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Introduction

It was shown by A.A. Albert [1] that a cyclic central simple (Azumaya)
p-algebra has a purely inseparable extension field as a subalgebra. Hence such
algebra contains a cyclic extension and a purely inseparable extension as sub-
algebras. On the other hand, a quaternion algebra R(7, j) contains two cyclic

extensions R(7) and R(j) as subalgebras. These subalgebras are related by
inner actions.

In this paper, we shall generalize the above results using Hopf algebras
since we must treat separable and inseparable extensions simultaneously. Un-
der certain conditions we shall show that if an Azumaya algebra 4 over a field
K contains an H-Hopf Galois extension (in the sense of [3], [15]) of K as a
maximal commutative subalgebra then A4 contains an H*-Hopf Galois ex-
tension of K as a subalgebra. This is done in §1. In §2, we shall treat

typical Hopf algebras and show that the classical results are typical examples
of our results.

Throughout this paper, K will denote a field and H will denote a finite
commutative co-commutative Hopf algebra over K. & (resp. A, resp. 1) will
denote augmentation (resp. diagonalization, resp. antipode) of H. Unadorned
® and Hom will mean ®x and Homy. We shall denote by —* the functor

Homy(—, K). For Hopf algebras and Hopf Galois extensions we shall refer
to [3], [10], [15] and [16].

1. Hopf Galois extension v(H)

Let A be a K-Azumaya algebra which contains an H-Hopf Galois extension
L of K as a maximal commutative subalgebra. Then the H-action on L is ex-
tended innerly to the action on 4 and A is a smash product algebra L #, H
(c.f. [14] cor. 3.7 and 3.8). But in general 4 would not become an H-module

if we extend the H-action on L innerly to 4. The following Proposition is
fundamental.

Proposition 1.  The following conditions are equivalent.
(i) A becomes an H-module algebra.
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(ii) The value of 2-cocycle o is contained in K, ie. o(g®h)EK for any
g, heH.

Proof. (i)= (ii). This follows essentially from F.W. Long [8]. Let

v: H— A4 be a homomorphism which gives an 4-inner action. Thus v satisfies

h-s=§ v(hwy)so (), SEL or equivalently v(k)s=2] (hq+$s)v(hw), and v(ly)
(O]

=l4, v7' is the inverse of v in a convolution algebra Hom (H, A4). Since 4 is
an H-module algebra, (gh)-a=g-(h-a), acA. Using this relation we get
(§D‘0(g(nh(n)a’0"(g(z)hm) =(§h)v(g<1))v(h<1>)av“(h<z>)v"(gm) .
Thus
(g_‘éh)av"(g(1)h<1))v(g<2))v(h(2)) =(s&(‘h)v"(g<1>hu>)v(g<z>)'0(h<z>)a for any a€ 4.
Since 4 is K-central, we get

P )7)—l(g(l)h<1))7’(8’(2))7)(}1(2))EK .

&),k
Thus the associated 2-cocycle

o(g®kh) = 2 v(gw)v(hw)v  (gwhe)

£),(h)

== 2)v(gmh(n)v_I(gmh(z))'U(gm))”(h(a))’v_l(g«)hw)

&),Ch

is K-valued.
(il)=(i). Let o be a K-valued 2-cocycle and & be the associated normal cocycle
defined by

a(g®h) = (% (8w ®h)o (g ®1).
Then & is cohomologeous to o, 5 is also K-valued and 5(1Q#k)=a6(hQ1)=E&(h),
heH. Thus we may assume that o itself is a normal 2-cocycle. Let v: H—
A=L #, H be the homomorphism defined by v(A)=14#h. Then v gives an A-
inner action and carries 15 to 1,=1#1. Reversing the proof of (i)=(ii), we get
that 4 is an H-module algebra. This completes the proof.

Remark. If H is a group ring or a Hopf algebra whose simple subcoalgebras
are of the form Kk for A€ H and L is only a simple subalgebra (not necessarily
commutative), then by Skolem-Noether and Sweedler [9], the action of H on L
is A-inner (say by v: H—A). From the proof of Proposition 1, we get that 4
becomes an H-module algebra is equivalent tocg_,c‘h)v'l(g(1)h(,))v(g(2;)v(h<2))EK.

Corollary 2. Under the equivalent conditions of Proposition 1, let v be a
homomorphism which gives an A-inner action and makes A an H-module algebra.
Then the K-module v(H)C A forms a K-subalgebra.

Proof. We have
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v(g)v(h) Z(KE (gw)v(hw)v  (ghm)v(g@he)

PHO)

=. §h)0 (8w ®hw)v(gwhw»)

= v( 2} (g0 ®hw)ewhw) -
&),

Hence o(H) is closed under multiplication and v(#) has an identity v(15)=1,.
This completes the proof.

Remark. If H is a group ring then the converse of Corollary 2 holds as is
easily proved.

From now, we shall always assume the equivalent conditions of Proposition
1. We shall define an H*-action on v(H) by

xev(h) = ;;,: w(hw)v(he), xsH* .

Proposition 3. Through the natural isomorphism v(H)=H, the H*-action
on v(H) is the canonical left H*-structure of H and v(H) becomes an H*-module
algebra.

Proof. Let o be an associated 2-cocycle, then
x-(v(g)o(h)) = x+( w%fr (80 ®hw)v(ghw))
= (Eﬁ)a (8 ®hw)x(gha)v(gwhe)
= 2] 2gwhw)o(go®ha)v(gwhs)

@5,k
= (g)%;,(x)xm(g )% (hw)v(g@)v(he)

= )x<1>(g<1>)v(g<z>)x<z>(ha))v(h(z))

(8,(h),(*

= 3 (50-0(&)) (50 0() -
And ()-0() = 3} (89) (h)olh0) = 3 sho)yha)eho)

= % (S (ha)o(ho) = 3 (-o(h), % ySH* .
And x-1=x-9(1) = x(1)v(1) = x(1) = Exx(x) .

Thus v(H) forms an H*-module algebra. That this structure is a canonical one
follows easily. This completes the proof.

Proposition 4. Let v': H—A be another homomorphism such that v'(15)=1,.
Then v’ gives an A-inner action, if and only if, there exists a unit peHom(H, L)
such that v'=pv. Further if p€Hom(H, K) then v(H)=v'(H) as H-module
algebras.

Proof. “if part” is easy, we shall prove “only if part”. Put p(h)=
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(2@ 0'(hw)v(hy). Since v7'(h)=v(Mh)) we have for any se& L, p(h)s=
330 (hw)o™ (hea)s =32 0" (k) o (M) =23 0" (hw) (M) »5) 2 (M) = 23 52

(hw)v (he)=sp(h). L is amaximal commutative subalgebra, so p&Hom(H, L).
Further if p & Hom(H,K), then the homomorphism v'(H)2v'(k) H(Eh v(p(hw)he)
. )

€v(H) is a desired isomorphism. This completes the proof.

Until now, we have not used the commutativity of H. Next we shall utilize
the commutativity of H and show that o(H) is an H*-Hopf Galois extension in
the sense of [15], [16]. As before, let o be the associated normal 2-cocycle.
Then o is an element of Hom(HQH, K)=H*®QH*. Since o is a 2-cocycle,
we have

2 o(fwgw®@h)o(fo®ew)

£2,(8

= )(fa)‘0(5’(1)®h(1>))0(f<z>®g(z)h<z))

(£3,(8),Ch

= (f)’g'm&(f )7 (8w ®hw)o(fo Rgwhw)

= 2 (g0 ®hw)o(fRgwhw) -

Thus ’
(Ap®1)o) (e®1) = (1Q0) (1R A4x)a) .

This means that c€ H*QH* is a unit-valued Harrison 2-cocycle. In o(H),
multiplication is given by the formula;

v(g)v(h) =(g2 (g ®hw)v(gwhw) -

PR

Thus v(H)=H(c) in the sense of [16] §2. Since K is a field and Hom(H®H, L)
is finite dimensional, ¢! € Hom(H®H, L) is integral over Hom(H®H, K).
Hence o 'eHom(H®H, K). By [16] Theorem 2.3, we get

Theorem 5. Under the equivalent conditions of Proposition 1, v(H) is an
H*-Hopf Galois extension of K.

Next we shall consider the A-innerization of H*-Hopf Galois extension
o(H) of K. For this purpose, we first consider the normalization of 2-cocycles.
Let u=§_] u,Qu,, EHQH be a unit-valued Harrison 2-cocycles. We shall

call u is a normal 2-cocycle if €23 uu,)=1. As to this, we have the following;

Lemma 6. Let uzz 1, Quy, EHQH be a unit-valued Harrison 2-cocycle,
then

5(2 Uy lhy,) = z.} E(ur )y, = Z w,,6(us;) -
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Further we have
2 x(u,,.)uz,.———Z‘J w, Muy;), where \ is antipode of H.
Proof. Since u is a 2-cocycle,
(}; 1Qu,Qu,,) (E.)““@“Zf o ®z,)
©) = (cs,czuigul'“)@ul‘@@u;‘) (‘T‘_, %, Qu,, Q1) .
Applying EQE®1 on both sides of (*), we get
(X &, )uz) (X E(u,)tz) = (223 E(ur, ) (8(2.- Uy ;) -
Hence’ ‘ ‘
2 E(uy,)up, = G(Z‘ Urly,) -
Next applying 1®&QE on both sides of (*), we get
621 wun) (2] (uy)) = (2' (1)) (Z,} & (1)) -
Hence ;ve get '
8('2 U y,) = Z} 4,E(uy,) -
Finally applying 1QA®1 to (*) and then applying a contraction map, we get
(Z M, )z, (‘Z wE(uz;)) = (2.4_‘ &(uri)uz,) ('2 uMuy)) -
Hence we get the last relation. This completes the proof.

In an H-Hopf Galois extension H*(u) (in the sense of [16] §2) of K, an
identity element is &((3]uyup,)™")€ ([16] Theorem 2.3). Let w=>33u,&(u;) and
put «'=(wQ®w) 'uA(w). Then u is cohomologous to u’ and H*(u)=~H*(u") by
[16] Theorem 2.4. Moreover #’ is a normal 2-cocycle and the identity of H*(u')
is & Now we are ready to consider an inner action of an H*-Hopf Galois
extension 9(H) of K and from now we shall always consider normal cocycles.
We shall write an H-Hopf Galois extension L which is a maximal commutative
subalgebra of 4 as H*(u).

The following is necessary later.

Lemma 7. &(\(k))=&(h) for all he H.

Proof. We have &(\(h)) = E(X(g hwé(ha))) = % ENMhw))E(h)
= e(§ Mhw)he) = E(E(R)) = &(h) .

Let V: H*—H*(u)C A be the homomorphism defined by
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V() (B) = f(MB), fEH*.

Then Lemma 7 ensures that V carries an identity & of H* to an identity & of
H*(u). We remark that H*(u)=H™ as a left H-module, multiplication is given
by (f-£) (h)=.%f(ul,h(l)).g(uz‘.h@), f, geH*, he H. We shall show that V

gives an A-inner action of an H*-Hopf Galois extension v(H) of K. Since v
gives an A-inner action of L=H*(u) of K, we have

oB)f' = 33 (ko [olhe), S €H*(w) -
Thus for f € H*;

22 ooV (fo) = 33 foltw)oto)V(f)
= ?; fo(hw) (ha+ V(ﬁz)))‘”("(a))

= (fg(.‘;‘)f (ko) (V(f) (ka))V(fw)v(he)

= & Joto)foMra))V(fo)o(he)

= (f?oof w(XMb))V(f@)v(he)

= 2 foEto)V(fa)o(he)

= 2 fo)V fw)ut) = V(f)o®).

Next we shall show that V is invertible. Let V': H*—>H*(u)C A be the homo-
morphism defined by

(V'(f) () = f(Z w Ao (1) h), fEH* .
Then
(V7)) () (B = (V' (fw)* V(fw) (#)
= 23 V'(fw) (u, hm)V(f @) ()

i (k)

2 fu)((z U M) s hen) fo(MAo)Mu,))

() »Ch)

=f (‘%'_‘.) (’2 ul,h(uz,)) “1,’1(1)7\(}1(2))7\(“2 )

= f(1)é(h) .
((V=V") () (B) = 2 (V(fw)-V'(fw)) (B)

= 2 V(f (1)) (ul h(l))V’(f(z))uz h(z))

[€PNOA

>3 f(l)(h(h<1))7\'(”1 ))f(z)((z u1,7\(uz;)) Uy h(z))

C£2,(hdyi

= fE() (33 Mouwuz) (2 0 Muz)) ™)
which is equal to f(1)6(k) by Lemma 6. Thus V is invertible. That V(H*)=
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H*(u) is clear.
Finally we shall consider the 2-cocycle 7 arising from V. Since 7 is defined
by the formula;
w(f®8) = 3} V(fw) Vigw)Vfoogw), /; s H*
we get

(r(f®2) (h) = ( 2} (V(fw) V(gw)) V" (fwgw)) (k)
= 23 (V(fw) V(gw)) (uhw) (V' (fwgw)) (uahx)

C£,(8),Chd,i

= o (V) (i i) V() i o)

8,5,y 3,

XV fwgw)) (uzh»)
= 2] , }f(x)(h(ux,-)7\(“1;(,))7\(}%1)))5’(1>(7\(”2;)7\(“1;(2,)%(’%2))

Cf2,C8ChD, (% 3,8

X (fog@) ((; u Miz,)) " uzh)
= ot O PN M) O\t )N M)
X for Moz h)go(M ez ),  where we put

M = (Qw), ()™
— N SO )Ny, (1))>”(h(’))M (1)“2;(1)h(2))g (x(“Zf)x(u“(z))

IRCXRCnR NS
X M) Mz, , o)
= 2] f (x(uljuli(l))M ( 1)“2;(1))g ()\‘(uzjulicz))M (2)“2;(2))8 (h).

(OBRCwNe SR

In H*(u), K is contained as K€&. Thus 7 is also K-valued. Summing up, we
get the following

Theorem 8. Let A be a K-Azumaya algebra which contains an H-Hopf
Galois extension H*(u) of K as a maximal commutative subalgebra and assume that
the associated 2-cocycle is K-valued. Then there exists a subalgebra v(H) which is
an H*-Hopf Galois extension of K. H*(u) and v(H) are related as follows ; there exist
homomorphisms v : H*(u)—v(H) and V : v(H)—>H*u)C A such that v gives an
A-inner action which extends the H-action of an H-Hopf Galois extension H*(u)
of K and V gives an A-inner action which extends the H*-action of an H*-Hopf
Galois extension v(H) of K.

2. Dual of Hopf algebras

First we shall prove two lemmas which exhibit the structure of dual of group
rings as Hopf algebras.

Lemma 9. Let p be a prime number which is not equal to the characteristic
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of a field K and G be a cyclic group of order p". We assume that K contains a
primitive p"-th root of 1. Then (KG)*==KG as Hopf algebras.

Proof. Let G* be the character group of G, then (KG)*~KG*=KG and
this isomorphism is in fact an isomorphism of Hopf algebras as is easily seen.

RemARK. Theorem 8 combined with Lemma 9 explains the well-known
phenomenon on quaternion algebras.

Next we shall review a Hopf algebra H, introduced by A. Hattori [4] and
K. Kosaki [7].
Let K be a field of characteristic p#0. Then

H,=K[X, X, , X, ]/(X— X, Xi?— X, -+, X,.,P— X)) as a K-algebra,
we shall write the class of X as x;.

A(x;) = Si(%,®1, -+, 2,Q1; 1Qx, -, 1Qx;)
X(x’) — —X;
where S, :+, S,_; are polynomials which define the additive structure of Witt

vectors.
In particular,

A(xy) = %,Q1+1Qx,
A(xl) = xl®1+1®x1+2k'

k®xop k A

(-1
A. Hattori first defined H,, as a dual of a cyclic group ring. Here for completeness
we shall prove the following;

Lemma 10. Let K be a field of characteristic p+0 and G={1, 6, ---, 6*" "%}
be a cyclic group of order p". Then (KG)*=H, as Hopf algebras.

Proof. Let {e;} C(KG)*,i=0, 1, ---, p"—1, be a K-basis of (KG)* defined
by ei(6’)=39; ; (Kronecker delta). We shall define a homomorphism ¢: H,—
(KG)* as follows;
$(0) = D ajen =0, 1, =, n—1
where coefficients a;;& Z/pZ are defined by
aj, =0 forallj
(aob Ay 5 Ay 1) = (1’ O; ) 0)
(ao ir Ay iy **ty Ay i) = (1, 0’ A O)+"'+(11 0, %y 0)

i terms
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where “+4”’ means the sum of Witt vectors.

We shall show that ¢ is a Hopf algebra isomorphism step by step. That
(p(x;))?=e(x;) is an immediate consequence of a;;EZ[pZ. Hence ¢ is an
algebra homomorphism.

To see that ¢ is an epimorphism, we shall prove K[¢p(x,), -+, ¢(x;)] SK[p(x,),
o+, d(%;), p(%;4,)], then the dimension arguments will ensure that ¢ is an epimor-
phism. But (a, ym, @, ym, **, @yoq ym)=(1,0,"+-,0)+---4(1,0, ---,0)=(0, 0, ---, 0, 1,
0, -+, 0) p" terms m—+1
Thus the above inclusion is strict.

Next let A* be a diagonal map of (KG)*, then

(A*(p(x))) (6*RO™) = p(x;) (6*"™) = @; am -
On the other hand
(@ P)A(x,)) (0*R0™) = (($RP) (Si(%®1,++,2;RQ1;1Qx,,++,1Q;))) (6*RO™)

=Sj(a0 Bk Aom 45 m) .

But
(ao ktmy Q1 ktmy *°°5 Ap—1 k+m) = (1, 0, -, 0)+"'+(1, 0, -, 0)
k—+m terms
= (ao B " Gn- k)+(ao my "7y Ay m)
= (So(aok§ Ay ), Sl(aok) Qs Qomy A1)y ** Sn-l(aok’ Ay Au—1k> Ay my Ay my
“eey a”_lm))
Thus

A¥((%) = (#BP)A(x)) -

Let &* be an augmentation of (KG)*, then &*(¢(x;))=0 follows easily from
a;,=0. Hence

E¥(p(x,)) = 0 = p(e(xy)) -
Finally let A* be an antipode of (KG)*, then

(N (@(x)) (67) = ($(,)) (07°™) = a; r-m
(p(M=))) (07) = ($(—#,)) (0") = —a; m
But
(S56(a0 m o p7-m)s S1(Fo ms @1 w3 o p*—ms A1 p7—m)s ***
Sn—l(ao my "%y Au—1m5 o p"-my **"s Au—1 p"—-m))
= (G m> A1 my *** p=1 m) (G0 7=ms A1 oy ***> A1 p*—m)
= (1,0, -+, 0)F+-+(1, 0, =+, 0)4(1, 0, -+, 0) 4+ =4(1, 0, +-+, 0)

m terms p"-m terms
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= (1’ 0, -, 0)+...+(1, 0, -, O)

p" terms
= (0,0, -, 0)

From this, we can get easily by induction that

;i mta; o =0.
This completes the proof.

ReEMARK. In Lemma 10, if n=1 then ¢(x;)— ,,21 ke, k= Z|pZ. This is
proved in different ways by F.W. Long [8] Proposition 5.1.

Next we shall prove the following proposition in two ways. One uses
Witt vector computations and another utilizes the fact that H, is a dual of a
group ring. The latter is due to Prof. A. Hattori, who kindly informed me
such a proof.

Proposition 11. Let K be a field of characteristic p+0 and L be a com-
mutative K-algebra. If L|K is an H,-Hopf Galois extension, then L is a purely
inseparable K-algebra in the sense of M.E. Sweedler [11].

Proof I. We shall show that s*"€K for any s€L, then by [11] Lemma 1
we shall easily get the assertion. To this, we shall show that x;-s"*"'=0 by
induction.

xoosmP e xo(ssmﬁ—l) — So((xo.s)smﬂ—l; s(xo.sml)—‘l))
= (% §)s™ 1 5(xg + 5™ 7Y) = (209 +5)s™ 71 5( (% + 5)s™P 2 5(, - ™ 7))
— eee — (xo.s)smp—l+___+(x0.s)spm_1 — 0 .

mp terms

Next we assume that the assertion is valid for numbers smaller than j, then

x,-os’""iﬂ = xj.(sp"spimp—l)) — Sj((xo-sf’j)sﬁj“"i"”, .,
(xj.spi)spi(mp—u; P (25?77 us 5P (g0 57T (MDY
= 50, 0, --+, 0, (x;+52")s?’ 271 P35 e P MI7D) e 5P (g 0 577 (P71
= (x;+ s?7)gp (mp=D_t_ s”j(xj )
= (x;°5") 5?7 mp=D) L 8 ((1x ;o 57) 5P (m0=D) §? (5?7 (mp=D))
— oo = (20;05?7)sP MO (30 57 )g D)

mp terms

=0.

In particular,
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xj-s”" =0foranyseL,j=0,1, -+, n—1.
Since &(x;)=0,
xj08" = 0 = &(x;)s?" .

This means s €L#» which is equal to K since L/K is assumed to be an H,-
Hopf Galois extension. This completes the proof.

Proof II. Since L/K is an H,-Hopf Galois extension, we have isomor-
phisms: LQL=Hom(H, L)~H*®L=~KGQL=K[X]/(X")QL=L[X]/(X*")
where G is a cyclic group of p". Compairing the number of idempotents of both
sides, we see that L has no non-trivial idempotents. Hence Lfrad(L)=L is a
field (rad(L) means Jacobson radical of L). Let Q be an algebraic closure of K,
then we have an isomorphism (LQQ)Ro(LRQ)=(L RQ) [X]/(X?"). By the
similar arguments, (LQQ)/rad(LQQ) and LRQ/rad(LQQ) are fields (neces-
sarily isomorphic to ). If there are m distinct K-embeddings o;: L—Q then
there are m distinct Q-homomorphisms: E@QE&@br—»ai(a)beﬂ. Thus
E@Q/rad(Z®Q) must contain a direct sum of m copies of . Hence m=1,
this means that L/K is a purely inseparable extension. By [11] Corollary 13,
we get the Proposition.

RemMARK. Theorem 8 combined with Lemma 10 and Proposition 11 explains
the results of A.A. Albert.
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