 + � � � + �"n�1g.
By the skew-symmetry off"1, : : : , "n�1g, (Proposition 4.2), we see that the above

is equal to

f0,�"1, �"1 + �"2, �"1 + �"2 + �"3, : : : , �"1 + �"2 + �"3, �"1 + �"2, �"1, 0g.
Since the number of vertices ofH (K ) is odd (=n), this means that the bi-colored

graph H (K ) is symmetric with respect to a vertical line which goes through the center
vertex v(n�1)=2. In other words, each vertex other thanv(n�1)=2 has its counterpart of
the same color at the samey-coordinate. Therefore,hK (t) is not monic, and hence by
Theorem 4.8, neither is1K (t).

REMARK 4.13. After our first manuscript was completed, Y. Marumoto told us
that T. Yasuda had introduced a graph similar toH (K ) in [15]. In fact, Yasuda studied
in [15] ribbon n-knots with m-fusions in Sn+2, n � 2, and he calculated the Alexander
polynomial1K n(t) using his graph. Our graphH (K ) coincides with his graph when
m = 1, and therefore, it is shown thath(n,pj1,1)(t) = 1K 2(t) for some ribbon 2-knotK 2

with 1-fusion.

5. Non-Cancellation theorem

In this section, we state Theorem 5.5, which is the key theorem to prove Theo-
rem B. A proof of Theorem 5.5 will be given in Sections 5 through 9. Given a pair
of co-prime integers (n, p) with n > p > 0, consider a sequence of signs defined in
Section 4: S = f"1, "2, : : : , "n�1g. We associate withS a graphG(n, p) on the xy-
plane, called thegraph of a pair (n, p). The graphG(n, p) consists ofn vertices
P0, P1, : : : , Pn�1, and (n� 1) edges connectingPk and Pk+1, 0� k � n� 2, wherePk

has the following coordinates:

P0 = (0, 0), Pk = (k, "1 + "2 + � � � + "k), 1� k � n� 1.

REMARK 5.1. The graphG(n, p) is related to the graphH (K (n, pj�,�)) defined
in Section 4 as follows:

G(n, p) =

�
H (K (n, n� p j �1,�1)), if p is odd,
H (K (n, p j 1,�1)), if p is even.
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DEFINITION 5.2. Let � and � be positive integers with� > � > 0. Then for a
vertex Pk of the graphG(n, p), the level of Pk, lev(Pk), is defined as itsy-coordinate,
i.e., lev(Pk) = "1 + "2 + � � � + "k, and theindex of Pk, ind(Pk), is defined as ind(Pk) ="1 + "3 + � � � + "k̄, where k̄ is the maximal odd integer not exceedingk.

To each vertexPk, we associate the termtdk , where dk = ind(Pk)� + [lev(Pk) �
ind(Pk)]�. Therefore,d0 = 0 and, if k is even,dk = ("1 + "3 + � � � + "k�1)� + ("2 + "4 +� � � + "k)�, and if k is odd, dk = ("1 + "3 + � � � + "k)� + ("2 + "4 + � � � + "k�1)�.

Using these terms, we define the polynomial�(n,pj�,�)(t) by

(5.1) �(n,pj�,�)(t) =
n�1X
k=0

(�1)ktdk .

In other words, each vertex ofG(n, p) corresponds to a term in�(n,pj�,�)(t). Since
the degreedk corresponds to vertexPk, it is called thedegreeof Pk. The degree is
determined by ind(Pk) and lev(Pk). An edge of G(n, p) connectingPk and Pk+1 is
called anodd edge (resp. anevenedge) if k + 1 is odd (resp. even). Therefore, the
first edge is an odd edge.

We will show later that the polynomial�(n,pj�,�)(t) determines the Alexander poly-
nomial of K (n, p j �,�) (Proposition 10.4). Also, we will show a relationship between�(n,pj�,�)(t) and h(n,pj�,�)(t) (Proposition 10.2).

EXAMPLE 5.3 (see Fig. 5.1). For (n, p) = (7, 3), we have:

S̃ = f3, 6, 9, 12, 15, 18g
S = f3, 6,�5,�2, 1, 4g
S = f1, 1,�1,�1, 1, 1g,

P0 P1 P2 P3 P4 P5 P6

level 0 1 2 1 0 1 2
index 0 1 1 0 0 1 1

,

and

�(7,3j�,�)(t) = 2� 2t� � t� + 2t�+� .

EXAMPLE 5.4 (see Fig. 5.1). For (n, p) = (7, 5), we have:

S̃ = f5, 10, 15, 20, 25, 30g
S = f5,�4, 1, 6,�3, 2g
S = f1,�1, 1, 1,�1, 1g,

P0 P1 P2 P3 P4 P5 P6

level 0 1 0 1 2 1 2
index 0 1 1 2 2 1 1

,

and

�(7,5j�,�)(t) = 1� 2t� + t��� � t2��� + t2� + t�+�
.
= �t2��2� + t2��� + t��2� � 2t��� + t� + t�� .
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Fig. 5.1.

Throughout the rest of this paper, the graphG(n, p) may be denoted byG, if no
confusion occurs. One of the key theorems to prove Theorem B is as follows:

Theorem 5.5 (Non-cancellation Theorem).Let G(n, p) be the graph of(n, p).
Assume� > � > 0. Let Pj1, Pj2, : : : , Pjl be the vertices of G with the highest level.
Then for any vertex Pk (0� k � n�1), maxfind(Pj1), ind(Pj2), : : : , ind(Pjl )g � ind(Pk).
Similarly, let Pm1, Pm2, : : : , Pmq be the vertices of G with the lowest level. Then for
any vertex Pk (0� k � n� 1), minfind(Pm1), ind(Pm2), : : : , ind(Pmq )g � ind(Pk).

A proof of Theorem 5.5 will be given in Sections 5 through 9. One of the imme-
diate consequence of Theorem 5.5 is the following:

Corollary 5.6. The terms of the highest degree in�(n,pj�,�)(t) correspond to ver-
tices of the maximal index in the highest level. Similarly, the terms of the lowest degree
in �(n,pj�,�)(t) correspond to vertices of the minimal index in the lowest level.

Proof of Corollary 5.6. Let ind(Pji ) = r i and lev(Pji ) = m. Let rc = maxfr1,
r2, : : : , r l g. Then d jc = rc� + (m� rc)�, and d ji = r i� + (m� r i )�. Since� > � > 0,
and rc � r i , we seed jc � d ji = (rc � r i )� + (r i � rc)� = (rc � r i )(� � �) � 0 and that
the equality holds if and only ifrc = r i . Now let Pk be a vertex of a non-highest
level, and ind(Pk) = s and lev(Pk) = q. Then sinceq < m and s � rc, we see
d jc � dk = rc� + (m � rc)� � (s� + (q � s)�) = (rc � s)� + (m � q � rc + s)� =
(rc � s)(� � �) + (m� q)� > 0. Hence the degree of a vertex of a non-highest level
is strictly less thand jc. The statement for the terms with the lowest degree is proved
analogously.

REMARK 5.7. Theorem 5.5 and Corollary 5.6 show that the terms with the high-
est (resp. lowest) degree in�(n,pj�,�)(t) correspond to some vertices of the highest
(resp. lowest) level. Since two vertices of the same level have the same parity on their
indices, the terms corresponding to the pair never cancel each other. This is a reason
Theorem 5.5 is called the Non-cancellation theorem.

From Remark 5.7, we see immediately the following corollary.
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Corollary 5.8. For any � > � > 0 and n> p > 0, �(n,pj�,�)(t) is monic if and
only if there exist exactly one vertex P0 and one vertex Q0 in G(n, p) such that both
lev(P0) and ind(P0) (resp. lev(Q0) and ind(Q0)) are maximum(resp. minimum).

6. Proof of Theorem 5.5 (I): The sequence of signs

The following several sections will be devoted to the proof of Theorem 5.5.
However, we concentrate on the proof of the first statement ofTheorem 5.5. The

proof of the second statement will be done simultaneously, and we omit it to avoid
unnecessary complications. But to help readers, we provideenough information for
the proof of the second statement.

As the first step, we study the sequenceS of signs of a pair (n, p), and prove
several basic properties forS. First we introduce new notations.

Let S be an arbitrary sequence of signs, i.e., of +1 or�1. In S, the consecutive
sequence of +1 (or�1) k times is denoted byhki (or h�ki). For example,f1, 1, 1,�1,�1g = fh3ih�2ig. Using this notation,S can be written as

S = fha1ih�b1iha2ih�b2i � � � hal�1ih�bl�1ihal ih�bl ig
where a1, a2, : : : , al > 0 and b1, b2, : : : , bl > 0, but a1 or �bl may be missing. By
abuse of notations, we also callhai i or h�bi i terms of S

Proposition 6.1. Let n be an odd integer, n > p > 0 and gcd(n, p) = 1. Write
n = mp+ r , where m� 1 and 0 < r < p. Let S= fha1ih�b1iha2ih�b2i � � � hal ih�bl ig
be the sequence of signs of the pair(n, p), where only bl may be missing. Then we
have the following:
(1) ai and bj are either m or m+ 1,
(2) a1 = m and the last term of S is�m,
(3) The number of timesh�mi appears in S is p� r + 1, and the number of timesh�(m+ 1)i appears in S is r�1. The total number ofh�mi and h�(m+ 1)i in S is p.

Thus, if p is odd, then al = m and bl is missing, while if p is even, bl = m.

Proof. Let Ai = (i p), 1� i � n� 1 be n� 1 points in the open interval (0,np),
and Bk, 1� k � p, the first point infAi g appeared in the interval ((k�1)n,kn). (Note
that Ai determines"i .) The x-coordinate ofBk is written asxk + (k�1)n, 0< xk < p.
Sincen = mp+ r , 0< r < p, each interval ((k�1)n,kn) containsm or m+ 1 points infAi g. This proves (1). Further, the interval ((k� 1)n, kn) containsm + 1 points if and
only if 0 < xk < r . Therefore, the number of such intervals is exactlyr �1, and henceh�(m+1)i appearsr �1 times inS. Consequently,h�mi appearsp� r +1 times. This
proves (3). Finally,a1 (and the last termal or bl ) cannot bem + 1, sincen = mp+ r .
Hencea1 = m. This proves (2). The last conclusion follows from Proposition 4.2.
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Proposition 6.2. Suppose n= mp+ r , where m� 1 and 0 < r < p. Let S be
the sequence of signs for(n, p). Then we have the following:
(1) Suppose that in S, hmi is followed byh�mi, or h�mi is followed byhmi, like� � � hmih�mi � � � or � � � h�mihmi � � � . (We sayh�mi’s occur consecutively.) Thenhm+
1i cannot be followed byh�(m+ 1)i, or h�(m+ 1)i cannot be followed byhm+ 1i. We
say thenhm + 1i’s are isolated.
(2) Analogously, if hm + 1i is followed byh�(m + 1)i (or h�(m + 1)i is followed byhm + 1i), then h�mi’s are isolated.

Proof. (1) Supposehmi is followed by h�mi. Then (m� 1)p + (m� 1)p + p <
2n < (2m + 1)p, namely, (i) (2m � 1)p < 2n < (2m + 1)p. On the other hand, ifhm + 1i is followed by h�(m + 1)i, (or h�(m + 1)i is followed by hm + 1i), then the
same argument shows that (ii) (2m + 1)p < 2n < (2m + 3)p. However, (i) and (ii)
cannot hold simultaneously. The proof of (2) is analogous, and is omitted.

Proposition 6.3. Let n = mp+ r , where m� 1 and 0 < r < p. Somewhere in
S, supposeh�mi’s occur consecutively k times(maximally). Then at any other places,h�mi’s occur at least(k � 1) times consecutively. The same is true whenh�mi andh�(m + 1)i are interchanged.

Proof. Supposem points in fAi g appear in each open interval (ln,(l +1)n),: : :,((l +
k� 1)n, (l + k)n). Then we have

(6.1) (mk� 1)p < kn< (mk+ 1)p.

Suppose there are exactlyk� 2 h�mi’s between a pair ofh�(m + 1)i’s.
Consider consecutivek intervals consisting ofk�2 intervals containing theseh�mi

and two intervals, before and after these (k � 2) intervals. Then we apply on thesek
intervals the same argument as above, and obtain (m(k�2)�1)p+(m+1)p+(m+1)p <
kn, and hencemkp+ p < kn, which contradicts (6.1).

Proposition 6.4. Let n = mp+ r , where m� 1 and 0< r < p.
(1) Suppose S begins with the following form

S = fhmi h�(m + 1)ihm + 1i � � � h�(m + 1)i| {z }
k times k�1

h�mi � � � g.

Then in S, h�(m + 1)i’s always occur at least k times consecutively.
(2) Suppose S begins with the following form

S = fhmih�mi � � � h�mi| {z }
k times k�1

h�(m + 1)i � � � g.
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Then in S, h�mi’s occur at most k times consecutively.

Proof. (1) By Proposition 6.3,h�(m + 1)i’s occur either (k + 1) times or (k � 1)
times consecutively. Supposeh�(m+1)i’s occur (k�1) times consecutively somewhere
in S. Then there arek + 1 consecutive intervals such that the first and the last interval
containm points from fAi g. Therefore, we have:

(6.2) [(k� 1)(m + 1) + 2m� 1]p < (k + 1)n < [(k� 1)(m + 1) + 2m + 1]p.

On the other hand, the original assumption onS yields the following inequality:

(6.3) [(m + 1)k + m] p < (k + 1)n,

since each ofk consecutive intervals (n, 2n), (2n, 3n), : : : , (kn, (k + 1)n) contains (m+ 1)
points. The second inequality of (6.2) and inequality (6.3)are inconsistent. (2) A proof
is analogous and hence is omitted.

7. Proof of Theorem 5.5 (II): Reductions

In this section, we introduce two reduction operations�1 and �2 on the sequence
of signs S, and study their effects on the graph.

7.1. Reduction operations. Let S = fhc1ih�c2ihc3i � � � h�cqig be the sequence
of signs of (n, p). Let n = mp+ r , wherem� 1 and 0< r < p.

CASE (A). Supposem � 2, or m = 2 andr > 1. By Proposition 6.1,ci � 2 for
1� i � q. Then we define a new sequence of signsS�1 by S�1 = fhc�1ih�c�2ihc�2i � � � h�c�qig,
where c�i = ci � 2. If the first s terms in S�1 are 0 and the (s + 1)st term is non-
zero, then by Proposition 4.2, the lasts terms of S�1 are also 0 and the (q � s� 1)st

term is non-zero. In this case, we delete these 2s zeros fromS�1 . Further, if c�j = 0,
s + 1 < j < q � s � 1, then h�c�j�1ih0ih�c�j +1i is written ash�(c�j�1 + c�j +1)i. We
repeat these removals of zeros until no zeros are left. The final form thus obtained is
our new sequenceS�. This reductionS! S� is the first operation and is denoted by�1. (See Examples 7.3 to 7.5 below.)

CASE (B). Supposem = 1, i.e., n = p + r , and 0< r < p � 1. The second
reduction is a bit complex. Note thatS contains onlyh�1i or h�2i. Sincen = p + r ,
c1 = cq = 1. First, we remove thesehc1i and hcqi. Next, we replace everyh�2i byh0i so that we obtain a new sequenceS�1 consisting of onlyh�1i and h0i. On this
new sequence, we apply the process of removingh0i’s defined in the case (A) until no
zeros are left. Finally, we change every sign in the resulting sequence. The sequence
thus obtained is denoted byS�, and the reductionS! S� is our second operation�2.

It should be noted that we do not define�1 if n = 2p + 1, and�2 if n = 2p� 1. If
n = 2p + 1, S consists of onlyh�2i, and if n = 2p� 1, then allc j ’s are 2, exceptc1

and cq (both of which are 1). Also, we do not define either reduction when p = 1.
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Fig. 7.1. Reductions by�1 and �2.

Now we will show that S� is the sequence of signs for some pair of co-prime
integersn�, p�, wheren� > jp�j > 0.

Proposition 7.1. Write n = mp+ r , where m� 1 and p> r > 0. Let S be the
sequence of signs of(n, p). Then we have the following:

CASE (A) m � 2. S� = �1(S) is the sequence of signs of(n�, p�) = (n� 2p, p).
Here, if n � 2p < p, then (n� 2p, p) is interpreted as(n� 2p, p� 2(n� 2p)).

CASE (B) m = 1. S� = �2(S) is the sequence of signs of(n�, p�) = (n�2r , p�2r ).

REMARK 7.2. Even if p� < 0, the original definition in Section 4 is applied to
obtain the sequence of signs. In this case,"1 = �1.

Proof of Proposition 7.1. To prove Proposition 7.1, we use a well-known fact that
the sequenceS of signs of (n, p) is obtained from Schubert’s normal form of a 2-bridge
knot B(n, p). We note that thei -th sign "i of S is +1 if and only if the curve joining
two points(i � 1)p and i p underpasses the right (resp. left) bridge from the upper part
(resp. lower part). Consider Schubert’s normal form of a 2-bridge knot B(n, p).

Case (A). We see the removal of consecutive two same signsf+1, +1g or f�1,�1g
from each blockh�mi and h�(m + 1)i in S corresponds to the delation of arcs on the
boundaries of the shaded regions in Fig. 7.1 (a). The result is shown in Fig. 7.1 (b),
where the partial overpath, i.e., the bridges, connecting the pointsn � 2p to n have
been removed. We can naturally connect the remaining arcs. Then (n�, p�) is easily
determined as follows. By the above operation�1, 2p points are removed from each
overpath of the old normal form, and hencen� = n�2p. Further, since 0 is connected
to p in the new form (and the old form, too), it follows thatp� = p. This proves
Proposition 7.1 for Case (A).

Case (B). Removal ofh2i, h�2i and hc1i, h�cqi from S corresponds to elimina-
tion of the arcs on the boundary of the shaded regions in Fig. 7.1 (c). The result is
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Fig. 7.2.

Fig. 7.3.

Fig. 7.1 (d), where partial overpaths connecting points 0 tor , and p to n (= p + r )
have also been removed. We can naturally connect the remaining arcs.

Before we determine (n�, p�) for Case (B), we first note the following fact. Let
S = f"1, "2, : : : , "n�1g be the sequence of signs for (n, p), where "i is defined at the
beginning of the proof, when we follow the underpath starting at 0. However, if we
follow the underpath starting at the end pointn (= p + r ) of the right bridge, then the
sequencêS = f"01,"02, : : : ,"0n�1g of signs obtained in the same way as before is equal to�S. Because, for anyi = 1,2,: : : ,n�1, we see"0i = n + i p

Æ��n + i p
�� and "i = i p

Æ��i p ��.
Now we return to the proof for Case (B). Since 2r points are removed from each

bridge, we haven� = n � 2r = p� r . Further, the old pointp� r in the old normal
form now corresponds top � 2r in the new normal form, and hencep� = p � 2r .
Finally, from the above remark, it is evident that the new sequence of signs for (n�, p�)
is exactly�2(S).

EXAMPLE 7.3. (n, p) = (11, 3), n = 11 = 3� 3 + 2, S = fh3ih�4ih3ig. Therefore,�1 : S! S� = fh1ih�2ih1ig, (n�, p�) = (5, 3). On the deformation of the graph, see
Proposition 7.8 in Subsection 7.2 and Fig. 7.2.

EXAMPLE 7.4. (n, p) = (13, 5), n = 13 = 2� 5 + 3, S = fh2ih�3ih2ih�3ih2ig.
Therefore,�1 : S! S� = fh0ih�1ih0ih�1ih0ig = fh�2ig, (n�, p�) = (3, 5)! (3,�1).
See Fig. 7.2.

EXAMPLE 7.5. (n, p) = (13,9),n = 13 = 1�9+4, S = fh1ih�1ih2ih�1ih2ih�1ih2ih�1ih1ig. Therefore,�2 : S! fh1ih�1ih0ih�1ih0ih�1ih0ih�1ih1ig ! fh1ih�4ih1ig !
S� = fh4ig (n�, p�) = (5, 1). See Fig. 7.3.

7.2. Reduction onG(n,p). In this subsection, we study the change of the graph
G(n, p) by applications of�1 and �2. This is an important step to our inductive proof
of Theorem 5.5.
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Fig. 7.4.

First, we introduce a few terminologies.

DEFINITION 7.6. A vertex P of G(n, p) is called apeak if P is a local maxi-
mal vertex. Two peaksP, P0 are calledconsecutiveif the path inG connectingP and
P0 has no peaks other thanP and P0. We call P and P0 neighboring peaks. Every
peak P has two neighboring peaks unlessP is the end ofG. A set of consecutive
peaks,P1, P2, : : : , Pk of the same level is called ablock (of peaks) if neither the pre-
ceding peak toP1 nor the following peak fromPk is on the same level asPi . Or
equivalently, fP1, : : : , Pkg is not a proper subset of another set of consecutive peaks
containingfP1, : : : , Pkg. In particular, if the peak preceding toP1 and the following
peak from Pk have strictly lower level, then the block is said to be ofmaximal type.
A vertex V is calledeven(resp.odd) if lev(V) is even (resp. odd).

Analogously, we call a local minimal vertex abottom. A block of bottoms, and a
block of minimal typeare also easily understood.

Proposition 7.7. Let n = mp+ r , where m� 2 and 0 < r < p. Let S be a se-
quence of signs of(n, p) and G(n, p) the graph of(n, p). Then the graph of�1(S) = S�
is obtained as follows: Let A1, A2, : : : , Aa be all the peaks of G(n, p). First remove
two consecutive edges before and after Ai (i = 1, 2,: : : , a), and then identify two ver-
tices Ci and C0i , the ends of the edges. (SeeFig. 7.4.) The graph thus obtained is the
graph of G(n�, p�).

Proof. Evident from the construction.

Proposition 7.8. Under the same notation inProposition 7.7,assume that m= 1
i.e., n = p + r . Then G(n�, p�), the graph of�2(S) = S�, is obtained as follows:
(i) Remove all two consecutive(upgoing or downgoing) edges so that G(n, p) is de-
composed into several connected components G1, G2, : : : , Gd.
(ii) Each connected component Gi is in between, say, level l and level l+ 1 (see
Fig. 7.5). Then each Gi is reflected along the central horizontal line between level
l and l + 1, to get G̃i . Therefore, the initial vertex ofG̃i and the last vertex ofG̃i�1

are on the same level, and hence they are identified on this level. Thus we obtain a
connected graphG̃.
(iii) Remove the first and the last edges fromG̃. The graph thus obtained is G(n�, p�).
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Fig. 7.5.

Proof. This also follows from the construction. (Recall Examples 7.3–7.5.)

8. Proof of Theorem (IV): Index

In this section, we prove a few lemmas on the index of peaks andbottoms.
To each proposition about peaks, we can also prove, in a similar fashion, the cor-

responding proposition about bottoms. Therefore, we only state the propositions about
bottoms without proof.

We begin with the following easy lemma without proof.

Lemma 8.1. Let V be a non-peak vertex of G(n, p), and let P be the peak before
or after V. Then we have:

lev(V) < lev(P) and ind(V) � ind(P).

Lemma 8.2. If B is a vertex, not a bottom, of G(n, p) and if Q is a bottom
before or after B, then lev(B) > lev(Q) and ind(B) � ind(Q).

Let S be the sequence of signs of (n, p): S = fha1ih�b1i � � � hal ih�bl ig. We note
that a peakP of G(n, p) is a turning point from an up-going path corresponding to, sayhai i to down-going path corresponding toh�bi i. To illustrate this, we writeG(n, p) as

G = ha1iP1h�b1iha2iP2h�b2i � � � hal iPl h�bl i,
where P1, P2, : : : , Pl are peaks.

Lemma 8.3. Let P = fPi , Pi +1, : : : , Pj g be a block of peaks of G(n, p). Write the
part of G(n, p) involvingP as � � �Pi�1h�bi�1ihai iPi h�bi i� � �ha j iPj h�b j iha j +1iPj +1 � � � .

Then we have the following:
(1) If bi is even, then ind(Pi ) = ind(Pi +1) = � � � = ind(Pj ).
(2) Suppose bi is odd. Then

(2-1) If Pi (and hence all Pk, 1� k � j ) is an even peak, then ind(Pk) = ind(Pi )�
(k� i ), for any k (= i , i + 1, : : : , j ).
(2-2) If Pi is an odd peak, then ind(Pk) = ind(Pi ) + (k � i ), for any k (= i , i +
1, : : : , j ).
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Fig. 8.1. Thick edges indicate odd edges.

Lemma 8.4. Let Q = fQl , Ql+1, : : : , Qqg be a block of bottoms. Write the part
of G(n, p) involving Q as Ql�1hal ih�bl iQl hal+1i � � � h�bqiQqhaq+1i. Then we have the
following:
(1) If bl is even, then ind(Ql ) = ind(Ql+1) = � � � = ind(Qq).
(2) Suppose bl is odd, then we have:

(2-1) If Ql (and hence all Qk, l � k � q) is an even bottom then

ind(Qk) = ind(Ql ) + (k� l ), for any k (= l , l + 1, : : : , q).

(2-2) If Ql is an odd bottom, then

ind(Qk) = ind(Ql )� (k� l ), for any k (= l , l + 1, : : : , q).

Proof of Lemma 8.3. First we note thatbi = ai +1 = � � � = b j�1 = a j . Now (1) is
obvious.

(2-1) In the path joiningPi to Pi +1, there are exactly (bi + 1)=2 downward odd
edges and (ai +1 � 1)=2 upward odd edges, and hence ind(Pi +1) = ind(Pi ) � 1. (See
Fig. 8.1 (a).) Inductively we obtain (2-1).

(2-2) If Pi is an odd peak, then the numbers of downward (resp. upward) odd
edges is (bi � 1)=2 (resp. (ai +1 + 1)=2). and hence ind(Pi +1) = ind(Pi ) + 1. (See
Fig. 8.1 (b).) Inductively, we obtain (2-2).

Now suppose that Theorem 5.5 does not hold. Namely, there exists a vertexY or
a vertex Z of G(n, p) such that8<

:
(i) lev(Y) is not maximum inG(n, p),
(ii) ind(Y) � ind(Y0), for any vertexY0 of G(n, p), and in particular,
(iii) ind(Y) > ind(Y0) if Y0 is on the highest level.

(8.1)

8<
:

(i) lev(Z) is not minimum inG(n, p)
(ii) ind(Z) � ind(Z0), for any vertexZ0 of G(n, p), and in particular,
(iii) ind( Z) < ind(Z0) if Z0 is on the lowest level.

(8.2)

We see from Lemma 8.1 or 8.2 thatY must be a peak and thatZ must be a
bottom. LetY0 be a peak satisfying (8.1), and suppose thatY0 is on the highest level
among peaks satisfying (8.1) (Y0 is one of the counter-examples to Theorem 5.5.)
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Similarly, let Z0 be a bottom satisfying (8.2) and suppose thatZ0 is on the lowest
level among the bottoms satisfying (8.2).

We will prove such a peakY0 (or a bottom Z0) does not exist. Our proof will
be done by induction on the number of peaks ofG(n, p). However, first we prove
Theorem 5.5 for special cases.

Lemma 8.5. Theorem 5.5holds for the following three special cases: n = mp+1,
n = 2p� 1 and p= 1.

Proof. For the first two cases, it follows from Proposition 6.1 (3), all peaks (and
bottoms) except the ends have the same level. Therefore, a peak (resp. a bottom) sat-
isfying (8.1) (resp. (8.2)) does not exist. For the last case, Theorem 5.5 holds trivially.

Next, we study some propertiesY0 (or Z0) should have.

Lemma 8.6. Let Y0 be a peak and a counter-example toTheorem 5.5.Let P =fPi , Pi +1, : : : , Pj g be the block of peaks containing Y0. ThenP is of maximal type.

Lemma 8.7. Let Q = fQl , Ql+1, : : : , Qqg be the block of bottoms containing Z0.
ThenQ is of minimal type.

Proof of Lemma 8.6. FirstG contains a part,

Pi�1h�bi�1ihai iPi h�bi i � � � ha j iPj h�b j iha j +1iPj +1,

and Y0 is one of Pk above. Note thatbi = ai +1 = � � � = a j . Suppose thatP is not of
maximal type. Then the following two cases can occur.
(I) lev(Pi�1) > lev(Pi ).
(II) lev( Pj ) < lev(Pj +1).

Since a proof is analogous, we only show that case (II) leads to a contradiction.
CASE (A). Supposea j is even. By Lemma 8.3, we see that ind(Pi ) = ind(Pi +1) =� � � = ind(Pj ) and hence, we may assumeY0 = Pj . Now since lev(Pj ) < lev(Pj +1), the

following two cases can occur.
(A-1) a j = b j and a j +1 = a j + 1.
(A-2) b j = a j � 1 anda j +1 = a j .

In either case, ind(Pj +1) � ind(Pj ) = ind(Y0). This contradicts the choice ofY0.
(Y0 should be a counter-example to Theorem 5.5 with the maximal level.)

CASE (B). Supposea j is odd.
(1) If Pj is an odd peak, thenY0 = Pj , since ind(Pi ) < ind(Pi +1) < � � � < ind(Pj ).

Then there are two cases to be considered.
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Fig. 8.2.

Fig. 8.3.

(1-a) b j = a j and a j +1 = a j + 1.
(1-b) b j = a j � 1 anda j +1 = a j .

For (1-a), ind(Pj +1) > ind(Pj ), and for (1-b), ind(Pj +1) = ind(Pj ). (See Fig. 8.2.)
Therefore, in either case, it contradicts the choice ofY0.
Finally, we consider the case (2):Pj is an even peak. In this case,Y0 = Pi , since

ind(Pi ) > ind(Pi +1) > � � � > ind(Pj ). This case requires a more careful observation.
Now we consider the blockP 0 immediately afterP. WriteP 0 = fPj +1, Pj +2, : : : , Pqg.

Then G has the following part:

� � � Pi�1h�bi�1ihai iPi h�bi i � � � ha j iPj h�b j iha j +1iPj +1h�b j +1i � � � haqiPqh�bqi � � � .
There are two cases (as we considered before). (See Fig. 8.3.)

(2-a) a j > b j and a j = a j +1 = b j +1:
(2-b) a j = b j < a j +1 and b j = b j +1.

First we consider the case (2-a): Ifai < bi , thenbi�1 = bi , and hence ind(Pi�1) �
ind(Pi ) = ind(Y0), a contradiction. Therefore,ai = bi , and thenhai ih�bi i � � � ha j i in S
represents 2(j � i ) + 1 consecutiveh�(ai )i’s. By Proposition 6.3, it must be followed
by at least 2(j � i ) consecutiveh�(ai )i’s, that isha j +1ih�b j +1i � � �h�bqi � � � , and hence,
q� j � j � i . Since ind(Pj +1) = ind(Pj ) + 1 and Pj +1 is an odd peak inP 0, it follows
that ind(Pq) = ind(Pj +1) + (q � j � 1) = ind(Pi )� ( j � i ) + (q � j ) � ind(Pi ) = ind(Y0).
This contradicts the choice ofY0.

Next we consider the case (2-b):h�bi ihai +1i � � � h�b j i in S represents also 2(j �
i ) + 1 consecutiveh�(ai +1)i’s, and it is followed by at least 2(j � i ) consecutiveh�(ai +1)i’s. They areh�b j +1iha j +2i � � � haqi � � � and henceq� j �1� j � i . SincePj +1

is an odd peak inP 0, we have ind(Pq) = ind(Pj +1) + (q � j � 1), and also ind(Pj +1) =
ind(Pj ). Therefore ind(Pq) = ind(Pj ) + (q � j + 1) = ind(Pi ) + (i � j ) + (q � j � 1) �
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ind(Pi ) = ind(Y0), a contradiction.

Using Lemmas 8.6 and 8.7, we can prove Theorem 5.5 for anotherspecial case.

Proposition 8.8. Suppose that bothhmi and hm + 1i are isolated. Then Theo-
rem 5.5holds.

Proof. Sincehmi and hm + 1i are isolated, there is only one block of peaks of
maximal type, (and one block of bottoms of minimal type) and hence Theorem 5.5
holds trivially.

9. Proof of Theorem 5.5 (V): Conclusion

In this section, Theorem 5.5 is finally proved by induction onthe number� of
peaks inG(n, p).

In the initial case, where� = 1, it is obvious by Lemma 8.1 (or Lemma 8.2).
Suppose, for induction, Theorem 5.5 holds for any graphG(n, p) with �(G) < d.

SupposeG(n, p) has exactlyd peaks,P1, P2, : : : , Pd. Our proof is divided into two
cases:

CASE A: n = mp+ r , m� 2, 0< r < p
CASE B: n = p + r , 0< r < p.
Case A is further divided into two subcases:
CASE (A-1): m� 3,
CASE (A-2): m = 2.
First, consider subcase (A-1). By applying�1 on G(n, p), we obtain a new graph

G� = G(n�, p�), wheren� = (m� 2)p + r , m� 2� 1. Let S = fha1ih�b1i � � � hal ih�bl ig
be the sequence of (n, p). Then the sequenceS� of the new pair (n�, p�) is S� =fha1� 2ih�(b1� 2)iha2� 2i � � � hal � 2ih�(bl � 2)ig. Sinceai , b j � 3 for 1� i , j � l ,
G(n�, p�) has as many peaks asG(n, p) has.

Write:

G = ha1iP1h�b1iha2iP2h�b2i � � � hal iPl h�bl i,
and

G� = ha�1iP�
1 h�b�1iha�2iP�

2 h�b�2i � � � ha�l iP�
l h�b�l i,

wherea�i = ai � 2 andb�i = bi � 2, 1� i � l .

Then lev(Pi ) =
Pi

k=1 ak +
Pi�1

k=1(�bi ), while lev(P�
i ) =

Pi
k=1(ak � 2) +

Pi�1
k=1(�(bi �

2)) =
Pi

k=1 ak � 2i +
Pi�1

k=1(�bk) + 2(i � 1) = lev(Pi )� 2.
On the other hand, ind(Pi ) is the sum of the ‘odd terms,’ i.e., the sum of all the

i -th terms with i odd. in S, and ind(P�
i ) is the sum of the odd terms inS�. Since

one positive term inhaki is cancelled with one negative term inh�bki, it follows that
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Fig. 9.1.

ind(Pi )� ind(P�
i ) is equal to the difference between the number of positive signs in hai i

and that ofha�i i, that is 1, and hence ind(P�
i ) = ind(Pi )� 1. SinceY0 (= Ps for some

s) is a counter-example of Theorem 5.5 forG(n, p), Y�
0 = P�

s is also a counter-example
for G�.

(It is evident that if Qk is a bottom of G(n, p), then lev(Q�
k) = lev(Qk) and

ind(Q�
k) = ind(Qk), and henceZ�

0 is also a counter-example to Theorem 5.5 forG�.)
Repeated applications of�1 reducem to 1 or 2.
SUBCASE (A-2): m = 2, i.e., n = 2p + r .
For the subcase (A-2), and the case B, the number of peaks�(G) may be de-

creased by applications of�1 or �2. Therefore, we need a careful examination of the
levels and indices of the peaks forG and for G� = �1(G) or �2(G).

Now we are concerned about the highest peaks and the particular peakY0. These
peaks belong to some blocks of maximal type. Therefore, we study how theses peaks
behave under�1 and �2. First we divide the set of peaks ofG into blocks. Let us
denote them byP1,P2, : : : ,Pt .

DEFINITION 9.1. We define the level and index of a blockPi as

(9.1)

�
lev(Pi ) = lev(P), for any P 2 Pi

ind(Pi ) = maxP2Pi find(P)g.
Now we consider subcase (A-2):
SUBCASE (A-2): There are two cases to be considered.
CASE (A-2-1): h�3i is isolated, and henceh�2i occurs consecutively. (The case

where bothh2i and h3i are isolated is excluded by Proposition 8.8) LetP1,P2, : : : ,Pt

be the blocks of peaks ofG(n, p). Then, an application of�1 collapses all peaks in
eachPi to one vertexV�

i (not necessarily a peak) ofG�. See Fig. 9.1.
(Note that ifPi is of maximal type, thenV�

i is a peak.) Further in this case, we
have ind(Pi ) = ind(P) and lev(Pi ) = lev(P) for any P 2 Pi , and lev(V�

i ) = lev(Pi )� 2.
Also, we see that ind(V�

i ) = ind(Pi )� 1.
Since the highest peakPh of G(n, p) collapses to a highest peakP�

h of G�, and
since Y0 also collapses to a peakY�

0 of G�, it follows again thatY�
0 is a counter-

example to Theorem 5.5 forG�. However�(G�) < �(G), (since each block contains
at least two peaks), and hence by induction hypothesis, sucha peakY�

0 does not exist,
a contradiction.
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Fig. 9.2.

(For the bottoms, similarly, we see that some bottomsQl , : : : , Qq collapse to one
bottom Q�

l , but lev(Q�
l ) = lev(Q) and ind(Q�

l ) = ind(Q). Therefore,Z�
0 is again a

counter-example to Theorem 5.5, a contradiction.)
CASE (A-2-2): h�2i is isolated.
Let P1,P2, : : : ,Pt be blocks of peaks ofG(n, p). Suppose thatPi is of maximal

type. It is, for example, of the form:

� � � h3ih�2ih3ih�3i � � � h3ih�3ih2ih�3i � � � .
By an application of�1, it is reduced to

� � � h1ih0ih1ih�1ih1ih�1ih1ih�1ih0ih�1i � � �
= � � � h2ih�1ih1ih�1ih1ih�2i � � � .

Other cases are similar, and we see lev(P�
i ) = lev(Pi )� 2. (See Fig. 9.2.)

The number of peaks inPi is equal to that ofP�
i , but two peaks, the one that

precedes the first peak and the other that follows the last peak of Pi , are not peaks in
G�. Thus the total number of peaks inG is decreased at least by 2. Since elimination
of edges ofG always occurs in pairs, we see ind(P�

i ) = ind(Pi )�1. Therefore,�1(Y0) =
Y�

0 is also a counter-example forG�. However, since�(G�) < �(G), such a peakY�
0

does not exist, by induction hypothesis.
(For the bottoms, we see again lev(Q�

i ) = lev(Qi ) and ind(Q�
i ) = ind(Qi ), and

hence induction works.)
Finally, we consider the case B:n = p + r .
In S, ai and bi are either 1 or 2. There are two subcases.
SUBCASE (B-1). h�1i is isolated.
SUBCASE (B-2). h�2i is isolated.
Consider subcase (B-1). Sinceh�1i is isolated, h�2i appears consecutively.

Let P0,P1, : : : ,Pt be blocks of peaks forG(n, p). Then we can writeS as:
S = hÆ0iP0hÆ1iP1hÆ2iP2hÆ3i � � � Pt hÆt+1i, whereÆ0 = 1 andÆ j = �1, j = 1, : : : , t . Ap-
plying �2 on S, we obtain a new sequence:S� = h�Æ1ih�Æ2ih�Æ3i � � � h�Æt i, because
eachPi involves onlyh�2i. Now we study the level and the index of peaks inG and
G�. SupposePi is of maximal type. (See Fig. 9.3.) ThenÆi = �1 and Æi +1 = +1.
Also, for any peakP in Pi , we have�

lev(Pi ) = lev(P) and
ind(Pi ) = ind(P).
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Fig. 9.3.

Fig. 9.4.

Now by �2, all peaks inPi collapse to one vertexV�
i in G�. Since�Æi = 1 and�Æi +1 = �1, V�

i is in fact a peak ofG�. Further, obviously, lev(V�
i ) = lev(Pi )� 1.

We evaluate the index ofPi .

Lemma 9.2. (1) ind(P0) = 1.
(2) For 1� k, ind(P2k�1) = ind(P2k) = 1� (Æ1 + Æ3 + � � � + Æ2k�1).

Proof. (1) is evident. To prove (2), supposeÆ1 = 1. Since ind(P0) = 1 and
lev(P1) = lev(P0) � 1, we have ind(P1) = 1� 1 = 0. See Fig. 9.4 (a). IfÆ1 < 0,
then lev(P1) = lev(P0) + 1, and hence ind(P1) = 2. See Fig. 9.4 (b).

Next, we compute ind(P2). Since Æ2 is an odd term,Æ2 is always counted, but
it is cancelled with the odd term inh2i that follows h2i or precedeshÆ2i. Therefore
ind(P2) = ind(P1) = 1� Æ1. Now exactly the same argument proves the formula for
general case.

Now by Lemma 9.2, ind(Pi ) = 1� Æ1 � Æ3 � � � � � Æi 0 , where i 0 = i or i � 1 so
that i 0 is odd. SinceV�

i is a vertex ofG� on whichPi collapses, we have ind(V�
i ) =�Æ1 � Æ3 � � � � � Æi 0 . Therefore, ind(V�

i ) = ind(Pi )� 1, and hence,�2(Y0) = Y�
0 is also

a counter-example forG�. Since�(G�) < �(G), it is impossible.
(For the bottoms, we see lev(W�

i ) = lev(Qi ) + 1, while ind(W�
i ) = ind(Qi ), and we

can apply induction hypothesis.)
This eliminates the subcase (B1).
Finally, we consider the case (B-2):h�2i is isolated. We compareS with S�.

Consider for example:

S = h1ih�1ih1ih�1i � � � h1ih�1i| {z }
P1

h2i h�1ih1ih�1ih1i � � � h�1i| {z }
P2

h2ih�1i � � � .
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Fig. 9.5.

Then

S� = h1ih�1i � � � h1ih�1i| {z }
P�

1

h2i h�1ih1i � � � h�1i| {z }
P�

2

h2ih�1i � � � ,

where the number of peaks inP�
i is exactly one less than that ofPi . (If h2i is replaced

by h�2i, the same argument works.)
Therefore,S� is obtained fromS by deletingh+1ih�1i or h�1ih+1i from eachPi .

This interpretation of�2 simplifies our proof considerably. LetG andG� be the graphs
of (n, p) and (n�, p�) respectively. The following lemma is evident:

Lemma 9.3. If i is odd (resp. even), thenPi is of odd (resp. even) type.

Therefore, we have: (1) lev(Pi ) = lev(P) for any P 2 Pi , and (2) if i is odd
(resp. even), then ind(Pi ) is equal to the index of the last peak (resp. first peak) ofPi .

Now to obtainS� from S, we drop the last pairh+1)h�1i or h�1ih1i from P2i�1

and the first pairh1ih�1i or h�1ih1i from P2i . Graphically, it means that the last peak
of P2i�1 and the first peak ofP2i are eliminated. LetP�

i be a peak obtained fromPi

by this ‘new operation’�2. If Pi = P�
i under �2, i.e., Pi is not affected by�2, then

lev(Pi ) = lev(P�
i ) and ind(Pi ) = ind(P�

i ). (See Fig. 9.5.) In fact, ifab is an odd edge
of G, then de is also an odd edge.

If bc is an odd edge then so isef . Thus these two edges are not counted in
the evaluation of the index. By the same reasoning, we have lev(P�

i ) = lev(Pi ) and
ind(P�

i ) = ind(Pi )� 1.
Now Y0 belongs to somePi , and ind(Y0) = ind(Pi ). Therefore,Y0 is eliminated by�2. However, a new blockP�

i also contains aY�
0 with ind(Y�

0 ) = ind(P�
i ), and hence

ind(Y�
0 ) = ind(Y0) � 1. While, a peakP0 in Pk on the highest level that has maximal

index is also eliminated by�2. However,P�
k contains another peakP�

0 on the highest
level having the maximal index, and ind(P�

0 ) = ind(P0) � 1. ThereforeY�
0 is again a

counter-example to Theorem 5.5 forG�. Since�(G�) < �(G), such aY�
0 does not

exist, a contradiction.
(For the bottoms, we see lev(Q�) = lev(Q) and that ind(Q�) = ind(Q), and hence

we can apply induction hypothesis.)
This proves Theorem 5.5.
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10. Proof of Theorem B

In this section, we prove Theorem B and also Theorem 4.8. To prove them, we
first study two polynomials�(n,pj�,�)(t) and h(n,pj�,�)(t) defined in§§4–5.

Let f"1,"2, : : : ,"n�1g be the sequence of signs for (n, p). We define two sequences
of integers: 8<

:
�1 = 0

�k = "1 + "3 + � � � + "2k�3, for k = 2, 3,: : : , l + 1 =
n + 1

2
.8<

:
�1 = 0

�k = "2 + "4 + � � � + "2k�2, for k = 2, 3,: : : , l + 1 =
n + 1

2
.

Now we recall that, for an arbitrary integerp > 0,

(10.1) �(n,pj�,�)(t) =
lX

k=1

(1� t�"2k�1)t��k+��k + t��l+1+��k+1,

and for an even integerp > 0,

(10.2) h(n,pj�,�)(t) =
lX

k=1

(1� t��"2k�1)t���k+��k + t���l+1+��l+1.

Most of the following propositions are immediate consequences of these definitions.

Proposition 10.1. For any n and p with n> p > 0, and for any� and�, we have:

(10.3) �(n,pj�,��)(t) = �(n,n�pj�,�)(t).

Proof. If S = f"1, "2, : : : , "n�1g is the sequence of signs for (n, p), then the se-
quenceeS of signs for (n, n � p), is eS = f"1,�"2, "3,�"4, : : : ,�"n�1g (see Proposi-
tion 4.3). Therefore, (10.3) follows immediately.

A similar argument proves the next proposition.

Proposition 10.2. For any n and even q with n> q > 0, and for any� and �,
we have:

h(n,qj�,�)(t) = �(n,n�qj��,��)(t),(10.4)

or equivalently

h(n,qj�,�)(t
�1) = �(n,n�qj�,�)(t).(10.5)
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Proof. If f"1, "2, : : : , "n�1g is the sequence of signs for (n, q), then f"1,�"2,"3, : : : ,�"n�1g is the sequence of signs for (n, n� q). Therefore, we have

�(n,n�qj��,��)(t) =
lX

k=1

(1� t��"2k�1)t���k+��k + t���l+1+��l+1 = h(n,qj�,�)(t).

REMARK 10.3. Proposition 10.2 claims not only thath(n,qj�,�)(t) is equal to�(n,n�qj��,��)(t), but also from Remarks 4.6 and 5.1 that the terms of the two poly-
nomials are in one to one correspondence. Therefore, the Non-cancellation Theorem 5.5
for G(n, p) implies that no cancellations occur among the highest and lowest vertices
in H (n, q j �, �) with q even.

Proposition 10.4. Suppose p is odd. Then for any� and �, we have:

1K (n,pj�,�)(t)
.
= �(n,pj�,�)(t)�(n,pj�,�)(t

�1)(10.6)

1K (n,pj�,��)(t)
.
= �(n,n�pj�,�)(t)�(n,n�pj�,�)(t

�1)(10.7)

Proof. For an odd integerp, it is shown in [7, Proposition 4.7] that1K (n,pj�,�)(t) =
f(n,p)(t) f(n,p)(t�1), where f(n,p) is exactly��(n,pj�,�)(t). This proves (10.6). To prove
(10.7), we note that, forp odd,1K (n,pj�,��)(t)

.
= �(n,pj�,��)(t)�(n,pj�,��)(t�1). Now (10.7)

follows from (10.3).

As an immediate consequence of Proposition 10.4, we obtain:

Proposition 10.5. Suppose q is even. Then for any� and �, we have:

1K (n,qj�,�)(t) = �(n,n�qj�,�)(t)�(n,n�qj�,�)(t
�1)(10.8)

1K (n,qj�,��)(t) = �(n,qj�,�)(t)�(n,qj�,�)(t
�1)(10.9)

Proof. Sincen� q is odd, it follows from Propositions 3.1 and 10.4 that

1K (n,qj�,�)(t) = 1K (n,n�qj�,�)(t) = �(n,n�qj�,�)(t)�(n,n�qj�,�)(t
�1).

This proves (10.8). Similarly, we have:

1K (n,qj�,��)(t) = 1(n,n�qj�,��)(t)

= �(n,n�qj�,��)(t)�(n,n�qj�,��)(t
�1) = �(n,qj�,�)(t)�(n,qj,�,�)(t

�1).

Proof of Theorem 4.8. By Proposition 3.1 we know thatK (n, pj�,�) �= K (n,n�
q j �, �) �= �K (n, q j �, �), and hence,1K (n,qj�,�)(t) = 1K (n,qj�,�)(t) = 1K (n,n�qj�,�)(t).
Sincen� q is odd, we see further by Propositions 10.4 and (10.4) that

1K (n,n�qj�,�)(t) = �(n,n�qj�,�)(t)�(n,n�qj�,�)(t
�1) = h(n,qj�,�)(t

�1)h(n,qj�,�)(t).
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Now we return to the proof of Theorem B. Suppose1K (n,pj�,�)(t), with p even,
is monic. First assume� > � > 0. By Proposition 3.1,1K (n,pj��,��)(t) is monic.
Then Proposition 10.2,h(n,pj��,��)(t) = �(n,n�pj�,�)(t) and by Theorem 4.8, they are
monic, i.e., the terms with the highest and the lowest degreehave coefficient�1. By
Remark 5.7, in�(n,n�pj�,�)(t), no cancellations occur among the terms with the highest
or the lowest degree. Therefore, by Remark 10.3 and Remark 4.6, H (K ) is admissible.
Next assume� > 0 > �. Then by (10.4) and (10.3),h(n,pj�,�)(t) = �(n,n�pj��,��)(t) =�(n,pj��,�)(t), and by Theorem 4.8, they are monic. In the same manner as above, we
see thatH (K ) is admissible. This proves Theorem B.

11. Fibredness ofK (n, p j �, �) via 2-bridge knot B(n, p)

11.1. Classification. In Section 3, we saw that for any� 6= 0, 1K (n,pj�,��)(t) is
not monic, while1K (n,pj�,�)(t) is monic if and only if1B(n,p)(t) is monic, i.e., the 2-
bridge knot B(n, p) is fibred. However, even if1B(n,p)(t) is not monic, it can happen
that1K (n,pj�,�)(t) is monic for some�, � (see Remark 4.11).

In this section, we study how the fibredness ofK (n, p j �, �) behaves if we fix
(n, p) and take various (�, �)’s. From this view point, we classifyK (n, p j �, �) into
six types.

For more detailed discussions, the following propositionsare useful.

Proposition 11.1. Suppose� > 0 and � > 0. Then we have:
(1) 1K (n,pj�,�)(t) is monic if and only if1K (n,pj2,1)(t) is monic.
(2) 1K (n,pj�,��)(t) is monic if and only if1K (n,pj2,�1)(t) is monic.

Proposition 11.2. If B(n, p) is fibred, then for any� > 0 and� > 0,1K (n,pj�,�)(t)
is monic.

Proof of Proposition 11.1. Theorem 5.5 has been proved for arbitrary �, � with� > � > 0, and� > 0 > �. Therefore, if1K (n,pj2,1) is monic,1K (n,pj�,�) must be
monic for any�, �, with � > � > 0. The same holds for� > 0> �.

Proof of Proposition 11.2. SinceB(n, p) is fibred,1K (n,pj1,1) is monic. It means
that the graphG(n, p) has only one peak with the highest level, and one bottom with
the lowest level. This follows from the fact that when� = � = 1, the number of
vertices ofG with level h is the absolute value of the coefficient ofth in 1B(n,p)(t).
Therefore, by Theorem 5.5, for any�, � > 0, 1K (n,pj�,�) is monic.

By Proposition 3.1, we assume without loss of generality that p is always even
in K (n, p j �, �). We see that the monicity of the Alexander polynomial (and hence
fibredness) of our knotsK (n, p j �, �) behaves in one of the six patterns with respect
to various values of� and�. By Proposition 11.1 and 11.2, the pattern is determined
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by the pair (n, p), listed below, where in each pattern, we give an example of apair
(n, p).

Class (A): B(n, p) is fibred.
(1) K (n, p j �, �) is fibred() � 6= ��. e.g., (n, p) = (25, 18).
(2) K (n, p j �, �) is fibred() �� > 0. e.g., (n, p) = (5, 2).

Class (B): B(n, p) is not fibred.
(1) K (n, p j �, �) is fibred() � 6= ��. e.g., (n, p) = (7, 2).
(2) K (n, p j �, �) is fibred() �� > 0, � 6= �. e.g., (n, p) = (9, 2).
(3) K (n, p j �, �) is fibred() �� < 0, � 6= ��. e.g., (n, p) = (17, 10).
(4) K (n, p j �, �) is not fibred for any�, � e.g., (n, p) = (9, 4).

REMARK 11.3. In [7, Proposition 5.3], it was proved thatK (n, n� 1 j �, �) be-
longs to Class A1, by studying the fundamental groups of explicitly constructed Seifert
surfaces and their complement.

Note that even if (n, p) and (n0, p0) are different, as 2-bridge knotsB(n, p) may
be equivalent toB(n0, p0), but K (n, p j�,�) and K (n0, p0 j�,�) may belong to different
classes (see Remark 4.11).

At the end of this section, we present an algorithm to determine to which class a
knot K (n, p j �, �) belongs. Using this algorithm, we can characterize the pairs (n, p)
for each class. (See Theorem 11.15.)

11.2. Classes [I] and [II]. We begin with a definition of two new classes [I]
and [II].

DEFINITION 11.4. We say that the pair (n, p) belongs to [I] (resp. [II]) if1K (n,pj�,�)(t) is monic for any�, � > 0, � 6= � (resp.1K (n,pj�,��)(t) is monic for
any �, � > 0, � 6= �).

A pair (n, p) may belong to both [I] and [II], or neither [I] nor [II]. For example,
if B(n, p) is fibred, then (n, p) at least belongs to [I], and probably to [II] as well. If a
fibred knot B(n, p) belongs to both [I] and [II], thenK (n, pj�,�) belongs to Class A1.

REMARK 11.5. Definition 11.4 can be rephrased in terms of�(n,qj�,�)(t) as fol-
lows: Supposeq is an even integer. Then (n, q) belongs to [I] (simply (n, q) 2 [I]), if�(n,n�qj�,�)(t) is monic for any�, � > 0 with � 6= �. On the other hand, (n, q) 2 [II],
if �(n,qj�,�)(t) is monic for any�, � > 0 with � 6= �.

Now one of the important consequences of the Non-cancellation theorem is that if
the graphG(n, p) satisfies certain conditions, the monic property of the polynomial�(n,p j �,�)(t) is preserved under reduction operations�1 and �2. More precisely, we
obtain:
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Proposition 11.6. Let p be an arbitrary positive integer.
(I) Let n = mp+ r , where m� 2 and 0 < r < p. Let �1 : (n, p) ! (n�, p�) be the
first reduction operation where(n�, p�) = (n� 2p, p).

(1) Assume m� 3. Then for any� > � > 0, �(n,pj�,�)(t) is monic if and only if�(n�,p� j�,�)(t) is monic.
(2) Assume m= 2.

(i) Supposeh�2i is isolated in S(n, p), the sequence of signs of the pair
(n, p). Then for any� > � > 0, �(n,pj�,�)(t) is monic if and only if�(n�,p� j�,�)(t)
is monic.
(ii) Supposeh�2i is not isolated in S(n, p) (and henceh�3i is isolated). Then
for any � > � > 0, �(n,pj�,�)(t) is not monic.

(II) Let n = p + r , where0< r < p. Let �2: (n, p)! (n�, p�) be the second reduction
operation, where n� = n� 2r and p� = p� 2r .

(i) Suppose that ah�2i is isolated in S(n, p), or the first three or four terms of
S(n, p) are of the form S= fh1ih�2ih1i � � � g, or S = fh1ih�2ih2ih�1i � � � g. Then
for any � > � > 0, �(n,pj�,�)(t) is monic if and only if�(n�,p� j�,�)(t) is monic.
(ii) Supposeh�2i always appears in S(n, p) three (or more) times consecutively,
or equivalently that S is of the form

fh1i h�2ih2i � � � h�2i| {z }
k times k�3

h�1i � � � g.

Then�(n,pj�,�)(t) is not monic.

A proof is obtained easily from a careful study of the graphG(n, p) as we did in
the proof of Theorem 5.5, and hence the details are omitted.

From Proposition 6.4, we see that ifm � 2, then S(n, p) has one of the forms
stated in Proposition 11.6.

We need a few more notations. Letq be an even integer withn > q > 0. The
(even) continued fraction ofn=q:

n

q
= a1 � 1

b1 � 1

a2 � 1

b2� . .. � 1

as � 1

bs

will be denoted by [a1, b1, a2, b2, : : : , as, bs], where ai , bi (1� i � s) are even (6= 0).
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EXAMPLE 11.7.

101

28
= [4, 2,�2,�6] = 4� 1

2� 1

(�2)� 1

(�6)

,

141

32
= [4,�2, 2,�6] = 4� 1

(�2)� 1

2� 1

(�6)

.

Let n=q and n0=q0, q, q0 being even, be two rational numbers represented by an
(even) continued fractionA = [a1, b1, a2, b2, : : : , as, bs] and its shorter fractionB =
[a2, b2, : : : , as, bs]. For convenience, we write [a1, b1, a2, b2, : : : , as, bs] = n=q and
[a2, b2, : : : , as, bs] = n0=q0.

Further, since we consider only even continued fractions, whenever we write
[a1, b1, a2, b2, : : : , as, bs] = n=q, we always assume thatq is even. We note, from

the definition, thatnq > 0 if and only if a1 > 0. Using Proposition 11.6, we prove a
series of propositions.

Proposition 11.8. Let n=q = [a1, b1, a2, b2, : : : , as, bs]. Suppose a1 = 2k � 4 and
let Â = [a1 � 2,b1, a2, b2, : : : , as, bs] = n̂=q̂. Then we have: (n, q) 2 [I] ( resp. [II]) if
and only if (n̂, q̂) 2 [I] ( resp. [II]).

Proof. Letn0=q0 = [b1,a2,b2,: : : ,as,bs]. Supposeb1 > 0. Thenn=q = 2k�q0=n0 =
(2kn0�q0)=n0 and n̂=q̂ = ((2k�2)n0�q0)=n0. Now n = 2kn0�q0 = (2k�1)n0+(n0�q0) =
(2k� 1)q + (n0� q0) and 0< n0� q0 < q (= n0). Since 2k� 1� 3 and�1(n, q) = (n̂, q̂),
we have: (n, q) 2 [II] if and only if ( n̂, q̂) 2 [II].

For the caseb1 < 0, the same argument works. Next, we show that (n, q) 2 [I]
if and only if (n̂, q̂) 2 [I], or equivalently, that�(n,n�q j �,�)(t) is monic if and only if�(n̂,n̂�q̂ j�,�)(t) is monic. Now sincen=q = (2kn0 � q0)=n0, we seen=(n � q) = (2kn0 �
q0)=((2k � 1)n0 � q0). Supposeb1 > 0. Then n0q0 > 0. Sincek � 2, it follows
that (2k � 2)n0 > q0 and hence (2k � 1)n0 � q0 > n0. Therefore, we can writen =
(n� q) + q, 0< q (= n0) < n� q (= (2k � 1)n0 � q0). We claim thath�2i is isolated
in S(n, n� q), or equivalently, thath1i is not isolated. However, it is now evident that
S = fh1ih�1i � � � g, since 2n < 3(n � q). Therefore, by Proposition 11.6, (n, q) 2 [I]
if and only if (n̂, q̂) 2 [I]. Since a similar argument works for the caseb1 < 0, the
details will be omitted.

By Proposition 11.8, we may assume, without loss of generality, that a1 = 2 in
order to decide whether or not (n, p) 2 [I] or [II]. Therefore, hereafter, we will use the
following notations. For an arbitrary non-zero integerk, A = [2, 2k, a2, b2, : : : , as, bs] =
nk=qk, B = [a2, b2, : : : , as, bs] = n0=q0.
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Proposition 11.9. Assume k> 0 and a2 > 0. Then we have the following:
(1) (a) (nk, qk) =2 [I], if k � 2.

(b) (n1, q1) 2 [I] () (n0, q0) 2 [I].
(2) (a) (nk, qk) =2 [II], if k � 3.

(b) (n2, q2) 2 [II] () (n0, q0) 2 [II].
(c) (n1, q1) 2 [II] () (n0, q0) 2 [II].

Proof. First we see that, fork > 0, nk=qk = 2� 1=(2k � q0=n0) = ((4k � 1)n0 �
2q0)=(2kn0� q0), and hencenk = qk + (2k� 1)n0� q0, where 0< (2k� 1)n0� q0 < qk

(= 2kn0 � q0).
CASE (2). If k � 3, we can showS = fh1ih�2ih2ih�2i � � � g, or equivalently, that

7qk < 4nk. In fact, 4nk�7qk = (16k�4)n0�8q0� (14kn0�7q0) = (2k�4)n0�q0 > 0,
sincek � 3. Therefore (nk, qk) =2 [II] by Proposition 11.6 (II) (ii).

If k = 2, then 4n2 < 7q2, but 3n2 < 6q2 < 4n2, and henceS = fh1ih�2ih2ih�1i � � � g.
Therefore, by Proposition 11.6 (I) (i), (n2, q2) 2 [II] if and only if ( n0, q0) 2 [II].

If k = 1, thenn1 = 3n0 � 2q0 and q1 = 2n0 � q0. Then S = fh1ih�1i � � � g, since
2n1 < 3q1. Thus h2i is isolated, and Proposition 11.6 (II) (i) shows that (n1, q1) 2 [II]
if and only if (n0, q0) 2 [II].

Now to consider the case (1), we usenk=(nk � qk) = ((4k � 1)n0 � 2q0)=((2k �
1)n0 � q0). We write nk = 2(nk � qk) + n0, 0 < n0 < nk � qk. Then we see that if
k � 2, S = fh2ih�2i � � � g, since 4(nk�qk) < 2nk < 5(nk�qk), and hence, (nk,qk) =2 [I]
if k � 2, by Proposition 11.6 (I) (ii).

If k = 1, thenn1 = 3n0 � 2q0 and n1 � q1 = n0 � q0. Write q0 = �(n0 � q0) + r ,
0 < r < n0 � q0, for some� � 0 and r . Then n1 = (3 + �)(n0 � q0) + r and hence
(n1, q1) 2 [I] if and only if (n0, q0) 2 [I].

Proposition 11.10. Suppose k> 0 and a2 < 0. Then we have the following:
(1) (a) (nk, qk) =2 [I], if k � 2.

(b) (n1, q1) 2 [I] () (n0, q0) 2 [I].
(2) (a) (nk, qk) =2 [II], if k � 2.

(b) (n1, q1) 2 [II] () (n0,�q0) 2 [II].

Proof. We write Ak = [2, 2k,�a2, b2, : : : , as, bs] = nk=qk, a2 > 0, and B =
[�a2, b2, : : : , as, bs] = �n0=q0. Then nk=qk = ((4k � 1)n0 + 2q0)=(2kn0 + q0), and nk =
qk + (2k�1)n0 +q0, 0< (2k�1)n0 +q0 < qk. If k � 2, thenS = fh1ih�2ih2ih�2i � � � g,
since 7qk < 4nk. Thus, (nk, qk) =2 [II], if k � 2.

If k = 1, n1 = 3n0 + 2q0 and q1 = 2n0 + q0, and hence,n1 = q1 + (n0 + q0), 0 <
n0+q0 < q1. Inequalities 3q1 < 2n1 < 4q1 < 3n1 < 5q1 imply that S = fh1ih�2ih1i� � �g
and hence, since�2(n1, q1) = (n0,�q0), (n1, q1) 2 [II] if and only if ( n0,�q0) 2 [II],

Next, considernk=(nk�qk), wherenk = (4k�1)n0 + 2q0 and nk�qk = (2k�1)n0 +
q0. Thus nk = 2(nk � qk) + n0, 0 < n0 < nk � qk. If k � 2, then S = fh2ih�2i � � � g,
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since 4(nk � qk) < 2nk < 5(nk � qk). Thereforeh�2i is not isolated inS(nk, nk � qk)
and (nk, qk) =2 [I], if k � 2.

If k = 1, thenn1 = 3n0 + 2q0 and n1� q1 = n0 + q0, and hencen1 = 2(n1� q1) + n0,
0 < n0 < n1 � q1. Since 5(n1 � q1) < 5n1, we see thatS = fh2ih�3i � � � g, and
hence by Proposition 6.4,h�2i is isolated inS(n1, n1 � q1). Therefore, from Proposi-
tion 11.6 (II) (i), it follows that (n1, q1) 2 [I] if and only if (n0, q0) 2 [I].

Proposition 11.11. Assume a2 > 0 and k> 0. Then we have the following:
(1) (a) (n�k, q�k) =2 [I], if k � 2.

(b) (n�1, q�1) 2 [I] () (n0, q0) 2 [I].
(2) (n�k, q�k) =2 [II], if k � 1.

Proof. Note thatn�k=q�k = ((4k + 1)n0 + 2q0)=(2kn0 + q0) and n�k = 2q�k + n0,
0< n0 < q�k.

If k � 1, S = fh2ih�2i � � � g, since 2n�k < 5q�k, and hence (n�k, q�k) =2 [II], if
k � 1, by Proposition 11.6 (I) (ii).

Now considern�k=(n�k � q�k) = ((4k + 1)n0 + 2q0)=((2k + 1)n0 + q0) and n�k =
(n�k � q�k) + (2kn0 + q0), 0< 2kn0 + q0 < n�k � q�k.

If k � 2, thenS(n�k,n�k�q�k) = fh1ih�2ih2ih�2i� � �g, since 7(n�k�q�k) < 4n�k.
Therefore, (n�k, q�k) =2 [I] if k � 2.

If k = 1, then n�1 = 5n0 + 2q0 and n�1 � q�1 = 3n0 + q0, and n�1 = (n�1 �
q�1) + (2n0 + q0), 0 < 2n0 + q0 < n�1 � q�1. Then S = fh1ih�2ih2ih�1i � � � g, since
5(n�1 � q�1) < 3n�1 < 6(n�1 � q�1) < 4n�1 < 7(n�1 � q�1). Since �2(n�1, n�1 �
q�1) = (n0,�n0 � q0) = (n0, n0 � q0), it follows that (n�1, q�1) 2 [I] if and only if
(n0, q0) 2 [I].

Proposition 11.12. Assume a2 < 0 and k> 0. Then we have the following:
(1) (a) (n�k, q�k) =2 [I], if k � 2.

(b) (n�1, q�1) 2 [I] () (n0, q0) 2 [I].
(2) (a) (n�k, q�k) =2 [II], if k � 2.

(b) (n�1, q�1) 2 [II] () (n0, q0) 2 [II].

Proof. As in the proof of Proposition 11.10, we writeAk = [2,�2k,�a2,
b2, : : : ,as,bs], wherea2 > 0 andk > 0. Thenn�k=q�k = ((4k + 1)n0�2q0)=(2kn0�q0)
and n�k = 2q�k + n0. First, we see that ifk � 2, then S = fh2ih�2i � � � g, since
2n�k < 5q�k, and henceh�2i is not isolated. Therefore (n�k, q�k) =2 [II], if k � 2.

If k = 1, thenn�1 = 5n0 � 2q0 and q�1 = 2n0 � q0, and n�1 = 2q�1 + n0, 0 <
n0 < q�1. Then we seeS = fh2ih�3i � � � g, since 5q�1 < 2n�1, and henceh�2i is
isolated inS(n�1, q�1). Therefore, (n�1, q�1) 2 [II] if and only if ( n0, q0) 2 [II], since�1(n�1, q�1) = (n0, 2n0 � q0) = (n0,�q0).
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Now we considern�k=(n�k�q�k) = ((4k + 1)n0�2q0)=((2k + 1)n0�q0) and n�k =
(n�k � q�k) + (2kn0� q0), 0< 2kn0� q0 < n�k � q�k. First we see that ifk � 2, then
S = fh1ih�2ih2ih�2i � � � g, since 7(n�k� q�k) < 4n�k. Thus (n�k, q�k) =2 [II], if k � 2.

Supposek = 1. Then n�1 = 5n0 � 2q0 and n�1 � q�1 = 3n0 � q0, and n�1 =
(n�1� q�1) + (2n0� q0), 0< 2n0� q0 < n�1� q�1. Now we see thath�2i is isolated
in S(n�1, n�1 � q�1) or S(n�1, n�1 � q�1) = fh1ih�2ih1i � � � g, since 4(n�1 � q�1) <
3n�1 < 5(n�1 � q�1). Thus (n�1, q�1) 2 [I] if and only if (n0, q0) 2 [I].

Finally, we consider the caseA = [2,�2k].

Proposition 11.13. We have the following:
(1) (a) (4k� 1, 2k) =2 [I], if k � 2.

(b) (3, 2)2 [I].
(2) (a) (4k� 1, 2k) =2 [II], if k � 2.

(b) (3, 2)2 [II].

Proof. Note that [2, 2k] = (4k� 1)=2k. It is easily seen that

S(4k� 1, 2k) = fh1i h�2ih2i : : : h2i| {z }
(2k�2) times

h�1ig.

Hence, ifk � 2, then (4k�1,2k) =2 [II]. On the other hand,S(4k�1,2k�1) consists ofh�2i, and hence (4k�1,2k) =2 [I], if k � 2. Further, (1) (b) and (2) (b) are obvious.

Proposition 11.14. We have the following:
(1) (a) (4k + 1, 2k) =2 [I], if k � 2.

(b) (5, 2)2 [I].
(2) (4k + 1, 2k) =2 [II], if k � 1.

Proof. Note that [2,�2k] = (4k +1)=2k. SinceS(4k +1,2k) consists of onlyh�2i,
(4k + 1, 2k) =2 [II], if k � 1. On the other hand,

S(4k + 1, 2k + 1) = fh1i h�2i � � � h�2i| {z }
(2k�1) times

h1ig.

Hence, if k � 2, then (4k + 1, 2k) =2 [I]. However, if k = 1, then (5, 2)2 [I].

11.3. Characterization. A series of Propositions 11.8–11.14 provide an algo-
rithm that decides to which class (n, p) belongs. Using this algorithm, we can now
characterize knotsK (n, p j �, �) in each class by the pair (n, p).



50 M. HIRASAWA AND K. M URASUGI

Theorem 11.15. Let (n, p) be a pair, where p is even and0 < p < n. Denote
by [a1, b1, a2, b2, : : : , as, bs] the continued fraction expansion of n=p, where all ai and
bi are even(1 � i � s). Then the fibredness of K= K (n, p j �, �) is determined by
the pair (n, p) as follows:

CASE 1: The 2-bridge knot B(n, p) is fibred, and hence all ai ’s and bj ’s
are �2.
• K 2 Class A1 (i.e., (n, p) 2 [I] \ [II]) if and only if (11.10) below is satisfied.

(11.10)

�
(a) ai bi > 0 for all i (1� i � s) or
(b) asbs > 0, and whenever ai bi < 0 (1� i < s), we have ai ai +1 < 0.

CASE 2: B(n, p) is not fibred.
SUBCASE 2 (i): b j = �2 for all j (1� j � s).

• K 2 Class B1or Class B2.
• K 2 Class B1if and only if n=p satisfies(11.10).

SUBCASE 2 (ii): Each bj is either�2 or �4, with some bj being�4.
• K 2 Class B3or Class B4.
• K 2 Class B3if and only if (11.11) below is satisfied.
(11.11)8<
:

(a) jbsj = 2 and asbs > 0,
(b) bi = �2 (1� i < s) =⇒ (i) ai bi > 0 or (ii) ai bi < 0 and ai ai +1 < 0, and
(c) bi = �4 (1� i < s) =⇒ (i) ai bi > 0 and (ii) ai ai +1 > 0.

SUBCASE 2 (iii): There exists bj with jb j j � 6.
• K 2 Class B4.

EXAMPLES. Here we denote (n, p) by n=p, and sayn=p 2 X for some classX
if K (n, p j �, �) belongs to the classX.
(1) [2, 2,�2, 2, 2,�2,�2,�2] = 177=1122 A1.
(2) [2, 2,�2, 2, 2, 2,�2, 2] = 265=1682 A2.
(3) [4, 2,�2, 2, 6,�2,�4,�2] = 3181=8882 B1.
(4) [4, 2,�2, 2, 6, 2,�4, 2] = 4412=12322 B2.
(5) [4, 4, 2, 4, 2,�2,�2,�2] = 875=2362 B3.
(6) [4, 2,�2, 6, 6,�2,�4,�2] = 8869=24682 B4.
(7) [4, 4,�2, 4, 2,�2,�2,�2] = 1525=4042 B4.

12. Preliminary for the construction of fibre surfaces

In this section, we first review two methods to prove that a Seifert surface is a
fibre surface. Then we introduce a key notion to construct a Seifert (fibre) surface for
K (n, p j �, �).
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12.1. Tools to prove fibredness. In this subsection, we review two important
methods to prove that a Seifert surface is a fibre surface. Oneis Stallings twistsand
the otherKobayashi’s banding on pre-fibre surfaces.

A Stallings twistis an operation to produce a new fibre surface from a fibre surface
under a certain condition: Letc be an unknotted oriented circle embedded in a surface
F in S3. Suppose the linking number lk(c, c0) = 0, wherec0 is a push off ofc in a
normal direction ofF . Then apply�1-surgery alongc. Briefly, the operation is to
cut F by a disk spanned byc0 and then glue it back after a full-twist. Obviously, the
new ambient manifold isS3, but we have a new Seifert surface for a (different) link.
However, J. Stallings [13] showed the following:

Proposition 12.1 ([13, Theorem 4]). Suppose a Seifert surface F0 is obtained
from F by a Stallings twist. Then F0 is a fibre surface if and only if F is too.

In [9], T. Kobayashi introduced the notion ofpre-fibre (Seifert) surface for links
and, using that notion, determined when a band connected sumof links is a fibred
link [10]. In this subsection, we summarize his main results. For the notion of asu-
tured manifold, we refer to [9] or [4].

Let L be a link with a Seifert surfaceF . Denote byFE = F \ E(L) the restriction
of F in the link exterior E(L) = cl(S3 � N(L)). The sutured manifold (N, Æ) = (FE �
I , �FE � I ) is a product sutured manifold, where R+(Æ) and R�(Æ) are respectively
FE �f1g and FE �f0g. The sutured manifold (Nc, Æc) = (cl(E(L)� N), cl(�E(L)� Æ)),
where R�(Æc) = R�(Æ), is called thecomplementary sutured manifoldfor F .

DEFINITION 12.2. A Seifert surfaceS is a pre-fibre surfaceif there exist pair-
wise disjoint compressing disksD+ and D� in Nc for R+(Æc) and R�(Æc) respectively
such that (̄N, Æc) is homeomorphic to a (not necessarily connected) product sutured
manifold, whereN̄ denotes the manifold obtained fromNc by cutting alongD+ [ D�.
Then there is a pair of compressing disks̄D+ and D̄� for S such thatD̄� \ Nc = D�,
which we calla pair of canonical compressing disksfor S.

To determine when a band connected sum of two links are fibred,the following
notion is essential. Kobayashi called the following banding a band of type F, but now
after Kobayashi, we call it aK -band.

Let S be a pre-fibre surface with a pair of canonical compressing disks D+ [ D�.
Let p+ and p� be properly embedded arcs inS sharing exactly one end pointe ��S. Their interiors may intersect each other inS. Push p+ (resp. p�) in the positive
(resp. negative) normal direction ofS, and then pushe = p+ \ p� off S so that we
obtain an arc� in S3 such that� \ S = �� � �S. Suppose� intersects each ofD+

and D� in exactly one point.
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Fig. 12.1. Pre-fiber surfaces for the 2-component trivial link.

DEFINITION 12.3. Let S be a pre-fibre surface and� a band whose ends are
attached to�S and whose interior missesS. We call � a K-band if its core  (fixing
its end points) is isotopic to an arc� obtained by the above construction.

Kobayashi obtained the following:

Proposition 12.4 ([10, Proposition A]). Let F be a Seifert surface obtained from
a pre-fibre surface S by adding a band�. Then F is a fibre surface if and only if�
is a K -band.

REMARK 12.5. Note that the twisting of� is irrelevant because that can be gen-
erated by Stallings twists usingD+.

EXAMPLE 12.6. The following sequence of Seifert surfaces61,62, : : : in
Fig. 12.1 are examples of pre-fibre surfaces. First,61 is an annulus, which is obtained
by tubing two disks. Second,62 is obtained from61 by another tubing, where the
new tube goes through the first tube. Next,63 is obtained from62 again by adding a
tube which goes though the innermost tube of62. Inductively, we can construct6i ’s.
By [10, Theorem 3], any pre-fibre surface for the 2-componenttrivial link is isotopic
to 6i for some i , where the pair of canonical compressing disks comes from the in-
nermost disks amongQ� (Q \6i ), where Q is the separating 2-sphere for the trivial
link, positioned naturally so that each tube meetsQ in one essential circle.

Actually, Kobayashi characterized pre-fibre surfaces for split links as follows:
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Proposition 12.7 ([10, Theorem 3]). Let L = L1 [ L2 be a split link with a2-
sphere separating L1 and L2 in S3. Then L bounds a pre-fibre surface S if and only if
both L1 and L2 are fibred. Moreover the pre-fibre surface S is constructed as follows.
(1) Take disjoint fibre surfaces F1 and F2 for L1 and L2.
(2) Take a2-sphere Q bounding a ball B which meets each of F1 and F2 in a disk.
(3) Apply tubing to the two disks in B as inExample 12.6.

12.2. The word for K (n, p j �, �). In this subsection, we introduce a notion
of the word for the pair (n, p), which is the basic tool to construct a minimal genus
Seifert surface forK (n, p j �, �).

Given a pair of co-prime integersn > p > 0, consider the sequence of signs de-
fined in Section 4:S = f"1, "2, : : : , "n�1g. For K = K (n, p j �, �), the primitive word
of K, denoted byeW(K ), composed ofx, y’s and their inverses is defined by:

eW(K ) = y�"1x�"2 y�"3x�"4 � � � y�"n�2x�"n�1.

We call the words of the formxi yi or y j x j standard syllables. Thedegreeof stan-
dard syllables is defined to be deg(xi yi ) := i , deg(y j x j ) := � j . A word T composed
of standard syllables is called anormalized word of Kif it satisfies the following:
(1) T is reduced to a word of the formxkeW(K )yl for some integersk and l (possi-
bly 0).
(2) The number of standard syllables inT is exactlyn.
(3) Syllables of the formxhyh and yi xi appear alternately. (As a result,x0y0 or y0x0

may appear as syllables, which may be abbreviated as 1.)
(4) T starts withxkyk and ends withxl yl . (If k = 0 (resp.l = 0), thenT starts with
(resp. end with)x0y0, which we never omit.)

Note that a normalized word ofK is uniquely determined by each choice of the
degreek of the initial syllable, and we can easily normalize a word from left to right.
For example, letK = K (11, 8j 2, 1). TheneW(K ) = y1x�2y1x2y�1x2y�1x�2y1x�2. If
we setk = 0, then we have

x0y0 � yx � x�3y�3 � y4x4 � x�2y�2 � yx � xy � y�2x�2 � x0y0 � yx � x�3y�3.

In a normalized word, adjacent syllables have different degrees. The list of degrees
of syllables in the above word isf0,�1,�3,�4,�2,�1, 1, 2, 0,�1,�3g, which by con-
struction, coincides with the sequenceR for (n, p j �, �) = (11, 8j 2, 1) defined in Sec-
tion 4. Therefore, we can also easily read the primitive wordfor K (n, pj�,�) from the
Schubert diagram forB(n, p), by travelling along the underpath recording from which
direction (above or below) one goes under the overpath. See Fig. 4.1.

Note that if we change the initial degree, say fromk to k+h, then the new normal-
ized word is obtained by changing the degrees of all syllables by h. This corresponds
to the slide of H (K ) along the y-axis. Now consider sliding the graph so that the
vertices of the minimal degree have they-coordinate 0. A normalized word is called
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strictly normalizedif the initial degree is chosen so that the minimal degree of sylla-
bles is 0. We denote byW(K ) the strictly normalized word ofK . For example, by
sliding up by 4, we seeW(K ) for K = K (11, 8j 2, 1) is

x4y4 � y�3x�3 � x1y1 � y0x0 � x2y2 � y�3x�3 � x5y5 � y�6x�6 � x4y4 � y�3x�3 � x1y1,

where the list of degrees isf4, 3, 1, 0, 2, 3, 5, 6, 4, 3, 1g.
DEFINITION 12.8. Let K = K (n, p j �, �). We say that the strictly normalized

word W(K ) is admissibleif W(K ) has exactly one syllable of the maximal degree and
one syllable of the minimal degree. Accordingly, we say thatthe primitive wordeW(K )
or its normalized word is admissiable, if its strictly normalized word is admissible.

Then we have the following:

Proposition 12.9. For K = K (n, p j �, �), the graph H(K ) is admissible if and
only if W(K ) is admissible. Moreover, (1=2) deg1K (t) = maxfdegrees of syllables
of W(K )g.

Proof. The first statement is obvious from the construction.The second statement
follows from Theorem 4.8 and Remark 10.3.

13. Minimal genus (fibre) Seifert surface for K

In this section, we first construct a fibre surface forK (n, p j �, �) with an admis-
sible word, usingK -bandings of a pre-fibre surface and prove Theorem C, and hence
Theorem A0 is proved. Then we construct fibre surfaces for satellite (1,1)-double torus
knots whose pattern knotK (n, p j�,�) has an admissible word, and prove Theorem A.
Finally, we construct a minimal genus Seifert surface for non-separating (1, 1)-double
torus knots, and prove Theorem D.

By Corollary 3.2 we may assume:

(�) n � 3 is odd, p is even, n > p > 0, gcd(n, p) = 1 and � � j�j > 0.

13.1. K (n, p j�, �) with an admissible word. Suppose that the strictly normal-
ized wordW(K ) for K = K (n, p j �,�) is admissible. Denote by deg(W) the maximal
degree of the syllables ofW(K ).

Basically, the construction of a Seifert surface forK is as follows: K is obtained
by attaching a bandB to connect two split unknots spanning disksDL and DR. The
band transversely intersectsDL and DR, and we eliminate the intersections by remov-
ing small disks fromDL and DR, and then connecting the resulting small holes inDL

and DR with a tube (annulus). However, this cannot be done immediately. (Otherwise,
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Fig. 13.1. Construction of̃6 for the 2-component trivial link.

we obtain a non-orientable surface, or a surface of non-minimal genus.) We must first
isotope the band to increase the intersection points.

As we explain below, the process is divided into the following two steps:
STEP 1: Disregarding the bandB, construct a Seifert surface6 for the 2-

component trivial linkL by tubing two disksDL and DR. We will see that6 is a
pre-fibre surface having deg(W) tubes.

STEP 2: Using W(K ), bend the bandB ‘nicely’ so that B meets6 only at its
ends. Then we will prove that6 [ B is a K -banding on6, and hence by Theo-
rem 12.4,6 [ B is a fibre surface forK .

First we deal with the case� > 0.
STEP 1: Let L be the 2-component trivial link spanning two disjoint disksDL

and DR shaped as in Fig. 13.1.
Let A be an arc as in Fig. 13.1 having its endpoints in int(DL [ DR) such that

#(A \ DL ) = #(A \ DR) = deg(W). As a convention, the thin box indicates a full-
twist of whatever goes through, in positive way nearDL and negative way nearDR

(consistent with the convention of twisting direction in Section 2). Now denote byfldeg(W), : : : , l2, l1, r1, r2, : : : , rdeg(W)g the intersection points ofA and DL [ DR named
from the left end ofA. Apply a tubing along the subarc (l1, r1), then apply another
tubing along the subarc (l2, r2) through the first tube. By repeating this operation of
tubing deg(W) times, we obtain a Seifert surface forL, denoted by6. Now we have
the following:

Proposition 13.1. The tubed surface6 is a pre-fibre surface.

Proof. Use the sequence of isotopies depicted in Fig. 13.2. The first step is to
twist the subdisks, and the second and third steps are to slide the end ofA along the
boundary of the disk. This induces an isotopy of the tubes of6 toward the standard
form of a pre-fibre surface in Fig. 12.1, and we see that6 is a pre-fibre surface forL.
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Fig. 13.2. Isotoping6̃ into the standard form of a pre-fibre
surface.

Denote byT1, T2, : : : Tdeg(W) the tubes so thatT1 is the first widest one containing
the other tubes and thatTdeg(W) is the last narrowest tube. Define thedepth of Ti by
dep(Ti ) = i .

CONVENTION. By convention, the outside (resp. inside) of the tubeT1 touches
the face (resp. back) of6. At this time, thoughDL and DR do not exist any more, we
still assume virtually they are there. So we could say: we penetrateDL and DR several
times as we travel along the band. We always assume that the arc B (representing the
band connecting the two unknots) is oriented fromDL to DR. As seen in Fig. 13.1,
DL (resp. DR) has� (resp.�) subdisksDL1, DL2, : : : , DL� (resp. DR1, DR2, : : : , DR� )
named so thatT1 connectsDL1 and DR1. We say that two tubesTi , Tj are locally
adjacent to each other on DL (resp.DR) if the difference of their depths is� (resp.�).
Note that the feet of locally adjacent tubes lie next to each other in a subdisk ofDL

or DR.

Before proceeding to the next step of construction of a fibre surface, let us briefly
explain our way usingK = K (5, 2j 2, 1) as an example. (Fig. 13.3).

The primitive word is yx2y�1x�2, and hence the strictly normalized word is
W(K ) = xy � 1 � x2y2 � y�3x�3 � xy. Fig. 13.3 (a) depictsK , where the band is depicted
by an arcB. Note that each box contains a full twist. In Fig. 13.3 (b) we slid the
endsB along the boundaries ofDL and DR. Then we forget the twist boxes, and con-
tinue the construction for the new knot. We remark that this corresponds to Stallings
twists, and once we have constructed a fibre surface, we can easily modify it to a fibre
surface forK . Actually, these untwistings and twistings are introducedjust to simplify
the figures. Now isotopeB as in Fig. 13.3 (c) so that we can readW(K ) from the
itinerary, and that we can superimpose the pre-fibre surfaceas in Fig. 13.3 (d). Then
we show that the band is aK -band.

STEP 2. We start with a figure ofK = K (n, p j �, �) as in Fig. 13.4, whereK
is expressed as the union of two unknots and an arcB representing the band. Regard
the unknots andB as lying slightly above the double torusH . The intersectionB \
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Fig. 13.3. Construction of a fiber surface forK (5, 2j 2, 1).

(DL [ DR), which happens in the longitudinal disks ofH , is indicated by dots. We
can read the primitive wordeW(K ) of K by following B from the left end and record
from which way one penetratesDL and DR. Note that the number of letters ineW(K )
is equal to the number of dots. The hollow dots, explained later, will indicate new
intersection points to be created so that the total number ofdots and hollow dots equals
that of the letters in the strictly normalized wordW(K ). Remark that there are exactly
n subarcs connectingDL and DR. This corresponds to the facts that the length of the
sequence of signs for (n, p) (defined in Section 4) is exactlyn�1, and that the strictly
normalized wordW(K ) has exactlyn syllables.

Now we subdivideB into 2n + 1 = 2 +n + (n � 1) subarcs classified into three
classes as in Fig. 13.4 (b): The both ends areend-arcs, which are short. Between the
end-arcs, there aren long-arcsand n� 1 flat-arcs appearing alternately. The long-arcs
run betweenDR and DL , and flat-arcs are short straight arcs between long-arcs.

When we show that we have aK -banding, we will push end-arcs and flat-arcs
(resp. long-arcs) to the disk part (resp. tube part) of6. Assign the j th syllable of
W(K ) to the j th long-arc counted from the left end ofB. Then define thedegreeof
each long-arc as that of the corresponding syllable.

Our strategy is to useW(K ) as a guide to slide the ends ofB and drag the flat-
arcs stretching the long-arcs (inH ) so that we can read the strictly normalized word
W(K ) from the new form ofB. We see this is possible, becauseW(K ) is obtained
from eW(K ) by prependingxk, appendingyl (recall k > 0, l � 0) and by insert-
ing xi x�i and y j y� j for various i , j ’s. This corresponds to adding the hollow dots
to B as in Fig. 13.4 (a), which indicate newly created intersections ofB and DL [ DR.
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Fig. 13.4. K = K (5, 2j 2, 1), eW(K ) = yx2y�1x�2, W(K ) =
xy � 1 �� x2y2 � y�3x�3 � xy.

Fig. 13.5.

Note that the dots and hollow dots are put only on the long-arcs. Now we establish
a correspondence between a syllable inW(K ) and dots along a long-arc. Suppose we
have already stretched and pushed a long-arc, say , onto the back (resp. face) side of
a tube T of depth i , then we readxi yi or y�i x�i (resp. xi�1yi�1 or y�(i�1)x�(i�1)).
(See Fig. 13.5.) Note that reads 1 if and only if is pushed onto the face side of
the tube of depth 1, and that readsxdeg(W)ydeg(W) or y� deg(W)x� deg(W) if and only if is pushed onto the back side of the narrowest tube. By the assumption thatW(K )
is admissible, each case occurs exactly once. Therefore, each component of the pair of
canonical compressing disks of6 is penetrated byB exactly once. (This is necessary
to have aK -banding.)

Also note that readsxi yi or y�i x�i , (1 < i < deg(W)) in two cases: on the
back side of the tube of depthi and on the face side of the tube of depthi + 1. Both
cases may occur several times. By definition, the strictly normalized word has no syl-
lables of negative degree, i.e.,xgyg and y�gx�g with g < 0. Hence we do not need a
tube attached to the back ofDL and DR.

Now we have to moveB properly so that other conditions of aK -banding are
satisfied. First, we specify to which tube and to which side wepush the subarcs, and
specify one particular flat-arc (marked�) which passes the boundary ofDL or DR ex-
actly once. We put the mark� on the unique flat-arc just before (resp. after) the long-
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Fig. 13.6. Sliding the end ofB in K = K (5, 2j 2, 1). we now
read x � yx2y�1x�2 � y.

arc which corresponds to the unique syllable 1, if the syllable 1 appears after (resp. be-
fore) the unique syllable of the maximal degree.

Let Bn� = B1[B2, whereB1 (resp.B2) contains the long-arc of degree 0 (resp. de-
gree deg(W)). ThenB1 (resp.B2) is pushed into the face side (resp. back side) of6.
Accordingly, we call the arcs inB1 (resp.B2) top arcs (resp.bottom arcs). For exam-
ple, for K (5,2j2,1), B1 is the first half ofB n�, i.e., the part that contains the left end
of B. For K (5, 4j2, 1), B1 is the second half ofB n � and contains the right end ofB.
(RecallB is oriented from the left end.) See Fig. 13.7. By the observation above, we
see that a top (bottom) long-arc of degreei is pushed onto the face (reps. back) side
of the tube of depthi + 1 (resp. depthi ).

We simplify the figures by ‘untwists’ which will turn to be Stallings twists, but
before that we must slide the ends ofB as shown in Fig. 13.6. Recall that the strictly
normalized word is of the formxkyk � � � xl yl , with k > 0 and l � 0. For K =
K (5, 2j 2, 1), k = l = 1. Slide the endpoint ofB along DL (resp. DR) so thatjB \ DL j
(resp. jB \ DRj) increases byk (resp.l ). Note that sincek, l � 0, we slideB counter-
clockwise (resp. clockwise) along�DL (resp.�DR).

Fig. 13.7 depicts actual examples ofK (5,2j2,1) andK (5,4j2,1), with twist boxes.
Note that in the former, the left end-arc is a top arc, and in the latter, the left end-arc
is a bottom arc.

See Fig. 13.8 for general situations forDL . For DR, just reflect the figure by a
vertical line in the paper.

Fig. 13.8 (a) (resp. (b)) depicts the situation where the left end-arc is a top arc
(resp. bottom arc), and hence will be pushed to the top side ofthe subdiskDL3

(resp. the back side of the subdiskDL2). Note also that in Fig. 13.8 (a) (resp. (b)),
the long-arc connected to the left end-arc corresponds to the first syllable xkyk in
W(K ) and will be pushed to the top side of the tube of degreek + 1 (resp. back side
of the tube of degreek).

Here, to simplify the figures, we forget the twist boxes in Fig. 13.8, denoting the
results byB0 and60. If we draw figures on the double torus, we do not need such
an operation, but the figures become too complicated. Obviously, 60 inherits the pair
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Fig. 13.7. Sliding of the end-arcs.

Fig. 13.8. Sliding of the end-arc, wherek = 6.

of canonical compressing disks and we will arrangeB0 so that it is aK -band on60.
Then we apply Stallings twists onB0 [60 so that it becomes aK -banding of6. Our
Stallings twists will use simple closed curves which are closely parallel to each bound-
ary of the subdisksDL1, : : : , DL� , DR1, : : : DR� .

Now we drag the flat-arcs throughDL and DR and stretch long-arcs so that we
can readW(K ) from B0. As in Fig. 13.7, we add hollow dots toB0 to indicate newly
created intersections ofB0 and DL [ DR, i.e., to see how far we should drag each
flat-arcs. Note that, except for those hollow dots corresponding to prependingxk and
appendingyl to B, the hollow dots which indicate new intersection points to be created
are arranged in pairs near the flat-arcs (see Fig. 13.7). We drag flat-arcs along the
guide line indicated by the broken line in Fig. 13.9 (a). To bemore precise, when
we drag a flat-arc, say , that is a bottom arc, then we will stop it below a subdisk
immediately after the hollow dots are replaced by newly created intersection points.
On the other hand, if is a top arc, then is dragged further so that it lies on the
top side of the next subdisk. See Figs. 13.9 (b) and (c) respectively.

When we finish dragging a flat-arc , we put it near the boundary of a sub-disk
of DL or DR so that if ‘inner flat-arc’ should be dragged further, then the connected
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Fig. 13.9. Drag flat-arcs so that we can readW(K ).

Fig. 13.10. Arrangement of dragged flat-arcs.

long-arcs go under . Moreover, the end-arcs are also placed so that other long-arcs
go under them. See Fig. 13.10 (a) (resp. Fig. 13.10 (b)) forDL with the left end-arc
being a bottom (resp. top) arc, where all flat-arcs depicted are bottom arcs.

Claim 1. At this stage, we can superimpose60 and B0 so that60 \ B0 = �B0.
Proof. First place the feet of tubes as in Fig. 13.11 (left). Then we can push each

flat-arc (except for the one with the mark�) and end-arcs to the face or back side of
the disk part of60. Because the long-arcs adjacent to a flat-arc nearDL (resp. DR)
have the gap of the degree exactly� (resp.�). We can also push the ends of long-arcs
properly as in Fig. 13.11 (right).

Secondly we arrange the long-arcs along the tubes. All the long-arcs run paral-
lel to each other, except for the neighborhood of the middle of the tubes. Now place
the long-arcs near the middle of the tubes as in Fig. 13.2. Then radially move each
long-arc toward the core of tubes until it sits in the proper side of the proper tube.
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Fig. 13.11.

Fig. 13.12.

By extending this projection toward the end of the tubes, we can place the long-arcs
properly. Therefore, we have Claim 1.

Next, we show the following:

Claim 2. We can pushB0 to 60 so thatB0 is a K -banding.

Proof. Since our purpose is to construct aK -banding on6 by B, we can techni-
cally omit the proof that60 is a pre-fibre surface, though actually it is. Recall that
W(K ) is admissible and that each component of the pair of canonical compressing
disks of 60 is penetrated exactly once byB0. In the proof of Claim 1, we have al-
ready seen that each long-arc can be pushed onto the face or back side of the tubes
without intersections among them. Now we push flat-arcs to the face or back side of
a subdisk ofDL or DR. By construction, there are no intersections among them as
shown in Fig. 13.13, where the rectangle depicts a subdisk ofDL or DR. (The inter-
section in the middle of Fig. 13.13 does not violate the condition of K -banding.)

Therefore, we are left with only the flat-arcf with the mark�. See Fig. 13.14.
By symmetry, we may suppose thatf is on the subdiskDL1. Note that f lies on
the face side ofDL1 because one long-arc, labeledÆ0, connected to it corresponds
to the syllable 1 inW(K ). We can move the part of the long-arc, labeledÆ, as in
Fig. 13.14 (b). To prove that it is always possible, it suffices to show that neither flat-
arc nor end-arcs interfere. Fig. 13.14 (c) depicts the case flat-arcs1 and 2 which
interfere.
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Fig. 13.13.

Fig. 13.14.

First, from Fig. 13.8, we see that the dots on the long-arc labeled Æ are not the
newly created ones. However, by construction, there are no newly created dots to the
left of the original ones, and hence the arc1 never exists. Moreover, by reading
W(K ), we see that the arc2 corresponds to the unique syllable 1. SinceW(K ) is
admissible, we do not have2. Now Fig. 13.14 (d)–(g) covers all the cases of end-
arcs. By sliding the endpoint ofB0, we see that they do not interfere with each other.
(Note that Fig. 13.14 (d) never occurs, since both and Æ0 corresponds to the sylla-
ble 1, which is impossible sinceW(K ) is admissible. We have proved Claim 2.

Now we have seen thatB0 [60 is a K -banding. To recover the twist boxes as in
Fig. 13.8, apply Stallings twists along circles closely parallel to each boundary of the
subdisksDL1, : : : , DL� , DR1, : : : , DR� . By construction, these circles are not ‘linked’
with the moved flat-arcs, and hence we can recover a Seifert surface B [ 6 for K .
Moreover, sinceB0 is pushed onto6 nicely to satisfy all requirements for aK -band,
we see thatB is also aK -band on6. Therefore, by Proposition 12.4,K is a fibred
knot. Therefore, Theorem C is now proved for the case� > 0 in K (n, p j �, �).

Finally we describe the case� < 0. Since we can handle this case almost in
the same manner as in the case� > 0, we only show one example and explain the
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Fig. 13.15. Pre-fiber surface used in the case� < 0.

Fig. 13.16. K = K (5,4j3,�2). W(K ) = x2y2 � y�4x�4 �xy� y�3x�3 �� 1.

slight difference in the figure. When� < 0, we use the pre-fibre surface constructed
as before by the guide lineA, but this time it appears as in Fig. 13.15, and the right
disk DR is facing the same was asDL . Fig. 13.16 depictsK = K (5, 4j 3,�2). The
strictly normalized wordW(K ) = x2y2 � y�4x�4 � xy � y�3x�3 �� 1. Using W(K ), we
add hollow dots and stretchB as in Fig. 13.16. Then as we proved before, we have a
K -banding.

This completes the proof of Theorem C.

13.2. Fibre surfaces for satellite (1, 1)-double torus knots whose pattern
knot has an admissible word. In the previous subsection we constructed a fibre
surface F for K = K (n, p j �, �) with an admissible word. In this subsection,
we first construct a Seifert surfacebF for the satellite double torus knotbK =
K f(n, 0, 0;n, 0, 0j p)(1,�,�,�)(r 0, s0,�,�)g, whose pattern knot isK and compan-
ion knot is the torus knotT = T(r 0,�s0), where� = r 0s0. Then we show thatbF is a
fibre surface. Consider a loopL in E(K ) such thatS3 is split into two solid toriN(L)
and E(L) as depicted in Fig. 13.17.

We regardK as a knot in the solid torusE(L), and N(L) \ F is a meridian disk
for N(L). Then construct a Seifert surfacebF for bK as follows. Let' be a homeo-
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Fig. 13.17. A patternK (n, p j�, r 0s0) and a meridian of the com-
panion torus.

morphism which takesE(L) to N(T) so that '(F \ �E(L)) is null-homologous in
E(T). Then letbF be a Seifert surface forbK obtained by capping'(F \ E(L)) with a
fibre surface, sayFT for T along '(F \ �E(L)).

Now we prove the following:

Claim 13.2. The Seifert surfacebF is a fibre surface forbK .

Proof. It suffices to show thatbF is a K -banding of a pre-fibre surface for the split
link consisting of an unknotDL and T , see Fig. 13.1. Recall the pre-fibre surface6
for the 2-component trivial link constructed in the previous section. Note thatF is of
the form (6 \ E(L)) [ (6 \ N(L)) [ B, where (6 \ N(L)) is a disk andB is a K -
band. In the construction of6 in the proof of Proposition 13.1, we may assume that
the attached tubes are contained inE(L). Then the isotopy of the tubes depicted in
Fig. 13.2 is not interfered byL. Therefore, we see that'(6 \ E(L)) [ FT = bF n '(B)
bounds the split linkT [ �DL , and it is a pre-fibre surface by Proposition 12.7. In
the proof thatB is a K -band on6, we may assume thatB is completely contained
in E(L) and pushed onto6 in E(L). Therefore,'(B) is a K -band on the pre-fibre
surfacebF n '(B). Claim 13.2 is now proved.

Once we construct a fibre surfacebF , we can construct, usingL 0 in Fig. 13.17
in the same manner, a fibre surface for the original satellite(1, 1)-double torus knot
K f(n, 0, 0;n, 0, 0j p)(r , s,�,�)(r 0, s0,�,�)g, wherers = �.

Therefore, we have the following:

Proposition 13.3. K f(n, 0, 0;n, 0, 0jp)(r , s,�,�)(r 0, s0,�,�)g is fibred if its final
pattern knot K(n, p j rs, r 0s0) is fibred.

Proof of Theorem A. We only prove the ‘if’ part, since the ‘only if’ part is a
well-known fact. By Proposition 8.23 in [2] on the Alexanderpolynomial of satellite
knots in terms of that of the pattern and companion knots, we have the following:
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Proposition 13.4. Let K be a non-separating(1,1)-double torus knot, and K0,K 00
its pattern knots(as in Section 2). If one of K, K 0 and K00 has a monic Alexander
polynomial, then the other two also have a monic Alexander polynomial.

Suppose thatK = K f(n, 0, 0;n, 0, 0j p)(r ,s,�,�)(r 0,s0,�,�)g has monic Alexander
polynomial. Then the pattern knotK (n, p j rs, r 0s0) has a monic Alexander polynomial.
By Theorem B, Proposition 12.9, and Theorem C,K (n, p j rs, r 0s0) is fibred. Finally
by Proposition 13.3,K is fibred.

13.3. Minimal genus Seifert surfaces for those without admissible words. In
this subsection, we first construct a minimal genus Seifert surface for K (n, p j �, �)
which does not necessarily have an admissible word. Then we construct a minimal
genus Seifert surface for a general (1, 1)-double torus knot, and prove Theorem D.

We construct a Seifert surfaceB [6 similarly as we did in Subsection 13.1. The
only difference is that the strictly normalized wordW(K ) may have many syllables
of the maximal degree and/or the minimal degree. Recall thatthe maximal syllable
(xdeg(W)ydeg(W))�1 (resp. minimal syllable 1) can be read only when the corresponding
long-arc runs along the back (resp. face) side of the tube. Therefore, if (xdeg(W)ydeg(W))�1

and 1 alternates several times,B must be switched from the face side to the back
side several times. Since we only need to construct a (minimal genus) Seifert surface
and do not need to pushB onto 6, we only specify all long-arcs, except for those
corresponding to the syllable 1, to lie on the back side of thetubes. So we put the
mark � exactly before and after each syllable 1. Then as in the proofof Claim 1 in
Subsection 13.1, we can bringB so that we can superimpose6. Now we have the
following.

Proposition 13.5. The Seifert surfaces F= 6 [ B for K (n, p j �, �) thus con-
structed is of minimal genus. Furthermore, the genus of K(n, p j �, �) is exactly half
of the degree of its Alexander polynomial.

Proof. SinceF is constructed from two disks by adding deg(W) tubes, we have
g(F) = deg(W), By construction, deg(W) = deg(h(t)) defined in Section 4. By Proposi-
tion 10.2 and Remark 5.7, we have 2deg(W) = deg(1K (n,p j �,�)(t)). Since the degree of
the Alexander polynomial of a knot does not exceed the twice of the genus, we have
the proposition.

Next we construct a minimal genus Seifert surface for a satellite (1,1)-double torus
knot K0 = f(n, 0, 0;n, 0, 0j p)(r , s,�,�)(r 0, s0,�,�)g, with n odd, defined in Section 2.

In Proposition 2.2 we saw thatK0 is obtained from the pattern knotK (n, pj�,�) =
K (n, p j rs, r 0s0) along the companion torus knotsT(r , s) and T(r 0,�s0). Let V be a
handlebody of genus 2 such that�V carries K (n, p j rs, r 0s0) and (S3 n V) \ F con-
sists of two disksD1 and D2, where F is the minimal genus Seifert surface we have
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constructed forK (n, p j rs, r 0s0) and the two disksD1 and D2 come fromDL and DR.
By knotting each 1-handle ofV along T(r ,s) and T(r 0,�s0), and replacing each ofD1

and D2 by the fibre surface forT(r , s) and T(r 0,�s0) respectively, we obtain a Seifert
surfaceS for K0, with g(S) = g(T(r , s)) + g(T(r 0,�s0)) + g(K (n, p j rs, r 0s0)). Then we
see thatg(S) = g(K0) by using the following proposition due to Schubert, wherel = 1.

Proposition 13.6 ([2, Proposition 2.10]). Let K be a satellite knot with pattern
knot Kp and companion knot Kc. Then we have g(K ) � jl jg(Kc) + g(K p), where l is
the linking number between K and the meridian of the tubular neighborhood of Kc.

Finally we prove Theorem D.
By the argument in Section 10 and Proposition 3.4, we see thatthe degreed of the

Alexander polynomial ofK0 = f(n, 0, 0;n, 0, 0j p)(r ,s,�,�)(r 0,s0,�,�)g is the product
of those ofT(r ,s), T(r 0,�s0) and K (n, p j rs, r 0s0). Therefore, we have (1=2)d = g(K0).

14. Separating (1, 1)-double torus knots

In this section, we study separating (1, 1)-double torus knots, and prove Theo-
rem 14.1 which is a direct consequence of Propositions 14.2,14.3 and 14.4. LetK =f(n, 0, 0;n, 0, 0j p)(r ,s,�,�)(r 0,s0,�,�)g be a separating (1,1)-double torus knot. Then
by Proposition 2.1,n is even. SinceK , embedded in the double torusH , is separating,
each component ofH n K is a genus 1 Seifert surface forK , and only fibred knots
with genus at most one are the unknot, the trefoil, and the figure-eight knot.

Theorem 14.1. Let K = f(n, 0,0;n, 0,0j p)(r ,s,�,�)(r 0,s0,�,�)g be a separating
(1, 1)-double torus knot, where n is even. Then we have:
(1) g(K ) = (1=2) deg1K (t) if and only if rsr0s0 = 0, or lrsr 0s0 6= 0, where l is the
linking number of the2-bridge link B(n, p) with an arbitrary orientation.
(2) K is the unknot if and only if rsr0s0 = 0.
(3) K is a non-trivial fibred knot if and only if n= 2, and jrsr 0s0j = 1.

Conclusion (2) in Theorem 14.1 is guaranteed by Theorem 3.27in [6]. Further-
more, the Alexander polynomial ofK is calculated as follows:

Proposition 14.2 ([6, Proposition 3.16, 3.18]). Let K be a separating double
torus knot as above. Denote by l the linking number of the2-bridge link B(n, p) with
an arbitrary orientation. Then1K (t)

.
= � t2 + (1� 2�)t + � , where� = �l 2��, � = rs,

and � = r 0s0.
Then, Conclusion (1) follows from (2) and Proposition 14.2.
Now to prove (3), we first prove the following proposition on the pattern knots.
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Fig. 14.1. K (n, p j �, �) = K (4, 1j 1, 1).

Proposition 14.3. Let K = K (n, p j�,�) be a non-trivial separating(1, 1)-double
torus knot. Then K is fibred if and only if n= 2 and j��j = 1.

Proof. Supposen = 2 and hencep = 1 since gcd(n, p) = 1 and 0< p < n. Then
K (2, 1j 1, 1) is the figure-eight knot andK (2, 1j 1,�1) is the trefoil knot, which are
both fibred.

Next we show that ifn � 4, then K is not fibred. Suppose the contrary, where
n � 4 and K is fibred. By Proposition 14.2 we may assume� = 1 and� = �1. Since
K separates the double torusH into two Seifert surfacesF0 and F1 for K , H = F0[F1

separatesS3 into two handlebodiesV0 and V1 of genus 2. IfK is fibred, F0 is isotopic
to F1 and bothV0 and V1 should be homeomorphic toF1 � [0, 1]. We claim thatV1,
containing the ‘outside’ ofH , is not homeomorphic toF1�[0,1]. To do this, it suffices
to show that an inclusion map� : �1(F1) ,! �1(V1) is not surjective. Now we choose
the set of free generators,fa, bg and fx, yg, for �1(F1) and �1(V1) respectively as in
Fig. 14.1.

Then it is easy to see that�(a) = x�1, and�(b) = y"1x"2 y"3x"4 � � � y"n�1x"n , where"i = �1, 1� i � n. Sincen � 4 and�(b) is a reduced word in the free group�1(V1),
it follows that y cannot be expressed in terms of�(a) and �(b), and hence� is not
surjective. This proves Proposition 14.3.

Proposition 14.4. Let K = f(n, 0, 0;n, 0, 0j p)(r , s,�,�)(r 0, s0,�,�)g be a non-
trivial separating (1, 1)-double torus knot, where n is even. If jr j and jsj � 2 (or jr 0j
and js0j � 2), then K is not a fibred knot.

Proof. Suppose� 6= 0. If jr j and jsj � 2, then the Alexander polynomial of the
pattern knotK (n, p j rs, r 0s0) is not monic by Proposition 14.2, and henceK is not
fibred. If � = 0, then the Alexander polynomial is 1, butK is not trivial and hence is
not fibred.

Then, Conclusion (3) follows from Propositions 14.3 and 14.4. The proof of The-
orem 14.2 is now completed.
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